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Preface 

This book provides an elementary introduction to classical analysis on 

normed spaces with special attention to nonlinear topics such as fixed points, 

calculus and ordinary differential equations. In this second edition, a new 

approach to vector measures on d-rings based on dominated convergence is 

introduced. Matrix-representations of groups are also included because mean- 

values of almost periodic functions behave similar to translation-invariant 

integrals and are available in infinite dimensional Banach spaces. This book is 

for beginners who want to get through the basic material as soon as 

possible and then do their own research immediately. It assumes only general 

knowledge in finite dimensional linear algebra, simple calculus, elementary 

complex analysis and in the last part also elementary group theory. The treat- 

ment is essentially self-contained except chapter 27 which may be skipped 

without discontinuity. With sufficient details, even an undergraduate with 

mathematical maturity should have no trouble to work through it alone. 

Various chapters can be integrated into parts of a Master Degree Program 

by course work organized by any regional university. Restricted to IR” rather 

than normed spaces, selected chapters can be used for a course in advanced 

calculus. We also hope that Engineers and Physicists would find this book 

to be a handy reference in classical analysis especially our approach to vector 

measures. High school teachers may be interested to enrich their programs 

by including the generalization of triangles and tetrahedra as treated in our 

chapter 4. Some special features are highlighted below. 

Banach-Hilbert Spaces 

e Sequences can be interpreted as samples taken per unit time. It seems to be 

more intuitive to use them as description of topological properties. 

« Simplicial Complexes are treated in details for potential school projects if 

restricted to IR?, R°. 

e Transition from R} to finite dimensional spaces is analytic, §5-1.9,12. 

e Explicit formula for no retraction is given in §5-2.4. 

e Infinite dimensional topological results are developed without homology. 

e Higher derivatives in addition to first derivatives are represented by matrices. 

e Higher Chain-Products Formulas §§10-6.2,3 are expressed more naturally in 

polynomials rather than in symmetric multilinear maps. 

e Local solution interval to initial valued problem is independent of initial data. 

e Dependence on initial conditions are in global setting. As an informal illus- 

tration, suppose a commodity can last one year in a laboratory. Local theory
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says that its mass production should work for at least a few seconds but our 

global theory ensures a period of at least 300 days. 

e Tensor products of vectors and linear maps are defined separately but we 

prove that they are consistent in §15-5.11. 

e To the best of our knowledge, tensor products of operators on Hilbert spaces 

§§15-7.9 to 16 are our contribution. 

Vector Measures 

e Existing instructors do not have to learn new trick in order to demonstrate 

their leadership in helping a new generation of scientists to equip with better 

tools in vector measures-integrals. 

e Our proposed approach can replace most existing courses in scalar 

measure theory because the treatment is self-contained without assuming 

Egorov’s Theorem or semivariations from scalar-theory. 
e Complex vector lattices are used as framework for measures and means. 

e Breakable vector lattices ensure that order bounded linear forms are linear 

combinations of positive linear forms. This unifies several proofs in §§17-3.4, 

24-6.9, 27-3.2, 31-3.2. Some results of real vector lattices are extended to 

complex breakable vector lattices. 

e Semirings are the starting points of all our measures. Finite variation is 

characterized in terms of order §17-3.6 and absolute convergence, §17-4.5. 

e Measures are defined on 6-rings so that they need not be bounded. Sets in 

é-rings are called decent sets. They correspond to bounded Borel sets in IR”. 

e Measures are of finite variation in order to use breakable vector lattices. 

e Functions of finite variation are related to Stieltjes measures. 

e Simple proof of certain complex charge to be of finite variation is given in 

§18-1.4. 

e Restriction to finite-valued outer measures allows the approximation of 

extension to decent sets by values on sets in semirings, §18-3.3,4,6. As a result, 

integrals of decent functions are defined. 

e A set with a d-ring is called a 6-space. Measurable sets are defined by 

localization and are independent of all measures. 

e Measurable functions in general are finite-valued and are defined everywhere 

but p-measurable functions depend heavily on a particular measure pz, §22-3.4. 

e Approximation by simple functions has the additional property of increasing 

modulus, §19-4.4. 

e Explanation §19-5.1,3 why measurable (vector) maps should not be defined 

trivially as sequential limits of simple maps as in most literatures so that 

continuous maps are measurable.
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e Extension of sign-function to vector maps, §19-6.2. 

e Weak and weak-star measurability of maps are unified in §19-6.7. 

e Inner regularity defines the integrals of simple functions, §20-1.3. 

e Positive measures are defined for all measurable sets, §20-2.2, while vector 

measures are defined only on integrable sets, §21-1.6. 

e Integrals of vector maps are defined by Dominated Convergence, §21-2.8. 

e L,-spaces are in the context of vector maps and vector measures, §21-4.2,4,6. 

e Dog is defined without measure, §21-5.1. 

e Various modes of convergence are defined for vector maps. 

e Algebra of measures are developed in §§20-5, 21-8.2. 

e Products of vector measures do not require o-finiteness, §22-2.2 

e Product spaces are in the context of vector measures, §22-3.9,19. 

e Reduction of elementary operations in linear algebra into two cases, §23-5.3. 

e Absolute continuity is characterized at the level of semirings §§24-2.7,9. 

e Polar form §24-4.4 reduces complex measures to positive measures. 

e The condition of o-finiteness for Radon-Nikodym theorem together with the 

vector version of concentration of continuous linear forms §24-6.6 removes the 

o-finiteness from the duality of L,-spaces for 1 < p < co, §24-6.7. 

e Cantor set and function are developed on the familiar decimal system, §25-4. 

e Spectral measures are treated as a continuation of functional calculus. 

* Simple classical technique is employed for monotone convergence, §26-1.7. 

Our approach is intuitive as shown by the proof of spectral theorem, §26-6.4. 

e Spectral measures are extended from semirings to o-algebras, §26-2. 

e Regularity of measures on locally compact spaces are defined in terms of 

variation to accommodate vector measures. 

Group Representations 

e Our notation of mean-values strongly indicates the resemblance to integrals 

but monotone convergence theorem fails for mean-values, §§31-1.3,4. We wish 

to draw the attention of the community that something similar to translation- 

invariant integrals has been available on infinite dimensional locally convex 

spaces although we restrict ourselves to Banach spaces in this book. 

e Further development on top of von Neumann’s almost periodic functions, 

abbreviated as ap-functions, has close relation to group representations. 

e Restriction to matrix representations of groups avoids unnecessary formality. 

e Matrix-valued maps are used whenever possible. 

e On KR, we may be interested only in continuous objects because 

continuous characters are of the exponential form e** but our groups have no 

topology. We get by with comfortable almost periodic functions, abbreviated
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as cap-functions. We propose the study of saturated closed invariant ideals, 

§§30-3.2,3,5,8,9,20. 

e Develop product groups based on representations, §31-1.6. 

e Means on groups are defined as continuous linear forms on cap-functions. 

Rich properties §§31-2.4,5,6 deserve better attention from the community. 

e As the dual spaces, monotone convergence theorem holds, §§31-3-10, 11. 

e £:(G) may be the infinite dimensional counter part of £,(IR") but the 

establishment of £)(G) versus L,(IR”) is an open challenge to readers. 

Web-page of this book has been in service since 1997: 

http://www.maths.uwa.edu.au/~twma/free/norm/norm.htm 

or http://maths.uwa.edu.au/~twma/free/norm/norm.htm 

Every paragraph is prefixed with a unique identification. For example, 

§§1-2.3, 4.5,6 means chapter 1, section 2 paragraph 3 and section 4 paragraphs 

5,6. Notations are introduced or recalled at the early stage of a section and then 

will be used throughout the section unless further specification is mentioned. 

Theorems without proofs and exercises have the same meaning to us. Exercises 

are normally illustrative but not tricky because we believe that your time may 

be used more profitably to do your own research. 

References are given at the end of every chapter. Each reference is 

identified by the family name of the first author only and, if necessary, also 

by the year of publication. If necessary again, the first letter of one or several 

words from the title will be included. This method is purely for convenience 

because it is easy to understand and is independent of the enumeration of 

references in different books and papers. In order to arouse the curiosity 

of the beginners, the selection of references is based on informative titles 

rather than the significance in the history of development. To enrich their 

cultural background, readers are advised to look up the titles even they may 

not have the time or facility to study the literatures. Our references offer 

starting points for further study or to do research in various areas. For example, 

polymeasures, multimeasures and special functions on groups are not covered 

in this book but limited references are included. We also include a few 

references on unbounded measures because our measures need not be bounded. 

Each reference is normally mentioned only once in the book although it may 

be related to several chapters. In order to cut down the number of references, 

if a series of papers on related topics is published by the same person, only 

the most recent one available in our record is normally quoted. It should give 

enough information if readers want to trace their earlier work. 

twma-2002
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Introduction 

1. This book essentially consists of four parts: 

Chapters 1 to 12 in Normed spaces; 

Chapters 13 to 15 in Hilbert spaces and tensor products; 

Chapters 16 to 27 in vector measures on 6-rings and 

Chapters 28 to 31 in group representations. 

Within the first part, nonlinear analysis by topological method is covered in 

Chapters 4,5 and nonlinear analysis involving differentiation in Chapters 8 

to 11. Readers with suitable background should start with any of Chapters 

4, 8, 13, 16 or 28. They can also work on these chapters concurrently. 

Informal introduction is given here while the chapters tend to be concise and 

precise. Maps in this book generally need not be scalar-valued but functions 

normally are scalar-valued. Complex functions mean that they need not be 

real. Characteristic functions are denoted by p instead of x so as to avoid 

possible confusion with x, X in hand-writing. 

Banach Spaces 

2. The first three chapters of this book provide the necessary background 

for any course in analysis. Sequences are used consistently to characterize 

continuity, closures, completeness, precompactness and compactness. The fact 

that closed bounded sets are compact is proved by upper and lower limits rather 

than bisecting infinite sets. One dimensional intermediate value theorem, 

fixed point theorem and structure of open sets §2-10.9 follow as a result of 

connectedness. Partition of unity is developed at the end of first chapter 

and will be used twice in §§5-3.3, 12-4.5. After finite dimensional normed 

spaces are characterized, standard criteria of compactness in infinite 

dimensional spaces (Ascoli’s theorem) and also approximation of continuous 

functions (Stone- Weierstrass theorem) are given by the end of chapter 3. This 

would quickly cover the topological background required by advanced calculus 

and complex variable at the undergraduate level. It would be interesting to 

see the connection of functional analysis and neural network, e.g. [Cotter]. For 

general history of functional analysis, consult [Dunford], [Dieudonne-81] and 

[Musielak]. 

3. Affine approximations on simplicial complexes have been playing an active 

role in computation with computers as indicated for example by [Kearfott],
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[Talman], [Todd], [Eaves], [Mara]. Because surfaces can be approximated 

by gluing triangles together and solids by tetrahedra, perhaps Mechanical 

Engineers and also experts in physical chemistry, e.g. [Bytheway] may be 

interested to know more about its theory. Restricting to one, two and 

three dimensional spaces, e.g. [Steenrod], [Shashkin], chapter 4 also offers an 

opportunity for high-school projects. Convex sets §4-2 will be required in the 

subsequent context. However if you are not interested in topological method, 

skip to chapter 6. Alternatively, you read only the statement of §4-10.8, and 

then skip to chapter 5. We treat chapter 4 thoroughly. Proofs on geometrical 

independence in §4-1 are rarely found in any existing textbooks. In §4-4.11, 

vertices are proved to be extreme points. The rest of the chapter is devoted to 

the construction of simplicial approximations. Good background has been laid 

for you to continue the study in simplicial homology theory which is beyond 

the scope of this book. Consult [James], [Fan-90] for history. 

4. Instead of waiving our hands demanding acceptance with faith of 

topological invariance, Borsuk-Ulam theorem is transported from JR} in 

§5-1.4 to finite dimensional normed space §5-1.12 with scaling homeomorphism. 

Brouwer’s fixed point theorem is derived from Borsuk-Ulam theorem with 

explicit formula in §5-2.4. Retraction theorem is proved by elementary 

technique which is within the capacity of undergraduates. A general fixed 

point theorem on convex sets is given in §5-3.5. The treatment of compact 

fields is simplified from [Granas-62] and only Tietze’s extension theorem is 

used to develop homotopy extension theorem. By the end of chapter 4, we 

have covered most of the traditional applications of classical algebraic topology 

but in a more general context of infinite dimensional spaces as in [Granas-62]. 

The whole chapter is within the reach of undergraduates without asking them 

to take anything for granted. Consult for example, [Steinlein], [Fan-99] and 

[Jaworowski] for further information about Borsuk-Ulam theorem. 

5. Standard material of linear functional analysis is developed in chapters 6 

and 7. Hahn-Banach extension theorems guarantee that there are sufficient 

amount of continuous linear forms to separate convex sets. This is applied to 

derive Krein-Milman theorem. It also allows us to reduce certain cases from 

infinite to one dimensional spaces, e.g. §§8-3.3, 4.6, etc. Uniform boundedness 

theorem ensures that weakly bounded sets are norm-bounded. One of its 

applications is given in §8-4.5. References to show that open map and closed 

graph theorems cannot be generalized to bilinear maps are included. Chapter 

7 covers topics such as embedding into bidual spaces, duality of quotient spaces
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and subspaces, direct sums, transposes, reflexive spaces and weak convergence. 

6. Vector-valued maps of a scalar variable are introduced in chapter 8. We 

support the simple and elegant way to develop integration theory starting 

with step maps. As soon as the fundamental theorem of calculus is proved, we 

can evaluate integrals as antiderivatives and this is what we use most of the 

time. At this point, we expect the readers to have basic knowledge of complex 

analysis including criteria of holomorphic functions and Cauchy’s integral 

formula. These results are treated in the context of Banach spaces. Laurent 

series expansion including Taylor series as special case, is done from scratch. 

Liouville’s theorem follows from the characterization of polynomials from entire 

maps. Resolvent map is an important example of holomorphic vector maps. It 

is used to show that the spectrum of an operator on complex Banach space is 

non-empty. Chapter 8 finishes with holomorphic maps of an operator defined 

by Cauchy’s integral formula together with a practical formula for functions 

of square matrices without Jordan forms. See e.g. [Taylor-71] for history and 

[Fan-96], [Sharma] for recent development. 

7. Chapters 9, 10 are devoted to advanced calculus. Most undergraduate 

textbooks restrict themselves to scalar-valued functions of several variables. 

Based on our numerical examples §§9-3.8, 5.6, 7, 10-5.6, 15-4.13, you may 

be interested to standardize the notations of higher derivatives of maps and 

also polynomials from IR” to IR™ in terms of matrices. Transition from 

scalar to vector variable for differential theory is given in §9-1.2. Integral and 

uniform mean-value theorems of §§9-2.7,8 later become Taylor’s formula and 

its corollary §§10-5.2,3. Inverse and implicit mapping theorems are proved 

by contraction which is also an important tool in numerical analysis due to 

its ability to estimate the error. Local properties of differentiable maps §9-6 

are restricted to finite dimensional maps because of the simplicity of using 

determinants although they have been extended to infinite dimensional spaces. 

The theorem on Lagrange multiplier is modified from [Sagan] without the 

assumption on the rank of certain matrix. It is well-known that a special case 

of §10-5.4 is an important tool in differentiable manifolds, e.g. to prove the 

Morse’s lemma. The higher chain formula §10-6.2 is expressed in the natural 

setting of polynomials rather than multilinear maps in unnecessary generality. 

Our proof involves only simple combinatorial method. Consult e.g. [Ma-01] 

for inverse mapping theorem on locally convex spaces. 

8. Chapter 11 deals with initial value problem zx’ = f(t,x). Existence of 

common solution interval for all initial conditions near a given point is proved
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in §11-1.6 which is used to derive global continuity of initial condition in 

§11-5.4 where the size of solution interval is guaranteed by an interval (a, {). 

Its importance is illustrated by an example §11-1.10. As a result of continuity, 

the domain Q, in §11-5.5 of the flow associated with the vector field f is open 

and the flow y is smooth §11-5.10. Since we do not carry the topic any further, 

we do not introduce the concept of flow in the context. Our boundary theorem 

§11-2.6 holds in infinite dimensional spaces. Linear differential equations are 

studied in §11-3 and §11-4. Two estimates of the solution to a linear equation 

are given in §11-3.4. Fulmer’s method of finding the exponential function of 

a matrix is by method of differential equations. Finally, topological method 

is used to generalize Peano’s theorem to infinite dimensional spaces. Consult 

e.g. [Lobanov] for locally convex spaces. Just like compact fields, we prefer to 

suitable rather than maximum generality in an undergraduate course. We 

believe that at this point, students are well equipped to study differential 

topology which is beyond the scope of this book. Most of this chapter work 

for complex Banach spaces even we restrict ourselves to the real case. 

9. Chapter 12 deals with compact linear operators. Fredholm alternative 

§12-2.9 is stated in a form identical to a characterization of non-singular 

matrices in linear algebra. Readers should look up some references in 

order to have a feeling of the importance of compact linear operators because 

it is probably the simplest tractable infinite dimensional linear operators. For 

example, their spectra are null sequences, §12-3.4. The proof of a lemma for 

the existence of hyperinvariant subspace is slightly shortened by the order of 

the operators K,T in §12-4.5. For an extension of Lomonosov’s techniques to 

non-compact operators, see [Simonivc]. 

Hilbert Spaces 

10. Systematic exposition of Hilbert spaces is given in two subsequent 

chapters. They should be read concurrently with the corresponding topics 

in Banach spaces. The link among operators, sesquilinear forms and quadratic 

forms is established first. The second half-chapter studies various types of 

operators based on the star operation. Geometric properties of subspaces are 

characterized in terms of algebraic equations of projectors. It is a pity that my 

teaching duty was governed by official course outlines otherwise I would start 

with C*-algebras. 

11. The spectrum of an operator on Hilbert space is studied in chapter 14. For 

a self-adjoint operator, the connection between its quadratic form, its spectrum
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and its norm is given by §14-2.12. Diagonal operators generalize diagonal 

matrices of which the properties are completely determined by the diagonal 

coefficients. It turns out that every compact normal operator is diagonable. 

As an important consequence §14-5.14, every compact operator on a Hilbert 

space can be approximated by finite dimensional operators in norm. This is not 

true in Banach spaces, e.g. [Enflo-73], [Szankowski]. The chapter ends with a 

functional calculus of self-adjoint operators and polar decomposition. Consult 

[Gohberg-00] for traces and determinants on Hilbert spaces and Konig-75 on 

Banach spaces. 

12. Our tensor products of vector spaces are constructed within the frame- 

work of product and dual spaces without the naive concept of formal sums. 

The notation f @ g is justified in §15-4.1. In contrast to the current system, 

we adopt the reverse lexical order in §15-4.3 because of the matrix 

representations of multilinear maps, e.g. §15-4.9, 12. Tensor products of linear 

maps are defined in a way completely different from tensor product of vectors. 

We prove that they are consistent under the natural injection in §15-5.11. It 

is obvious that tensor products of normal operators are normal. Motivated by 

finite dimensional spaces, the converse is given in §15-7 for several classes of 

normal operators which to the best of our knowledge were our contribution. 

Vector Measures on 6-Rings 

13. My interest in measure theory was inspired by [Apostol, pp207-212], 

[Zaanen-59, p42], [Kolmogorov], [Loomis, 12C] in early sixties and my teaching 

assignment from mid-seventies until 1986. After a long gap, I began to work in 

vector measures started with [Dinculeanu-67] and [Diestel-77] during 2000 and 

2001. In addition to our own new results, most steps in the following treatment 

are modifications with improvement of known facts but our final overall version 

seems to be unique in this area. We introduce breakable vector lattices to unify 

proofs, inner regularity to define measures from decent sets. Then we extend 

to integrable sets and finally define vector integrals by dominated convergence 

property. We do not need Egorov’s Theorem, semivariations, Vitali-Hans-Saks 

Theorem, Nikodym’s Theorem in order to develop the vector version of 

measures. We also explain why measurable vector maps should not simply 

be defined as sequential limits of simple maps if we want continuous maps on 

locally compact spaces to be measurable. Through our innovative approach 

at no extra cost, existing staffs can easily help a new generation of scientists 

to have better tools of integration used practically everyday in our lives. If
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measure theory on o-rings is an abstract generalization of Lebesgue measure 

then measures on 6-rings are the counter parts of Stieltjes measures. Finite- 

valued signed measures on o-rings must be bounded but measures on 6-rings 

need not be bounded. See [Hawkins], [Chae] for history of early development. 

All our measures are of finite variation. The following is a more detailed 

introduction. 

14. Conjugation rather than the popular complexification is introduced in 

Chapter 16. Our definition of complex vector lattices is easier to verify and 

sufficient to provide service to this book although most of the concrete examples 

also satisfy the popular axioms. We also introduce breakable vector lattices 

as generalization of real vector lattices, §16-3.12. Its existence is justified by 

the order duals §16-5.5 and the unification of proofs in §§17-3.4, 24-6.9, 27-3.2, 

31-3.2. 

15. Semi-intervals and semi-rectangles should be used as guiding examples 

of semirings in Chapter 17. Every finite family of semi-rectangles can be 

decomposed into disjoint unions of semi-rectangles. This is formalized 

analytically into Semiring Formula, §17-1.9 and developed into Step Mapping 

Theorem, §17-2.3. Vector charges and vector integrals are introduced in §17-2. 

Algebraic method §17-2.10,11 identifying charges and linear forms simplifies 

the proof of geometrical results, §17-2.12. We characterize finite variation in 

terms of order-boundedness §17-3.6 and also absolute convergence, §17-4.5 by 

modifying [Munster]. Admissible bilinear map ensures the continuity connect 

ing vector measures and integrands. Countable additivity of charges is related 

to monotone convergence in set-level §17-5.7 and at function-level, §17-5.10. 

All measures in this book are of finite variation. Their variations are defined in 

§17-3.4 and proved to be measure in §17-6.5. Being of finite variation of maps 

on R is defined in terms of charges so that we can apply measure theory to 

get the old results later. For an approach without the abstract theory of this 

chapter, see [Apostol; Thm 8-14, also Ch. 9]. For application to stochastic 

processes, see for example [Dinculeanu-00s]. 

16. A 6-space is a set with a é-ring. Sets in the é-ring are called decent 

sets for convenience. In Chapter 18, we give a simple proof that countably 

additive scalar charges are of finite variation. Uniqueness of extension of vector 

measures from semirings to generating 6-rings is proved in §18-1.11. The actual 

extension of positive measures is by standard method of outer measures. In 

order to have rich algebraic operations among complex measures, it is necessary
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to start off §18-2.3 with a finite-valued function on 8. Classical results from 

[Kolmogorov] are put into abstract setting. 

17. Motivated by earlier Chinese edition of [Xia], measurable sets are defined 

by localization independent of measures. We try to avoid ,:*-measurable 

sets which are obtained from an outer measure u*. It follows with standard 

properties of measurable functions. Approximation of measurable functions 

by simple functions with increasing modulus prepares the ground to define 

integrals by dominated convergence. Measurable complex functions and 

vector maps take values in R, C€ or Banach spaces but measurable real 

functions are allowed to take -too as value in order to define integrals. 

Example §19-5.3 explains why we have to define measurable maps §19-5.5 by 

localization in order to include continuous maps on locally compact spaces, 

§27-1.4. The characterization §19-5.4 is obtained by modification of [Kuttler, 

23.1]. Uniform approximation of measurable maps by sequences of simple maps 

is given in §19-6.4,5. Our lemma §19-6.7 takes care of both weak and weak- 

star measurability at the same time. Finally we prove that sequantial limits 

of measurable maps are measurable. 

18. Upper functions are measurable extended-valued positive functions. The 

integrals of upper functions with respect to positive measures are developed 

in Chapter 20. Measurable functions are approximated by simple functions 

but our measures are defined only on decent sets. The crucial bridging step is 

by inner regularity, §20-1.3. Positive measures are defined on measurable sets 

§20-2.2 but vector measures on integrable sets only, §21-1.6. Equality almost 

everywhere and a-finiteness allow us remove infinity from values of integrable 

functions so that their sums are defined. The important features of integration 

theory takes its most primitive form in §20-3. Characterization of c-finite sets 

§20-4.9 in terms of decent sets will be used repeatedly. Working with two 

positive measures is motivated by [Taylor-65]. 

19. Our unique approach to vector integration with respect to a vector 

measure j is carried out in Chapter 21. Since the variation |p| is a positive 

measure, p-measurable sets are defined and can be approximated by decent 

sets. This is the basis of extending a vector measure pu to all integrable sets. 

For a measurable map f, its variation |f| is an upper function and the integral 

f \f| 4] defines the scope of integrable maps of which their integrals f fdu 

are defined by dominated convergence §21-2.8. Important results of 

vector L,-spaces for 1 < p < oo required by classical harmonic analysis is given
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in §21-4. They include Dominated Convergence Theorem, Monotone 

Convergence Theorem, Integration Term by Term and differentiation under 

integral sign. Density theorem §21-4.6 incorporates increasing modulus. 

Vector Ly -spaces are introduced without any measure because of the need 

in spectral measures in §26-4. All modes of convergence are for vector maps. 

This Chapter concludes with integration on subspaces and comparison with 

improper Riemann integrals. 

20. Because our machinery begins with semirings, they are applicable to the 

product spaces directly in Chapter 22. Product measures does not require 

o-finiteness, §22-2.2. To have nice formula |u @ v| = |u| @ |v|, we have to 

assume one of them to be scalar, §22-2.4. To proof the Fubini’s Theorem, 

most text book takes the advantage of Ooo = 0 to shorten the proofs. For 

vector measures, we have to trace back bolts and nuts of our machine in 

§22-3.2. Exercise §22-3.7 is a modified version of [Bartle]. We may identify the 

L,-space on the product space X x Y as the tensor product of L,-spaces on 

X,Y respectively by §22-3.19. 

21. Outer measures are recalled in Chapter 23 because it is handy to check 

if a set is null. The reduction of three elementary operations in linear algebra 

into two §23-5.3 can shorten many proofs including our §23-5.5. Because our 

measurable sets are independent of measures, it requires a little work to show 

that smooth images of measures sets are measurable §23-5.7. Change-variable 

of multiple integral is influenced by [Cohn, pp170-175]. 

22. Chapter 24 is devoted to Radon-Nikodym derivatives and duality of 

L,-spaces. The first section on the relationship between hdu and p is an 

improvement of [Garnir-72, pp142-157|. Absolute continuity of measures is 

brought to the level of semirings §24-2.7,8 so that it can link to absolutely 

continuous maps, §24-2.9. Convergence in L, is characterized in terms of 

convergence in measures and equicontinuity at the empty set. Positive 

and negative sets are initiated as tools but Hahn Decomposition Theorem 

is derived after Radon-Nikodym Theorem for simplicity. Polar form §24-4.4 

reduces complex measures to positive measures. Tight restriction to o-finite 

sets for Radon-Nikodym Theorem will be used later. The isometry of 

Ly with Lj, §24-6.2,12 are modification of [Dinculeanu-67, pp229,234]. 

Continuous linear forms on vector L,-spaces for 1 < p < oo concentrates on 

o-finite sets, §24-6.6. This result is a vector version obtained from [Bartle]. 

The duality of L,-spaces for 1 < p < 00, §24-6.7 does not require o-finiteness
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any more. Sharper results for scalar measures make use of our breakable 

vector lattices, §24-6.10. Sufficient condition for Banach spaces to have Radon- 

Nikodym property is reorganized from [Diestel-77, ch 3]. 

23. In Chapter 25, cubes rather than general measurable sets as in [Rudin- 

74], are used for the geometrical expression of Radon-Nikodym derivatives 

because they are simple, intuitive and probably general enough for applications 

in physics. We prefer to Vitali cover instead of Raising Sun Lemma because 

Vitali Covering Theorem is consistent with our approach via semi-intervals. 

Lemma §25-1.10 is modified from [Cohn, p181]. The general theory is applied 

to the specific situation of the real line §25-2 and we start with factorizing 

pulse functions. Our Cantor set and function are developed on the familiar 

decimal system, §25-4. 

24. The root of spectral measure theory on Hilbert space H in Chapter 26 is 

the product formula §26-2.2 based on §13-9.8 that if the sum of 

projectors is a projector then the products of any two summands are zero. In 

§26-2.5,6 we explain why spectral measures cannot be derived as a 

special case of vector measures. Spectral measures on semirings are extended in 

§26-2 to decent sets by finite variation and finally to measurable sets by inner 

regularity. Spectral integrals are defined by dominated convergence,$26-3.2. 

Commutativity is transferred from measures on decent sets to spectral 

integrals, §26-2.12,3.10,11. Null sets are defined in terms of pz, for x,y € H 

rather than one single measures but the ground has been prepared in §21-5. 

Properties unique to spectral measures are developed in §26-4. Product 

spectral measures prepare the amalgamation of spectral measures of self-adjoint 

operators to normal operators. For a specific operator A, f(A) is defined in 

§14-6 for every continuous function f. In the first section of this chapter, 

we extend to semi-continuous functions to obtain a spectral measure on semi- 

intervals leading to spectral representation of A. Finally, isolated eigenvalues 

provide an interpretation of spectral measures in terms of diagonable matrices. 

25. For integration on locally compact spaces in Chapter 27, we define 

regularity in terms of valuations of vector measures. Positive linear forms 

on the spaces of continuous functions with compact support are identified 

with regular positive measures and through breakable vector lattices, order- 

bounded linear forms on with regular measures. Finally the duals of continuous 

functions on compact spaces are identified with regular measures.
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Almost Periodic Functions and Group Representations 

26. Almost periodic functions appear in older books such as [Loomis] and 

[Yosida] but practically vanish in most of recent texts. We want to promote 

them because mean-values behave like translation-invariant integrals while 

Haar integrals demand local compactness which is not available in infinite 

dimensional groups or spaces. Probably special functions or harmonic analysis 

[Gong] could be developed in infinite dimensional cases. 

27. We motivate the readers with a simple example that the sum of two 

periodic functions need not be periodic and almost periodic functions, 

abbreviated as ap-functions, have closed relation to group representations. We 

follow [vonNeumann] and [Maak] closely to introduce mean-values, 

convolutions and eigen expansion in terms of projectors. We restrict ourselves 

to matrix representations because of their simplicity and richness. Matrix 

notation is used whenever possible. Chapters 28,29 should cover the contents 

of most undergraduate courses in this area. Last two chapters are what we 

have done on top of [vonNeumann]. For a history of ap-functions, see [Levitan]. 

28. In real life, we are interested only in continuous unitary representa- 

tions such as e*? in one dimensional case. We have to define the scope of 

ap-functions that we work comfortably. Motivated by the duality of compact 

groups, we introduce saturated closed invariant ideals of comfortable almost 

periodic functions on groups G, abbreviated as cap-functions. Chapter 30 deals 

with the duality between cap-functions and representations. Finally, we point 

out the special cases of additive groups of normed spaces and compact groups. 

29. Although mean-values behave like integrals but Monotone Convergence 

Theorem fails §31-1.3,4. The final Chapter starts with representations of 

product groups. The mean space M(G) is defined as the dual of C,,(G) of cap- 

functions. It turns out that M(G) has rich structures including 

convolution, variation and mean-values. With dual order, Monotone 

Convergence Theorem and Fatou’s Lemma hold for means. Parallel to 

integration theory, we embed cap-functions into M(G) and its closure £)(G) 

acts like the counter part of L,-spaces. Due to the restriction of §30-3.9, we 

have are unable to develop something on £,(G). Look up our web-page for 

recent development. 

30. We hope that the uniqueness of this book could fill in a gap among the 

current literatures. 

twma-2001.



Chapter 1 

Metric Spaces 

1-1 Standard Finite Dimensional Vector Spaces 

1-1.1. Most treatments of functional analysis are applicable to both real and 

complex cases. In order to unify our notation, let K denote either the real 

field IR or the complex field ©. Write i? = —1. The conjugate of a complex 

number z will be denoted by z~, the real part by Re(z) and the imaginary part 

by Im(z) respectively. Scalar-valued maps are normally called functions in this 

book. 

1-1.2. Let E be a vector space. A function z — ||z|| from F into R is called 

a norm on F if for all zy € E, we have 

(a) ||z]| > 0, positive ; 

(b) ||z|| = 0 iff « = 0, non-degenerate ; 

(c) |lja + y|| < lz + |ly|], triangular inequality ; 

(d) ||Az|| = [Al |||], for every A € K, scalar multiplication. 

A vector space together with a given norm is called a normed space. Norms 

generalize the concept of absolute values of numbers. 

1-1.3. Example The vector space K” consists of columns of n numbers in K 

but for convenience we shall frequently write them as rows: x = (41, 22,°-+,2n) 

where z; is the j-th coordinate of z. The same notation will be applied to other 

letters without further specification. For each x € K”, let 

ill], = [21] + [22] +--+ + jen 

and (2 [loo = max{|z1], |e2|,---, fen] }- 
It can be easily verified that they are norms on K”. We shall write IK? and 

Kf, to indicate the normed spaces with specific norms in use. Note that we 

implicitly assume n > 1. 

1-1.4.  Schwartz’s Inequality‘ For all x,y € K”, let < z,y > = Yel LzjY; - 

Then we have | < x,y > | < ||z|| ||y||. The number < 2, y > is called the inner 

product of x,y. Chapter 13 on Hilbert spaces should be read concurrently. 
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Proof. Consider the special case when all coordinates xj, y; are positive. Since 

l|x||? + 2¢ < 2, y > +4? |Iyl|? = Cr +ty;) >0 

for all real number ¢, the discriminant of the above positive definite quadratic 

form in a real variable ¢ must be negative, ie. < x,y >? —|[z|l*Ilyll? < 0 

which gives the result. The general case is obtained from the following simple 

calculation: | <a,y >| < 305; l,l [ysl < [lel Ilyll- oO 

1-1.5. Example The expression 

lal] = /laxi]? + [222 +---4+ |2n|2? = ~<z,2>, Vxre K" 

defines a norm on K” which is called the usual norm or the Euclidean norm. 

According to coordinate geometry, ||z|| is the distance from the origin to cz. 

We shall write K} to indicate this norm. Whenever no norm is mentioned 

explicitly, the usual norm is assumed. 

Proof. We shall prove the triangular inequality only and leave the other 

verification as an exercise. Observe that 

(lz + yll Y= Doan @s ty ey ty” = Dhaleiay + ayyy + 2p ys + ysy; } 

= pa lepey + 2Re(ryyj) + yyy} < OE (leyl? + lus? + lead ly 

< |lell? + fyll? + 2ikel| Mlyll = (ail + llyib?. 
Taking square root gives ||z + y|| < ||x][ + |lyll- oO 

1-1.6. Exercise Let E& be a normed space. The set {x € E: ||x|| = 1} is 

called the unit sphere of E. Sketch the unit spheres of the normed spaces R?, 

IR? and R2.. 

1-1.7. Exercise Let EF, be normed spaces. For every vector (x,y) in the 

product vector space E x F, let 

a wll = [ell + Hy 

II, Wlloo = max{||«||, Ilyli} 

and I, Wl = Vlei? + [lyll?. 
Prove that these are all norms on E x F’. The product set X x Y together 

with one of the above norms is called a product normed space. 

1-1.8. Exercise Prove the inequality : | ||z|| — ||| | < ||x — y|| for all z,y in 

a normed space.
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1-2 Convergent Sequences in Metric Spaces 

1-2.1. In analysis, we are interested in the concept of approximation and 

convergence which will be described in term of distance between two points 

in spaces. A metric space does not require any algebraic structure. However 

apart from the discrete metric spaces, practically all metric spaces in this book 

can be regarded as subsets of normed spaces. 

1-2.2. Let X be a non-empty set. A function d: X x X — R is called a 

metric if for all x,y,z € X, we have 

(a) d(x, y) > 0, positive; 

(b) d(z, y) = 0 iff x = y, non-degenerate; 

(c) d(x, y) = d(y, x), symmetric; 

(d) d(x, z) < d(x, y) + dly, z), triangular inequality. 

The ordered pair X[d] is called a metric space. For simplicity we shall use the 

symbol d for all metrics whenever there is no ambiguity. Hence we write X 

instead of X{d]. 

1-2.3. Example Let X be a non-empty set. For all z,y € X, let d(z,y) = 1 

if x # y and d(x, y) = 0 otherwise. Then d is obviously a metric on X called 

discrete metric. In this case, X[d] is called a discrete metric space. 

1-2.4. Exercise Let X be a subset of a normed space FE. For all z,y € X, let 

d(x, y) = ||z — y||. Show that d is a metric on X. In particular, every normed 

space is a metric space. 

1-2.5. Let X be a set. A map from the subset {1,2,3,---} of integers into 

X is called a sequence in X. Because we always emphasize on the image of 

the function we shall adopt the notation {x, : n > 1} or simply {z,}. For 

definiteness and convenience, we always assume that the starting index is 1 

unless it is specified otherwise. 

1-2.6. Let X be a metric space. A sequence {2,,} in X is said to converge to 

a point b © X if for every ¢ > 0, there is an integer p such that for every n > p, 

we have d(rn, 6) < €. In this case, the point 6 is called the limit of {x,}. We 

shall write x, — b or lima, = 6 as n — oo. Clearly a sequence {r,,} converges 

to b € X iff the sequence {d(z,, b)} of real numbers converges to 0 € R. 

1-2.7. Theorem Every convergent sequence {x,} has a unique limit. 

Proof. Suppose to the contrary that a +b are limits of a convergent sequence 

{ty}. Then for ¢ = 4d(a, b) > 0, there are integers p,q such that d(r,,a) <«
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for alln > p and d(z,,b) < € for all n > g. Let n=p+g. Then the following 

contradiction establishes the proof: 

3e = d(a,b) < d(a, rn) + d(an, b) = d(a@n,a)+ dan, b) Sete =2e. oO 

1-2.8. A sequence {yn} is called a subsequence of {x,} if there is a sequence 

of integers n(1) < n(2) < n(3) < +++ such that y; = tp) for all 7. Since all 

indices of sequences in this book start with 1, we have n(j) > j for all 7. 

1-2.9. Theorem If x, — 6 and if {y,,} is a subsequence of {x,,} then y, — 0. 

Proof. Let ¢ > 0 be given. Since x, — 5, there is an integer p such that for 

all n > p we have d(z,,b) < «. With the same notation of last paragraph, for 

every j > p, we have n(j) > j > p and hence d(y;,b) = d(tnqy,b) < e. This 

proves y, — b. oO 

1-2.10. Exercise Various intervals denoted by circular and square brackets 

are described by the following examples : [2,3) = {s € R:2 < a < 3}, 

3B4J={tEeR:3<a< 4}, (43) ={ce€R:4<2<3}=9 and 

G3,3)={x €R:3<2<3}=6. Is the sequence {+} convergent in the metric 

spaces R, [0,1] and (0, 1] respectively? 

1-2.11. Exercise Let x, = (1,/n+1— Jn) and y, = (3,(—1”). Prove 

or disprove that they are convergent in the normed spaces IRi, IR? and R2, 

respectively. 

1-2.12. Exercise Prove that if x, =a € X for all n, then x, — a. 

1-2.13. Exercise Prove that in a discrete metric space X, if x, — a then 

there is an integer p such that for all n > p, we have xz, = a. 

1-3 Continuous Maps 

1-3.1. Let X,Y be metric spaces and let f : X — Y be a given map. Then 

f is said to be continuous at a point b € X if for every sequence x, — b in X, 

we have f(z,) — f(6) in Y. Plotting the sequence {xz,,} and its image { f(zn)} 

should give an intuitive idea that when z is near 6, f(x) must be near f(b). 

The map f is said to be continuous on X if it is continuous at every point of 

X. In calculus, typical examples of continuous functions include polynomials, 

exponential functions and trigonometric functions. At the end of this chapter, 

we shall prove that every metric space has plenty of continuous functions.
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1-3.2. Theorem Let X,Y, Z be metric spaces. Suppose that f : X — Y and 

g:Y — Z are given maps. 

(a) If f is continuous at b € X and if g is continuous at f(b) then the composite 

map gf is continuous at be X. 

(b) If f is continuous on X and if g is continuous on Y then the composite 

map gf is continuous on X. 

Proof. Let x, — bin X. Since f is continuous at b, we have f(r,) — f(b). 

Since g is continuous at f(b), we get g[f(an)] — gL f(0)], i.e. (gf Wan) — (gf)(0). 

This proves (a). Part (b) becomes an easy exercise. Oo 

1-3.3. Exercise Show that every map from a discrete metric space into a 

metric space is continuous. 

1-3.4. Let X,Y be metric spaces. For all (7, y) and (a,b) in the product set 

X x Y, let 

di[(x, y), (a, b)] = d(x, a) + d(y, b); 

dyl(a, y), (a, b)] = d(x, a)? + d(y, 6)? ; 

and doof(a, y), (a, 6)] = max{d(x, a), dy, b)}. 

It is routine to verify that d),d2,d.. are metrics on X x Y. The product set 

X x Y together with one of the metrics d,,d2,d.. is called a product metric 

space. 

1-3.5. Theorem Let (x, y,) and (a, 6) be points in the product metric space 

X x Y. The sequence {(tn, yn)} converges to (a,b) in X x Y iff a, > ain X 

and y, > bin Y. 

Proof. We shall prove part the case d; but leave the cases dz, d.. as exercises. 

Suppose (2n, Yn) — (a, 6) in X x Y. Then we have 

0 < d(xp, a) < di[(Tn, Yn), (2, b)] + 0 

as n — oo. Hence z, — a in X. Similarly y, — 6b in Y. Conversely, suppose 

In > ain X and y, — bin Y. Then 

di [(tn, Yn), (2, 6)] = d(@n, a) + d(yn, 6) 0 

as n > co. Therefore (tp, yn) — (a, 6) in X x Y. go 

1-3.6. Exercise Let X,Y,Z be metric spaces. Show that the projection 

a: Xx Y — X given by a(z,y) = x is continuous. Prove that a map 

f :2Z—-— X x Y is continuous iff both coordinate maps af : Z > X and
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yf :2Z-—Y are continuous where y : X x Y > Y is the projection onto the 

second coordinate. 

13.7. Exercise Prove that every convergent sequence {z,,} in a normed 

space is bounded, i.e. there is M > 0 such that ||z,,|| <M for all n. Note that 

bounded sets in metric spaces will be defined later in §2-2.1. Also see §2-2.9. 

1-3.8. Theorem (a) The addition on a normed space EF is a continuous map 

from the product space E' x E into E. 

(b) The scalar multiplication is a continuous map from the product space Kx EF 

into FE. 

Proof. (a) Let (£n,Yn) — (a,b) be a convergent sequence in E& x EF. Then 

In 3 a and y, — b. Observe that 

(en + Yn) — (a + I = [a — a) + Yn — DIES [en — all + [Yn — BI] — 9, 
as n — oo. Therefore the addition is continuous. 

(b) Let A, — a in K and z, — a in E be convergent sequences. Then {A,} 

is bounded in KK. There is M > 0 such that all |A,,| < 14. Now observe that 

|Antn — a@|] = ||An(fn — @) + (An — Dal 

S |An| [en — all + An ~ af lal] < Millan — al] + An — a [lal] > 0 
as — oo. Therefore the scalar multiplication is continuous. oO 

1-3.9. Exercise Prove that the function x — ||z|| is continuous on E. 

1-3.10. Theorem Let X,Y be metric spaces and f : X — Y bea given map. 

Then f is continuous at a point b € X iff for every e > 0, there is 6 > 0 such 

that whenever x € X satisfies d(x, b) < 6, we have d(f(x), f(b)) < €. 

Proof. (=>) Let f be continuous at b € X. Suppose to the contrary that 

de>0,Vb6>0,32€ X, d(z,b) < 6, and d(f(z), f(b) > ¢. Taking 6 = 1/n, 

there is x, € X such that d(z,,b) < 1/n and d(f(a,), f(b)) > e. Therefore 

Lp — b but f(zn) # f(b). Consequently, f cannot be continuous at b. 

(<=) Assume zt, — bin X. Let € > 0 be given. Find 6 > 0 such that d(x, b) < 6 

implies d( f(x), f(b)) < ©. Choose p so that V n > p,d(xpn,b) < 4, that is 

d(f(zn), f(b) < €. Therefore f(xz,) — f(b). Consequently f is continuous at b. 

1-3.11. Exercise Let X,Y,Z be metric spaces and let (a,5) be a point in 

the product space X x Y. Prove that a map f : X x Y — Z is continuous at 

(a, 5) iff for every € > 0 there is 6 > 0 such that for every d(z,a) < 6 in X and 

dy, b) <5 in Y we have dif(a,y), f(a, b)} <«.
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1-3.12. Exercise Let E be a normed space with more than one point and let 

d be the metric associated with the norm. Prove that d cannot be the discrete 

metric. 

1-4 Open Sets 

1-4.1. An alternative way to describe the concept of nearness without norms 

or distances in more general context is to use open sets. Full development along 

this line is called general topology which is beyond our scope. Only essential 

properties of open sets will be introduced. 

1-4.2. Let X be a metric space. Suppose a € X and r > 0. Then the set 

Bia,r) = {x € X : d(x, a) <r} is called the open ball with center a and radius 

r. Similarly, the closed ball is defined as the set B(a,r) = {x € X : d(z,a) <r}. 

By a ball, we always mean an open ball. We may drop r such as B(a) if the 

radius is not critical in the context. 

1-4.3. Lemma If a € B(z,a)M B(y, 8), then there is 6 > 0 such that 

Boa, 6) C Biz, a) BY, £). 

Proof. Let 6 = min{a — d(z,a), 8 — d(y,a)}. Take any z € B(a,d). Then 

we have d(z,a) < 6 < a—d(z,a). Hence d(z,r) < d(z,a)+d(a,z) < a, ie. 

z € B(z,a). Similarly, z € Bty,8). This completes the proof. Beginners 

should sketch the picture of balls with their radii. a 

1-4.4. A subset M of X is said to be open if for every x € M, there is some 

ball B(x) contained in M. As a result of last theorem when z = y and a = 8, 

every open ball is open. 

1-4.5. Theorem (a) Both @ and X are open. 

(b) If M, N are open then MN is open. 

(c) If {M, : i € I} is a family of open sets then the union |),., M; is open. 

Proof. Take any z € MON. There are balls A, B with the same center x 

such that A C M and BC N. There is another ball C with center x such that 

CCANB. Hence C C MON. Since x € MON is arbitrary, MON is open. 

This proves (b). The rest is left as an exercise. ao 

1-4.6. Exercise Prove that a sequence {r,} in X converges to b € X iff for 

every open set V containing ), there is an integer p such that for all n > p, we 

have tz, € V.
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1-4.7. Let M be a subset of a metric space X. Then a point x € X is called 

an interior point of M if there is a ball IB(z) contained in M. The set of all 

interior points of M is called the interior of M. It is denoted by M°. 

1-4.8. Theorem (a) If A is an open subset of M, then we have Ac M°. 

(b) M° is the largest open subset of M. 

(c) M is open iff M = M°. 

(d) M° = M?°. 

Proof. (a) Suppose A is an open subset of M. Take any x € A. Since A is 

open, there is a ball B(x) Cc A. By A Cc M, we have B(x) Cc M. Therefore, x 

is an interior point of M, ie. x € M°. This proves A Cc M?. 

(b) Clearly M° is a subset of M by definition. Take any 2 € M°. There is a 

ball Biz) c M. Since B(z) is an open subset of M, it follows from (a) that 

Bir) c M°. Because x € M°® is arbitrary, the set M° is open. It follows 

from (a) that M° is the largest one. 

(c,d) These are left as exercises. ao 

1-4.9. Exercise Describe the interiors of the sets {(z,y) € IR? : y= 2?} and 

{(z, y) € R? : y > x} respectively. 

1-4.10. Exercise Show that every subset of a discrete metric space is open. 

1-4.11. Exercise Prove that a finite product of open sets is open. 

1-4.12. Exercise Prove that the only non-empty open vector subspace of a 

normed space F& is F itself. 

1-5 Closures of Sets 

1-5.1. Let M be a subset of a metric space X. Then a point y is called a 

closure point of M if there is a sequence {x,} in M which converges to y. The 

set of all closure points of M is called the closure of M. It is denoted by M. 

1-5.2. Theorem A point y € X is a closure point of M iff every ball Bcy) 

contains a point of M. 

Proof. Assume y is a closure point of M. Then there is sequence {z,,} in 

M which converges to y. Let Bty,r) be a given ball with center y. There is 

an integer p such that for all n > p, we have d(tn,y) < r/2. In this case, the 

ball B(y,r) contain the point 2, of M. Conversely, suppose every ball Bcy, 4)
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contains a point of M, say x,. Then {z,} is a sequence in M which converges 

to y. o 

1-5.3. Exercise Prove that a point y € X is a closure point of M iff every 

open set containing y also contains a point of M. 

1-5.4. A subset M of a metric space X is said to be closed if it contains all 

its closure points, ie. Mc M. 

1-5.5. Theorem (a) M is a closed set containing M. 

(b) If H is any closed set containing M then M c H. Therefore M is the 

smallest closed set containing M. 

(c) M is closed iff M = M. 

(d) M =. 
Proof. (a) Let x be a closure point of ‘M. Consider any ball B(x). There is 

y € Biz) nM. Since the ball B(x) is open, there is another ball B(y) C B(z). 

Since y is a closure point of M, there is z € B(y)N M. Thus, z € B(x) M. 

Therefore that x is a closure point of M, i.e. 2 € M. This proves that M is a 

closed set. By considering the constant sequences, clearly we get MC M. 

(b) Take any y € M. There is sequence {z,} in M convergent to y. From 

M CH, {xp} is also a sequence in H convergent to y, i.e. y € H. Since H is 

closed, we have y € H. This proves (b). 

Parts (c,d) are left as exercises. oO 

1-5.6. Theorem A subset M of a metric space X is closed iff X \ M is open. 

Proof. Assume that M is closed. Suppose to the contrary X \ M is not 

open. There is « € X \ M such that for every r > 0, B(z,r) ¢ X \ M, ie. 

Biz,r) 1M 4%. Thus x € M. Since M is closed, we have x € M which 

contradicts the choice of z. Therefore X \ M is open. Conversely, assume that 

X\M is open but M is not closed. Then there is  € M\ M. Hence X belongs 

to the open set X \ M. There is a ball B(x) Cc X \ M, i.e. B(x) M =9@. On 

the other hand, since z is a closure point of M, we have B(x) 1 M 79. This 

contradiction establishes the proof. oO 

1-5.7. Corollary Both the empty set and the whole space are closed sets. 

Finite unions of closed sets are closed. Arbitrary intersections of closed sets 

are closed. 

1-5.8. Exercise Prove Ax B= Ax B for all subsets A, B of metric spaces 

X,Y respectively. Prove that finite products of closed sets are closed.
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1-5.9. Exercise Find the closure of an open ball Bz, !) in a discrete metric 

space. What is the closed ball B(a, 1)? 

1-5.10. Exercise Prove that every finite subset of a metric space is closed. 

1-5.11. Exercise Prove that the closure of a vector subspace of a normed 

space is a vector subspace. 

1-5.12. Exercise Describe the closures of the sets {(z,y) € R’: y=27} and 

{(2, y) € R? : y > 2?} respectively. 

1-5.13. Exercise Show that the set {(cost, sint, ¢) : t € IR} is closed in R}. 

1-5.14. Exercise Find the closure of the set {(cos!,sin+,¢): t > 0} in R’. 

1-5.15. Example For every subset A of a metric space X, we have 

A= ‘aa Uaea Bea, 1/n) = ‘ae Use Ba, 1/n). 

Proof. Let x € A. Choose a; € A with a; -+ x as j -+ 00. For every n, 

there is j such that d(z,a;) < 1/n, ie. « € Ba;,1/n). We have proved that 

AC (he, Use, Bla, 1/n). Next, let x € 1, Use, Bla, 1/n). For every n, 

there is a, € A such that x € Bian, 1/n), ie. d(an, x) < 1/n. Hence a, > & 

with a, € A, ie. 2 € A. oO 

1-6 Characterization of Continuity 

1-6.1. An important way to prove a set to be open or closed is by inverse 

images of continuous maps. A natural question at this stage is whether every 

metric space has a continuous function. The answer will be provided by the 

distance function. Glue Theorem will offer a nice way to piece continuous maps 

together. 

1-6.2. Theorem Let X,Y be metric spaces and f : X — Y be a given map. 

Then the following statements are equivalent. 

(a) f is continuous on X. 

(b} The inverse image of every closed set in Y is closed in X. 

(c) The inverse image of every open set in Y is open in X. 

(d) For every subset A of X, we have f(A) c f(A). 

Proof. (a = 6b) Let M be a closed set in Y and let a € X be a closure 

point of f—1(M). Then there are x, € f—'(M) satisfying z, — a. Since f is 

continuous at a, we have f(z,) — f(a) in Y. Now f(z,) € M implies that 
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f(a) is a closure point of the closed set M. Hence f(a) € M, ie. a € f7'(M). 

Therefore f—!(M) is closed. 

(b => c) It follows immediately by taking complements. 

(c = a) Let a € X and € > 0 be given. Since the inverse image of the 

open set B(f(a),e) is an open set containing the point a, there is a ball 

Bia, 25) c f-'B(f(a),). Now suppose d(z, a) < 6. Then x € B(a, 26). Hence 

a € f-' PB), 6), ie. f(x) € BUf(a), ©), or, d(f(x), f(a)) < ¢. Therefore f is 

continuous at every point of X, i.e. continuous on X. 

(a > d) Let a € A. There are x, € A convergent to a. Since f is continuous, 

we have f(z,) — f(a). Hence f(a) € f(A). Therefore f(A) c f(A). 

(d = b) Let M be a closed set in Y. Define A= f~'(M). Then we have 

fA c fA c ff) cMcCM 

ie. f-1(M) CAC f7'(M). Therefore f-!(M) is closed. ia 

1-6.3. Exercise Show that the set {(2, y) € R?: ye-* sin(z + y) > xcos zy} 

is open in IR? and the set {(z,y) € JR? : ye~* sin(a + y) > xcos zy} is closed 

in R?. 

1-6.4. Theorem Let X[d] be a metric space. Then the distance function 

d:X x X — Ris continuous on the product space. In particular, d(a, x) is a 

continuous function in 2x. 

Proof. It follows immediately from |d(z, y) — d(a, b)| < d(x, a) + d(y, 2). oO 

1-6.5. Exercise Show that the sphere {x € X : d(a,x) =r}, the closed ball 

B(a,r), and the set {2 € X : d(a,x) > r} are closed. Along the same line, 

prove that the open ball B(a,r) and the set {x € X : d(a, x) > r} are open. 

1-6.6. Let X[d] be a metric space and H a subset of X. Then the restriction 

d|y of the metric d onto H is a metric on H. It is called the relative metric. 

The metric space H[d|;7] is called a subspace of X. For simplicity, we shall 

write d instead of dl x. 

1-6.7. Exercise Let X = {(z,y) € R?: |x| < 2,|y| < 2} be equipped with 

the relative metric from IR’. Sketch the open ball in X with center (1,1) and 

radius 2. 

1-6.8. Let X,Y be metric spaces and f : X — Y be a given map. Suppose 

H is a subset of X. Then f is said to be continuous on H if the restriction f |
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is continuous on the metric subspace H. Clearly, if f is continuous on X then 

f is continuous on H. For simplicity, we write f instead of fly. 

1-6.9. Exercise Show that the function f : R — R given by f(x) = 0 for 

x <1 and f(x) = 1 for x > 1 is discontinuous on JR but continuous on the 

subset (0, 1) U (1, 2). 

1-6.10. Let Y be a subspace of a metric space X. Write x, — ain Y ifallrn,a 

are in Y and d(z,,a) > 0. A subset V of Y is said to be closed (respectively 

open) in Y if V is closed (respectively open) in the metric subspace Y. Note 

that Y is open in itself but need not be open in X. 

1-611. Lemma Let A c B be two subsets of a metric space X. If A is 

closed in B and if B is closed in X, then A is closed in X. 

Proof. Let x, € A and y € X. Suppose x, — yin X. Since A Cc B, we have 

tn € B. Since B is closed in X, we have y € B. Now y is a closure point of A 

on the subspace B. Because A is closed in B, y belongs to A. Therefore A is 

closed in X. 

1-6.12. Exercise State and prove a result for open sets similar to the last 

lemma. 

1-6.13. Glue Theorem Let X,Y be metric spaces and f : X — Y bea given 

map. Suppose X = M UN is the union of two closed subsets M,N. If f is 

continuous on both M,N separately, then f is continuous on X. 

Proof. Let V be a closed subset of Y. Since f is continuous on M, the set 

Clad) = Mn f7!(V) is closed in M. Since M is closed in X, Mn f-(V) 

is closed in X. Similarly, NM f—!(V) is closed in X. Therefore 

fUV) =(Mn foi) ulin fv] 

is closed in X. Consequently, f is continuous on X. 

1-6.14. Exercise Show that the function f : IR — R given by f(x) = x for 

x <Oand f(x) = 2? for x > 0 is continuous on R. 

1-7 Duality of Closure-Interior Operators 

1-7.1. Open and closed sets are complement to each other as in §1-5.6. The 

following theorem extends this duality to operators.
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1-7.2. Theorem For every subset M of a metric space X, we have M’~’ = M° 

and M’°’ = M~ where M’ =X \ M denotes the complement of M. 

Proof. Observe that zc € M’~’ iff © M’~ is false. The negation of 

Vr >0,Biz,r)1 M' #6 is the statement: 3 r > 0, B(z,r)N M’ = G, that is 

Biz,r) c M. This is equivalent to x € M°. Therefore M’~’ = M°. Replacing 

M by its complement M’, we obtain the second identity. Oo 

1-7.3. Exercise Let M = (1,2]U {+ : a > 1} be the union of a semi- 

interval and a sequence in the real line. How many new sets can you obtain 

by constructing interior, closure and complement repeatedly? 

1-7.4. Let M be a subset of a metric space X. A point x € X is called a 

boundary point of M if every ball B(x) contains a point in M and also a point 

not in M. The set of all boundary points of M is called the boundary of M and 

is denoted by 0M. A point x € X is called an exterior point of M if there is a 

ball disjoint from M. The set of all exterior points of M is called the exterior 

of M and is denoted by ert(M). 

1-7.5. Exercise Prove that OM = M~ \ M° = M7 1M“. Hence show that 

the boundary of a set is closed. Also prove that M° and OM form a partition 

of M-. 

1-7.6. Exercise Prove that ert(M) = M~'= M’°. Hence deduce that ext(M) 

is open. Show that ext(M) and M7 form a partition of the whole space X. 

1-7.7. Example Every non-empty open interval contains a rational 

number and an irrational number. 

Proof. Let a < 6 be the endpoints of the given interval. Choose any integer 

n > zt; and mark the points 0,+4,42,43,.-. on the real line R. It is 

obvious that the interval (a,b) has to contain a rational number of the form 

@. Repeating the same process with 0, toe, +5, + ‘, we prove the 3... 
nV¥2? 

case for irrational. Oo 

1-7.8. Exercise Find the closure, interior, boundary and exterior of the set 

of rational numbers in the interval (0, 1). 

1-7.9. Exercise Find the closure, interior, boundary and exterior of the set 

of points , 1) € IR? where m,n run over all non-zero integers.
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1-7.10. Exercise Find the closure, interior, boundary and exterior of the 

closed ball of Re with center at the origin and radius }. Repeat the same 

problem when IR? is given the discrete metric. 

1-8 Partition of Unity 

1-8.1. Intuitively, through a partition of unity, a point x in an abstract metric 

space is described by a vector (ay (2), (Z),°* +, @n(Z)) in IR” where a; are 

continuous functions of «. Compactness in Chapter 2 will allow us to reduce an 

arbitrary open cover to a finite cover so that partition of unity can be applied. 

For example, see §§5-3.3, 12-4.5. We start off with the distance function. 

1-8.2. Let A be a non-empty subset of a metric space X. The distance froma 

point x € X to A is defined by d(z, A) = infae a d(x, a). 

1-8.3. Lemma For all x,y € X, we have |d(x, A) — d(y, A)| < d(z,y). As 

a result, d(x, A) is a continuous function of r € X. Consequently, we have 

sufficient amount of continuous functions on every metric space. 

Proof. For each a € A, we have d(z, A) < d(x,a) < d(z,y) + d(y,a). Taking 

infimum over a € A, we obtain d(z,A) < d(z,y) + d(y,A), that is, 

d(x, A) — d(y,A) < d(x,y). Interchanging z,y, we obtain the required 

inequality. Oo 

1-8.4. Lemma _ d(z, A) = 0 iff x is a closure point of A. 

Proof. Suppose d(x,A) = 0. For every n > 1, there is a, € A such that 

d(£L, An) < 1, Hence a, -> x. Therefore zx is a closure point of A. Conversely, 

let z be a closure point of A. There is a sequence {a,,} in A convergent to X. 

Hence we have 0 < d(x, A) < d(z,an) > 0 as n > oo. Therefore d(x, A)=0.0 

1-8.5. Theorem Let A,B be disjoint closed subsets of a metric space X. 

Then there is a continuous function f : X — [0,1] such that f(A) = 0 and 

f(B)=1. 

Proof. Note that if one of A,B is empty, then a constant function would 

do the job. So, assume both A,B are non-empty. Firstly, we claim 

d(x, A) + d(z,B) > 0,W « € X. In fact, suppose to the contrary that for 

some x € X,d(x, A)+ d(z, B) = 0. Then d(z, A) = d(x, B) = 0. Hence z is a 

closure point for both A, B. Since A, B are closed, x belongs to both A, B. This 

contradicts the fact that A, B are disjoint. Therefore the following function is 

well-defined:
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a(x, A) 
d(x, A)+ d(x, B) 

Clearly it is a required continuous function on X. Oo 

f(x) = Wae x. 

1-8.6. Exercise Prove that the function g(x) = [1 — f(x)Ja + f(x)b where 

a,b € R is continuous on X and satisfies g(A) = a, g(B) = b. 

1-8.7. Corollary Let A be a closed set and V an open set in X. If ACV 

then there is an open set W satisfying ACWCWcY. 

Proof. Since A and X\V are disjoint closed sets, there is a continuous function 

f : X — [0,1] such that f(A) =0 and f(X \V)=1. Then W = f-'(—o0, 9) is 

an open set containing A and W c f~'(—co, 4] Cc V. o 

1-8.8. Lemma _ Let A be a closed subset of a metric space X and let 

{V; : 1 <j < n} be an open cover of A, ie. A C Uj, Vj and all V; are 

open. Then there are closed subsets B; of A such that A = Up_, By and 

B; CV; foreach 1 <j <n. 

Proof. It suffices to prove the case for n = 2. Let U,V be open sets such that 

ACUNV. Let M = A\V and N = A\U. Then both M, N are closed sets and 

they are disjoint. There is a continuous function f on X such that f(M) =0 

and f(N) = 1. Then both P = f~!(—co, 5) and Q = f-'(, 00) are open sets 

containing M,N respectively. Therefore E = A\ Q and F = A \ P are closed 

subsets of A. Clearly we have FU F = A\(P1Q)=A. Furthermore, observe 

that F=A\QCA\NCU. Similarly we obtain F Cc V. This completes the 

proof. It would be helpful if you sketch a picture to go along with the above 

constructions. o 

1-8.9. Let X be a metric space and f : X — K a given function. Then the 

support of f is defined to be the closure of the set {x € X : f(x) #0}. It is 

denoted by supp(f). Let A be a closed subset of X and {V;:1 <j <n} an 

open cover of A. A sequence of continuous functions a; : X — [0, 1] is called 

a partition of unity on A subordinated to {V;} if the following conditions hold: 

(a) D721 j(@) = I for alla c A. 

(b) 375.1 ay (a) < 1 for alla eX. 

(c) for each j, the support of a; is contained in V;. 

1-8.10. Example Let A = (0,4), X = (0,00), U = (0,3) and V = (1,6). Clearly
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{U, V} is an open cover of the closed subset A of X. Let 

1, fO<2<1, 

wcey= {2 ifl<2<2, 

0, if2<-, 

and 
1~a(x), if0<2<4, 

a= | 5-5 if4<c2<5, 

0, ifS<_2. 

Find the supports of a, 8. Show that {a,@} is a partition of unity on A 

subordinated to {U,V}. 

1-8.11. Theorem Let A be a closed subset of a metric space X. Then for 

every open cover {V; : 1 < 7 < n} of A, there is a partition of unity on A 

subordinated to {V,}. 

Proof. Let VY = X \ A. Then {V; : 0 < 7 < n} is an open cover of the 

whole space X. Let B; be closed sets in X such that X = Uy, .B, and 

for all 7, B; C Vj. Now for each j, there is an open set W; such that 

B; CW; Cc W; c V; and also there is a continuous function f; : X — [0, 1] 

such that f;(B;) = 1 and f;(X \W;) = 0. Take any  € X. Then x € B; 

for some 0 <j < ni ie. f(z) = 1. Hence 7y4 fe(z) > 1. Therefore the 

f(x) 

reo F(x) 

continuous on X. Observe that if a;(x) #0, then « ¢ Wj, i.e. c € W;. Hence 

supp(a;) C W; C V; for each 7 = 0,1,2,---,n. In particular, if a(x) 4 0, we 

have x € Vp, i.e. c ¢ A. Thus ao(A) = 0. Now it is obvious to verify all other 

conditions for {a; : 1 <j <n} to be a partition of unity on A subordinated 

to {V;:1<j <n}. o 

functions a; : X —» [0,1] given by aj(z) = are well-defined and 

1-99. References and Further Readings : Dunford, Taylor-58, Kreyszig, 

Yosida and Meise. 



Chapter 2 

Complete, Compact and Connected Sets 

2-1 Cauchy Sequences 

2-1.1. The tail of a convergent sequence is eventually near its limit and hence 

becomes small as we throw away sufficiently many initial terms. The concept 

of sequences with small tails will be formalized as Cauchy sequences. It turns 

out that convergence is equivalent to being Cauchy and possessing a convergent 

subsequence or a cluster point. 

2-1.2. Let X be a metric space. A sequence {z,} in X is said to be 

Cauchy if for every € > 0, there is an integer p such that for all m,n > p, 

we have d(tm,2n) < €. 

2-1.3. Theorem Every convergent sequence is Cauchy. 

Proof. Let x, — b in a metric space X. Then for every ¢ > 0, there is 

an integer p such that for all n > p, we have d(rp,,b) < $8. Now take any 

m,n > p. Observe that 

A(X, Lp) S A(Gm, b) + d(b, Lp) = A(Lm, b) + d(tn, b) < fet Fe =e. 

Therefore the given sequence is Cauchy. Oo 

2-1.4. Theorem Every subsequence of a Cauchy sequence is Cauchy. 

Proof. Let {yj} be a subsequence of a Cauchy sequence {z, : m > 1} in 

a metric space X. Then for every ¢ > 0, there is an integer p such that 

for all m,n > p, we have d(t@m,tn) < sé. There is a sequence of integers 

nl) < n(2) < n(2) <--- such that y; = 2, for all 7. Now for all j,k > p, 

we have n(j) > p and n(k) > p. Hence we have d(y;, yx) = d(tnyy, Iney) < €- 

Therefore {y;} is Cauchy. Oo 

2-15. Theorem Let {x,} be a Cauchy sequence in a metric space X. If it 

has a subsequence {y,;} convergent to some b € X, then the original sequence 

{Zn} also converges to b.
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Proof. Let ¢ > 0 be given. Since {2, : » > 1} is Cauchy, there is an 

integer p > | such that for all m,n > p, we have d(tm,Zn) < se. There is 

a sequence of integers n(1) < n(2) < n(2) < +--+ such that y; = 2) for all 

j. Since y; — 6, there is an integer g > 1 such that for all 7 > q we have 

d(yj,0) < hE. Let k = p+q. Take any m > n(k). Then both n(k),m > p. 

Hence, d(%m,Tnix)) < 4€. Since k > q, we have d(tni4), 6) < $e. Consequently, 

d(zm,b) < € for all m > n(k). Therefore 2, > b as n > cw. oO 

2-1.6. Exercise Let x, = 1/n for alln > 1. Prove that it is convergent on the 

real line IR and hence it is a Cauchy sequence. Prove that it is not convergent 

on its subspace (0,1). Hence a Cauchy sequence in certain metric space need 

not be convergent. 

2-1.7. Let X be a metric space and {x,} a sequence in X. Then a point 

b € X is called a cluster point of {x,} if for every & > 0, for every integer p, 

there is n > p such that d(z,,b) < ¢. Clearly the limit of convergent sequence 

is a cluster point. 

2-1.8. Theorem A point b € X is a cluster point of a sequence {2,} iff there 

is a subsequence convergent to b. 

Proof. (=) Let b be a cluster point of {z, : n > 1}. Then there is 

nl) > 1 such that d(taqy,b) < 1/1. Similarly, there is n(2) > n(1) such 

that d(apq,b) < 1/2. By induction, there is n(j) > n(j — 1) such that 

d(tncj), b) < 1/7. Now {2yj)} is a subsequence convergent to b. 

(<=) Let {xn,3)} be a subsequence of {x,,} such that 2,3, + b as j — oo. Let 

€ > Oand p > 1 be given. Since the subsequence converges to b, there is jp such 

that for every 7 > jo we have d(rj,j),b) < €. Let k = jo+p. Then n(k) > k > jo 

and hence d(an4),b) < €. Also n(k) > k > p. Therefore b is a cluster point 

of {tn}. 

2-19. Exercise In IR’, let x, = (sin inn,cos nm). Show that {rp} is 

not. a Cauchy sequence. Find all cluster points and for each cluster point }, 

construct a subsequence convergent to b. 

2-2 Bounded Sets 

2-2.1. Let M be a non-empty subset of a metric space X. Then its diameter 

is defined by diam(M) = sup{d(z,y) : t,y € M}. The set M is said to be
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bounded if its diameter is finite, i.e. diam(M) < oo. A sequence is said to be 

bounded if its range is bounded. 

2-2.2. Theorem diam(M) = diam(M). 

Proof. It is easy to prove that diam(M) < diam(M). If M is unbounded, then 

both sides are co. Without loss of generality, assume diam(M) < oo. Take 

any x,y © M. For every ¢ > 0, we select a € B(z,e)9 M and be Biy,2)nM. 

Hence, d(x, y) < d(x, a) + d(a, b) + d(b,y) < diam(M) + 2¢. Taking supremum 

over all z,y € M, we have diam(M) < diam(M)+2e. Since > 0 is arbitrary, 

we have diam(M) < diam(M). o 

2-2.3. Theorem Every Cauchy sequence {z,,} is bounded. 

Proof. For ¢ =1 there exists an integer p such that for all m,n > p we have 

dam, Zn) <e. Let r = max{d(aj;,2%) : 1 < i,k < p}. Take any m,n > 1. 

If both m,n > p, then d(tm,Zn) < 1 < 1l+r. If both m,n < p, then 

A im,ln)<r <tr. Ifim > pand n <p, then 

d(Zm, In) < A(Lm, Lp) + d(xp, Tn) S1+tr. 

Therefore the diameter of {x,,} is bounded by 1 +r. Oo 

2-2.4. Exercise Prove that finite unions of bounded sets are bounded. Also 

prove that subsets of bounded sets are bounded. 

2-2.5. Exercise Find the diameter of the open unit ball in IR? and also the 

diameter of the triangle with vertices (0, 0), (0, 1), (1,0). 

2-2.6. Exercise Prove that the diameter of a closed ball B(a,r) is no more 

than 2r. What is the diameter of an open unit ball in a discrete metric space? 

2-2.7. Exercise Prove that a set is bounded iff it can be covered by a ball. 

2-2.8. Exercise Let M be a subset of a product metric space X x Y. Prove 

that M is bounded iff beth projections of M into X,Y are bounded. 

2-2.9. Exercise Prove that a subset X of a normed space E is bounded iff 

there is M > 0 such that |{z|| < M for all x € X. 

2-3 Upper and Lower Limits 

2-3.1. In this section, we shall make full usage of the order structure of the 

real line to establish the fundamental properties of bounded real sequences.
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2-3.2. Let {z,} be a bounded sequence in IR. Its lower and upper limits 

are defined by tim infx, = sup inf x, and limsupz, = inf sup Z, respectively. 
0° k>1 n>k n—-00 k>1ly 

Since every non-empty set of real numbers which is bounded above must has 

a supremum, both lower and upper limits of a bounded sequence in IR always 

exist. 

2-3.3. Exercise Prove the following statements. 

(a) lim minf rn < lim sup zy. 
noo 

(b) lim mn inf(— pn) = —limsupz, and lim sup(—z,) = — lim ninfz,. 
n—oo nooo 

2-3.4. Exercise Let {z,} and {y,} be bounded sequences of real numbers. 

Prove the following. 

(a) Ife, < yn for all n, then lim inf ry < tim m inf yn and lim supz, < lim sup yn. 
n> n—+00 n—00 

(b) lim minf2n + lim mint Yn < lim minf(rn +n) < - lim mint en + lim sup Yn, 
noo 

< lim SUP(Tn + Yn) < jim s sup z,, + lim sup y,,. 
n—00 n—00 n—+00 

Also prove similar results for product if all zp, y, > 0. 

2-3.5. Lemma Let {x,} be bounded real sequence and let a € R be given. 

Then a =limsup 2, iff the following conditions hold: 

(a) For every ¢ > O there is an integer p such that for all n > p, we have 

Ln Sate. 

(b) For every €,p > 0, there is n > p such that a—e < ap. 

Proof. Since a = infp>1 SUP >p Ens there is p such that SUPy>pIn Sate which 

is (a). Now for given ¢,p > 0, we have a—e < sup, 5, 2n and hence (b) follows 

from definition of supremum. The converse is left as an exercise. g 

2-3.6. Similar statement for lower limits also hold. The following results 

follow immediately from last lemma. 

2-3.7. Theorem The upper and lower limits are cluster points. 

2-3.8. Theorem A bounded sequence {z,,} converges to some a € R iff 

tim ninft, = = lmsupz, =a. 
n00 

2-3.9. Corollary Every bounded sequence in IR has a convergent 

subsequence. 

2-3.10. Corollary Bounded monotonic sequences in R are convergent.
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Proof. Suppose tn < 2p; < a for all n. It follows from monotonicity 

that sup, tn = sup, infm>n 2m = liminfz,. On the other hand, we also have 

liminfz, < limsupz, < sup,,%,. Therefore they are all equal and hence 

lim, = sup,, 2,. Similar proof works for decreasing sequences. qa 

2-3.11. Exercise Prove that the upper limit of a bounded real sequence is 

the largest cluster point. 

2-3.12. Exercise On the real line, let zn = [(—1)” + 4]sin}na. Find all 

cluster points, upper and lower limits of the sequence {z,}. For each cluster 

point 6, construct a subsequence convergent to b. 

2-4 Complete Sets 

2-4.1. In order that a beautiful theory can be developed, it is necessary to 

require that there is sufficient amount of convergent sequences. Complete sets 

formalize this requirement. 

2-4.2. Let A be a subset of a metric space X. Then A is said to be complete 

if every Cauchy sequence in A converges to a limit which belongs to A. 

2-4.3. Theorem [If A is a complete subset of X then it is closed in X. 

Proof. Let y be a closure point of A. There is a sequence {z,,} in A convergent 

to y. This sequence is Cauchy in X but also Cauchy in A. Since A is complete, 

it converges to some point z € A. Since {x,} converges to both y,z in X, we 

have y = z € A. Therefore A is closed. Oo 

2-4.4. Theorem If A is a closed subset of a complete metric space X, then 

A is complete. 

Proof. Let {x,} be a Cauchy sequence in A. Then it is also a Cauchy sequence 

in X. Since X is complete, {z,,} converges to a limit b € X. Since all r, € A, 

b is a closure point of A. Because A is closed, we have b € A. This completes 

the proof. oO 

2-4.5. Theorem Let X,Y be metric spaces and {(2n, ¥n)} be a sequence in 

the product space X x Y. Then {(2n,%n)} is Cauchy iff both {r,} and {y,} 

are Cauchy. 

Proof. Regardless which metric is used in the product space, we always have 

d(x, a) < d[(x, y), (a, b)] < d(x, a)+ dy, b). The result follows immediately from 

definitions. oO
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2-4.6. Theorem If X,Y are complete metric spaces, then so is the product 

space X x Y. 

Proof. Let {(2n,Yn)} be a Cauchy sequence in X x Y. Then both {z,} and 

{yn} are Cauchy and hence converge to some a € X and 6 € Y respectively. 

Therefore (%n,Yn) — (a,b) in X x Y. Consequently, X x Y is also a complete 

metric space. o 

2-4.7. Theorem Every K” is complete. 

Proof. Every Cauchy sequence {z,} in R is bounded and hence it has a 

convergence subsequence. Therefore the original sequence {x,} is convergent. 

Consequently R is complete. As a direct result of last theorem, all Rj, Rf 

and IR2, are complete. Since € = Rj is complete, all C?, CF and C2, are also 

complete. Oo 

2-4.8. Exercise Is the set of all integers a complete subset of the real line? 

Is the set. Q of all rational numbers complete in IR? 

2-4.9, Exercise Let X = {(2,y) € R’ : |2| < 2}. Is it a complete metric 

space? Is the ball B = {(x,y) € X : 27+ y’ < 1} a complete subset of X? 

2-4.10. Lemma Let {z,} be a sequence in X and let T,, = {x, : k > n}. 

Then a point y € X is a cluster point of {x,} iff y ¢ 2, Tn. Intuitively, T, 

are the tails of the given sequence. 

Proof. (=) Assume z € ()p2,Tn. Let ¢ > 0 and p > 1 be given. Since 

ye To, the ball B(y,€) contains a point of T,, i.e. there is n > p such that 

d(rn,y) < €. Therefore y is a cluster point of {z, }. 

(=) Let y be a cluster of {z,}. Fix any n. Consider any open ball By, ¢). 

There is m > n such that d(tm,y) < te, Le. Im € By, 6) (| Tn. Since € > 0 is 

arbitrary, y € Tn. Since n is free, we have y € (1, Pn. oO 

2-4.11. Theorem Let X be a metric space. Then the following statements 

are equivalent. 

(a) X is complete. 

(b) Let Anst C An be a decreasing sequence of non-empty closed sets. If their 

diameters tend to zero then (\72, An contains exactly one point. This is called 

the nested property which will be used in §6-7.3. 

(c) A sequence {zn} in X satisfying d(tns1,2n) < 1/2” for all n, is convergent. 

Proof. (a = b) For each n, take any t, € Ay. Since diam(A,) — 0, for 

every € > 0 there is p > 1 such that for every n > p, we have diam(A,) < e.
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Choose any m,n > p. Since {A,} is decreasing, we have tm € Ap C Ap and 

In € Ap C Ap. Hence, d(tm, tn) < diam(A,) < ¢. Therefore {z,} is Cauchy 

in the complete space X. It converges to some limit a € X. For each fixed 

k, {tnsk 1 2 > 1} is a sequence in the closed set A; and it converges to a. 

Hence a € Ax. Since k is arbitrary, we have a € (\j2, Ax. Finally, suppose 

a,b € Mea Ay. Then for each n, we have a,b € Ay. Therefore we obtain 

0 < d(a,b) < diam(A,,) — 0. Consequently d(a,b) = 0, ie. a =b. 

(b = c) Let {z,} be a sequence in X such that d(tyi1, tn) < 1/2” for all n. 

Define T,, = {z, 1k > n} and A, = Ty. Observe that 

An, Invi) < dan, Fast) + U Eps, Ing) + +++ A Gnsi-1, Tari) 
1 1 

< an * — tees ant? 

1 
and Uns, Lnaj) < A(2n, Eni) + Arn, Lnsj) S qn" 

Since i,j are arbitrary, we have diam(Ap) = diam(Tn) < 1/2"-? — 0. By (b), 

there is a € (\72,; An. Hence a is a cluster point of {z,,}. Therefore {z,,} has 

a convergent subsequence. Since {1,,} is Cauchy, it is convergent. 

(c > a) Let {x,} be a Cauchy sequence in X. Then for every € > 0, 

there is an integer p such that for all m,n > p, we have d(am,2,) < €. In 

particular, for ¢« = 1/2, there is n(1) such that for all m,n > n(1), we have 

A(tm,tn) < 1/2. Inductively, for ¢ = 1/23, there is n(j) > nG — 1) such that 

for all m,n > n(j), we have d(tm,2n) < 1/27. Then {2n,,)} is a subsequence of 

{tp}. Furthermore, we have d(rng+t),Enyy) < 1/23. By (c), the subsequence 

{ny} converges. Therefore {z,} is convergent. Consequently, X is complete. 

2-4.12. Exercise Find a decreasing sequence A,4,; C An of non-empty closed 

subsets of a complete metric space X such that ()72, An is empty. 

2-4.13. Exercise Find a decreasing sequence A,,; C A, of non-empty closed 

subsets of a metric space X such that the intersection ‘an Ay, is empty and 

lim diam A, = 0. 
noo 

2-4.14. Exercise Prove that a decreasing sequence Ams; C Am of closed 

balls in IK” has non-empty intersection. 

2-5 Precompact Sets 

2-5.1. Let X be a metric space. A subset M is said to be precompact or 

totally bounded if for every ¢ > 0, there is a finite subset J of M such that
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M C Uses Bla, £). Intuitively, precompact sets can be approximated by finite 

sets. 

2-5.2. Theorem Closures of precompact sets are precompact. 

Proof. Let M be a precompact subset of X. For every ¢ > 0, there is a finite 

subset J of M such Mc Uses BU, ¢). Let x be any closure point of M. There 

is a € M such that d(z,a) < e. There is 7 € J such that d(a,j) < ¢. Hence 

d(x, j) <2e. Therefore Mc User B(j, 2€). Consequently, M is precompact.0 

2-5.3. Theorem Every Cauchy sequence {2,,} in X is precompact. 

Proof. Let ¢ > 0 be given. There is p > 1 such that for all m,n > p, we have 

d(2m,2n) < 3é. Then {z,,} is covered by the open balls {B(a;,¢): 1 <i <p}. 

Therefore the range of the Cauchy sequence is precompact. Oo 

2-5.4. Diagonal Process Let X be a set. For each integer p > 1, let 

{xP :n > 1} be a sequence in X. Suppose each {z?*! : n > 1} is a subsequence 

of {x2 : n > 1}. Then the diagonal {x2 : n > p} is a subsequence of 

{x2 : n > 1} for each p. If we list each sequence {x2 : nm > 1} horizon- 

tally, the interpretation of diagonal becomes obvious. 

2-5.5. Lemma Let A, B;, B2,---, By be subsets of a given set X. Suppose 

Ac UE, B;. If {z,} is a sequence in A, then there is a subsequence {y,,} and 

an index 7 such that y, € B;, Vn. 

Proof. Let IN = {1,2,3,---} and B; ={n€ IN: 2, € B,}. Since AC UE, Bi, 

we have IN c UE, E;. Since IN is infinite, some F; is also infinite. There is 

a sequence n(1) < n(2) <--- in Ej. Consequence {rn¢;)} is a subsequence of 

{tn} and also tp3) € B; for all j. o 

2-5.6. Theorem Let A be a subset of a metric space X. Then A is 

precompact iff every sequence in A has a Cauchy subsequence. 

Proof. Let A be a precompact set. Assume {z,,} is a given sequence in A. 

Then there is a finite subset. J; of A such that A C Uses, B(z,1!). There 

exist a, € J; and a subsequence {z!,} of {z,} such that all x! ¢ Bia, 1). 

Suppose a subsequence {z?~':n > 1} of {zn} has been defined by induction. 

There is a finite subset J, of A such that A C Use, B(z,1/p). There are 

a, € Jp and a subsequence {x? : n > 1} of {x27 : n > 1} such that all 

xP € Bap, 1/p). Following the diagonal process, define y, = 2%. Then {yp : 

n > p} is a subsequence of {z? : n > 1}. Consequently, {y, :n > 1} isa
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subsequence of the original sequence {x,,}. Let ¢ > 0 be given. Choose p > 2, 

Since all 2? € B(ap, +), we have d(xP,, 2?) < d(x?,,ap) + d(ap, 22) < 2. Since 

{x? :n > p} is a subsequence of {xP : n > 1}, we get d(¥m,Yn) < 2/p =e, 

Vm,n > p. Therefore {yz} is a Cauchy subsequence of {z,}. Conversely, 

assume that every sequence in A has a Cauchy subsequence. Suppose to the 

contrary that A is not precompact. In particular, A is non-empty, say 1 € A. 

There is ¢ > 0 such that for all finite subset 7 of A, we have A ¢ (<7 Ba, €). 

Since A ¢ B(a,,¢), there is x2 € A but d(a1,22) > €. Inductively, since 

A¢ U;3' BG;,®), there is x, € A but d(t_,2j) > €,VI <j <n—1. Then 
{tn} is a sequence in A. Consequently, it has a Cauchy subsequence {y,}. 

There is k > 1 such that for all 7,7 > k we have d(yj,y;) < 5. There is a 

sequence of integers n(1) < n(2) < --+ such that y; = 2p) for all 7. Now 

E < d( trib), Take) = AYR, Vert) < te is a contradiction that completes the 2 
proof. oO 

2-5.7. Theorem Products of precompact sets are precompact. 

Proof. Let A,B be precompact sets of metric spaces X,Y respectively. Take 

any sequence {(zp,Yn)} in Ax B. Then {r,} and {y,} are sequences in the 

precompact sets A, B respectively. Let {a,} and {b,} be Cauchy subsequences 

of {zn} and {yn} respectively. Then {(an,bn)} is a Cauchy subsequence of 

{(£n; Yn)}. Therefore A x B is precompact. oO 

2-5.8. Exercise Prove that every precompact set is bounded. Prove that 

every subset of a precompact set is precompact. 

2-5.9. Corollary Every bounded subset of K” is precompact. 

Proof. Let B be a bounded subset of IR. Then every sequence in B has a 

convergent subsequence which is also Cauchy. Hence every bounded subset of 

RR is precompact. Now let M be a bounded subset of IR”. Then the projection 

MM; of M to its j-th coordinate is bounded and hence precompact. As a subset 

of the precompact set II7_,M;, M is precompact in IR”. Next, since C = R’, 

bounded sets are identical with precompact sets. Repeating the same argument 

for IR", we obtain the result for C”. oO 

2-5.10. Exercise Show that the real line equipped with the discrete metric 

is bounded but not precompact. 

2-5.11. Exercise Prove that the projection of a precompact set in a product 

metric space X x Y to X is precompact.
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2-5.12. Exercise Is the set of all integers precompact? Is the set of all 

rationals in (0, 1) precompact? 

2-6 Compactness 

2-6.1. Ina precompact set A, every sequence has a Cauchy subsequence which 

need not converge in A. It is natural to introduce the concept of compactness 

to safeguard the existence of limits. It turns out that compactness plays a vital 

role in almost every aspect of analysis especially in infinite dimensional spaces, 

e.g. Chapter 5 below. Open covers provide an alternative way to utilize the 

compactness and also allow us to extend the concept to general topological 

spaces. To reduce an arbitrary open cover to countable subcover, we need the 

concept of separable sets. 

2-6.2. Let A,B be subsets of a metric space X. Then B is said to be dense 

in A if A C B. The set A is said to be separable if A has a countable dense 

subset. 

2-6.3. Theorem Continuous images of separable sets are separable. 

Proof. Let X,Y be metric spaces. Let f : X - Y be a continuous map and 

A a separable subset of X. There is a countable dense subset B of A. Now 

f(B) is a countable subset of f(A). Since f(A) C f(B) C F(B), the set f(B) is 

countable dense in f(A). Therefore f(A) is separable. Oo 

2-6.4. Exercise Prove that finite products, countable unions and subsets of 

separable sets are separable. 

2-6.5. Exercise Prove that K” is separable. 

2-6.6. Theorem Every precompact set A in a metric space X is separable. 

Proof. For each integer n > 1, there is a finite subset J, of A such that 

Ac Ures, Boa, 4). Let B = U2, Jn. Then B is a countable subset of 

A. To show A C B, take any y € A. For each n, there is 2, € Jp such 

that y € Bizn, +). Then {x,} is a sequence in B. Since d(tp,y) < 4, we 

have t, — y. Therefore y € B. Hence B is a countable dense subset of A. 

Therefore A is separable. Oo 

2-6.7. Let A be a subset of a metric space X. Then A is said to be compact if 

every sequence in A has a subsequence convergent to some limit which is also 

in A. Let {V, : 1 © I} be a cover of A. Then {Vj :7 € I} is called an open cover
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of A if every V; is open. The cover {V; : ¢ € I} is said to be finite (respectively 

countable) if the index set I is finite (respectively countable). A subfamily of 

{V;, :7 © I} which remains to be a cover of A is called a subcover. 

2-6.8. Theorem Let A be a subset of a metric space X. If A is separable, 

then every open cover {V; : i € I} of A has a countable subcover. 

Proof. Let K be a countable dense subset of A. Take ant x € A. Since 

{V; : 7 € I} is a cover of A, some index i(x) € I satisfies « € Viz). Because Vicz 

is open, there is a rational number r(x) > 0 such that B[z,r(z)] C Vi. Since 

AC K, xis aclosure point of K. There is some point b(r) € KN B[Bb(2), ir(2)], 

that is « € B[b(2), 3r(a)). Let B = {B[b(2), 3r(z)] : a € A}. Since both K and 

the set of all rationals are countable, so is B. Let B,, B2,--- be an enumeration 

of B. For each n= 1,2,---, there is x, € A such that B, = B[b(z), $r(a)]. We 

claim that {Vig :m > 1} is a cover of A. In fact, take any y € A. There is 

n such that y € B,. Therefore y € B[b(r,), 57(£n))], that is d[y, b(t,)] < 

$7(Ln). Since b(z,) € Ben, 5r(tn)l, we have d[rn,b(tn)] < $7 (fn). As 

a result, d(y,¢%n) < r(tn), ie. y € Bien, r(en)] C Vig,). Consequently, 

{Vix,) 1% > 1} is a countable open subcover. o 

2-6.9. Theorem Let A be a subset of a metric space X. Then the following 

statements are equivalent. 

(a) A is compact. 

(b) A is complete and precompact. 

(c) Every open cover has a finite subcover. 

(d) Every countable open cover has a finite subcover. 

Proof. (a = b) Let {z,} be a Cauchy sequence in A. Since A is compact, 

there is a subsequence {y,} convergent to some limit 6 € A. Hence the original 

sequence {x, } is also convergent to b. Therefore A is complete. To show that A 

is precompact, let {x,} be any sequence in A. Since A is compact, there exists 

a convergent subsequence {yn}. Since {y,} is also Cauchy, A is precompact. 

(b = c) Since A is precompact, A is separable. Every open cover © of A 

has a countable open subcover {V; : 7 > 1}. Suppose to the contrary that 

Ag Uj V; for every n. There is x, € A but 2, ¢ jet V;. Since A 

is precompact, {z,} has a Cauchy subsequence. Since A is complete, the 

subsequence converges to some b € A. So, there is a sequence of integers 

n(1) < n(2) < n(2) <--- such that 2,3, > b. Since {V,} is a cover of A, we 

have b € V;,,, for some k. Because V; is open, there is R(b,e) C V;. By conver-
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gence of subsequence, there is p such that for all 7 > p, we have d(x,,j), 0) < he, 

or Zp) € Bib, e) C Vy. Take any 7 > p+k. Since j > p, we get tng) € Ve. It 

follows from the choice of {x,}, we obtain t(j) ¢ Ue? V;. Now nj) > 7 >k 

gives tj) ¢ Vi. This contradiction shows that some n satisfies A C Ui, Vi. 

Therefore the given cover € has a finite subcover. 

(c => d) It is obvious. 

(d =a) Let {z,} be a sequence in A. Suppose to the contrary that every 

subsequence of {z,} cannot converge to any point in A. Hence, no point 

of A can be a cluster point of {z,}, that is, AM (2, Kn = 0 where 

K,, = {23 : 9 = n}. Now each V, = X\K, is open in X and {V, :n > 1} 

forms a countable open cover of A. Hence A C Uf, V; for some p. Since 

Kys C Kn, we have V, C Vass and so A C V,. Now zp € A. Thus zy € Vy, 

of Zp ¢ Ky, and so z, ¢ K, which is a contradiction. Therefore the original 

sequence must have a subsequence convergent to some point which is in A. 

This completes the proof. im 

2-6.10. Corollary Every compact set in a metric space is closed and bounded. 

Proof. Complete sets are closed and precompact sets are bounded. a 

2-6.11. Exercise A subset of K” is compact iff it is closed and bounded. 

2-6.12. Exercise Show that the real line equipped with the discrete metric 

is closed and bounded but not compact. 

2-6.13. Theorem Every closed subset B of a compact set A is compact. 

Proof. Let {t,} be a sequence in B. Then {x,} is also a sequence in the 

compact set A. So, {x,} has a subsequence {y,} convergent to some point 

a € A. Since all y, € B, a is a closure point of B. Since B is closed in X, we 

have a € B. Therefore B is compact. QO 

2-6.14. Theorem Products of compact sets are compact. 

Proof. See the proof for precompact sets. Oo 

2-6.15. Exercise Let {A;:i¢ I} be a non-empty family of compact subsets 

of a metric space X. Prove that if for every finite subset J of J, the finite 

intersection (],<, Aj is non-empty then the total intersection (],-; A; is also 

non-empty.
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2-7 Continuous Maps on Compact Spaces 

2-7.1. In elementary calculus, every continuous real function on a closed 

bounded interval has an absolute maximum which is used to prove the Rolle’s 

Theorem and then to derive the mean-value theorem. This is just one of many 

standard applications of compactness in analysis. 

2-7.2, Theorem Continuous images of compact sets are compact. 

Proof. Let X,Y be metric spaces. Let f : X — Y be a continuous map 

and A a compact subset of X. Let {H; : i € I} be an open cover of f(A). 

Then {f-1(Hj) : i € I} is an open cover of the compact set A. It has a finite 

subcover {f—'(H;) : 7 € J} of A. Hence, {H; : 7 € J} is a finite subcover of 

f(A). Therefore f(A) is compact. Oo 

2-7.3. Theorem Let f be a continuous real function on a metric space X. If X 

is compact and non-empty, then there are a,b € X such that f(a) < f(x) < f(b) 

for all « € X. In other words, f attains its maximum and minimum values. 

Proof. Since the continuous image f(X) of the compact space X is a compact 

subset of IR, it is closed and bounded in IR. Let a = inf f(X). For every 

n > 1, there is x, € X such that f(r7,) < a+ i, Since X is compact, there 

is a subsequent {2,j)} convergent to some a € X. Letting 7 — oo in the 

expression: f[tnqj] < a+ Or we have f(a) < a < f(x) for allz € X. 

Therefore f attains it minimum at a. Similarly, it also attains its maximum.0 

2-7.4. Let X,Y be metric spaces. Then a bijection f : X — Y is called a 

homeomorphism if both f, f—! are continuous. 

2-7.5. CoreHary Let f : X — Y be a continuous bijection. If X is compact, 

then f is a homeomorphism. 

Proof. It suffices to show that g = f—! is continuous. Let A be a closed subset 

of X. Since X is compact, so is A. Now f(A) is compact and hence closed. 

Therefore the inverse image g~'(A) = f(A) of a closed set under g is closed. 

Consequently, f~' = g is continuous. o 

2-7.6. Lemma Let X,Y,Z be metric spaces and let f : X x Y — Z bea 

continuous map. If Y is compact then for every a € X and « > 0 there is db > 0 

such that for every d(x,a) < 6 and y € Y we have d[f(z, y), f(a, y)] < €. This 

handy lemma will be used later, e.g. §§8-3.2, 9-3.9, 11-5.8.
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Proof. Take any t € Y. Since f is continuous at (a,t) € X x Y, there is 6, > 0 

such that for all x € Bea, 6) and y € Bet, 6) we have d[ f(z, y), f(a,t)] < ze. 

By compactness, there is a finite subset J of Y such that Y c Ure 7 BE, 6). 

Define 6 = min{d, : ¢ © J}. Now assume d(z,a) < 6 andy € Y. Selectte J 

such that y € B¢t,6,). Then d(z,a) < 6: and d(y,t) < 6. The following 

inequality completes the proof: 

aL f(e,y), f(a, y)] < alfla,y), fla, 01+ dL fad, fay)<tettere O 

2-7.7. Exercise Let X be the real line equipped with the discrete metric and 

R the real line with usual metric. Show that the identity map from X onto R 

is a continuous bijection which is not a homeomorphism. 

2-7.8. Exercise A subset of a metric space is said to be relatively compact 

if its closure is compact. Prove that every relatively compact set is precom- 

pact. Prove that in a complete metric space, every precompact set is relatively 

compact. 

2-7.9. Exercise Prove that a subset in a product space is relatively compact 

iff its projection onto factor spaces are relatively compact. 

2-7.10. Exercise Prove that linear combinations of compact sets in normed 

spaces are compact. Prove that linear combinations of relatively compact sets 

are relatively compact. 

2-7.11. Exercise Two sets of R? are given by A= {(¢,sin ) :0<t< 1} and 

B= {(0,t):0<t< 1}. Determine whether A, B and AU B are compact. 

2-7.12. Exercise Prove that the projection of a product metric space X x Y 

onto the coordinate space X is an open map, i.e. the image of an open set is 

open. Show that it does not carry every closed set onto a closed set. Also find 

an example of a continuous map which carries every closed set onto a closed 

set but not every open set onto an open set. 

2-7.13. Let A, B be non-empty subsets of a metric space X. Then the distance 

between A, B is defined by d(A, B) = inf{d(z,y) : zc € A,y € B}. Clearly we 

have, d(A, B) = d(B, A) = inf{d(z, B): x € A}. 

2-7.14. Theorem Let A, B be non-empty subsets of a metric space X. If A 

is compact, then there is a € A such that d(a, B) = d(A, B). Furthermore if 

A, B are disjoint closed sets, then d(A, B) > 0.
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Proof. The function d(x, B) is continuous in x on a compact set A. Oo 

2-7.15. Theorem Let A,B be non-empty compact subsets of a metric space 

X. Then there are points a € A and b € B such that d(a, b) = d(A, B). 

Proof. Since both A, B are compact, the product set A x B is compact in the 

product space X x Y. Since the continuous function d: A x B — R attains 

its minimum, there is some (a,b) € A x B such that d(a,b) < d(z,y) for all 

(x,y) € Ax B. Therefore d(a, b) = d(A, B). qd 

2-7.16. Exercise Let A = {(2,y) € R? : zy = 1} and B the z-axis of IR’. 

Find the distance d(A, B). 

2-8 Uniform Continuity 

2-8.1. Uniform continuity is a global property because uniformly continuous 

map carries any pair of near points into near points. One of many 

standard applications is to show that continuous functions are integrable. Since 

every continuous linear map is uniformly continuous, we shall apply the unique 

extension theorem below to construct regulated integrals for vector-valued 

maps in Chapter 8. 

2-8.2. Let X,Y be metric spaces and f : X —+ Y a given map. Then f is 

said to be uniformly continuous if for every € > 0, there is 6 > 0 such that for 

all z,y € X, d(z,y) < 6 implies d[ f(z), f(y)] < ¢. Clearly, every uniformly 

continuous map is continuous. For a normed space, it is easy to prove that the 

function xz — ||x|| is uniformly continuous. For a metric space, the distance 

function d(z, A) from a point x to a non-empty set A is uniformly continuous 

in gz. 

2-8.3. Exercise Write explicitly the negation of uniform continuity. Prove 

that the function x? is continuous but not uniformly continuous on R. 

2-8.4. Theorem Let, X,Y be metric spaces and f : X — Y a continuous 

map. If X is compact, then f is uniformly continuous. 

Proof. Let ¢ > 0 be given. For each a € X, there is 6, > O such that 

d(x,a) < 5, implies d[ f(x), f(a)] < $e. Now {B(a, 464) :a € X} is an open 

cover of the compact space X. There is a finite subset J of X such that 

X Cc Uses Bea, $64). Let 6 = } min{d, :ae€é J}. Then 5 > 0. Suppose 

x,y € X satisfying d(z,y) < 6. Then there is a € J such that x € Bea, 45),
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ie. d(z,a) < 36a. Now, d(y,a) < d(z, y)+d(z, a) < 5+46, < 6,. Hence we have 

dl f(x), f(a)] < 4¢ and d[ f(y), f(@] < je. Thus, d[ f(x), f(y)] < €. Therefore f 
is uniformly continuous. Oo 

2-8.5. Lemma Let X,Y be metric spaces. Let f : X — Y be a uniformly 

continuous map. Then: 

(a) if {2,} is a Cauchy sequence in X, then its image {f(rn)} is Cauchy in Y. 

(b) if F is a precompact subset of X, then f(E) is precompact in Y. 

Proof. The first follows immediately from definition and the second from the 

characterization of precompactness in terms of Cauchy sequences. oO 

2-8.6. Lemma Let f,g be continuous maps from a metric space X into a 

metric space Y. If f = g on a dense subset M of X, then f =g on X. 

Proof. Take any a € X. There is a sequence x, € M such that x, — a. Since 

f,g are continuous, we have f(a) = lim f(x,) = lim g(z,) = g(a). Therefore we 

have f=gon X. Oo 

2-8.7. A sequence {z,} is said to be merged from two given sequences {z,} 

and {yn} in X if 2; = fy and 2 = Yn for alln > 1. 

2-8.8. Unique Extension Theorem Let X,Y be metric spaces. Let f be a 

map defined on a subset M of X into Y. If f is uniformly continuous on M 

and if Y is complete, then there is a unique uniformly continuous extension of 

f over the closure of M. 

Proof. Take any point a €¢ M. There is a sequence {x,} in E convergent 

to a. Then {z,,} is Cauchy. By uniform continuity, {f(z,)} is Cauchy in the 

complete metric space Y and hence it converges to some limit, denoted by g(a). 

We claim that 9(a) is independent of the choice of the sequence {z,,}. Suppose 

{yn} is another sequence in M convergent to a. Let {z,} be the sequence 

merged from {x,} and {y,}. Then {z,} converges to a and as above { f(zn)} 

converges in Y. Hence its subsequence {g(x,)} and {g(yn)} converge to the 

same limit. Therefore a map g : M — Y is well-defined. If a € M then the 

constant sequence {a} converges to a and hence g(a) = f(a). Consequently g is 

an extension of f. To prove that g is uniformly continuous, let ¢ > 0 be given. 

There is 6 > 0 such that whenever d(x, y) < 6 in M we have d[ f(x), f(y)] < €/3. 

Now take any a,b € M satisfying d(a,b) < 6/3. There are sequences {2} and 

{y,} in M convergent to a and 6 respectively. There is an integer p such that 

for all n > p we have d(x, a) < 6/3, d(yn,b) < 6/3, d[f(xn), g(@)] < ¢/3 and
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A fn), g(B)] < eE/3. Since dp, Up) < d(rp, a) + d(a, b) + d(b, Yp) < $ + $ + $ =6 

we have d[f(zp), f(yp)] < 3. Hence 

d[g(a), 9®)] < dg), F(tp)] + Lf (ep), FYp)1 + AF Wp), 9D) < G+ 9+ 5 =e. 

The uniqueness follows from last lemma. This completes the proof. oO 

2-8.9. Exercise Show that the continuous function 1 on (0,1) has no 

continuous extension over [0, 1]. 

2-8.10. Exercise Prove that the projections from a product metric space 

X x Y onto its factor spaces X,Y are uniformly continuous. 

2-9 Connected Sets 

2-9.1. Let X be a metric space. A pair (A, B) of non-empty subsets of X is 

called a disconnection if ANB = 9 and BN A=. A subset M of X is said 

to be disconnected if there is a disconnection (A,B) such that M=AUB. A 

subset of X is said to be connected if it is not disconnected. A set H is said to 

be contained in a disconnection (A, B) if H C AUB. 

2-9.2. Theorem A subset M of the real line IR is connected iff M is an 

interval, ie. a,b € M anda<c<bimpliesce M. 

Proof. (=) Suppose to the contrary that a,b € M,a<c<bandc¢ M. 

Then we geta <ec <b. Let A= Mm(—oo,¢) and B= MN (c,00). Since 

cé M, we have M C (co, €) U(e, 00), or 

M=MN{(-~,¢) U(c,co)} = {MN (—00, -} U{M N(c,co)} = AUB. 

Observe that ANB c (—w, a) N(e, 00) = (—00, €)N[e, 00) = 0. Hence ANB = 9. 

Similarly, BM A=. Since both A, B are non-empty, M is disconnected. 

(<=) Suppose M is disconnected. There are non-empty sets A, @ such that 

M=AUB,ANB=@ and BN A=. Letac Aandbe B. Since ANB=9, 

we may assume a < b. Define H = {x € A: x < b} andc = supH. Then 

a,be M anda<c<b. Since M is an interval, c¢ M. There are two cases. 

Firstly, suppose c € A. Since AN B = O, c does not belong to the closed set B. 

There is € > 0 such that B(e,2e) 1 B= 0. Hence c+e ¢ Banda<ct+e<b. 

Since c = sup H, c+te ¢ A. We proved that a,b € M,a<ate<bbutcte Z M. 

This establishes a contradiction. Secondly, suppose c € B. Since BN A=, € 

does not. belong to the closed set A. There is ¢ > 0 such that Bic, 22) A = 0. 

Take any x € H. We have x € A and x <c. Since [c— €,c]N A = 9, we obtain
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x <e-—e. Taking supremum over x € H, we get c < c—€ which is another 

contradiction. Therefore Mf must be connected. oO 

2-9.3. Theorem Continuous images of connected sets are connected. 

Proof. Let X,Y be metric spaces and f : X — Y a continuous map. 

Assume F is a connected subset of X. Suppose to the contrary that f(E) 

is disconnected. There is a disconnection (P,Q) such that f(£) = PU Q. Let 

A=Enf7'(P) and B = Enf-'(Q). Then A,B are non-empty sets satisfying 

E= AUB. Suppose to the contrary that there is x € ANB. Then f(x) € P 

and f(z) € f(B) c f(B) c @. Hence f(z) € PQ which is a contradiction. 

Therefore ANB = 9 and similarly Bn A= 9. Consequently, E is disconnected. 

This completes the proof. oO 

2-9.4. Intermediate Value Theorem Let a < b be in R and let f : [a,b] -R 

be a continuous function. If f(a)f(b) < 0, then there is x € (a,b) such that 

f(x) =9. 

Proof. The interval [a, 6] is connected. The continuous image f([a, b]) is also 

connected and hence it is an interval. Since f(a)f(b) < 0, the number zero is 

between f(a) and f(b), i.e. 0 € f(a, b]), or for some x & [a, 5], f(x) = 0. Oo 

2-9.5. Bisection Method Let f : [2,5] — R be a continuous function such 

that f(a)f(b) < 0. Define a, = a and b, = b. Inductively, suppose [an_1, b,—1] 

is defined. Bisect [a,_1,6,—,] into subintervals [a,_,,c] and [c,b,_,] where 

c= $(Qn—1 +b,_) is the mid-point. If f(c) = 0, then we have a solution already. 

Suppose f(c) #0. If f(an_1)f(c) < 0 then define a, = a,_; and b, = c, else 

define a, = c and b, = b,_,. Therefore f(a,)f(b,) < 0. By intermediate 

value theorem, we know that there is a solution between a,, and b,. Therefore 

the error of assuming $ (Qn + bn) to be a solution is no more than (b — a)/2”. 

Alternatively, you may cut an interval into more than two subintervals. This is 

a slow but very simple and reliable way to find approximate numerical solution 

of a nonlinear equation f(x) = 0. 

2-9.6. Fixed Point Theorem Let a < b be in R. Every continuous function 

f : [a, 6] — [a,b] has a fixed point. 

Proof. Let g(x) =x — f(z). If g(a) = 0 or g(b) = 0 then a or 3 is a fixed point 

of f. Assume that both g(a), g(b) are non-zero. Since f({a,b]) C [a,b], we 

have g(a) < 0 and g(b) > 0. Hence g(x) = 0 for some x € (a,b). Consequently 

fix) =z. o 
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2-9.7. Exercise Let y = f(x) : [0,1] — [0,2] and x = g(y) : [0,2] — [0,1] 

be continuous functions. Prove that there is (a,b) € [0,1] x [0,2] such that 

b = f(a) and a = g(b). Sketch the graphs of f,g on the rectangle [0,1] x [0,2] 

and interpret the location of (a,b). 

2-9.8. Lemma If M is a connected set contained in a disconnection (P,Q), 

then either Mc PorMcdQ. 

Proof. Suppose to the contrary that M ¢ P and M ¢ Q. Define A= MnP 

and B=MnqQ. If possible, assume A=. Then 

M=aMN(PUQ)=A(MNPU(MNQ=AU(MNQ=aM NA, 

i.e. M C Q which is a contradiction. Hence A ¥ @ and similarly B 4 0. Now 

observe M = Mn(PUQ) =(MOP)U(MnQ) = AUB. Since ANB c PNQ =9, 

we have AN B = 9. Similarly, BM A=. Therefore M is disconnected. This 

contradiction shows either Mc Por McQ. im 

2-9.9. Theorem Let {M; : i € I} be a family of connected sets in a metric 

space X. If the intersection (),.,; M; is non-empty, then the union [J,.., M; is iel tel 

also connected. 

Proof. Let M = User M;. Suppose to the contrary that there is a discon- 

nection (P,Q) satisfying M = PUQ. Take any a € (),-, Mj. Thena ¢ M. 

Without loss of generality, let a € P. For each i € J, M; is a connected 

subset of the disconnection (P,Q). So, we obtain either M; Cc P or M; c Q. 

Now a € M;N P. Since P,Q are disjoint, we have a ¢ Q. Hence M; ¢ Q. 

Therefore we have M; C P for alli € I. Consequently, Mc P. Thus 

Q=QN(PUQ)=QNM CQNP =? gives a contradiction. Therefore M is 

connected. o 

2-9.10. Exercise Let X be a metric space. A continuous map y from an 

interval into X is called a curve in X. If y : [a,b] — X is a continuous map, 

then f(a), f(b) are said to be joined by the curve y. Show that a subset M of 

X is connected if any two points in M can be joined by a curve in M. 

2-9.11. Exercise Prove that all ball in a normed space are connected. Prove 

that every normed space is connected. 

2-9.12. Exercise Show that any two points of a connected open subset M of 

a normed space can be joined by a curve in M.



46 Complete, Compact and Connected Sets 

2-10 Components 

2-10.1. Let X be a metric space. A subset C of X is called a component of 

X if it is a maximal connected subset of X. More precisely, C is a connected 

subset of X and if A is any connected set containing C, then A=C. 

2-10.2. Theorem Let M,N be subsets of a metric space X such that 

M CNC M. If M is connected, then so is N. 

Proof. Suppose to the contrary that N is disconnected. There is a discon- 

nection (P,Q) such that N = PUQ. Since M is a subset of the disconnection 

(P,Q), we have either M Cc Por M CQ. If M CP, then 

Q=QNNCQNMcOQNnP =O, 

ie. Q = @ which is a contradiction. Similarly, M Cc Q leads to another 

contradiction. Therefore N is connected. im 

2-10.3. Theorem Every component is closed. 

Proof. Let C be a component of a metric space X. Then C is a connected 

set containing C. Hence C = C. Therefore C is closed. oO 

2-10.4. Exercise Let X = (01) U (1,2). Show that (0,1) is closed in X but 

not closed in IR. Find the components of X. 

2-10.5. Exercise Find the components of the metric space Q of all rational 

numbers. 

2-10.6. Exercise Find closure of the subset M = {(z,y): y = sin Lig > 0} of 

IR’. Show that the union X of M and the y-axis is connected. Is it possible 

to join the points (0,3) and G, 0) by a curve in X? 

2-10.7. Theorem The family of all components of a metric space X forms a 

partition of X. 

Proof. Leta € X be given. Let € be the family of all connected sets containing 

a. Then € is non-empty because the singleton {a} is in €. Let C be the union 

of all sets in €. Then C is connected. Furthermore, if B is a connected 

set containing C’, then B is a connected set containing a; hence B € €, and 

therefore B Cc C’. Consequently, C is maximal connected set. As a result, every 

point of X is covered by some component. Next, let M,N be two components 

of X. Suppose that MN N #@. Then MUN is a connected set containing the 

component Mf. By maximality, we have M = MUN. Similarly, N= MUN.
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Hence, M = N. Therefore two components are either disjoint or identical. 

This completes the proof. oO 

2-10.8. Lemma Let D be a family of disjoint non-empty open sets in a 

metric space X. If X is separable then D is countable. 

Proof, Let {a, :n > 1} be an enumeration of a countable dense set in X. 

Take any A € D. Given that A is non-empty, there is x € A. Since A is open, 

there is a ball B(z) c A. Being dense set, there is a,, € B(z). Define f(A) =n. 

Note that the choice of n depends on A but it need not be unique. We have 

defined an integer function f on ID. If f(A) = f(B) =n, then a, € AN B and 

hence A = B because sets in D are disjoint. Therefore f is an injection of ID 

into the set of integers. Consequently, ID is countable. oO 

2-10.9. Theorem Every open subset M of R is a countable union of disjoint 

open intervals. 

Proof. Let C be a component of M. Since M is open, for each x € M, there is 

€ > Osuch that the ball B = (x—¢,zr+¢€) is a subset of M. Since x € BNC and 

both B,C are connected, B UC is a connected set containing the component 

C. Hence C = BUC, ie. B C C. Therefore C' is open in R. Because C' is 

connected, it is an open interval. Now the family ID of all components of M 

consists of disjoint open intervals. Since IR is separable, ID is countable. Oo 

2-10.10. Theorem Let X,Y be metric spaces. If both X,Y are connected, 

then so is the product space X x Y. 

Proof. Take any point (a,b) ¢ X x Y. The map f : X — X x Y given by 

f(z) = (@,b),V x € X is continuous. Hence the image f(X) = X x {b} is a 

connected subset of X x Y. Similarly, {a} x Y is a connected subset of X x Y. 

Let K(a) =[X x {b}] U[{a} x Y]. Since (a,b) € [X x {b}] MN [{e} x Y], K(a) 

is connected. Since X x {b} C K(a),V a € X, the set U,-y K) =X x Y is 

connected. This completes the proof. Oo 

2-10.11. Exercise Let X,Y be metric spaces and f : X — Y a continuous 

map. Prove that if X is connected then the graph {[x, f(x)]: 2 € X} of f is 

a connected subset of the product space X x Y. 

2-99. References and Further Readings : Dugundji-66, Thron and Hocking. 



Chapter 3 

Banach Spaces 

3-1 Uniform Convergence 

3-1.1. Functional analysis is supposed to analyze certain classes of functions. 

A lot of typical examples will be given soon so that you have an intuitive idea 

of what is going on. 

3-1.2. Let X be a non-empty set. Let f,g be functions on X and a, @ scalars 

in K. Then the pointwise operations are defined as follow: 

(a) equality: f = if f(x) = g(x), V x EX; 

(b) linear combination: (af + 6g)(z) = af(x) + Bg(z),V x € X; 

(c) product: (f - g)(z) = f(x)g(z), Vax € X; 

(d) absolute-value: |f{(x) = |f(x)|, Vz € X; 

(e) complex conjugate: f~(z) =[f(x)]-, Vz € X; 

(f) real and imaginary parts: Re(f) = Lf +7); Im(f) = i — f-). 

For all real functions f,g on X define 

(g) order: f <g if f(x) < g(x), Va € X; 

(h) maximum: (f V g)(x) = f(x) V g(x) = max{ f(x), 9(x)},V x € X; 
(i) minimum: (f A g)(x) = f(z) A g(x) = min{ f(x), g(2)},V x € X; 

(j) positive and negative parts: f, = f V0; f. =(—f) V0. 

Pointwise addition and scalar multiplication of vector-valued maps are defined 

in the similar way. It will be used without further specification. 

3-1.3. Exercise Prove that for all real functions f,g on a non-empty set X, 

we have f Vg =3(f+g+|f —gl)) and fAg=3(ft+9—-If —9)). 

3-1.4. Exercise Let f,g be real-functions on R given by f(z) = |z| — 1 and 

g(x) =2—\x—1| for allz ER. Sketch f+g, |fl, f V9, fAg, fe and f_. 

3-1.5. Exercise Prove that the set F(X) of all functions from X into K forms 

a vector space. Most vector spaces in this book will be derived as vector sub- 

spaces of F(X) by checking closure under addition and scalar multiplication.
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3-1.6. Let X,Y be metric spaces and let f,,g be maps from X into Y. Then 

{fn} is said to converge to g uniformly on a subset M of X if for every € > 0, 

there is an integer p such that for all n > p and for all c € M, we have 

d(fn(2), g(x)) < €. In symbols, write f, — g uniformly on M. When M = X, 

we may drop M in our notation. Note that the functions f,,,g need not be 

bounded. 

3-1.7.. Theorem Uniform limits of continuous maps are continuous. More 

precisely, let X,Y be metric spaces and f,,g be maps from X into Y. Suppose 

that all f, are continuous. If f, — g uniformly on X, then g is continuous 

on X. 

Proof. Let a € X and « > O be given. Since f, — g uniformly, there is 

p such that for all n > p and for all « € X, we have d[f,(z),g(x)] < ¢€/3. 

Now /, is continuous at a € X. There is 6 > 0 such that d(a,a) < 6 implies 

d[ f(x), fp(a)] < ¢/3. Now suppose d(x, a) < 6. Then we obtain 

dfg(z), 9(@)] < dl g(x), fp(x)] + aL f(z), fo(a)] + dl fp(a), g(a)] < €. 

Therefore g is continuous at a € X. Since a € X is arbitrary, g is continuous 

on X, Oo 

3-1.8. Let X be a set and Y a metric space. Let fr,g be maps from X into 

Y. Then {fn} is said to converge to g pointwise if for every x € X, we have 

Fa(z) > g(x) in Y. Clearly uniform convergence implies pointwise convergence. 

3-1.9. Exercise Let f,(z) = nx if0 <2 < + and f,(x) = 0 if x > 1. Show 

that {f,} converges pointwise on [0,1]. Prove that the sequence {f,,} does not 

converge uniformly on [0, 1]. 

3-2 Bounded Continuous Functions 

3-2.1. Let E be a normed space. Then F is a metric space under the distance 

d(x, y) = ||c—y||. If E is complete, it is called a Banach space. It has been shown 

that all IK}, Kf and K%, are examples of Banach spaces but they are all finite 

dimensional. We shall begin to study function spaces which are usually infinite 

dimensional. Chapter 13 on Hilbert spaces should be read concurrently. 

3-2.2. Example Let X be a non-empty set. The sup-norm of a function 

f : X — K is defined by ||fllo. = sup,cx |f(x)| which may be oo. Obviously, 

it is finite iff the function f is bounded on X. Let B(X) denote the set of
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all bounded functions on X. It is an exercise to show that B(X) is a vector 

subspace of F(X) and the sup-norm is a norm on B(X). Convergence in B(X) 

is the same as uniform convergence on X. Note that B(X) is a generalization 

of K%, when X = {1,2,---,n}. 

3-2.3. Exercise Let X = (0,00) and f(x) = e*cosz, g(x) = e-*sinz for 

zx € X. Find the sup-norms of f,g and determine whether they belong 

to BCX). 

3-2.4. Theorem The vector space B(X) of all bounded functions on a non- 

empty set X forms a Banach space under the sup-norm. 

Proof. Let {fn} be a Cauchy sequence in B(X). Then for every ¢ > 0 there 

is an integer k such that |{fin — fallo <€, Vm,n > k. For each z € X, 

since |fm(x) — fa(x)| < |lfm — falloo < €, the sequence {fn(z)} is Cauchy in 

the complete metric space IK and hence it converges to some f(z) € K. Now 

f :X — K is a well-defined function. Because 

|fm(x)| < | f(x) _ Fi.(x)| + |fr(a)| Set \| Fielloos 

setting m — oo we have |f(x)| < €+||fxlloo for allz ¢ X. Therefore f € BCX). 

Letting m — co in |fin(2) — fr)! < Ilfm — fnlloo < €, we have for alln >k 

| f(z) — fa(w)| <€. Since x € X is arbitrary, we get ||f — fall <é, Vn>k. 

This proves f, — f in B(X). Consequently B(X) is a Banach space. Oo 

3-2.5. Exercise Let X be a metric space and EF a normed space. Let 

f.g : X — E be continuous maps and 4 : X — K a continuous function. 

Prove that the sum f +g, the product Af and the absolute-value |\| are 

continuous on X. Furthermore, prove that if A is non-zero on X then its 

reciprocal defined by (42) = Na is also continuous on X. 

3-2.6. Example Let X bea metric space. Then the set BC(X) of all bounded 

continuous functions on X is a closed vector subspace of the Banach space 

B(X). Hence BC(X) is also a Banach space under the sup-norm. Note that 

BC(X) is a generalization of Kt, when X = {1,2,---,n} is equipped with the 

discrete metric. 

3-2.7. Example Let X be a compact metric space. Since every continuous 

functions on X is bounded, BC(X) is identical with the vector space C(X) of 

all continuous functions on X.
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3-2.8. Let C[a,b] be the vector space of all continuous functions on the 

compact set [a,b] where a < b. Of course, C.,[a,b] forms a Banach space. 

On the other hand, for each f € C[a, b] define 

b b 

ne | If(@)jde and —|Iflln=4/ / Fla) Pde 
It is routine to verify that both are norms on C[a,b]. Write C\[a,b] and 

C,[a, b] to indicate explicitly which norm is used on the same vector space 

C[a, b]. Whenever nothing is mentioned, C..[a, b] will be assumed. 

3-2.9. Example The normed space C;[—1, 1] is not complete. 

Proof. We shall construct a Cauchy but divergent sequence in C[—1, 1]. 

Define 0, if-l<2<0, 
fa(e)= i nz, ifO<2< 4, 

1, ifi<¢2<1. 

All f, are continuous by Glue-Theorem, For all m,n > 3, since 
aya 
mn 2 2 

lfm ~ fallr < [ lim(2) ~ fala)ide < 242, 
0 m nm 

the sequence {f,,} is Cauchy in Ci[—1, 1]. Suppose to the contrary that {f,} 

converges to some continuous function g in C,[—1,1]. Then the estimation 
0 0 

/ la(ade = / “[fale) ~ gla)lde < In ~ ali +0 
together with the continuity of g ensures that g(x) = 0 for all x < 0. On the 

other hand, take any 0 < a < 1. Observe that for all n > 1, 

1 1 

| |i — g(a)|de = / Ifalz) ~ g(a)|dx < |ifa — gl) > 0. 
The continuity of g gives g(r) = 1 for alla <x <1. Since a > 0 is arbitrary, 

we have g(x) = 1 for all z > 0. This contradiction to the continuity of g shows 

that Ci[—1, 1] cannot be complete. Oo 

3-2.10. Exercise Show that C[—1,1] is infinite dimensional. Note that 

C..[—1, 1] is a Banach space while C;[—1, 1] is not. 

3-2.11. Let E be a normed space. An infinite series )7>°, x, in E is said to 

converge to a sum s € & if the sequence of partial sums s, = 7) +2. +-+-+2n 

converges to s. It is said to converge absolutely if the series )--~, |[zn|| converges 

in R. The following results will be needed in next section.
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3-2.12. Theorem Let 5°72, xn be an infinite series in a Banach space EZ. If 

the given series is absolutely convergent, then it converges in £. Furthermore, 

we have || }7n21 Pall S$ Dna llenll- 
Proof. Let sx = an Z, denote the partial sums. Suppose € > 0 is given. 

Since 32, ||zn|| converges, there is an integer p such that rep |Zall < e. 

Now for all & > p and all positive integer i, we have 

{[Sa4e — Sel] = ||eaear + Pea2 +--+ + Lesell < [|e |] + [leerzl] +--+ + fleaeell < @. 

Hence {s; : k > 1} is a Cauchy sequence in the Banach space E. It converges 

to some limit, say s € E. Consequently the series S772, ¢n also converges 

tos. Since [sel < Shar [ltnl] < Li teal, letting k — 00, we obtain 
IIs] < ae [enll- 0 

3-2.13. Exercise Prove that if a normed space is not complete then there 

exists an absolutely convergent series which is divergent. 

3-2.14. Exercise Prove that if the infinite series 0,2, and 37°, yn 

are convergent in a normed space, then for all scalars a,f§, the series 

er (arn + Gyn) converges to a 77 tn + BI Un. 

3-2.15. Exercise Prove that if a series 57°, 2, is convergent in E, then 

Zn — 0 as n — co. Also prove that the set {||z,|| : 2 > 1} is bounded. This 

simple result will be needed to establish a formula for spectral radius. 

3-2.16. Exercise Extend the results of §§3-2.4,6,7 to functions from X into 

a Banach space. 

3-3 Sequence Spaces 

3-3.1. Let @ denote the set of all sequences x = (21,22,23,---) of scalars 

Zn € K. It can be considered as functions on the set of integers 1,2,3,--- 

and hence @ forms a vector space. For each x € @, define 

Nlrlly = fri + |e] + fast+---3 — [[zlloo = sup{|zi], [ea], [23], + -}s 

and Wl]> = {lar]? + [xo|? + |aslP +---}1/?, for L <p < oo. 

Note that these numbers may be infinity. For 1 < p < oo, let £, denote the 

set of x € £@ satisfying ||z||, < oo. As a special case of last section, we have the 

following 

3-3.2. Theorem £,, is a Banach space.
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3-3.3. For 1 < p < oo, let q be defined uniquely by the equation 1 > tis =1. 

In order to unify the notation, define + = 0. If p = 1, let g= co. If p= 00, 

let g = 1. Consequently 3 + ; = 1 holds for all 1 < p < 00 and p,q are called 

conjugate indices. To show that ¢, forms a normed space, we need the following 

inequalities. 

33.4. Lemma For all a, @ > 0 and 1 < p < 00, we have af < a? /p+ 89/q. 

Proof. If one of a, @ is zero then the inequality is obviously true. Assume 

both a, are non-zero. Let f(t) =a?/p+t%/q-—at, Vt>0. Then f’(t)=0 

gives a root r= a!/@-)_ Since f(t) > 0 we have f(t) > f(r) = 0, for all t > 0. 

Now (8) > 0 gives the required inequality. Oo 

3.3.5. Holder’s Inequality For 1 <p < 00, if € £, and y € &, then we have 

zy © 4; where ry = (21 y1, X2y2, T3y3,:--). Furthermore, we have the inequality: 

lzylh < lzIlellyle- 

Proof. If ||x||,p = 0 then 2 =0 or zy = 0 and hence zy € £). In this case, both 

sides of the inequality are zero. Similarly the result holds for ||y||, = 0. Now 

assume ||z||, #0 and |ly||, #0. Observe that 
oo 

[ZnYn| L|znl? 1 lyn? 
> Rr <) inl? to igi Z\lpllylla ~ <f \pilelle — @ llvlla 

yelp al Dl =1 toed, 
~ pilz| ie 

ie SOP) lenynl < Ilpllvls Hence the series 37°, 2nYn is absolutely 

convergent in K and |[ryl]) < S772, ltay¥a! < |lzllpllyllg. This completes the 

proof. oO 

3-3.6. Minkowski’s Inequality For 1 < p < oo, if z,y are in é, then so is 

x+y. Furthermore, we have ||xz + yllp < |lzllp + |lyllp- 

Proof. Since 
oO oo 

yet jnj+yj/? < ye | lars] + ly] )” 
oo 

< et ( 2}x,| )” on ( 2lyy| )” < 2? ( |allp + lly ) < co, 

we have r+ y € &,. Suppose ie + y\lp #0, otherwise the required inequality 

holds already. It follows from Holder’s Inequality that 
Pp oe) p oo p-l 

let ull = Doo ey asl? = SO bey + wal Ly + as
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oo Oo 

< yet lary] |xj + yy|P' + ar lyy| lay + yy/P? 

< | (SO bs)" (S05 es) ] (OE tes easter) 
= (xlfo + Ilyllp) lle + yllp- 

Dividing by ||z+y||2~', the result follows. o 

3-3.7. Theorem For | < p < 00, @, forms a Banach space. 

Proof. It is an exercise to verify that £, is a normed space. To prove the 

completeness, let {v,} be a Cauchy sequence in é,. For every ¢ > 0 there is 

an integer k such that for all m,n > k we have 

z™ —x"|| <e. #1 

Write x” = (xf, 23, 23,---). Since |x} — z}| < ||z™ — z”|| < e, the sequence 

{ap ine 1} is Cauchy in the complete metric space K. Suppose x? — x, as 

n — oo and define zx = (2), 22,23,---). It follows from #1 that for every integer 

r > 1, we have $°_, jz? —a7|? <e?. Letting m — oo, we obtain 

Dyer nj ~ aR |P < eP. #2 

Observe that 
r l/p r \/p r I/p k& k k 

Oe In?) < (. Inj - 2; P) * 0am Isl?) Se+l|2"llp < ce. 
Since r is arbitrary, we have x € £,. Letting r — oo in #2, we get ||r—2z™|| <€ 

for all n > k. Therefore x” — x in €,. Consequently, é, is a Banach space. 0 

3-3.8. Exercise Prove that for every x € @; and y € £.., we have xy € & 

and ||xyll1 < [lah Ilylloo- 

3-3.9. Exercise Prove that @, is a Banach space. 

3-3.10. A sequence in @ is said to be finite if it has only a finite number of 

non-zero terms. The set of all finite sequences in @ is denoted by F¥. A sequence 

@ = (X),22,23,---) is said to be null if z, + Oin K as n — co. The set of all 

null sequences is denoted by co. 

3-3.11. Exercise Show that ¥ c @ Cc £2 Cam C £4. Also prove by counter 

examples that F 4 £; ¢ &, ¥ co # £5. Note that all these spaces are infinite 

dimensional. 

3-3.12. Exercise Prove that cg is a closed vector subspace of £,.,. We shall 

use the sup-norm on cp unless other norm is specified explicitly. Show that cg 

is also a Banach space.
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3-3.13. Exercise Prove that the set F of all finite sequence is not a closed 

subset of £, for each 1 <p < oo. We shall write J, to indicate the norm used 

on F. Prove that F, is not a Banach space for any | < p < oo. If nothing is 

mentioned to F¥, then F,, will be assumed. 

3-3.14. Exercise Let en = (Jin, Sn, 53n,---) where bj, = Lif j =n and dj, =0 

otherwise. Choose vectors tn = e,/2" in F,. Show that the series ae ral 

converges in IR, but the series an 2, diverges in F¥,. Consequently, F, cannot 

be a Banach space. 

3-3.15. Exercise For 1 < p < co, prove that K” is a Banach space under 

\/p 
the norm given by ||x||p = (oe In|”) for every x € K”. To indicate this 

norm explicitly, write Ky. 

3-3.16. Exercise Let 1 < p < oo. Consider the vector space C[a, b] of all 

continuous functions on [a, b}] where a < bin IR. Prove that C[a, b] is a normed 
\/p b 

space under || f||, = (/ | f(x)|Pdx for every f € Cla, 6]. Write C,[a, 6] to 

indicate this norm explicitly. Prove or disprove that C,[a, b] is a Banach space. 

3-4 Continuous Linear Maps 

3-4.1. Continuous linear maps is useful because of its simplicity. Actually 

differential calculus is to approximate a nonlinear map locally by a linear map 

plus a constant. Standard examples of continuous linear maps will be given in 

next section. 

3-4.2. Let £,F be normed spaces. The norm of a linear map f : E = F 

is defined by || f|| = sup{|/f(x)|| : « € EF, |x|] < 1}. Note that f need not be 

continuous and its norm may be infinity. Since ||f(0)|| = ||O|] = 0, we have 

I|fll 2 0. 

3-4.3. Theorem For every linear map f : E — F, the following statements 

are equivalent. 

(a) f is continuous at the origin of FE. 

(b) f is continuous on E. 

(c) The norm of f is finite, i.e. || fl] < co. 

(d) There is 0 < X < 00 such that || f(x)|| < Allz|| for all x € E. 

Furthermore, if f is continuous then we have || f(z)|| < ||f|| ||el],V 2 € B and
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Ilfll = we, | F@I| = ae, | fl] = inf{A > 0: ||f(@) < Alla], V x € EF}. 

Proof. Let a = supyzj.1 ||f(@)|| and 6 = inf{A > 0: |/f(@)|| < Allzl|,¥ ¢ € E}. 

(a => b) Let x, — y be a convergent sequence in &. Then rz, — y — O in EF. 

Since f is continuous at 0 € FE, we have f(z, — y) — f(0) in F. The linearity 

of f gives f(zn) — f(y) ~ Oin F, ie. f(xn) — f(y) in F. Therefore f is 

continuous on EF. 

(b = c) Suppose to the contrary that ||f|| = oo. Then for each n, there is 

nm nm 1 

Zn € E such that |\x,|| < 1 and ||f(z,)|| = n. Since “n|| - [eth <-—0, 

= [<2 f(@n) = Lf{eo) 
but at the same time lr (- fl— > 1, f is discontinuous 

at the origin. 

(c > d) Since the unit sphere is a subset of the closed unit ball in F, we have 

a < ||f|| < oo. Take any x € E. We claim || f(x) < al|z||. In fact, if 2 =0, then 

\|f(x)|| =0 < allz||. Suppose #0. Then ||z/| 40. Since eal = |, we obtain 
Il} 

|r Ga ;) <a, ie. || f(x)|| < al[a||. By definition of 8, we have 6 < a. 

(d > a) Let t, — Oin EF. Then ||f(t,)|| < Alltn|| ~ 0. Therefore f is 

continuous at 0 € E. Furthermore, to prove ||f|| < 6, take any A > 0 such 

that ||f(2)|| < Allz|| for all z € E. In particular, for |ly|| < | in E, we 

have ||f(y)|| < Allyl| < A. Taking supremum over |ly|]| < 1, we get ||f|| < 4. 

Taking infimum over A, we obtain ||f|| < 6. Therefore ||f|| = a = @. Since 

|f(@)|| < el[z|| for all 2 € E, we have || f(x)|| < ||f|| ||x|| for all x € E. Oo 

3-4.4. Theorem Let EF, F’,G be normed spaces. If f: HE — Fandg:F—4G 

are continuous linear maps, then we have ||gf|| < ||g||||f{|. Furthermore if 

fn — f © KE, FP) and g, — f € L(F,G), then gn fn — gf € L(E,G). 

Proof. \t follows immediately by taking supremum over ||x|| < 1 in E in the 

calculation: ||(gf)(2)l| = lla f@I < Ilgll F@'l < Ilgll WII Mell < lal II. 
The proof of last statement is left as an exercise. Oo 

3-4.5. Exercise Let EF, F be normed spaces and f : E — F a linear map. 

Prove that the following statements are equivalent. 

(a) f is continuous on E. 

(b) For every null sequence x, — 0 in E, the set {f(2,)} is bounded in F. 

(c) f is bounded on some open ball of E.
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This is why continuous linear maps between normed spaces are also called 

bounded linear maps. 

3-4.6. Let E, F be normed spaces. The set of all continuous linear maps from 

E into F is denoted by LCE, F) and the set of algebraic linear maps which 

need not be continuous by L*(£, F). A linear map from £ into the scalar field 

K is called a linear form. The set of all linear forms on F is called the algebraic 

dual of E and it is denoted by &*. The set of all continuous linear forms on & 

is called the topological dual or simply the dual space of & and it is denoted 

by &’. 

34.7. Theorem Let f be a linear form on a normed space EF. Then f is 

continuous on E iff the kernel f—!(0) of f is closed in EF. 

Proof. If f is continuous, then the kernel as the inverse image of the close set 

{0} in KK is closed. Conversely, it is trivial for f = 0. So, assume that there is 

a € E such that f(a) #0. Then a belongs to the open set FE \ f-)(0). There 

is a ball Bia,r) c E \ f71(0). Take any ||z|| < 1 in E. Suppose to the con- 

on . Let y= -F0., Then we have ||y|| = a 

Hence a+y € Bia, im and soat+r ¢ f—!(0), ie. f(a+y) #0. On the other 

hand, we also have f(a+y) = f(a) + f(y) = f(a) — LO a, x)=0. This contra- 
f(x) 

fot » . Taking supremum over ||z|| < 1 in &, we obtain 

trary that || f|| > ——— lzl| <r 

diction shows || f(x)|| < 

i) < Zl 
3-4.8. Exercise Prove that if a linear form f on a normed space F is 

<0. Consequently f is continuous. a) 

discontinuous, then its kernel is dense in E. 

3-4.9. Lemma The set L(E, F) of all continuous linear maps forms a normed 

space. 

Proof. Let f,g belong to L(E, F). Take any ||z|| < 1 in E. Observe that 

IF + gal] = Fe) + o(2)Il < IF@)I1 + to@ 

<|Fll ell + lgll el < fll + ligt. 

Taking supremum over |{x|| < 1, we obtain ||f +g] < ||f|l + llgl| < co. Hence 

f+g € L(E, F) and the triangular inequality holds. Next, let \ € IKK be a given 

scalar. For any ||x|| < 1 in E, observe 

JAA=a|| = ACF) = Al FG SANFL Mel] < IAT FIL
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Hence |{Afl| < [Al |[fi] < oo. Therefore Af also belongs to L(E, F). 

Consequently, L(E, F) is a vector space. If A = 0, we deduce ||Af || = 0 = || || f|[- 

In particular, ||O|| = 0 in LUE, F). Suppose 140. Replacing \ by A~! and f by 

Af, we get ATMA) < [ATHIAFI, Le. [Al IF] < AF||. Combining with the 

last inequality, we obtain |A| || f{{ = ||Af||. Clearly ||f{| > 0 for all f € LUE, F). 

Now assume ||f|| = 0. Then for all c € E, we have || f(x)|| < ||fI| ||z|| = 0, ie. 

f(x) =0. Hence f =0. We conclude that L(E, F’) is a normed space. oO 

3-4.10. Theorem If F is a Banach space, then so is L(E, F). 

Proof. Let {fn} be a Cauchy sequence in L(E, F). We want to show that 

{fn} converges to some g € L(E, F). Let ¢ > 0 be given. There is an integer 

p such that for all m|| > p, we have ||fm — fnl| <¢. Take any x € EF. Since 

Il fm(x) — fn) < lfm — fall lle il < ell, #1 
the sequence {f,(x) : > 1} is a Cauchy sequence in the complete metric space 

F. Define g(x) = limn oo fn(x). Since « € E is arbitrary, we have defined a 

map g from £ into F’. Letting n — oo in the equation: 

falox + By) = afn(Z) + Biaty),V Zyy € E, v a, 8 € k, 

we have g(az + By) = agnx+ Bony, i-e. g is a linear map. For m — oo in #1, 

I|9(@) — Frtz)|| < ellz|| Se, Vn 2 p,V |[zl| < Lin EB. #2 
In particular, when n = p we get ||g(z)|| < || f,(z)|| + lo(z) — fo(*)|| < Ilfpll +e, 

ie. |[gil < ||fpll +¢ < 00. Hence g is continuous. Taking supremum over 

\|z|| < 1 in #2, we have ||g — frl| <¢,V n > p. Therefore f, — g in L(E, F). 

Consequently, every Cauchy sequence in L(E, F’) is convergent. This completes 

the proof. Oo 

3-4.11. Exercise Prove that the topological dual of a normed space is a 

Banach space. 

3-4.12. Exercise Let E be a normed space and F a Banach space. Let M be 

a vector subspace of EF. Prove that every continuous linear map f : M > F 

is uniformly continuous. Hence or otherwise prove that f can be extended 

uniquely to a continuous linear map on the closure of M. 

3-4.13. Exercise Let X be a compact metric space and E a Banach space. 

Clearly the set C(X, EF) is a vector space under the pointwise operations. Show 

that C(X, E) is a Banach space under the sup-norm || f || = sup{|| f(z)|| : 2 € X}. 

To emphasize the sup-norm, write C.,(X, £) instead of C(X, E).
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3-5 Examples of Continuous Linear Maps 

3-5.1. Example Let A: IK} — IK;° be a linear map where | < p < oo. Since 

K", IK” are column vectors, A is identified as an m x n matrix A = [a;,;]. The 

norm of A is defined by the general formula ||A||,= sup ||Az||p. Then we 
< el|p<1 

have the following explicit expressions: 

J Alloo= max 7" lah and {Ally = max 0" Jas 
n 

Proof. Let a= max S- jazj|. Take any ||x||oo < 1 in IK” and write y = Az. 
—_—_ 1<i<m jal 

Then we get 

|Az loo = ete Iyel = aie in x [o soo 

< ye < 55 <a, SB Ojai OS, MHS me, 2 jal Pleo So 
Taking supremum over ||. < 1, we have ||Al|.. < a. Pick an index k 

satisfying ye |a,;| =a. Choose 2; € KK such that a,;2; = |a,;| and |z,| = 1. 

Then x = (21,22,-+-,%n) € KK” satisfies |||. = 1. Observe that 
nm me 

Lie | 2 >, anjej]= D7 leas] = 
m 

jen ia lass]. 

| Az|loo = max 
l<i<m 

This proves the first formula. For the second formula, let 6 = max 

Take any ||z||1 < 1 in IK” and write y= Ar. Then 

iArhs = Soul So [Soauas| <3o (Sole) lds Doel <8 
i=1 | j=1 

Taking supremum over ||x||) < 1, we have Alli < 6. Pick an index k satisfying 

37) lack| = 8. Define x; = 1 if j = k and x; =0 for all j #k. Then ||x]|; = 1 

and the following equality completes the proof: 
m n m 

Azlli = ye >, Qijlj| = ye lain] = B. oO 

35.2. Let E,F be normed spaces. A linear map f : E — F is said to 

be isometric if ||f(x)|] = ||z|| for all « € E. Clearly every isometry is a 

continuous injection. Two normed spaces are considered to be identical if they 

are isometrically isomorphic. For convenience to work in sequence spaces, let 

€; = (61, 625, 633, +++) where 6,; = 1 if i = 7 and 4,; = 0 otherwise. Therefore e; 

is the sequence with zero terms except the j-th coordinate which is one. This 

notation will be used without further specification.
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3-5.3. Exercise Prove that it is impossible to find any isomorphism from R? 

onto IR} which preserves their norms. 

3-5.4. Example The dual space of cp is £). 

Proof. Take any a € £,. Then for each x € co, since 
fos) foo) 

Yo fantnl $2" falls < {lai lltlloo 
the infinite series < a,z > = )7*°,@n%, converges absolutely. Define 

f(z) = < a,x > for all g € cg. Clearly f is a linear form on c. Also 

|f()| = | < az > | < flallifz|l.. Hence ||f|| < |lall;. Therefore f is a 

continuous linear form on co. Define T(a) = f. Obviously, T : €) — cf is a 

linear map. To show that T is surjective, let f be a continuous linear form 

on c. Define a; = f(ej;) and a = (a),@2,a3,:+-). Choose y; = 0 if a; = 0 and 

yj = |a;|/a; otherwise. Then y”™ = Se yey € Co. Since |y;| < 1, we have 

\ly”|| < 1. For arbitrary n, 

n n m1 nm nr DY lel = So ayy =F") = [FOI S INI ly"lloo $ [ll 
g=1 j=l 

gives a € £; and |lal|; < ||f||. Suppose x € c is given. Let 2” = ee L5e;. 

Then x” — x in co and hence 
nm n _ 4a: my 4. . j= Wj OQ,2 f(z) = lim f@ )= lim int x; f(e;) jim yet ajaj=<a,zr>. 

Therefore T : 2; — cf is surjective and isometric. This completes the proof. 0 

3-5.5. Example The dual space of @ is €g5. 

Proof. Take any a € £... Then for each x € @,, since 
foe) Oo 

Don ental SSF llanllocltn! < [lalloollel, 
the infinite series < a,r > = an Qn2n converges absolutely. Define 

f(z) = < a,x > for all x € 4. Clearly f is a linear form on @;. Also 

[f(z)| =| <a,2 >| < |lallillz|loo- Hence || f|| < |lal|1. Therefore f is a continu- 

ous linear form on é,. Define T(a) = f. Obviously, T : £4. — 4, is a linear map. 

To show that T is surjective, let f be a continuous linear form on £,. Define 

a, = fey) and a = (a1,02,43,+-»). Then Jal = [f(e)| < Hl lleslh < Ill 
Hence a@ € fo, and ||alfoo < |||]. Suppose x € @; is given. Let 2” = 0", 2;e;. 

Then x” — x in 2; and hence 

f(z) = lim f(z”)= lim > ; a; f(e;)= lim ~ 74 = <a, E>, 
n—-+00 n00 q= n—+00 g= 

Therefore T : £,, — is surjective and isometric. This completes the proof.0
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3-5.6. Exercise Prove that the dual space of £, is €, where 1 < p < 00 and 
I ,1e 

Pp + q =l1. 

3-5.7. Exercise For every sequence x = (x1, 22,73,---), let p(x) = x; denote 

the projection onto the j-th coordinate of x. Prove that y is continuous on £, 

for all 1 < p < 00 and also cg respectively. 

3-5.8. Exercise For every sequence x = (1),22,--:) € @, the left shift of x 

is defined by E.S(s) = (r2,23,-+-) and the right shift by RS(s) = (0,2), 72,---). 

Show that both shifts are linear maps on the vector space @ of all sequences. 

The restrictions of shifts to all vector subspaces of @ will be denoted by the 

same notations LS and RS. 

3-5.9, Exercise For £, and co, find the norms of both shifts. Are they 

injective? Are they surjective? 

3-5.10. Exercise For every function f € C[—1, 1], let e(f) = f(0) denote the 

evaluation map. Prove or disprove that y is continuous on C{[—1, 1], Coo[—1, J 

respectively. 

3-5.11. Exercise For every f € C,.{—1, 1], let y(f) = £, f(x)de ~ fy f(x)dz. 

Show that » is a continuous linear form on C,,[—1, 1] and find its norm. 

3-5.12. Exercise Let f,g,h: C,,[0,1] — C,,[0, 1] be linear maps defined by 

(fz\(t) = tf a(s)ds; (gx)(t) = tx(t) and (hx)(t) = f z(s)ds respectively. Find 

the norms [l/l llgl/ IIhlly fll and |lgf||. Is it true that fg = gf? 
3-5.13. Exercise Let E denote the Banach space BC,,[0,00). For each 

xz éF, let fix) = 1 ff x(s)ds. Show that f(x) <¢ FE and that f: EF = Eisa 

continuous linear map. Find the norm of f. 

3-6 Finite Dimensional Normed Spaces 

3-6.1. In this section, we shall prove that all normed spaces of the same 

finite dimension share the same topological properties under any algebraic 

isomorphisms. Furthermore, every infinite dimensional normed space cannot 

be locally compact. This may be a reason why abstract harmonic analysis 

on infinite dimensional Banach spaces and their spheres still require a lot of 

attention before its theory becomes more mature. 

3-6.2. Let E, F be normed spaces. Then an algebraic isomorphism f : EF = F 

is called a topological isomorphism if both f, f—! are continuous.
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3-6.3. Exercise Show that the identity map from C,,[0, 1] onto C,[0, 1] is a 

continuous isomorphism but not a topological isomorphism. 

3-6.4. Lemma Let E,F be normed spaces and f : & — F a topological 

isomorphism. Then F is complete iff F is. 

Proof. It is a simple manipulation of Cauchy sequences. Oo 

3-6.5. Theorem Every algebraic isomorphism from a finite dimensional 

normed space onto a normed space is a topological isomorphism. 

Proof. We shall prove a particular case first. Let 6), b2,---,m be a basis of 

a normed space F' and let h: K™ — F be given by 

hay, Q2,°°+, Am) = by + gbg + +++ +Ombm.- 

Then h: K™ — F is an algebraic isomorphism. Suppose 

(at, a7,+++,a) > (0, 0,---, 0), 

in K™ as n — oo. Then a? — 0 for each i-th coordinate. Hence 

h{at, af,+++,an)=atb) +atb +---+0% b, > Oin F, 

Therefore h is continuous on K™. Next for m = 1, since h-!: F — Kisa 

linear form of which the kernel {0} is a closed subset of F, it is continuous. 

Inductively, let p; : K™ — K denote the projection of K™ onto the j-th 

coordinate. Then pjh7! is a linear form on F. Its kernel is the vector sub- 

space spanned by {by,---,6;~1,5j41,+++, 6m} of which the dimension is m — 1. 

By induction, it is topologically isomorphic to K”~'. Thus it is complete 

and thus closed in F. Therefore the linear form p,h~! is continuous. Now 

suppose zn, — Oin F. Then af = pjh(an) > 0 as n — oo. Hence the 

inverse image h—'(r,) = (a?,a%,---,a%) — (0,0,---,0) in K”. Therefore 

h-! is also continuous. We have proved that h : K™ — F is a topological 

isomorphism. In general, let f : E — F be an algebraic isomorphism. Then 

g = f-'h: K™ — E is an algebraic isomorphism. Hence it is a topological 

isomorphism. Consequently, f = hg~! is also a topological isomorphism. Oo 

3-6.6. Exercise Prove that every finite dimensional normed space is a Banach 

space. 

3-6.7. Exercise Prove that every finite dimensional vector subspace of a 

normed space is closed. 

3-6.8. Exercise Prove that every linear form on a finite dimensional normed 

space is continuous.
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3-6.9. Exercise Prove that a subset in a finite dimensional normed space 

E is compact iff it is closed and bounded. Also prove that a subset of E is 

precompact iff it is bounded. 

3-6.10. Lemma Let M be a closed vector subspace of a normed space FE. 

If M + E then for every ¢ > 0, there is © € E such that ||z|| = 1 and 

d(x, M) > 1 - € where d(x, M) denotes the distance from x to M. 

Proof. Since M # E, take any a € E\M. Let 4 = d(a, M) be the distance from 

ato M. Because M is closed, we have X > 0. Since t/(A + £) is continuous at 

t =0, there is 6 > 0 such that 6/(A+6) < e. Pick 6 € M so that |{a—6|| < A+. 

Since a ¢ M,a—6 #0. Let & = (a — d)/||a — d||. Then |z|| = 1. Take any 

m € M. Observe 
a-—b ||Ja — (b+ lla — 5||m)|| » 6 —mi = —mll = > =|]- >1l-e. 

lem = ay a — 5] 25051 Xe 2178 
Taking infimum over m € M, we have d(rz, M) > 1 —e. oO 

3-6.11. Characterization Theorem of Finite Dimension Let & be a normed 

space. Then the following statements are equivalent. 

(a) £ is finite dimensional. 

(b) The closed unit ball B = {x € E: |x|] < 1} is compact. 

(c) Every bounded sequence has a convergent subsequence. 

(d) The unit sphere & = {x € E: |{z|| = 1} is compact. 

Proof. (a => 6b) Let f : E — K” be an algebraic isomorphism from EF 

onto some K™, Then it is also a topological isomorphism. Now the set 

A= {y € K™: |lyl] < |||} is closed and bounded in K™ and hence A 

must be compact. Since f—! is continuous, f~'(A) is compact. As a closed 

subset of f—!(A), the unit ball B of EF is compact. 

(b = c) Let {z,} be a bounded sequence in E. There is \ > 0 such that 

\lzn|| < A for all n. Since z > Az is continuous, the set {z € E : ||x|| < A} is 

compact. Therefore {x,,} has a convergent subsequence. 

(c => d) Let {x,} be a sequence on the unit sphere $8. Then it is a bounded 

sequence. It has a convergent subsequence, say y, — a. Letting n — oo in 

lyn|| = 1, we have ||a|| = 1. Therefore § is compact. 

(d + a) Suppose to the contrary that EF is infinite dimensional. Take any 

||zi|| = 1. Let M4, be the vector subspace spanned by {2,}. Since Mj is finite 

dimensional, it is closed and M, ¥ E. There is ||z,|| = 1 in EB such that 

zo — xy || = 5. By induction, suppose 21, 22,-+-,2p—; are chosen such that
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xi] = 1 and lla; — x;\] > 5 for alli # 7. Let M,, be the vector subspace 

spanned by {21,22,°-,2n—1}. Since M,_ is finite dimensional, it is closed 

and My-1 # E. There is |lzrn|| = 1 in E such that ||z, —yl| > 4,Vy © Mai. In 
particular, ||z, —2x;|| > Vv j <n. Now {z,} is a sequence on the unit sphere 

8. It has a convergent subsequence, say {y,}. Then {yn} is Cauchy. There is 

an integer p such that for all m,n > p, ||Yym—Ynll < i. Now ; < |l¥p—Ypeil| < ; 

is a contradiction. Therefore # must be finite dimensional. Oo 

3-7 Infinite Dimensional Compact Sets 

3-7.1. In next two chapters, compactness will play an import role in nonlinear 

analysis. Ascoli’s Theorem provides a very useful criterion for compactness in 

function spaces. We shall also study the compact sets in some sequence spaces. 

3-7.2._ Let X be a compact metric space and Y a complete metric space. 

The set of all continuous maps from X into Y will be denoted by C(X,Y). 

For all f,g € C(X,Y), let d(f,9) = sup,cx dl f(z), g(x]. Since the function 

x — d[f(x),g(x)j on the compact space X is continuous, it is bounded 

above. Therefore d(f,g) € IR is well defined. Clearly, when Y = K we 

have C(X,Y) = C..(X). 

3-7.3. Theorem The space C(X,Y) is a complete metric space. 

Proof. It is routine to show that d(f, g) is a metric on C(X,Y). To prove the 

completeness, let {fp} be a Cauchy sequence in C(X,Y). Let € > 0 be given. 

There is an integer p such that for all m,n > p, we have d(fm, fn) < €. Take 

any x € X. Since d[fm(x), fn(t)] < dUfm, fn) < € for allm,n> p, {fr(x)} is a 

Cauchy sequence in the complete metric space Y. Write g(x) = limn—oo fn(2). 

Hence a map g : X — Y has been defined. Since d(u,v) is a continuous 

function of u, letting m — oo in d[ fm(2), fn(x)] < €, we have d[g(z), fn(x)] <€ 

for allz € X and n > p. As the uniform limit of continuous maps, g is 

continuous. Taking supremum over + € X in the last inequality, we have 

d(g, fn) <€,¥n>p,ie. fp > gin C(X,Y). This completes the proof. a) 

3-7.4. Let H be a subset of C(X,Y). Then H is said to be equicontinuous 

ata € X if for every « > 0 there is 6 > 0 such that for every d(z,a) < 6 

in X and for every h € H we have d[h(x),h(a)] < ¢. The set A is said to 

be equicontinuous on X if it is equicontinuous at every point of X. For every 

a € X, write H(z) = {h(z): he H}.
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3-7.5. Lemma For every x € X, the evaluation map py, : C(X,Y) — Y given 

by yz(f) = f(2) is uniformly continuous. 

Proof. It follows from d[yz(f), y2(9)] = d{ f(z), 9) < af, 9). o 

3-7.6. Ascoli’s Theorem Let X be a compact metric space and Y a complete 

metric space. A subset H of C(X, Y) is relatively compact iff the following two 

conditions hold: 

(a) For every x € X, the set H(z) is relatively compact in Y. 

(b) The set H is equicontinuous on X. 

Proof. (= a) Fix « € X. Since H is relatively compact, it is precompact. 

The uniform continuity of the evaluation map y,; ensures that y,(H) = H(z) 

is precompact. By completeness of Y, H(z) is relatively compact. 

(= 6) Fix any a € X and any « > 0. Since Z is relatively compact, it is 

precompact. There is a finite subset J of H such that H c Uses Big, €). 

There is 6 > 0 such that for all d(z,a) < 6 in X and for all g € J we have 

d[g(x), g(a)] < ¢. Now take any f € H. Choose g € J such that d(f,g) < «. 

For any d(z,a) < 6 in X, observe 

d[ f(x), f(@] < dl fe), 9(x)] + dlg(2), 9(@)] + di g(a), f(a)] 

< d(f, 9) + d[g(z), g(a)] + d(g, f) < 3e. 

Therefore H is equicontinuous at a. Since a € X is arbitrary, H is 

equicontinuous on X. 

(<=) Since C(X, Y) is complete, it suffice to show that H is precompact. Let 

€ > 0 be given. Take any a € X. Since H is equicontinuous at a, there is 

ba > O such that for every d(x, a) < 6, in X we have d[h(z), h(a)]) <e,Vhe H. 

By compactness of X, there is a finite subset aj,@2,:++,@m of X such that 

X= Ue B(a;, 6;) where 6; = 64,. Now the product I, H(a;) of precompact 

sets is precompact. Its subset {(h(a), h(a2),---,h(an)) : h € H} is also 

precompact. There is a finite subset g), g2,--:,Gn of H such that for each h € H 

there is j such that d[h(a,), g;(a;)] < eV 7. We claim that H C Ui B(g;, 4e)- 

Indeed let h € H be given. Choose g; as above. Take any x € X. There is i 

such that d(z,a;) < 6;. Hence 

a[h(z), 9;()] < d[h(x), h(a,)] + d[h(a;), 9j(a:)] + dlgj(as), 93(2)] < 3e. 

Since x € X is arbitrary, it follows that d(h,g;) < 3e < 4e. This proves that 

H is precompact. Oo
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3-7.7. Corollary A subset H of C,.,(X) is relatively compact iff the following 

two conditions hold: 

(a) H is uniformly bounded, i.e. there is A > 0 such that for all h € H and 

x € X, we have |h(z)| < X. 

(b) The set H is equicontinuous on X. 

Proof. Assume that H is relatively compact in C(X). Then it is precompact. 

For ¢ = 1, there are g1,92,---,9n © H such that for every h € H there is j 

satisfying d(h, g;) < 1. Since all g; are continuous on the compact space X, the 

set Un gi(X) is bounded in K. There is a > 0 such that for each 7 and each 

x € X, we have |g;(z)| < a. Now take any h € H and any + € X. Choose 7 

with d(h, 9;) < 1. Observe {h(x)| < |A(z) — 9;(x)| + |9;(@)| < dh, 95) + |9,(@)| < 

1+a. Now part (a) follows by letting 4 = 1+ «a. We leave the rest of the proof 

as an exercise. oO 

3-7.8. Exercise Let X be a finite set equipped with the discrete metric. 

Identify C..(X) with KZ. Explain why Ascoli’s Theorem is a generalization 

of the fact that a subset of IK%, is compact iff it is closed and bounded. 

3-7.9. Example Prove that for 1 < p < co, a subset X of £, is compact iff 

the following conditions hold: 

(a) X is closed and bounded. 

(b) For every € > 0, there is an integer m such that 57"), |zj|’ <e,V 2 € X. 

Proof. Assume that X is compact. Certainly it is closed and bounded. Let 

€ > Obe given. Since X is compact, it is precompact. There is a finite subset A 

of X such that X C Use, 

integer m such that for all a € A, we have (377°, |aj|? 

zéX. There is a € A such that x € Bea, $é), ie. (Se |zj — a,|P)'/? < 46. 

Hence we have 
fone) 1/ oo / oo / 

(SFP) s (Spas a9) + (Sls) 
Ss OO, |x, _ aj)” + O.., la;|”) ve < xt xe =€é, 

Conversely assume that both conditions hold for a subset X of £,. We claim 

that X is precompact. Let ¢ > 0 be given. It follows from (b) that there 

is an integer m such that for all x € X we have (Sn |n3 — ap) '/? < 4é. 

Define f(z) = (21, %2,--+,2m) for every x € £y. Since ||f(z)||p < |[zl|p, the map 

f : £) + K? is linear and continuous. In particular, the set f(X) is bounded 

Boa, $e). Since A is a finite subset of ,, there is an 

yr < 5e. Now take any
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in Ky’ and hence it is precompact. There is a finite subset A of X such that 

for every x € X there is a € A such that || f(x) — f(@)||p < 4. Because 

leap = (0, es asl?) 

(Spal) + (Seale) +e lel) 
1 1 1 

S Get GET GE <E, 

we have X C ,-,4 Bla,¢). Therefore X is precompact in £,. Since X is closed 

1A
 

in the Banach space £,, it is also complete. Consequently, X is compact. 0 

3-7.10. Exercise Prove that a subset X of cp is compact iff the following 

conditions hold: 

(a) X is closed and bounded. 

(b) For every ¢ > 0, there is an integer m such that for all x € X and all 

n >m, we have |z,| < €. 

3-8 Approximation in Function Spaces 

3-8.1. We shall study the approximation of a continuous function by smaller 

classes. Originally, Weierstrass’s Theorem states that continuous functions 

on closed bounded intervals can be uniformly approximated by trigonometric 

polynomials and the proof involved a lot of classical analysis. Stone’s Theorem 

generalized it to abstract space with completely different proofs. 

3-8.2. Let X be a compact metric space. Let C(X) be the set of all continuous 

complex functions on X and C'(X) all continuous real functions on X. Sup- 

norm will be used throughout this section. Sufficient conditions will be given 

to ensure that certain vector subspaces are dense in the function space C,,(X). 

3-8.3. A vector space & of functions on X is called a vector lattice if E is 

closed under absolute values, i.e. |f| € EH whenever f ¢ E. Every real vector 

lattice is obviously closed under formations of maxima, minima, positive and 

negative parts. A family E of functions on X is said to separate points of X if 

for all distinct points z 4y in X there is f in EF such that f(x) ¥ f(y). 

3-8.4. Approximation Theorem in Real Lattice Form Let CZ,(X) be the set 

of all real continuous functions on a compact metric space X. If E is a vector 

lattice of functions in C5,(X) which contains all real constant functions and 

separates points of X, then E is dense in CZ,(X).
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Proof. Let f be a given function in CZ,(X) and € > 0 be given. For every 

pair of distinct points a 4b in X, since E separates points, there is pg, in EF 

such that pos(a) 4 pap(b). For every x in X define 

han(2) = fla) + LO = LOM Parl) ~ parla) 
Parlb) _ Pab(@) 

Also for a = b, define hes(z) = f(a), V x © X. Then clearly has(a) = f(a) and 

hap(b) = f(b). Since E is a vector space containing all constant functions we 

have hap in B. Define V, = {x € X : hao(x) < f(z)+e}. Then V, is an open set 

containing 6. By compactness of X, there is a finite subset B of X such that 

X C Uses Ms. Define ga = Af{has : b € B}. Since E is a vector lattice each 

ga is in &. Clearly we have g,(a) = f(a) and g(x) < f(r) +e,Vr © X. Next 

define W, = {x € X : ga(x) > f(x) —e}. Then W, is an open set containing a. 

Since X is compact there is a finite subset A of X such that X C U,e4 Wa- 

Define g = V{g. : a € A}. Then g is in the vector lattice E. Clearly we have 

f(x) —€ < g(x) < f(x) +e, Vz € X;ie. |f() — g(x)| < ¢. Taking supremum 

for z € X, we have || f — glloo. < ¢. This completes the proof. a 

3-8.5. A vector space of functions on X is called an algebra if it is closed 

under (pointwise) products. It is easy to prove that for all f,g in C(X), we 

have ||f - glloo < ||flloollg|loo. As a result, multiplication is jointly continuous. 

The following Lemma is stated for real but it is also true for complex case. 

3-8.6. Lemma The closure of an algebra E of functions in CZ,(X) is again 

an algebra. 

Proof. Take two functions f,g in the closure of &. Then f, — f and gn — g 

for some f,,gn € E. Since multiplication is continuous, fr-gn — f-g. Hence 

fg is a closure point of BE. Therefore the closure is closed under pointwise 

multiplications. Similarly, it is also closed under linear combinations. Oo 

3-8.7. Dini’s Theorem Let {f,,} be a sequence of continuous functions on a 

metric space X with compact supports, i.e. all supp(f,) are compact. Suppose 

for each x € X, we have 0 < frii(z) < f,(z) for all n. If f, — 0 pointwise, 

then f, — 0 uniformly. 

Proof. Let ¢ > 0 be given. Define A, = {x € X : fy(z) > e} for each 

n. Then A, is the inverse image of the closed subset {€,oo) in IR under 

the continuous function f. Hence A, is a closed subset of the compact set 

supp(f,). Therefore each A,, is a compact set. Since f, — 0 pointwise, we have 

(2, An = 9. By compactness, there is some integer p satisfying (aan Ap = 9.
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Since 0 < frsi(z) < fr(2) for all X, we obtain Any; C An for each n. Therefore 

Ap = (Ve_, An = 9. Hence for every z € X, we have x ¢ Ap, i.e. 0 < f,(2) <e. 

Consequently, for all n > p, we get 0 < fn(x) < fp(z) < € for all x € X. This 

proves f, — 0 uniformly. oO 

3-8.8. Exercise Let f, be functions on R given by f(r) = 0 for z < n; 

f(z) =1 fore >n+1 and f(x)=2—7n forn <2 < ntl. Show that {f,} isa 

sequence of continuous functions convergent pointwise to zero monotonically 

but the convergence is not uniform. 

3-8.9. Lemma There is a sequence of polynomials {p,} without constant 

term such that 0 < p,(t) { Vt uniformly on [0, 1). 

Proof. For each t in (0, 1] define po(t) = 0 and pass (t) = pn(t)+(1/2)[t — p2,@)]. 

It can be proved inductively that 0 < pa_i(t) < pn(t) < Vt for all t € [0,1]. 

Since p,,(0) = 0, all p, have no constant term. Now for each ¢t, the sequence 

{pn(t)} of real numbers is increasing, bounded above by Vt and hence it is 

convergent. Letting n — oo in its recursive formula we have p,(t) > V4. 

Clearly every pn is a polynomial. Applying Dini’s Theorem to Vt — p,(t) for 

t € [0,1], it follows that p,(t) 1 V# uniformly on [0, 1]. Oo 

3-8.10. Approximation Theorem in Real Algebra Form Let C2,(.X) be the 

set of all real continuous functions on a compact metric space X. If E is an 

algebra of functions in C5,(X) which contains all real constant functions and 

separates points of X, then E is dense in CZ,(X). 

Proof. We claim that the closure G of E in C4,(X) is a vector lattice. In fact, 

let f be a function in G. Then || is also a continuous function on X and hence 

it is in CZ,(X). Since X is compact, there is a real number a > |f(zx)| for all 

xz eX. Let py, be a sequence of polynomials defined by last lemma. Then the 

function p,,(f7/a?) is also in the algebra G. since p,,(f?/07) — J fF fo =|f\/a 

uniformly on X as n —> 00, |f|/ais a closure point of G in C7,(X). Because G is 

closed, we have |f|/a in G. Consequently |f| is in G. Therefore G is a vector 

lattice. Since & C G,G contains all real constant functions and separates 

points of X. Therefore G is dense in C™,(X), ie. EH = G = G = C%,(X). 

Consequently FE is also dense in CZ,(X). Oo 

3-8.11. A subset BF of C(X) is said to be self-conjugate if for every f in E, its 

complex conjugate f~ also belongs to E.
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3-8.12. Approximation Theorem in Complex Form Let C(X) be the set of 

all complex continuous functions on a compact metric space X. Let E be 

a complex vector subspace of C,,(X) which contains all complex constant 

functions, separates points of X and is self-conjugate. If EF is either a vector 

lattice or an algebra then F is dense in C,,(X). 

Proof. Let E” be the set of all real functions in F. For two distinct points a ¥ b 

in X, there is g in & such that g(a) # g(b) and hence either Re[g(a)] # Re[g(6)] 

or Im[g(a)] 4 Im[g(b)]. Since E is self-conjugate, both Re(g) and Im(g) are in 

E*, Therefore E” separates points of X. Clearly E” contains all real constant 

functions. Also E” is either a real vector lattice or a real algebra. Hence E” 

is dense in CZ,(X). For every function f in C..(X), both Re(f) and Im(f) can 

be approximated by functions in E” uniformly on X. Since E is a complex 

vector space, f can be approximated by functions in EF uniformly on X. Oo 

3-8.13. Exercise Prove that every continuous function f on a bounded closed 

subset of IK” can be uniformly approximated by polynomials in n variables. 

Furthermore, if f is a real-valued function, we may choose real polynomials to 

approximate f. 

3-8.14. Exercise Prove that for every continuous function f on the unit circle 

T = {z€: |z| = 1} and for every < > 0, there is a trigonometric polynomial 

of the form 9(z) = *h._» Ckz" where c, € © such that |f(z) — g(z)| < € for 

every zET. 

3-8.15. Exercise Let X,Y be compact metric spaces. Prove that for every 

continuous function f on the product space X x Y and for every € > 0 there are 

continuous functions 9), 92,--+,9n on X and hy, h2,---,h» on Y such that for 

alla € X and y € Y, we have | f(z, y) — viet 9j(z)h;(y)| < €. Furthermore if 

f is real-valued, we may choose all g; and h,; to be real-valued. If f is positive 

( >0), we may choose all g; and h; to be positive. 

3-8.16. Exercise Let X = {z € C: |z| < 1} be the closed unit disk of C 

and E the vector space of polynomials in z with complex coefficients. Show 

that EF is not self-conjugate and that the function z~ cannot be uniformly 

approximated by functions in E otherwise z~ would be analytic on the open 

disk {z € C: |z| < 1}. 

3-99. References and Further Readings : Fan-92, Khan, Glicksberg, Starkloff, 

Gamelin-89, Cotter, Spears and Mullins. 



Chapter 4 

Simplicial Complexes 

4-1 Geometrically Independent Sets 

4-1.1. One way to approximate an unknown function f on a region of a 

two dimensional plane is to triangulate the region, take samples of f at the 

vertices of triangles and then estimate f(x) by linear extension g(x) of the 

samples over the interior of each triangle. To see whether g(x) = 0 has any 

solution on a triangle, it is merely a simple matter of solving a system of linear 

equations. This would give an approximate solution to the equation f(x) = 0. 

The method seems to be very simple and does not require any information 

about the function f. We shall formalize the idea into simplicial approxima- 

tions in §4-8. It forms the foundation of simplicial homology which is beyond 

our scope. We include enough material for motivation of numerical analysis 

along this direction. The only links of this chapter to the subsequent develop- 

ment are §4-2 on convex sets and §4-10.8 on intersection of closed subsets of 

the unit sphere. These statements can be understood without any reference to 

other concepts introduced in this chapter. 

4-1.2. The conditions whether three points are not collinear, four points not 

coplanar, etc. are important to ensure that triangles, tetrahedra, etc. are 

non-degenerate. The corresponding concept in higher dimensional spaces are 

geometrically independent sets. The property of being geometrically indepen- 

dent is invariant under small perturbation and can be obtained through small 

perturbation. 

41.3. Let @9,a1,-+-,a, be points in IR”. Then x € R” is called an affine 

combination of ag,a1,---,a% if there are ag, a),---,@, € R such that 

© = Apa + A) A, +++ + ARaE 

and Oo+O,+---+a, = 1. 

The set of all affine combinations of a9,@),--:,@% is called the affine hull. 

The points ao,@),---,@% are said to be geometrically independent, or in general
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position if the equations in a; € R given by 

OgGp + 10; +-+-+a,a, =0, in IR” 

and O9+Q,+-:-+0,=0, inR 

have only the trivial solution: a9 = a, =--- = a, =0. Note that points in IR” 

are of column vectors. 

4-1.4. Theorem Let ag,a),---,a, be points in IR". Then the following 

statements are equivalent. 

(a) a9,41,+--,@,% are geometrically independent. 

(b) a; — a, @2 — a9,--+ ,@% — a are linearly independent. 

(c) For every x in the affine hull of ao, a1, --- ,a,, there exists a unique sequence 

Qg,Q,,°-:,@% € Rsuch that x = agagt+a)a)+---+a,a,% and agt+a)+:--+a% = 1. 

In this case, a9, @),°--,@, are called the barycentric coordinates of x relative to 

Go, A1,°°*, ak. 

. 1 1 1 1 
(d) The matrix has rank k+ 1, 

ao Ga, a2 ak 

(e) The above matrix has a square submatrix of order k + 1 with non-zero 

determinant. 

Proof. The equivalence (a = b + c) follows immediately from simple algebraic 

manipulation. The equivalence (d © e) is a standard fact in Linear Algebra. To 

show (b = d), observe that the rank of a matrix is invariant under elementary 

column operations, i.e. 

I o1 1 1 
rank 

a9 a, a ar 

1 ) ) ) 
= rank 

ag @);—aQ4g9 @2—- ao ay — ao 

=l+rank[a;—a9 a. —ag ay — ag]. 

Therefore (d) is equivalent to 

rank[a, —a9 a, — ao ay — ag} =k 

which means all columns are linearly independent, i.e. (6). Oo 

4-1.5. Corollary Subsets of geometrically independent sets are geometrically 

independent. 

41.6. Corollary Ifthe points ag, a),---,a, are geometrically independent in 

IR” then we have k < n. Furthermore there are @p41,@%42,°'',@n € IR” such 

that a9,+++,@k,@k11,°**,@_ are geometrically independent in IR”.
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4-1.7. Exercise Show that the points (1,0), (0,1) and (2, 2) are geometrically 

independent in IR’. Find the barycentric coordinates of (1, 1) relative to the 

above triangle. 

4-1.8. Exercise Let mat(m, n) be the vector space of all mxn matrices. Show 

ar . m n 2 1/2 

that it is a Banach space under the norm given by || Al] = o> ' 1 |a.5| ) 
Pies jJ= 

Write mat(n) instead of mat(m,n) when m = n. Show that the determinant 

det(A) is a continuous function of square matrices A € maf(n). 

41.9. Theorem If ao,a),---,a@, are geometrically independent in R” then 

there is 6 > 0 such that whenever ||; — a,|| < 6 for all 0 < 7 < k, the points 

X0,2),°°+,2~ are also geometrically independent. 

Proof. Since ao,:--,a, are geometrically independent, the rank of the matrix 

a . io : is k+ 1. There is a square submatrix A of order k+ 1 

with non-zero determinant. Since the determinant function is continuous 

in its entries, there is 6 > 0 such that whenever ||x; —a,|| <6 for lO<7<k, 

the corresponding submatrix obtained from pero l is of 
Tq L122 Lk 

order k + 1 and with non-zero determinant. Therefore x9, 2),---,2, are also 

geometrically independent. oO 

4-1.10. Theorem Let ao,a),---,a, be points in IR” where k > n. If every 

subset of ap, a),---,@, consisting of n + 1 points is geometrically independent, 

then there is 6 > 0 such that whenever ||z; — a;|| < 6 for allO <j < k, 

every subset of 29,21,--:,2% consisting of n+ 1 points is also geometrically 

independent. 

Proof. Let H = {bo,61,---,6n} be any subset of ao, a;,--- , a, consisting of n+1 

points. Then there is 6, > 0 such that whenever ||x;—};|| < 6 for all0 <i <n, 

the points x9, %1,---,2n are geometrically independent. Let 6 be the minimum 

among all 67; when H varies over all subsets of ao, @),---,a% consisting of n+1 

points. Then clearly 6 satisfies all requirements of the theorem. Oo 

4-1.11. Theorem Let ag,a),---,a, be points of R” where k < n. Then for 

every € > 0 there are 7p, 21,--+, 2, in IR” such that 

(a) ||z; — a;|| < ¢ for lO <j <k; and 

(b) 2o,21,-++, 2% are geometrically independent. 

Proof. Let f(t) be the determinant of the upper-left square submatrix of order
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k+1 of the matrix 

i 1 see 1 

(l—fthag+tep (l—Da,+te, --- U—-ta,t+te, 

where ep = 0 is the origin and {e),¢2,--+,é,} is the standard basis of IR”. 

Thus f(t) is a polynomial in ¢t. Since f(1) = 1, f is not identically zero. Hence 

f has only a finite number of zeros. There is t > 0 such that f(t) 4 0 and 

tlle; — a;|| < © for all 0 < 7 < k. Then the points 2; = (1 — é)a; + te; for 

0<j<k satisfy both required conditions. oO 

4-112. Theorem Let ao, a),---,a,% be given points of R” where k > n. Then 

for every € > 0 there are rp, 2),°--,2,% in IR” such that 

(a) |lz; — @;|| < ¢ for alO <j < k; and 

(b) every subset of xp,2;,---,2, consisting of n+ 1 points is geometrically 

independent. 

Proof. As a matter of convenience, a j-set is defined as a set consisting of 

exactly j distinct elements. For k = n, it has been proved in last 

theorem. Assume k > n. Inductively, there are b),b2,:--,b, in IR” such that 

fo; — a;|| < $e for all 1 < 7 < k and every (n+ 1)-subset of 5), b2,---,b, is 

geometrically independent. There is 0 < 56 < je such that’ whenever 

lz; — 6;|| < 6 for all 1 < 7 < k, every (n+ 1)-subset of 2,,22,---,2, is 

geometrically independent. Let H;, H2,---, Hp be a list of all n-subsets of the 

indices 1,2,---,k. Define do = 6, ze = a and xf = 6b; foreach 1 <j < k. 

We shall construct 6;,2§,21,25,---, 21 by induction on i < p. Suppose i < p. 

Write Hin. = {h(1), h(2),---, 4(n)}. Then there is a geometrically independent 

set {4o,91,°+°, Yn} such that ||yo — 2§|| < 465; and |/y; — Lhepll < $6; for all 

1<j<n. Define zi! = yo, IK) = y; for all 1 < j <n and wit! = ot, 

ifm ¢ Hi. Choose 0 < dis, < 56; such that whenever ||z; — y;[| < dis 

for all 0 < 7 <n, the set {),22,--+,2,} is geometrically independent. By 

induction, «§,27,25,---,2— have been constructed. Let 2; = zi for all 

0<j7<k. Observe that 

=1 -1 2 [oy — 29 < of — ab "I+ fat — ak 2] +--+ ler} — 29 
< 4bp-1 + fbp_a t+ +++ $60 <6. 

For j = 0 we have ||z9 — ag|| < 6 < €. On the other hand, for | < 7 < k, we 

get ||x; — b;|| < |la; — 29 || <6. Therefore every (n + 1)-subset of 21, 22,---,2% 

is geometrically independent and hence (b) is partly satisfied. Because 

lz; — asl] < [lary — Byll + [lb — al] SS + 5€ Se
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for all 1 < 7 <k, part (a) is satisfied. Finally, consider any H;,;. Since 

1 A -2 i i 
lzauy — yall < ZR) _ EKG) I + llzng) _ Tag) [+--+ + een - Thyll 

1 1 1 
S 5 Op-1 + 7 6p—2 +++ + 705 <i, 

£0, Fn); Fh(2),°*° LAcny) are geometrically independent. Oo 

4-2 Convex Sets in Normed Spaces 

4-2.1. Let E be a vector space. The line segment between two points a,b of 

E is defined as the set [a,b] = {aa+ Bb: a, 8 > 0, and a+ = 1} and the open 

line segment by (a,b) = {aa+ Bb: a,8>0, anda+ f= 1}. A subset X of EF is 

said to be convex if X contains [a,b] whenever a,b € X. Since the concept of 

convex sets will be used in various parts of functional analysis, this is why it 

has to be introduced in the general framework rather than in R” only. 

42.2. Exercise Let A,B be convex subsets of F and let a, @ be scalars in 

KK. Prove that the linear combination aA+ $B = {ar+ By: 2 € A,y € B} is 

also convex. In particular, the translate A+ of a convex set A by any be E 

is convex. 

42.3. Exercise Let V be a convex subset of F. Prove that for all a, @ > 0, 

we have aV + BV =(a+ PV. 

4-2.4. A point x is called a convex combination of points ao, @,,--:,a% in & if 

there are a; > 0 such that @ = agan+a,a,+---+a,a;, and agta,+--:+ax = 1. 

The set of all convex combinations of points in a subset M of E is called the 

convex hull of M and it will be denoted by co(M). 

42.5. Exercise Prove that a convex set is closed under formation of convex 

combinations. Prove that the convex hull of a set M is the smallest convex set 

containing M. 

4-2.6. Theorem The convex hull of a finite set in a normed space E is 

compact, 

Proof. Let V = {ao,@1,---,a%} bea finite subset of E. The map f : RE 

defined by f(a, Q1,---,@&) = Qoap + 010; +---+ pa, is continuous. Since the 

set K = {(a0,01,--++, a): alla; > 0 and ag+a)+---+a% = 1} is closed bounded 

in Re it is compact. Consequently its continuous image f(K) = co(V) is also 

compact. im)
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4-2.7. Exercise Prove that the closure of a convex set in a normed space E 

is convex. Prove that the closure of the convex hull of a subset M of E is the 

smallest closed convex set containing M. It is called the closed convex hull of 

M and is denoted by co(M). 

42.8. The following interesting result about convex sets with non-empty 

interior may be skipped without discontinuity for this and next chapters. 

42.9. Theorem Let A be a convex set in a normed space FE. Suppose that 

A has at least one interior point. 

(a) For every interior point a € A and for every closure point 6 € A, the open 

line segment (a,b) = {(1 — t)a+ tb: 0 < t < 1} is contained in the interior A°. 

(b) A° is a convex set. 

(c) A~ = A°- where A7 denote the closure of A. 

(d) A®°= AP. 

Proof. (a) Let u=(1 ~ t)a+tb where 0 <t < 1. Let 

Vef{yek:u=(—-dert+ty,ze A}. 

Then V is the inverse image of the open set A° under the continuous map 

y > x = (u—ty)/(1—1. Hence V is open in EF. Since a € A°, we have 

be V. There exists r > 0 such that B(b,r) c V. Since 8 is a closure point 

of A, there is d€ AN Bib,r). Lette W={ve BE: v=(1—dz+td,x € A’}. 

Then W is the inverse image of the open set A° under the continuous map 

vy —+ «x =(v—td)/(1 —t). Hence W is open in E. Since d € V, there is c € A° 

such that u = (1 —t)e+td. Thus u € W. Since z,d are in the convex set A, 

W is an open subset of A and consequently W Cc A°. Therefore u € A°. This 

proves (a). 

(b) It follows immediately from (a). 

(c) Since A° Cc A, we have A°” C A~. Conversely let 2 € A~ anda eé A?®. 

The points +a +d — 1yz are in A® for all n > 2. Letting n — oo, we have 

xz € A°-. Thus A~ = A°~. This proves (c). 

(d) Let  € A~°. There exists r > 0 such that Biz,r) C A~. Clearly c € A™. 

By (c), we have x € A°~. There is y € B(z,r)M A°®. Thus we have 

2n—y=2r+(e—y)€ Ba,r)CA. 

Since y € A°, we have by (a), x = dyt (2x —y) € A°. Therefore A°- Cc A°. 

The reversed inequality is obvious. oO
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4-2.10. Exercise Let A= {(z,y)¢ R?:0<2<1,0<y <1}. Find A? 

and A°-. Let B = AN(Q x Q) where Q denotes the set of all rational numbers. 

Find B~°? and B°-. 

4-3 Simplexes 

4-3.1. Most of the following results also hold for Banach spaces. Since we 

never need the maximum generality in this book, we restrict ourselves 

to IR” only. In this section, we shall study the generalization of triangles 

and tetrahedra. 

43.2. Consider the space IR} with the usual norm. If the points ao, a),--- , ax 

are geometrically independent then their convex hull A is called a simplex or a 

k-simplex with vertices ag,a,,---,a;. In this case, k is called the dimension of 

the simplex A. The set of all vertices of A will be denoted by ver(A). Clearly 

every simplex is compact. 

4-3.3. Let A be a simplex with vertices ag, a),---,a, in IR”. Suppose we have 

© = aga +010, +---+a,a,; all a; > O and agp+a)+---+a, = 1. Then z is called 

a geometric interior point of A if all a; > 0 and a geometric boundary point if at 

least one a; = 0. The set of all geometric interior points is called the geometric 

interior and is denoted by gin(A). The set of all geometric boundary points is 

called the geometric boundary and is denoted by gbd(A). Clearly gin(A), gbd(A) 

form a partition of A. The geometric interior of A is also called an open simplex 

with vertices ag, @,,---,@ but we seldom use open simplexes in this book. 

4-3.4. Theorem Let A be a simplex in R”. 

(a) If x € gin(A) then for every y € A and for every 0 <¢ < 1, then the point 

z=(1— fx + ty is in the geometric interior of A. 

(b) The closure of gin(A) in IR” is A. 

Proof. Let ao, a;,---,@% be vertices of A. Write 

L=Apdg + QQ +++ +ORag, A; >0, Agta, +s: +a, =], 

y= Boao + Bia, +--+ Byax, By 20, Pot Ai+---+ 8, = 1. 

Since ane! —t)ha; +t; = 1 and (1—-tha; +t; > 0, z= Yyeol(l —t)a;+th;la; 

is a geometric interior point of A. To prove (b), take any y € A. For each 

(a) %m=—x+{1l——]y 
m m 

integer m > | let
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k a; 

where r= > is a geometric interior point of A. Hence all z», € gin(A) 
j0k+1 

and zm — y asm — oo. Therefore y is a closure point of gin(A). Consequently 

AC gin(A). The reversed inequality follows from gin(A) C A= A. oO 

4-3.5. Let A be a k-simplex in R”. Let W be a subset of ver(A). Since W is 

geometrically independent, the convex hull B = co(W) is also a simplex in R”. 

In this case, B is called a face or a t-face of A where t is the dimension of B. 

If ¢ =k —1 then B is also called a facet of A. 

43.6. Theorem Let A be a simplex in R”. 

(a) gbd(A) is a compact set. 

(b) gin(A) is open in A although it may not be open in IR”. 

Proof. Every facet of A is itself a simplex and hence it is compact. The 

geometric boundary is the union of k+1 facets and thus it is also compact. To 

prove {b), since gbd(A) is closed in A, its complement gin(A) is open in A. O 

4-3.7. Exercise Show that the convex hull of (1,1, 1), (1, 0,0), (0, 1, 0), (1, 1, 2) 

and (2,2,0) is a simplex in IR. Identify its vertices, geometrical interior and 

boundary. 

4-4 Affine Maps 

4-4.1. Affine maps carries straight lines to straight lines. Hence they were 

called linear maps which has become a standard terminology taken up by linear 

algebra. The domains of affine maps can be translates of vector subspaces. 

However it is sufficient for us to restrict ourselves to convex sets in order to 

lay the foundation for next chapter. 

4-4.2. Let X,Y be a convex subset of R”. A map f : X — R”™ is said to be 

affine if f preserves the convex combinations, i.e. for all a,b € X and for all 

a, > 0 satisfying a+ = 1 we have f(aa+ 6b) = af(a)+ Bf(b). An affine 

bijection from X onto Y is called an affine homeomorphism. 

44.3. Exercise Let f be an affine map from a convex subset X of IR” into 

IR”. Then f(X) is convex. Furthermore for all a; in X and for all a; > 0 

satisfying ag + a, +--:+a, = 1 we have 

Ff (Ogg + Ay + +++ + ALAR) = AQ f (Ao) + 1 f(Q1) + +++ + Ok S (Gx).
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44.4. Exercise Let X,Y be convex sets of R”,IR™ respectively. If 

f : X + Y is a bijective affine map then the inverse map f-! : Y + X 

is also an affine map. 

44.5. Exercise Let g : IR” — IR™ be a linear map. Show that the map 

f:R” — R™ given by f(z) = g(x) + b where b € IR™ is an affine map. 

4-4.6. Theorem Let A be a simplex in R”. Then for each affine map 

f :A— R” there exist a linear map g : R” — R” and a point b € R”™ 

such that f(x) = g(x) + for all x € A. 

Proof. The vertices of A, say ao, @),---,@, are geometrically independent. 

Hence a — ap, @2 — @g,*++,@x% — ag are linearly independent. There is a linear 

map g : IR” — R™ such that g(a; —a9) = f(a;)— f(ao) for alll <j <k. Define 

b= f(a9)—g(ao). Take any x € A. Write x = ajan+a,a)+:--+a,~a% where {a;} 

are the barycentric coordinates of x. Then all a; > 0 and ag+a ,+---+a, = 1. 

Since f is affine we have 
k 

H2) = > a5 F(a5) = Sy asloa; ~ 20) + flao)] 
k k k 

= Do jan 139045) ~ D7 09920) + 7, 25 f (a0) 
k 

= (Do ag Wi) — 900) + Fao) = Gr) + 6. o 

4-4.7. Corollary Every affine map on a simplex is continuous. 

Proof. The linear map g on R” in last theorem is continuous, Oo 

4-4.8. Theorem Let A be a k-simplex with vertices ag,a;,-:-,a, in IR”. 

Then for every given points bo, b1,---,6,; in R™ there is a unique affine map 

f:A— IR” such that f(a;) = 6; for lO <7 <k. 

Proof. Since a, — ao9,@2 — a@g,++-,@,4 — @g are linearly independent, there is a 

linear map g : IR" — R™ such that g(a; — ao) = 6; — bo, for all 1 <j <k. For 

each z € A define f(z) = g(x) + bo — g(ao). Then clearly f is one of the required 

affine maps. The uniqueness is left as an exercise. Oo 

44.9. Exercise Let A,B be k-simplexes with vertices {aj,a;,---,a,} and 

{bo,61,---,5,} in IR", IR™ respectively. Prove that there is a unique affine 

homeomorphism f : A — B such that f(a;) = 6; for allO <7 <k. 

4-4.10. Let X be a non-empty subset of IR”. Then z € X is called an extreme 

point if whenever z = (1 —d)x+ty where z,y € X and 0 < t < 1 we have 

T=y=z.
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44.11. Lemma Let A be a simplex and z € A be a given point. Then z is 

a vertex of A iff z is an extreme point of A. 

Proof. Let ao,a1,-:-,@% € IR” be vertices of A. To show that z = ag is an 

extreme point of A, assume z = (1 —t)x+ty where x,y € AandO<t< 1. 

Write 

LZ AQAg + OG, +-+++Q,An, a; 20, anta,+---+a,=1; 

y= Boao + Bia, +---+ Bax, 67 >0, Pot Bi +---+f,=1. 

Substitution gives ag = Vj olA—aj+tA;Ja;. Since (1—f)a;+t8; > 0 and their 

sum is one, by uniqueness of barycentric coordinates we have 1 = (1 —t)ag +t 

which implies ag = 6 = 1. Hence a; = 8; = 0 for all 7 > O, ie. c= y= z= ap. 

Conversely assume that z € A is not a vertex. Write z = Lio pjaj, all 

pj > 0 and vio p; = 1. Since z € A is not a vertex, at least two p; > 0. 

Without loss of generality, let po, 0; > 0. Define x = (po + p))ap + eo Pjaj; 

y = (pot pra +o pa; and t = p;/(pot+ pi). Then z =(1—t)ha+ty,0<t <1; 

xy and x,y € A. Therefore z cannot be an extreme point of A. Oo 

4-4.12. Theorem Let A, B be simplexes in IR”, IR™ respectively. If f: A— B 

is an affine homeomorphism then f is a bijection from the vertices of A onto 

the vertices of B. In particular, both A and B have the same dimension. 

Proof. Let ver(A), ver(B) be the sets of vertices of A,B respectively. Let 

c € ver(A). We claim that z = f(c) is an extreme point of B. In fact, assume 

z=(1—t)x+ty where z,y€ BandO<t< 1. Let abe A satisfy f(a) =2 

and f(b) = y. Since f is affine, f(c) = (1 — Hf(a)+tfb) = fd — Hat tb, ie. 

c=(1—t)a+tb. Because c is an extreme point of A, we have a = b=c, that is, 

x=y=z2. Therefore z is an extreme point of B, ie. f(c) € ver(B). Conse- 

quently f[ver(A)] C ver(B). Since f is injective, we have dim(A) < dim(B). 

Since f~! is also an affine homeomorphism, we obtain dim(B) < dim(A). There- 

fore f[ver(A)] = ver(B). oO 

4-4.13. Exercise Let A,B be simplexes in R”,R”™ respectively. Prove that 

if f : A — B is an affine homeomorphism then we have f[ver(A)] = ver(B), 

flgin(A)] = gin(B) and f[gbd(A)] = gbd(B). 

4-5 Simplicial Complexes 

4-5.1. Consider the unit sphere in R3. We can cut it into upper and lower 

hemispheres. Each hemisphere is just like a piece of rubber which can be turned
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into a square via homeomorphisms. The diagonals would cut the squares into 

triangles. This is an example of reducing a surface into triangles. In opposite 

direction, we can start with triangles, glue them up properly to form piecewise 

rectilinear surface and finally twist it into surfaces of more general shape with- 

out sharp edges and corners. In higher dimensions, we use simplexes instead 

of triangles. 

45.2. Let A,B be simplexes in IR”. Write A < B if A is a face of B. Write 

A< Bif A< Band A+B. In this case, A is called a proper face of B. Two 

simplexes A, B are said to be properly situated if AQ B is either empty or it is 

a common face of A and B. A non-empty finite family K of simplexes in R” 

is called a simplicial complex if the following conditions hold: 

(a) every face of a simplex in K belongs to K; 

(b) every pair of simplexes in K is properly situated. 

4-5.3. Exercise The family K of all faces of a given simplex A in IR” is a 

simplicial complex. 

4.5.4. Let K be a simplicial complex in IR”. One dimensional simplexes are 

called edges and 0-simplexes called vertices of K. The set of all vertices of K is 

denoted by ver(K’). The dimension of K is defined as the maximum dimension 

among all simplexes in K. For every integer m > 0, the family K(m) of all 

simplexes A € K with dim(A) < m is called a skeleton or an m-skeleton. A 

subset L of K is called a subcomplex of K if L itself forms a simplicial complex. 

4-5.5. Exercise Every skeleton of a simplicial complex is a subcomplex. 

4-5.6. Let K bea simplicial complex in IR”. The union of all simplexes in K 

is called the underlying space of K and it is denoted by |K|. A subset of R” 

is called a polyhedron if it is the underlying space of some simplicial complex. 

A simplicial complex K is called a triangulation of a polyhedron P if |K| = P. 

Clearly every polyhedron is compact since it is a finite union of compact sets 

of its simplexes. 

4-5.7. Theorem Let K be a simplicial complex in IR”. Then every point 

x € |K| is a geometric interior point of a unique simplex A in K. 

Proof. To prove the existence, let r ¢ |K|. Then x € A for some A € K. 

Write x = aga + aa) +--+ + aay where ag, a),--+,@, are vertices of A, all 

a; > 0 and ag +a, +-+--+a, = 1. Without loss of generality assume a; > 0 for 

allO <j <t and a; =0 for allt < 7 <k. Let B be the simplex with vertices
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Qo,@,,:--,@:. Then B is a face of A. Hence B € K and x € gin(B). For 

the uniqueness, let A, B be simplexes of K such that x is a geometric interior 

point of both A and B. Then zx € ANB. Since AN B is a common face 

of A,B, let ver(AM B) = {e9,¢1,°--, ce}, ver(A) = {e9, C1, +++, Ce, Gest, +++ Gu} 

and ver(B) = {co,¢1,-++,Ct, btst,-++, by} where u,v are integers > t. From 

ze€ ANB, write x = doco + dc; +--+ + deez, all 6; > O and 0 55 = 1. Since 

x € gin(A), write z = ja Oj Cj + Dyce aja;, alla; > 0 and 0 a; = 1. 

By uniqueness of barycentric coordinates relative to the vertices of A, we have 

w=t,ie. ver(ANB) = ver(A) or ANB = A. Similarly ANB = B. Consequently 

A=B. oO 

45.8. Let K bea simplicial complex in IR". Then the unique simplex A € K 

satisfying « € gin(A) is called the carrier simplex of x and it is denoted by 

car(x). For every vertex a of K, the union of those open simplexes gin(A) of 

K satisfying a € A is called the star of a and it is denoted by star(a). 

4-5.9. Exercise Consider the ry-plane. Let K consist of two triangles (0, 0), 

(0, 2), (1,2) and one edge (0,2), (0,4) together with all their faces. Identify 

its underlying space. Describe all skeletons. Find the carrier simplexes of (0, 3) 

and (1,1). Find the star of each vertex. 

4-5.10. Theorem Let a be a vertex of a simplicial complex K in IR” and x 

a point in the underlying space |K’]. 

(a) x € star(a) iff a € car(a). 

(b) The family {star(a) : a € ver(K)} is an open cover of |K]. 

Proof. (a) x € star(q) iff there is A € K such that a € A and x € gin(A), ie. 

A=car(x) iff a € car(2). 

(b) Let Z be the family of simplexes A € K such that a ¢ A. Then x ¢ star(a) 

iff a ¢ car(z) iff car(x) € L. Hence star(a) = |K| \ |Z]. Since |Z] is compact, 

it is closed in |K| and therefore its complement star(a) is open in |K|. Finally 

take any x € |K|. Let a be a vertex of car(x). Since x € car(x), we have 

a € car(x), ie. z € star(a). Therefore {star(a): a € ver(K)} covers |K|. 0 

4-5.11. Theorem Let K be a simplicial complex in JR”. If f is a map from 

the set ver(K) of vertices of K into R™, then f can be extended uniquely 

to a continuous map g on the underlying space |K| into IR” such that the 

restriction g|A onto every simplex A ¢ K is an affine map. 

Proof. Since an affine map on a simplex is completely determined by the
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values at the vertices, the uniqueness follows immediately. To prove the exis- 

tence, for each simplex A € K, there is an affine map f,4 on A which agrees 

with f on the vertices of A. Let A, B be simplexes of K and let C= ANB. 

Then C' is a common face of A, B. Since an affine map is uniquely determined 

by values at the vertices, we have f4|C = fplC = fo. Therefore there is a 

map g : |K| — IR™ such that g|A = fa for each A € K. Since every fg is 

continuous, so is g on |K| by Glue Theorem. ia 

4.5.12. Exercise Let |K| be a simplicial complex in IR” and J = [0,1] the 

unit interval. Let h be a map from |K| x J into IR”. Prove that if for each 

simplex A € K the restriction h|(A x J) is continuous, then h is continuous on 

|K[ x J. 

45.13. Exercise Prove that for all x,y € |K| if z € car(y), then we have 

car(x) C cary). 

4-6 Small Simplexes 

46.1. Let A be a simplex with vertices {a,a,,---,a,}. Then the barycenter 

of A is defined as the point given by bar(A) = Pari +@,+-+++a@z). When 

A is a triangle, the barycenter is the centroid. 

4-6.2. Lemma If Ap < Ay < Ap < -+- < Ay be simplexes, then the set 

{bar(A;) :0 <i < k} is geometrically independent. 

Proof. If k = 0, it is obvious. Suppose k > 0, en a; bar(A;) = 0 and 

a a; = 0. Suppose to the contrary that a, ~ 0. Then both sets 

P= {i : a; > O} and Q = {i : a; < 0} are non-empty. We may assume 

k € Q otherwise replacing all a; by —a;. Since Diep a= Dieg(—%) > 0, 

we have a convex combination 

_ Diep aibar(Ai) — Micg(-ea)bar(Ai) 

7 ier % dcg(—e) 

Since Ap < Ay < Ay < +--+ < Ap, we have « € Ax and there is 

b € ver(A,) \ Ag-1. Expanding each bar(A;) in terms of its vertices, let a, 8 

be the coefficients of 6 for the expression on the left and right hand sides 

respectively. Then a = 0 and 

B 
—O, 

“d+ dimAx) S;cQ(—2) > 0. 
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This contradiction to the uniqueness of barycentric coordinates of x relative 

to A, shows that a, = 0. Now the proof is completed by induction on k. O 

46.3. Let A beasimplex. Then asubset B of A is called a small simplex of A if 

there are faces Ap < Aj <--- < Ay < Asuch that B = co{bar(A;):0< 7 < k}. 

Note that if Ap = Ap+ then B = co{bar(A;):0< 7 <k,j #p}. Therefore we 

may assume Ag < Ay <--- < A, < A by dropping all duplicated ones. As a 

result of last lemma, every small simplex is a simplex. It is also obvious that 

every small simplex of A is a subset of A. 

4-6.4. Exercise Let A < B be given simplexes. Prove that if S is small 

simplex of A, then S is a small simplex of B. 

46.5. Lemma Every simplex A is the union of all its small simplexes. 

Proof. Let a9,a,,---,a@, be the vertices of A. Assume k > 0 and z € A. 

Let C be the carrier simplex of z. If C < A then by induction, x belongs to 

some small simplex of C' which is also a small simplex of A. Next consider 

C = A. Assume that x 4 bar(A) otherwise the lemma is proved. Intuitively, 

we shall extend the line segment from bar(A) to x until it cut a facet at y 

and the lemma follows since z is between bar(A) and y. Analytically, write 

a= en aj;a; where all a; > 0 and >: 9 @j = 1. After renaming the vertices 

if necessary, we may assume a, <a; for allO <j <k. Then we have 

k k k-1 

n= > O30; — OE > aj + an(k + 1)bar(A) = Sita; — Op)a; + a (kK + 1)bar(A). 

j=0 j-0 j=0 

Observe the coefficients: 
k-1 ke k 

V0 (a5 — a) + a (k + 1) = ol — aK) +0%(k +1) = Va a;=1 

Suppose to the contrary that Dia (@; — ax) = 0, ie. a a; — kay, = 0, or 

(1 — ag) — kay, = 0, that is a, = me 

a; = ma for all j, ie. x = bar(A) contradicting x # bar(A,). Therefore we 

obtain ry (a; — a) > 0. Now define 

Dj (Ay ~ 0% a; 

Dip (05 — on) 
and A,_1 = co{ap,a),---,@,-1}. Then y € A,_;. By induction, there are 

Ag < Ay < ++: < Ag-y < Ay— such that y € cof{bar(A;):0 <7 < k - 2}. 
k-1 

Consequently x = bs " (aj — ai) y+(k+ 1)a;,bar(A) belongs to 
7 

Since a; — a, > 0 for all 7, we have 

y=
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co{bar(A;): Ag < Ay <--> < Aga < Ag-i < A} 

which is a small simplex of A. Oo 

46.6. Lemma Let A < B be given simplexes and S' a small simplex of B. 

If ANS is non-empty, then it is a small simplex of A. 

Proof. As a small simplex of B, S = co{bar(Bj) : 0 < j < k} where 

Bo < B <--- < Be < B. Let P = {j : ver(B;) c A} and @ the 

complement of P. Take any zc € AMS. Write x = Tyo ajbar(B;) where all 

a; > O satisfy Dio a; = 1. Consider any j € Q. At least one vertex of B; does 

not belong to A. Since x € A, it is an affine combination of vertices of A only, 

ie. aj =0. Therefore x = )7-p ajbar(B;). Since ANS 7 0, we have P #0. Let 

p be the maximum among all integers in P and D = co{bar(B,;):0 <j < p}. 

Then By < By <---< By < Aand z= an a;bar(B,), ie. z € D. Hence 

ANS cD. Clearly DC ANS. Hence ANS = D is a small simplex of A. O 

4-6.7. Lemma _ Every two small simplexes S,T of a given simplex A are 

properly situated. If SMT is non-empty, then SMT is a small simplex of A. 

Proof. It is left as an exercise. oO 

46.8. Exercise Sketch a tetrahedron D in IR? of which the vertices are 

labelled by 0123. Let A be the small simplex of D defined by the sequence 

of barycenters of faces labelled by 0,01,012,0123 and B by 2,012,0123 

respectively. Identify the vertices of D, A,B, ANB. 

4-7 Barycentric Subdivisions 

4-7.1. There are many ways to break simplexes of simplicial complexes into 

smaller pieces which remain to be properly situated. Barycentric subdivisions 

are chosen because of its theoretical simplicity and its popularity in simplicial 

homology even though it is known by now that it has poor volume-mesh ratio. 

47.2. Let K,L be simplicial complexes in IR”. Then £ is called a subdivision 

of K if 

(a) every simplex of E is contained in some simplex of K; 

(b) every simplex of K is a finite union of simplexes of L. 

47.3. Exercise Prove that if LZ is a subdivision of K, then both K,L have 

the same underlying space.
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4-7.4. Exercise Prove that if L is a subdivision of K and if K is a subdivision 

of M then L is a subdivision of M. 

4-7.5. Theorem Let K be a simplicial complex in R”. Then the family 

sd(K) of all small simplexes of every simplex in K is a subdivision of K. 

Proof. Let S,T be small simplexes of given simplexes A, B in K respectively. 

Suppose SMT #@. Since A, B are properly situated, C = AN B is a simplex 

in K. Hence both SNC and TMC are small simplexes of C. Thus SOT = 

(SN C)A(FNC) is a small simplex of C. Therefore SMT is also in sd(K). 

Since S,T are properly situated, sd(K) is a simplicial complex. It is obvious 

to verify that sd(c) is a subdivision of K’. o 

4-7.6. Let K be a simplicial complex in IR”. Then sd(K) is called the 

barycentric subdivision of K. Clearly both K and sd(K) have the same 

dimension. In general, let sd°(K) = K and sd™(K) = sd[sd™—'(K)] for all 

m > 1. In this case, sd™(K) is called the m-th barycentric subdivision of K. 

The mesh of a simplicial complex K is the maximum diameter among all the 

simplexes in K. 

47.7. Lemma For every non-empty bounded set M in IR", both M and its 

convex hull have the same diameter. 

Proof. Let N = co(M). Since M c N, we have diam(M) < diam(N). 

Conversely, take any z,y € N. Write x = S77_, a;a; and y = via 8;b; where 

a,b; € M, a;,8; => 0 and ey Oi =l= Yio 8;. Then we have 

t t : 

les — yll = lla: — an B;b;|| < Yao Filles — b;|| < diam(M) 

and Iz - all < 2 alla: — yl| < diam(M). 
Taking supremum over all z,y € N, we have diam(N) < diam(M). oO 

4-7.8. Exercise Prove that the diameter of a simplex is the maximum length 

of its edges. 

47.9. Theorem For every simplicial complex K, we have 

mesh(sd™ K) < (4) mesh(K) 
pti 

where p denotes the dimension of K. 

Proof. Let A be a simplex in K with vertices a9,a1,:--+,@ . A small simplex 

of A is of the form: B = co{bar(A;):0 < 7 < k} where
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Ay < Ay << AR SA. 

Any two vertices of B can be expressed by 

] r ] rts 
= . d = p* 

* Ta a ja0 an y Weed jen 

Routine calculation gives GZ-y= (u— v) 
r+st+l 

] r 1] rts 
where U“U= ral eo a5 and v= 3 pert a;. 

As averages of vertices of A, both u,v belong to A. Hence 
s . r+s,. Pp ,. 

- < < < . lz —yl| < er" iam) <Te jean A) Soe jtiam(A) 

It follows that 

diam(B) < p diam(A) < P mesh(K). 
ptl pr+l 

Since B € sd(K) is arbitrary, we have 

mesh[sd(K)] < P. mesh(K). 
ptl 

The general case follows by induction on m. oO 

4-7.10. Exercise Let K be a simplicial complex. Prove that for every ¢ > 0 

there is an integer r such that for all m > r we have mesh(sd™K) < e. 

4-8 Simplicial Approximations 

48.1. Let K,L be simplicial complexes in IR”,IR™ respectively. A map 

f : |K| — |D is called a simplicial map or a piecewise linear map if for every 

simplex A € K, the restriction f|A is an affine map onto a simplex of L. 

48.2. Theorem A given map g : ver(K) — ver(L) can be extended to a 

simplicial map f from K into LD iff for each simplex A € K, the set g[ver(A)} 

consists of vertices of a simplex in LD. 

Proof. (=>) Let A be a simplex in K. Then B = f(A) is a simplex in L. Since 

for each vertex vu of A the singleton {v} is a simplex in K, {f(v)} is a simplex 

in LZ and {f(v)} = {f(v)} 9B is a face of B, i.e. g(v) = f(v) is a vertex of B. 

(<) Let f be the unique extension of g such that f|A is an affine map for 

every A€ K. Take any Ac K. There is B € L such that f[ver(A)] = ver(B). 

Hence f(A) = B. Therefore f is a simplicial map. Oo 

48.3. Exercise Prove that composites of simplicial maps are simplicial maps.
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4-8.4. Exercise Prove that for every simplicial complex K there is a 

simplicial map f from sd(K) into K such that for every simplex A of K, 

we have f[bar(A)] € ver(A). 

4-8.5. Theorem If is asimplicial map from K into L, then there is a unique 

simplicial map sd(f) from sd(K’) into sd(L) such that for every simplex A € K 

we have sd(f)[bar(A)] = bar[f(A)]. 

Proof. For each A € K, f(A) is a simplex in L and hence bar[f(A)] is a vertex 

of sd(L). Define g[bar(A)} = bar[f(A)]. When A runs over all simplexes of K, 

we define a map g : ver[sd(K)}] — ver[sd(L)]. Suppose Ap < Ay <--- < Am 

in K. Then f(Ap) < f(A;) < --- < f(Am) is a chain of simplexes in L. 

Therefore the vertices of a small simplex of K are carried to vertices of a 

small simplex in L. Therefore g can be extended uniquely to a simplicial map 

sd(f) : sd(K) — sd(L). ia 

4-8.6. Let K,L be simplicial complexes in IR”,R”™ respectively and let 

f :|K| — [Z| be a given map. Then a simplicial map g : K — L is called a 

simplicial approximation to f if for every z € |} we have g(x) € car f(z). 

48.7. Theorem Let f : || - |L| be agiven map and g: K — L asimplicial 

map. Then the following statements are equivalent. 

(a) g is a simplicial approximation to f. 

(b) For every vertex a of K, we have f[star(a)] C star[g(a)]. 

(c) For each x € |K| and each B € EL, if f(x) € B then g(z) € B. 

Proof. (a = 6) Assume that g(x) € car[f(x)} for all « € |K|. Take any 

x € star(a) where a is a vertex of K. Then a € car(zx). Let {a, a1, a2,---, ax} 

be the vertices of car(xz). Then we have s = aa+ via aja;, all a,a; > 0 

and a+ ha a; = 1. Thus g(x) = ag(a) + via a;9(a;), ie. g(a) is a vertex of 

car[g(x)}. Now g(x) € car[f(ax)}, ie. car[g(x)] C car[f(x)], or gla) € car[ f(z}, 
that is f(x) € star[g(a)}. Because x € star(a) is arbitrary, we obtain 

f[star(a)] C star[g(a)}. 

(b = a) Assume f[star(a)] C star[g(a)] for every vertex a of K. Take any 

x €|K|. Let {a9,a1,---,a,} be the vertices of the carrier simplex of x. Then 

us Dio aja; where all a; > 0 and Yye0 aj; = 1. Since each a; € car(x), we 

have zx € star(a;), or f(x) € f[star(a;)} C star[g(a,;)}, ie. g(a,) € car[f(x)]. 

Therefore g(x) = Deo a,9(a;) € car[f(x)]. 

(a & c) It follows immediately from the definition of carrier simplexes. o
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4-8.8. Exercise Let K,M,N be simplicial complexes. If ¢ : K — M and 

w : M — N are simplicial approximations of given maps f : |K| > |M| 

and g : |M| — |N| respectively, then the composite map #y is a simplicial 

approximation of the composite map gf. 

48.9. Exercise Show that if g is a simplicial map from sd(K) into K such 

that for every simplex A of K we have g[bar(A)] € ver(A), then g is a simplicial 

approximation to the identity map. 

4-8.10. Lemma Let S be a set of vertices of a simplicial complex K. Then the 

convex hull co(S) of S is a simplex of K iff the intersection (|{star(a) : a € S} 

is non-empty. Note that the elements of S need not be all distinct. 

Proof. (=) Take any geometric interior point x of co(S). Then car(x) = co(S). 

Hence for all a € S, we have a € car(z), i.e. x € star(a). Therefore we obtain 

xe M{star(a):a€ S}. 

(<=) Suppose z € N{star(a) : a € S}. Then for all a € S, we have x € star(a), 

ie. a € car(xr). Hence co(S) is a face of car(z). Therefore co(S) is in K. oO 

4-8.11. Theorem Let f be a given map from |A| into |Z]. If for every vertex 

a € K there is a vertex b € [ such that f[star(a)] C star(b), then f admits 

the simplicial approximation g defined by g(a) = b for every a € ver(K). 

Proof. For each a € ver(K) define g(a) = b. Now suppose that A is a 

simplex of K. Then there is x € M{star(a) : a € ver(A)}. For each vertex 

a of A, we have x € star(a), or f(z) C f[star(a)] C star[g(a)]. Therefore 

f(x) € N{star[g(a)} : a € ver(A)}. Thus co{g(a) : a € ver(A) } is a simplex in 

L. Consequently g can be extended to a simplicial map from K to DL. Since 

f[star(a)] C star[g(a)] for each vertex a of K, g is a simplicial approximation 

to f. Oo 

4-9 Existence of Simplicial Approximations 

4-9.1. Let f : [a,b] — R be a continuous function. Choose any subdivision 

Q@=% < 2 < +++ < 2, = b. Then the broken line obtained by joining 

consecutive points (x;, f(x;)) is a simplicial approximation of f. We get better 

approximation when the mesh of the subdivision becomes smaller. To extend 

it to finite dimensional spaces, we need a tool called Lebesgue number. 

4-9.2. Theorem Let {D; : 1 < j < m} be an open cover of a compact 

metric space X. Then there is 6 > 0 such that for every zr € X we have
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Biz, 6) C D; for some j. In this case, 6 is called a Lebesgue number of the open 

cover {D;: 1 <7 < m}. 

Proof. Let Ej; =X \ D;. For every (21, 22,-+-,2m) € It, Ej, define 

F(@\, a, +++, Lm) = rae, d(x, £3). 

Then f is a continuous real-valued function on the compact set Wt, £;. There 

exist a; € E; such that f(a,,@2,:--,@m) < f(t1,22,°-:, 2m) for all 2; € B;. 

Let 6 = $f (@1,€2, +++, Am). We have 6 > 0 otherwise d(a;,a;) = 0 for all i,7 

and hence a; = az = ++: = Gm € Ver Ej, i.e. a, ¢ D; for all j which is a 

contradiction. We claim that 6 is what we want. Suppose to the contrary 

that there is y € X such that for every | <7 <_m, By,6) ¢ Dj, ie. there is 

x; € E;ABty, 5). Hence d(z;,2;) < d(zi,y)+d(y, xj) < 26 for all i, 7. Therefore 

36 < f(z, 22,-++,£m) < 26 which is a contradiction to complete the proof. O 

4-9.3. Theorem Let K,L be simplicial complexes of R”,IR™ respectively. 

Let r be a Lebesgue number for the open cover {star(b) : b € ver(L)} of the 

compact space |L|. Then there is 6 > 0 such that for every subdivision N of 

K with mesh(N) < 6 and for all continuous maps f,g : |K| — || satisfying 

|f(z) — g{x)|| < r for each x € |K|, both f,g admit a common simplicial 

approximation from N into LD. 

Proof. To each vertex 6 of L, let V(b) = f~![star(b)] Ng~'[star(b)]. To show 

that {V(b) : b € ver(D)} is a cover of |K}, take any x € |K|. By the choice of r, 

we get B[ f(x), 7] C star(b) for some b € ver(L). From || f(z)—g(z)|| < r we have 

f(x), gz) € BEf(2),r] C star(b), ie. 2 € f7'[star(b)] N g7'[star(b)] = V(b). 

Therefore {V(b) : b € ver(L)} is a cover of |K|. The continuity of f,g ensures 

that all V(6) are open in {K|. Let 6 > 0 be a Lebesgue number of the open 

cover {V(b) : b € ver(L)} for the compact space || and let N be a subdivision 

of K with mesh(.N) < 6. Now take any vertex a of N. Then B(a, 6) c V(b) 

for some vertex b of L. Suppose x € star(a). Then a € car(x). Hence we get 

|z—al] < mesh(N) < 6, ie. « € Bia, 5), or x € V(b). Therefore star(a) Cc V(b), 

ie. f[star(a)] C star(b) and g[star(a)} C star(b). Consequently f, g admit the 

common simplicial approximation defined by h(a) = b for each vertex a of K.0 

4-9.4. Corollary Let K,L be simplicial complexes of R”,IR™ respectively 

and let f : |K| — |L| be a continuous map. Then there is 6 > 0 such that for 

every subdivision N of K with mesh(N) < 6, the map f admits a simplicial 

approximation from N into L.
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4-9.5. Let g,h be simplicial maps from K into ZL. Then g,h are said to be 

contiguous if for every simplex A of K, both g(A), h(A) are faces of a common 

simplex of L. 

49.6. Theorem Every two simplicial approximations g,h of a given map f 

from K into L are contiguous. 

Proof. Take any simplex A € K. Choose any x € M{star(a) : a € ver(A) }. 

Then we have f(x) € f[star(a)} C star[g(a)}, ie. 

f@me (ccc star[g(a)]) ia) (rele star{h(a)]) . 

Consequently the vertices g(a), h(a) for all a € ver(A) span a simplex B € L. 

Hence g(A), h(A) are faces of a common simplex B € L. oO 

4.9.7. Exercise Let K, LZ be simplicial complexes in IR”, IR™ respectively and 

let h: |K| x [0,1] — |Z] be a continuous maps. Write h.(x) = A(z, t) for all 

(x,t) € |A| x [0,1]. Show that there is 6 > 0 such that for every subdivision 

N of K with mesh(N) < 6, there are simplicial maps g),92,---, 9% from N 

into L such that g1, 9, are simplicial approximations of ho, h, respectively and 

9j—1,9; are contiguous for each 2 <j < k. 

4-10 A Combinatorial Lemma with Application 

410.1. The main result of this section is §4-10.8 on intersections of closed 

subsets of unit spheres. It forms the foundation of topological method of next 

chapter. 

4-10.2. Throughout this section, we shall work on IR7*! with norm given by 

Wfacl] = Jaa] + [ato] +--+ + lan] + lanai] for every x = (21,22,°°*;2n,2n41) € R™. 

Let. {e€1, €2,°-+,€n,€n+1} denote the standard basis of R™*!. The family of all 

simplexes of the form co{te), té2,-++-, +e, bens} together with all their faces 

is called the basic triangulation of the unit sphere S* = {x € IR?" : ||z|| = 1} of 

Rt. Let K be an iterated barycentric subdivision of the basic triangulation. 

Then K is a triangulation of S” which is symmetrical with respect to the 

origin. For each vertex v € K, let. h(v) be an integer, called label, selected 

from +1, +2,---,+m such that the following conditions hold: 

(a) h(u) + h(v) #0 for every adjacent vertices of each simplex in K, ie. A is a 

simplicial map from K into the basic triangulation of S”™. 

(b) h(—v) = —h(v) for every vertex v € K, i.e. the antipodal condition.
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4-10.3. A simplex of K is said to be positive if its labels can be listed as 

+i(1), —i(2), +4(3), —2(4), (Din), (Din + 1) 

where 1 < i(1) < i(2) < +--+ < i(n) < i(n +1) < m. Note that this positive 

simplex has exactly on positive facet labelled by 

+2(1), —2(2), +23), -2(4),---, (Dan). 

A simplex of K is said to be negative if its labels can be listed as 

—i(1), +i(2), —i(3), +2(4), ©, (1)? am), (-1)"i(n + 1) 

where | < i(1) < 22) < --- < i(n) < i(n +1) < m. Note that this negative 

simplex has exactly on positive facet labelled by 

+4(2), —1(3), +4(4), «+, (— DP"! a(n), (-1)"i(n + 1). 

A simplex is said to be neutral if it is neither positive nor negative. 

4-10.4. Lemma A neutral simplex has either none or exactly two positive 

facets. 

Proof. Assume that a neutral simplex A has one positive facet B labelled by 

+i(1), —2(2), +2(3), -7(4), ---, (- 1)" a(n) 

where 1 < i(1) < i(2) < --. < a(n). Let 7 be the label of the only vertex 

v of A which does not belong to B. We shall exhaust all cases as follow. 

Suppose |j| < i(1). Since A is neutral, 7 must be positive. Hence A has 

exactly one more positive facet by replacing the first vertex by v. Suppose 

i(p) < |j| < i(p+ 1). If i(p) and 7 have the same sign, then A has exactly 

one other positive facet by replacing the vertex of B labelled by (—1)?i(p) 

with v. If i(p) and j have opposite signs, then A has exactly one other 

positive facet by replacing the vertex of B labelled by (—1)?*!i(p + 1) with 

v. Suppose i(p) < |j| < i(p+ 1). If i(p+ 1) and 7 have the same sign, then A 

has exactly one other positive facet by replacing the vertex of B labelled by 

(—1)?*!i(p + 1) with v. If i(p+1) and 7 have opposite signs, then A has exactly 

one other positive facet by replacing the vertex of B labelled by (—1)?i(p) with 

v. Suppose |j| > i(m). Since A is neutral, 7 must have the sign (—1)”. Hence 

A has exactly one more positive facet by replacing the last vertex of B by v.0 

4-10.5. CombinatorialLemma The total number of positive n-simplexes in 

S” is odd. In particular, it is necessary to have m > n+ 1. 

Proof. For convenience, the parity of an integer k is defined to be 1 if k is odd 

and to be 0 if & is even. Since the labels on S” satisfy the antipodal condition,
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every positive m-simplex in the lower hemisphere corresponds to exactly one 

negative n-simplex in the upper hemisphere. Therefore the total number (,, of 

positive n-simplexes of S” is the number of positive and negative n-simplexes 

in the upper hemisphere only. Now consider each n-simplex A of the upper 

hemisphere. Each positive or negative A gives exactly one positive facet and 

each neutral A gives either none or two positive facets. Hence 8, has the same 

parity of the total number of positive facets F' of all n-simplexes in the upper 

hemisphere. If F is not on the boundary of the upper hemisphere, it is the 

facet. of exactly two n-simplexes in the upper hemisphere. Therefore the total 

number {, of positive n-simplexes has the same parity of the total number 

Bn—1 of positive (n — 1)-simplexes on the equator S°~' of S$”. Identify IR” 

with IR” x {0} c IR". By induction, 6, has the same parity of the total 

number /% of 0-simplexes of S° which consists of exactly two vertices. The 

antipodal condition shows that exactly one vertex of S° has positive label. 

Therefore the parity of (, is one, i.e. 8, is an odd integer. Oo 

Picture for 4-10.6 

4-10.6. Example The above picture is the top view of the upper 

hemisphere in R} with a single barycentric subdivision sd(S*) of the basic 

triangulation. The triangles a4 is positive because its labels are 1,—2,4 which
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gives one positive facet with labels 1,—2. The triangle cl is negative with 

labels —2,3,--4 which gives one positive facet with labels 3,4. The neutral 

triangles b4 gives two positive facets labelled by 1, --4 and 3, -4. The neutral 

triangle d3 has no positive facet at all. 

4-10.7. Exercise Find the total number of positive and negative triangles of 

the upper hemisphere of the above graph. Supposing that the labelling rule 

satisfies the antipodal condition, sketch a graph to show all labels on the lower 

hemisphere. Find the total number of positive line segments of the unit sphere 

S’ on the xy-plane. 

4-10.8. Theorem Let M,,M>,---,Mn,Mns be closed subsets of the n-sphere 

S" = {x € RM: |lz|| = 1}. For each j, let -M; = {-c : 2 € Mj}. Suppose 

M; 1 (—M;) = @ for every 7. If S? c Ur (MG; U —M,;), then the intersection 

Ma M; is non-empty. 

Proof. Let d; denote the distance between the sets M;,-M,. Because 

M;(—M,;) =9, the sets M;, -Mj are disjoint compact sets and hence d; > 0. 

Suppose to the contrary that eM; =. Then {S"\ M;:1<j <n+4l} is 

an open cover of the compact space S". Let r > 0 be the Lebesgue number for 

this open cover. Let K be an iterated barycentric subdivision of S” so that 

mesh(K) < min{r, dy,d2,+++,dn4i}. For each vertex v € K, let 7 > 0 be the 

smallest integer such that v € M; U-M;. Define h(v) = j(—-1)7*! if v © M; 

and A(v) = j(—1)? otherwise. It is easy to verify that h(—v) = —A(v). Next, 

take any adjacent vertices u,v of a simplex in K. Suppose to the contrary 

that if h(u) + A(v) = 0 then one of them belongs to M; while another to —M, 

and consequently we get a contradiction: ||u— || > d; > mesh(K) > |lu—v}}. 

Therefore h(u) + h(v) #0. It follows from the combinatorial lemma that there 

is at least one positive simplex A in K. Arrange the vertices v,v2,---,Un+ 

of A such that their labels are listed as: 1, —2,3,—4,---,(—L"(n + 1), that is 

A(u;) = g(—1)9*!, or u; € M;, for every j. Since diam(A) < mesh(K) <r, we 

have A Cc S"\ M; for some 7. In particular, v; ¢ M,;. This contradiction 

establishes the proof. Qo 

4-99. References and Further Readings : Fan-60,90,99, Dugundji-82, Wolsey, 

Foster, Hoang, Seki, Pontryagin, Shashkin, Steenrod, Kearfott, Kulpa, Mara, 

Todd, Talman, Eaves, Atiyah and Bytheway. 



Chapter 5 

Topological Fixed Points 

5-1 Antipodal Maps 

5-1.1. One dimensional intermediate value theorem says that if a continuous 

function f : [a,b] > R satisfies f(a) f(b) < 0 then the equation f(x) = 0 has 

at least one solution. Clearly the function y(r) = 3b —ajrt+ (a +b) is a 

homeomorphism from [--1, 1] onto [a, 6]. Hence f(x) = 0 has a solution in [a, }} 

iff fy(z) = 0 has a solution. Therefore the domain of f can be standardized 

to [—1, 1] which is the one dimensional closed unit ball. Furthermore, working 

with the y-axis, we may standardize f to satisfy f(—1) = —f(1). This motivates 

the study of antipodal maps in this section. 

5-1.2. Let EF be a normed space. We shall work on the closed unit ball B and 

the unit sphere S of &. Any pair z, ~z of points in S are called antipodal points. 

For any subset M of S, its antipodal set is defined as -M = {2 € E: —x € S}. 

Clearly —M is a subset of S. A map f from B or S into E is said to be 

antipodal if f(-r) = —f(x) for all x € S. We start with the special normed 

space IR?*! of which the unit sphere is denoted by S”. If no specific norm on 

IR” is mentioned explicitly, IR? will be assumed. 

5-1.3. Lemma Let M,, M@,---,Mn be n-closed subsets of the sphere S". If 

they together with their antipodal sets cover S”, then at least one of them 

contains a pair of antipodal points. 

Proof. Define Mn, = —M,. Suppose to the contrary that none of M,,-:-, Mn 

contains a pair of antipodal points. By §4-10.8, we have ayer M; # , ie. 

Mn —-My = MnO Mas #9 which is a contradiction. oO 

5-1.4. Borsuk-Ulam_Antipodal Theorem For every continuous map 

f :S" +R}, there is x € S” such that f(—z) = f(z). 

Proof. Suppose to the contrary that for every x € S", we have f(—2z) ¥ f(x), 

ie. f;(x)—f;(—x) #0 for some | < 7 < n where fy, f2,---, f, are the coordinate 

functions of f. By compactness of S”, we obtain
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zES™ 1<j 

Define M; = {x € 8”: f;(x) — f;(-2) > 5A}. Then for each x € S”, we get 

max | fi) ~ fj(-2)| > A> dd. Hence | f;(x) — f;(—2)| > 4A for some 7, that 

isz€ M; or « € —M;. Therefore {+M;:1 <7 < } is a closed cover of $”. 

Accordingly, at least one M; contains a pair of antipodal points x,—z of S”. 

Now the contradiction f;,(x)— f,(—x) > 5A and f,(—2x)— f,(x) > 3A completes 

the proof. Bo 

A= inf max |f;(x) — f;(—2)| > 0. 

5-1.5. Base on Borsuk-Ulam Theorem, at any time you can always find two 

antipodal points of the earth with the same temperature and atmospheric 

pressure. No matter how you squeeze a basketball onto a plane, at least a pair 

of antipodal points will sit on top of each other. 

5-1.6. Intermediate Value Theorem for Ri If f is a continuous antipodal 

map on the closed unit ball B of Ry into Ry, then the equation f(z) = 0 has 

at least one solution. 

Proof. For every y = (yi,°-*Yn;Yne1) in IR", let x = (y1,---,Yn). Define 
g: 5° > BR” by 

—f(-2), if yaa <0. 

Since f is antipodal, g is well-defined on the equator S"~'. It is continuous on 

gy) = { f(z), if Yns1 > 0; 

the upper and lower hemisphere respectively. It follows from Glue-Theorem 

that g is continuous on 5S”. By Borsuk-Ulam Theorem, we have g(y) = g{—y) 

for some y € S”. Thus f(x) = —f(2) if Yau: > O and f(—z) = — f(—x) otherwise. 

In both cases, the given equation f(x) = 0 has a solution. Oo 

5-1.7. As a stepping stone to generalize these results to infinite dimensional 

cases, it is necessary to free the restrictions of dependence on the specific norm 

of Ry. 

5-1.8. Let E,F be normed spaces. If g : EH — F a topological isomorphism, 

then the scaling homeomorphism of g is the map h: E — F defined by 

g(x) 
h(x) = & ||9(z)|| 

0, ifa2=0. 

|x|], ifr #0, 

5-1.9. Lemma (a) / is a homeomorphism. 

(b) h—! is the scaling homeomorphism of g~!.
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(c) |{h(x)|| = ||z|] and A(Ar) = AR(z) for all « € E and all AX € K. 

(d) A carries the unit sphere of E onto the unit sphere of F and the closed unit 

ball onto the closed unit ball. 

Proof. Let k: F — E be the scaling homeomorphism of g~! given by 

gy) . 
ka = 4 arte 449 

0, if y=0. 

By simple substitution, kh is the identity map of F and hk the identity map 

of F. Hence his bijective and h-! = k. Part (c) follows from definition and (d) 

is a consequence of (c). Clearly A is continuous at every a #0 in E. By (c), A 

is also continuous at a = 0. By symmetry, k is continuous too, Therefore h is 

a homeomorphism. Oo 

5-1.10. Example For each vector (z, w) in Cc’, write z=z+iy and w=utiv 

where z,y,u,v are all real. Restricting to real scalar multiplication only, C? 

is a real vector space with basis (1,0), (é,0), (0,1) and (0,1). The map 

f(v,w) = (2,y,u,v) is a real algebraic isomorphism from C? onto R* and 

therefore it is a topological isomorphism from C3 onto R, for any 1 <p < oo. 

5-1.11. Since the scalar multiplication of this chapter does not come into effect. 

explicitly, we shall assume that all normed spaces are over the real field. 

5-1.12. Finite Dimensional Antipodal Theorem Let F be a finite dimensional 

normed space and let f be a continuous antipodal map from the unit sphere 

S of E into a vector subspace M of E. If M + E, then there is some z € S 

such that f(x) = f(—z). 

Proof. Take any bb) € E\ M. Since E is finite dimensional, so is M. 

Let 5,,---,6; be a basis for M. Then bo, bi,---,b, are linearly independent. 

Extend it to a basis bo, 0),:--, 0k, Oks1,---, bn for B. Let e1,€2,---,€n, enti 

be the standard basis for IR"*!. Then there is an algebraic isomorphism 

g: R™! — E such that g(ens1) = bo and g(e;) = b; for all 1 <j <n. Let 

h: Rt"! — E be the scaling homeomorphism of the topological isomorphism 

g: Rv! — E. Then the map ¢ = h7' fh: S" = R™ js continuous. Because 

h(-2x) = —A(x), y is an antipodal map. Take any a € S”. Since fh(a) is a 

linear combination of b,,b2,---,6%, g(a) = h7'fh(a) is a linear combination 

of e),€2,---,e% and hence y(a) belongs to IR”. By Borsuk-Ulam Theorem, 

y(—a) = y(a) for some a € S". Now x = A(a) € S satisfies f(—x) = f(z). Oo
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5-1.13. Finite Dimensional Intermediate Value Theorem Let 8 be the unit 

ball of a finite dimensional normed space E. If f : B — E is an antipodal 

continuous map, then the equation f(x) = 0 has at least one solution. 

Proof. It is left as an exercise. Oo 

5-1.14. Finite Dimensional Parallel Vector Theorem Let f : B = E bea 

continuous map such that f(r) #0 on B. Then there is a pair of antipodal 

points a, —a € S such that f(a), f(—a) are parallel vectors. 

f(z) —2) 

If@)Il —2)|)" 
az € S, we have g(—2x) = —g(x). Also for ||z|| < 1, g(x) #0. By intermediate- 

value theorem, there is x € S such that g(z) = 0, i.e. the vectors f(x), f(—x) 

Proof. For each z € B, define g(x) = Then for every — |x| 28 lfc 

are parallel. oO 

5-2 Retracts and Fixed Points 

5-2.1. In this section, we shall remove the restriction to closed unit ball as 

domains of nonlinear maps and replace it by convex sets. As a result, the 

notion of being antipodal is no longer available. Consequently intermediate 

value theorem will take the form of fixed points. Retracts is the tool to achieve 

this transformation. To derive Brouwer’s fixed point theorem, we shall give 

an explicit formula rather demanding the intuition of readers to accept the 

continuity of a certain map. Only elementary calculations are used to show 

that closed convex sets are retracts. Although our result is more restrictive 

but sufficient for our purpose, it would make the subject more accessible to all 

undergraduates. 

5-2.2. Let M be a subset of a metric space X. A continuous map f : X — M 

is called a retraction if for every « € M we have f(z) =x. In particular, f must 

be surjective. In this case, M is also called a retract of X. Clearly if M is a 

retract of X then M is also a retract of every subset of X containing M. 

5-2.3. Lemma _ In a finite dimensional normed space, the unit sphere S is 

not a retract of the closed unit ball B. 

Proof. Suppose to the contrary that f : B — S is a retraction. Since the 

identity map f|S is antipodal, the equation f(z) = 0 has a solution in B which 

is a contradiction to f(B) c S. a
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5-2.4. Brouwer’s Fixed Point Theorem Let B,, be the closed unit ball of RZ. 

Then every continuous map from B,, into itself has a fixed point. 

Proof. Suppose to the contrary that f : B, — B, is a continuous map such 

that f(x) # x for all « € B. Then extend the line segment from f(z) to x until 

it meets a point g(a) of the unit sphere S"~!. Because of the inner product of 

IRZ, we can actually find an explicit formula g(x) = (1+ t)xz — tf(z) where 

te f< 2,2 — f(z) >? +\z — Fe)? — fl2lf) — < 2,2 - fie) > 

jz — f()|)? 
Since t is a continuous function of x, so is g. Because g|S"—! is the identity 

map, S”~! is a retract of B,. This contradiction establishes the proof. Oo 

5-2.5. Parallelogram Law For all z,y in the inner product space Rj, we 

have ||x + yl|? + || — yl]? = 2||x||? + 2lly|l?. 
Proof. It is left as an exercise. Oo 

5-2.6. Theorem on Minimum Distance Let M be a closed convex subset of 

IR}. Then for every x € Rf, there is a unique y € M such that ||z — y|| is the 

distance from z to M. 

Proof. Let d be the distance from a to M. There is a sequence {a,} in M 

such that ||z — ag|] < d+ i. By Parallelogram Law, we get 

2||x — a;||? + 2l|x — ag||? = 4]lx — 3(a; + ax)|? + |lag — ax)? 
Since M is convex, we have 3(a; +a) € M and hence ||z — 3 (a; + ag)|| > d. 

Consequently we obtain 

4d? + |laz — ag||? < Alle — 5(a; + ag) |? + las — an? 
= 2x — a;||? + 2\|x — ag||? < 2d + 5) +24 ZY, 

4d + 4d + 2 + 2 

ee ee ee 

Therefore {a,,} is a Cauchy sequence in a complete set M. Let y = lima, € M. 

ie. lla; — axl? < 

Then we have d < lim ||x — ag|| < lim(d+ 2) = d, ie. ||x—y|| = lim |[z— ag] =. 

Finally suppose a,b € M satisfy || — al] = d = ||z — ||. Then by Parallelogram 

Law again, we have 

4d? = 2\|x — all? + ix — ||? = 4|]z — 4(a + )||? + lla — ||? > 4d? + |la — |], 

ie. |la — b||?=0, ora =5. a 

5-2.7. Retraction Theorem Every non-empty closed convex subset M of a 

finite dimensional normed space £ is a retract of E.
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Proof. Firstly, consider the special case when EF = Ry. For every x € R", 

let f(z) be the unique point in M such that ||x — f(z)|| = d(z,M). Clearly 

f(z) = for all ¢ € M. To prove that f : R} — M is continuous, take any 

z,y € R}. Observe the following simple calculation: 

lz - yl? — | F@) — fol? #1 

= <(e-y)—-[f(@) - fF), (@ — y) + L@) — fy) > 

= <[x— f(x)} -[y— f@1, (2 — F(@)) — ly — FY) + 2f(@) - 2F() > 

I|z — f(@) — + FIP? 

+2 <x— f(a), f(z) — f(y) > -2<y— fy), f(a) — fly) >. #2 
Choose any 0 < t < 1. Since M is convex, we have (1 — t) f(z) + tf(y) € M. 

Hence 

lz — f@)|)? = d@@, MY < lz — [0 — fF @) + tf II? 

= |lx — f(w) + tLf(@) — FOI? 

= |x — f(a)|? + 2t <2 — f(a), f(x) — Fy) > +P ([F(@) — FYI. 

Thus, 2<2— f(x), f(z) — f(y) > +tI|f(@) — fF@||? > 0,Vt € ©, b, 

ie. <2— f(z), f(2)-fy> 209. 

Interchanging z, y, we obtain 

<y—-fy),fm—-f@)> =o. 

Therefore the terms of #2 are positive. Now #1 gives ||xz—y|| > || f(z)— f()||. 

Consequently the map f is uniformly continuous on IR}. Finally consider an 

arbitrary finite dimensional normed space FE. Let g: FE — RY be an algebraic 

isomorphism. Since g is also a topological isomorphism, g(M) is a closed convex 

subset of RZ. Let f : RZ — g(M) be a retraction. Then it is simple to verify 

that g~-'fg: E — M is a retraction. o 

5-2.8. Theorem Every continuous map f from a compact. convex subset X 

of a finite dimensional normed space F& into itself has at least one fixed point. 

Proof. Firstly consider the special case when E = IR}. Since X is bounded, 

there is \ > |[z|| for alla € X. Because the map h: FE — E given by A(x) = 2/A 

is a topological isomorphism, M = A(X) is a closed convex subset of the unit 

ball B, of IR}. There is a continuous map g: B, — M such that g(x) = x for 

every x € M. Now the continuous map hfh—'g: B, — B, has a fixed point 

z=hfh—'g(z) in By. Since z € A(X) = M, we have g(z) = z, i.e. z= hfh-'(z),
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or h-}(z) = Az is a fixed point of f. For general case, let ¢ : E — Rj be 

a topological isomorphism. Then the continuous map yfy—! on the compact 

convex subset y(X) of IR? has a fixed point a € y(X). Clearly, x = y7}(a) is 

a fixed point of f on X. o 

5-2.9. Example The map f(z) = —z from the closed unit circle of the complex 

plane onto itself is continuous but has no fixed point. Hence convexity is 

essential. 

5-2.10. Normal Vector Theorem Let f be a continuous map from the closed 

unit ball B of a finite dimensional normed space E into E. If f(z) #0 on B, 

then there exist a,b € S such that f(a) is an outward normal and f(b) is an 

inward normal. 

Proof. Let X=+1 be a constant. Define f : B — S by g(x) = Wor Then 

the continuous map f on the compact convex set B has a fixed point, ie. 

g(a) = a for some a € B. Since ||g9(a)|| = 1, a € S. Therefore f(a) = All f(a)|la is 

an outward normal if \ = 1 and an inward normal if 4 = —1. ia 

5-3 Fixed Points of Compact Maps 

5-3.1. Our general approach is to reduce an infinite dimensional problem to 

finite dimensional case through compactness and then reduce a finite dimen- 

sional problem into discrete case solved by combinatorial method. The later 

one has been done and now we start to look at infinite dimensional normed 

spaces. The main result of this section is a fixed point theorem §5-3.5. 

5-3.2. Let E be a normed space. A map F from a metric space X into F is 

called a compact map if it is continuous and its range P(X) is relatively compact 

in &. The map F is said to be finite dimensional if F(X) is contained in some 

finite dimensional vector subspace of E. 

5-3.3. Finite Dimensional Approximation Theorem llrrF:X > Eisa 

compact map, then for every ¢ > 0 there is a compact map G from X into 

the convex hull of a finite subset of F(X) such that for each « € X we have 

|F(z) — G()|| < e. In particular, G is a finite dimensional compact map. 

Proof. Since the closure Q of F(X) is compact, there are y,, y2,---, ye € F(X) 

such that Q C Ur, By, €). Let {a; : 1 <i < k} be a partition of unity on Q 

subordinated to {B(y:,¢€)}. Let G: X — E be given by G(z) = ye, ce (2) Yy;. 
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Then G(X) is contained in co{y,y,---, ye} which is compact. Since each 

a, : X — [0,1] is continuous, G is continuous. Therefore G is a compact 

map. Finally for any x € X, if ||F(@) — yi|| > ©, then y:(x) = 0 and so 

pi(z)|| F(x) - yi|| < wi(x)e which is also true for ||F(x)—y|| < ¢. Consequently, 

k k 

So oF) — SO aod 
k k 

<2, w@llF@ - vill <0, ome =e. 4 

5-3.4. Exercise Formalize a statement from last theorem when F is the 

|F(@) - G@)|| = 

identity map on a compact subset X of E. 

5-3.5. Theorem Let X be a non-empty convex subset of E. Then every 

continuous map F' on X into a compact subset of X has a fixed point. 

Proof. For every integer n > 1, there is a compact map G from X into the 

convex hull K of a finite subset of F(X) such that || F(z) — G(z)|| < 1 for each 

x € X. Since K is a finite dimensional compact convex set, the continuous 

map G has a fixed point 2, € K. Hence ||F(tn)—2n|| = || F (tn) —G(¢n)|| < i, 

Let @ be a compact subset of X containing F(X). Then the sequence F(z,,) 

in Q has a convergent subsequence, say F(y,) — a € Q. Then 

lle — yall < lla — FYn)|| + | Gn) — yall — 9, 
Le. Yn 2+ a € X. By continuity of F, we have F(y,) — F(a). Therefore 

F(a) =a. oO 

5-3.6. Exercise Let X be the closed unit ball of 2;. For every point 

1 = lel 21,22," ‘. Show that the 

function f : X — X is continuous but has no fixed point. 

x =(21,22,---) in X, define f(z) = ( 

5-4 Compact Fields and their Homotopies 

5-4.1. Consider the zy-plane. An equation f(z) = 0 works with the z-axis 

and F(x) = x with the diagonal y =x. Most of the graphical presentations use 

a-axis as reference by sketching the curves of the form y = f(x). On the other 

hand, if the velocity of certain flux at location x in an infinite dimensional space 

E is denoted by —F(x), then a vector field can be represented by a localized 

arrow starting from zx ended at f(x) = z— F(z). Mathematically, in order to get 

sensible results as shown in subsequent sections, all F(x) must. be reasonably 

small, i.e. belong to certain compact set. In physics, the velocity —F(z) of any
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particle is not supposed to be faster than the speed of light. Perhaps, this may 

be only a coincidence between mathematics and physics. Note that the choice 

of negative sign is merely for mathematical convenience to get the symmetry 

between f and F. Homotopies allow us to reduce a complicate map F at time 

t = 0 to a relatively simple one G at time t = 1. Hopefully we can get some 

information about F from G, e.g. the existence of solutions. 

5-4.2. Let F be a compact map from a subset X of a normed space FE into 

E. Clearly « € X is a fixed point of F iff x — F(r)=0. The map f: X - FE 

defined by f(x) = x — F(z) on X is called the compact field of F. We also 

write f = I — F where I is the identity map on &. For convenience, r € X 

is called a singular point of f if f(x) = 0. Similarly, let J denotes the closed 

unit interval [0,1]. A compact map H : X x J — E is also called a compact 

homotopy from Ho to H, where H,(2) = H(z, t) for all (v,t) € X x J. The map 

h(a, t) =x — H(az,t) on X x J is called the field homotopy of H. We also write 

h=I—H. Anelement z € X is called a fixed point of H or a singular point of 

h if H(x,t) = 2 or A(z,t) = 0 for some t € J. For convenience, the following 

convention will be used whenever nothing is mentioned explicitly. If a letter in 

upper case denotes a compact map on X or X x J, then its associated compact 

field or the field homotopy will be denoted by the same letter but in lower case 

respectively. The same convention in reserved order will be used from compact 

fields or field homotopy to their associated compact maps. 

5-4.3._ We shall study a pair of closed subsets N C X of a normed space F. 

The set of all compact maps on X which have no fixed point in N is denoted by 

C(X, N). Two compact maps F,G on X are said to be homotopic in C(X, N) 

if there is a compact map H : X x J — E such that Hy = F, H, = G and 

A(z,t) #2 for all (c,t) € N x J, ie. H is a compact homotopy on X without 

any fixed point in N. In symbols, write F ~ G in C(X, N). For all compact 

maps F,G : X — E, the affine homotopy from F to G is defined as the map 

H:XxJ-—E given by H(z,t) = (1 —t)F(x) +tG(@). For convenience, two 

compact fields f,g are said to be homotopic in C(X,N) if F ~ G in C(X,N) 

where F,G are compact maps of f, g respectively. 

5-4.4. Theorem If f is a compact field on X, then f(N) is closed in E. 

Proof. Let a be a closure point of f(N). There are z, € N such that 

Yn = F(@n) - a as n — oo. Since F(x,) is a sequence in the relatively 

compact set F(X), there are integers n(1) < n(2) < n(3) < --- such that
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F(tyy)) ~ 6 € Eas j > oo. Since y, = f(tn) = Ln — F(atn), we have 

Eng) = YnG) + Flan) - a+b. Because N is closed, a+b € N. Now 

Yn = f(Enq) — f(atb) by continuity. As subsequence, we also have ynj) — a. 

Hence a = f(a +b) € f(N). Therefore f(N) is closed in F. oO 

5-4.5. Theorem I[fh: X x J — E bea field homotopy then the set h(N x J) 

is closed in E. 

Proof. It is an exercise to modify the proof of last theorem. oO 

5-4.6. Theorem Let 6 denote the distance from the origin to f(N). Ifa 

compact map G on X satisfying ||F'(2) — G(z)|| < 6 for every x € N, then the 

affine homotopy H from F to G is a compact map without fixed point in N. 

In particular, G has no fixed point in N. 

Proof. Since f(N) is a closed set which does not contain the origin, we 

have 6 > 0. Let G be a compact map satisfying the given condition. If for 

some x € N and t € J we have H(z,t) = (1 — t)F(x) + tG(z) = 2, then 

f(x) = t{G(a) — F(z)} and a contradiction is obtained as follow: 

6 = df0, f(N)] < || f()|| = t||G@) — F@)|| < ||G@) — F@)|| < 6. 

Therefore H(z,t) # 2,V (x,t) € N x J. Next, to show that H is a compact 

map, suppose that the closures of F(X), G(X) are denoted by A, B respectively. 

Define X(a, b, t) = (1 —t)a+ tb, for all (a, b,t) € Ax Bx J. Then A is continuous 

on the compact set Ax Bx J. Now H: X x J — E is continuous and H(X x J) 

is a subset of the compact set A(A x B x J). Therefore H is a compact map.O 

5-4.7. Exercise Prove that if F ~ G and G ~ H in C(X,N) then F ~ F, 

G ~ F and F ~ H in C(X,N). Therefore the relation of being homotopic is 

an equivalent relation. 

5-4.8. Exercise Prove that the set of all fixed points of a compact map or a 

compact homotopy on a closed set is compact. 

5-4.9. Theorem Every compact map in C(X,N) can be uniformly approxi- 

mated by finite dimensional compact maps in C(X, NV) and consequently it is 

also homotopic to some finite dimensional compact maps in C(X, N). 

Proof. Modify the formal statement and proof of the following theorem. 0 

5-4.10. Theorem Let F’ be a compact homotopy on X without fixed point 

in N. Then for every ¢ > 0 there is a finite dimensional compact homotopy G 

on X such that
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(a) ||F(2,t) — G(x, t)|| < e for all (x,t) E X x J; 

(b) A -AF,H+AG@,t) ¥2,V (2,t, NEN IX J. 

Proof. Let f =I — F denote the field homotopy of F’. Since the origin does 

not belong to the closed set f(N x J), we may assume 0 < € < d[O, f(N x J)]. 

There is a finite dimensional compact map G: X x J — E such that 

[|F(z,0 -Gi,d)i|<e, V@doexx J. 

Then G is a compact homotopy on X satisfying condition (a). Next, suppose 

to the contrary that (1 — A) F(a, t)+ AG(a, t) = x for some (2,t,A) Ee Nx Jx J. 

Then we have f(x, t) = A{G(2, t) — F(a, t)} and so 

O0<e<d[0, f(N x J)] < ||f(z, 6] =Al|G@,d -— F(a, 6)|| < Ae < € 

is a contradiction. Therefore (b) also holds. Oo 

5-4.11. Theorem Let Fo, F\ be two finite dimensional compact maps on X. 

If Fo, F, are homotopic without fixed point in N, then they are homotopic 

under some finite dimensional homotopy without fixed point in N. 

Proof. Let F be a compact homotopy for Fo ~ F, in C(X,N). There is a 

finite dimensional compact. homotopy G without fixed point in N such that 

(1 -A)F(z,t) + AG(z,t) 42,V (2,t, NENx Ix J. 

For \ = 1, G is a finite dimensional homotopy, i.e. Go ~ G) under a finite 

dimensional homotopy. Next, for ¢ = 0, Fy ~ Gp in C(X,N) under the affine 

homotopy which is finite dimensional since both Fo, Go are. Finally for t = 1, 

F, ~ G, under a finite dimensional affine homotopy. Therefore Fo ~ F; in 

C(X, N) under the finite dimensional homotopy obtained by combining the 

above ones. oO 

5-5 Extension Property 

5-5.1. To make it more acceptable to wider audiences, only elementary tools 

such as M-test and Tietze’s Extension Theorem are used to develop a version of 

Homotopy Extension Theorem. It is powerful enough to define the concept of 

singular compact fields which will be used to extend certain finite dimensional 

results to infinite dimensional spaces. Intuitively, if a compact field f is singular 

then the equation f(x) = 0 has at least one solution. However if a compact 

field g is non-singular, the equation g(z) = 0 may or may not have a solution. 

5-5.2. M-Test Let {f, : n > 1} be a sequence of continuous functions 

on a metric space X. Suppose |f,(x)| < M,,V « © X. If the series
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+, Ma of positive numbers converges then the series )7>°, fn of functions 

converges uniformly to some continuous function g on X. Furthermore we have 

|g(z)| < S7P2, My, for all z € X. 

Proof. Define gm => -72, fn. Since |gm(z)| < 30, |fn(z)| < 3772, Man < 0, 

each gm is a bounded continuous function on X. Let ¢ > 0 be given. There is 

k such that for every n > k we have re Mn+; < €, independent of p. Now 

for each z in X and each n > k we have 

|@n+p(Z) _ Gn(2)| < a | fa+j(2)| < a Mansi Se. 

Therefore {g,} is a sequence which is uniformly Cauchy in BC..(X). It 

converges uniformly to a continuous function g. Letting p — oo in last 

inequality, we have |9(x)— gn(z)| < ¢. Hence g, — g uniformly, or g= 37>°, fn 

uniformly on X. The proof is completed by letting m — oo in the following 

inequality: |gmn(x)| < iat (f(x)| < a M;. a 

5-5.3. Lemma Let N be a closed subset of a metric space X. If u is a 

continuous function from N into [—r,r] then there is a continuous function v 

from X into [-4r, 5] such that for all x in N we have |u(x) — v(a)| < ar. 

Proof. Let A= {a eN: u(x) < —3r} and B = {x € N : uz) > $r}. 

Now A, B are disjoint closed subsets of X since N is closed in X. There is 

a continuous function w : X — [0,1] such that w(A) = 0 and w(B) = 1. 

Next define y(t) = (2¢ —1)3,V¥ ¢ € [-1,]]. Then ¢ : [—1,1] > [-3, 9] is 

a continuous function. Now the composite v = yw is a continuous function 

from X into [—5, 3] such that v(A) = —} and v(B) = 5. For x € A, we have 

—r < uz) < -ir and vu(z) = —ir. Hence |u(z) — v(z)| < a Similarly the 

same inequality holds for z € B. Finally, for c € N \ (AUB), we obtain 

|u(x) — v(x)| < ju(x)| + |v) < $44 < 2%. Therefore for every x in N we have 

|u(x) — v(x)| < 2. o 

5-5.4. Tietze’s Extension Theorem Let N be a closed subset of a metric 

space X. Then every continuous function F : N — [—1,1] has a continuous 

extension over the whole space X into [—1, 1]. 

Proof. There is a continuous function v, on X such that |v(z)} < Vv rex 

and |F(a) — u,(a)| < 3,V aéQN. Define G; = v;. Inductively suppose vz, Gn 

are continuous functions on X satisfying 

jUn(x)| < (4) yr" V@rEX; |F(a) — G,(a@)| < (3)" VaeN 
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and Gn = Gn_1 + Un. For u = F — G,, in last lemma, there is a continuous 

function vps; on X such that 

lvnsi(a)| < (3) 3)" Vee X 

and [{F(a) — Gn(a)} — vnsi(a)| < Qj" WaeN. 

Define Gri) = Gn t+ Uny. Then Gp4, is a continuous function on X satisfying 

|F(a) — Gnii(a)| < (2)"" Woe N. 

Since }7%°,()(3)" is convergent, the sequence Gn = 7}, 

uniformly to some continuous function G on X by M-test. Furthermore 

|C@| < Tee (3) GY" = LV eX. 
Finally letting n — oo in |F(a) — Gp(a)| < 3)" we have F(a) = G(a), Vae N. 

Therefore G : X — [—1, 1] is a continuous extension of F’. o 

vu; converges 

5-5.5. Theorem Let N be a closed subset of a metric space X. Then every 

compact map F from N into a finite dimensional normed space E’ can be 

extended to a compact map on the whole space X into the closed convex hull 

K of F(N). 

Proof. Let G: E — R” be a topological isomorphism. Since F is a compact 

map, the set K is compact and hence G(K) is bounded in IR”. Replacing G 

by AG for small A > 0, we may assume that G(K) c [—1,1]”. By Tietze’s 

Extension Theorem, every coordinate function of the composite GF : N — IR” 

can be extended to a continuous function from X into [—1,1]", ie. GF has 

an extension H : X — [-1,1]”. Let py: E — K be a retraction. Then the 

composite map yG~'H is a required extension of F. oO 

5-5.6. Homotopy Extension Theorem Let N c X be closed subsets of a 

normed space FE. Suppose that F,G : N — E are finite dimensional compact 

maps which are homotopic without fixed point in N. If F can be extended to 

a finite dimensional compact map F* on X without fixed point in X, then G 

can also be extended in the same way. 

Proof. Let H be a finite dimensional homotopy for F ~ G without fixed point 

in N. Let E, be a finite dimensional vector subspace containing H(N x J). 

Define a map K on T= (N x J) U(X x {0}) into BE by K|\(N x J) = A and 

K\(X x {0}) = F*. Because H(a,0) = F(#) = F*(x), the map K: T > E, 

is well-defined. In view of K(T) = H(N x J)U F*(X x {0}), the map K is 

compact. Since N x J and X x {0} are closed in X x J, the set T is also
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closed in X x J. So the compact map K : T -— E, can be extended to a 

compact map on X x J which is denoted by the same letter K for convenience. 

We claim that the set M = {zx eX: dt € Jz = K(z,0)} is closed in 

X. In fact, take any closure point « of M. There are x, € X andt, € J 

such that t, = K(fn,tn) ~ © as n — oo. Since J is compact, replacing by 

subsequence we may assume that t,, converges to some ¢t € J. By continuity, 

we have K(%n,tp) — K(a,t). Hence x = K(z,#), i.e. «© € M. Therefore M is 

closed in X x J. Since H is a homotopy without fixed point in N, we have 

a # H(z,t) for all (x,t) € N x J. By definition, M and N are disjoint closed 

subsets of X. So there is a continuous function A : X — [0,1] such that 

\(M) = 0 and X(N) = 1. Define H*(2,t) = K(x, A(z)t) for all (x,t) € X x J. 

Since K is a compact map, so is H*. Hence H* defines a compact homotopy 

on X. We assert that H* has no fixed point. Suppose to the contrary that 

for some (z,t) € X x J, we have H*(z,t) = 2, ie. K(z,X(z)t) = x. From 

a € M, we obtain A(z) = 0. It follows that A(z, \(z)t) = K(x,0) = F* (x), ie. 

F*(x) = x which is a contradiction. Therefore H* is a homotopy on X without 

fixed point. Define G*(x) = H*(z,1) for all « € X. Clearly, G* is a compact 

map on X without fixed point. Now for all x € N, since A(x) = 1 we have 

G(2) = H(z, 1) = K(2,X(2)1) = H*(a, 1), ie. Gia) = H*(az, 1) = G*(x). Hence 

G* is an extension of G. oO 

5-5.7. Let N c X be closed subsets of a normed space EF. A compact map 

F on X is said to be non-singular in C(X,N) if F ~ G in C(X,N) for some 

finite dimensional compact map G in C(X,X), i.e. G has no fixed point in 

X. By definition, being non-singular is homotopy invariant. More precisely, if 

Fo ~ F, in C(X, N) and if Fo is non-singular then so is Ff. A compact map on 

X is said to be singular if it is not non-singular. For convenience, a compact 

field on X is singular in C(X, N) if its compact map is singular in C(X, N). 

5-5.8. Theorem Every singular compact map F' in C(X, N) has a fixed point 

in X. 

Proof. Suppose to the contrary that F belongs to C(X, X). Then there is a 

finite dimensional compact map G such that F' ~ G in C(X, X). Then F~G 

in C(X, N) and G has no fixed point in X. Therefore F’ is non-singular. Oo 

5-5.9. Corollary If F is a compact map in C(X,.X), then it is non-singular. 

5-5.10. Theorem If a finite dimensional compact map F' in C(X, N) is
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non-singular, then f’|N can be extended to a finite dimensional compact map 

in C(X, X). 

Proof. Suppose F ~ G in C(X, N) for some finite dimensional compact map G’ 

in C(X, X). Since both F,, G are finite dimensional, there is a finite dimensional 

compact homotopy H in C(X, N) such that Hp = F and H, =G. Let FE, bea 

finite dimensional vector subspace of F containing H(X x J). Restricting our 

attention to E,, we have F\(X N £\) ~ GICX NF) in CCX N£,,N 1 £}) and 

G|(X 0 E)) is an extension of G|(N 9 E,) without any fixed point in XN Ey. 

Homotopy Extension Theorem ensures that F'|(N M E,) can be extended to 

acompact map A: XN, — Ey. Let T= NU(X1£F)). Define a map 

B:T- E, by B|IN=F and B\(X NE) =A. Then B is a compact map from 

the closed subset T of X into the finite dimensional vector space £, and hence 

it can be extended to some compact map f* : X > F,. If F*(x) = x for some 

a2 é€ X, then « € X NE, or & = A(z) which is a contradiction. Thus F* has 

no fixed point in X. Therefore, F* is a required extension of F{N. Oo 

5-6 Properties of Compact Fields in Normed Spaces 

5-6.1. Since every continuous map on the closed unit ball of a finite 

dimensional normed space is a compact map and also a compact field, 

this section generalize certain corresponding results from finite to infinite 

dimensional spaces. Thus geometrical intuition is used as motivation. 

Applications to nonlinear integral equations are beyond our scope. 

5-6.2. Lemma Let A be an open subset of a normed space E and let A, OA 

denote the closure and boundary of A respectively. Let F(x) =a for all z € A 

where a ¢ OA. If F is a non-singular compact map in C(A, 0A), then we have 

ag A. 

Proof. Since the finite dimensional compact map F' is non-singular in 

C(A, 0A), the restriction FiOA can be extended to a compact map G in 

C(A, A). Define 
«i. _fGa), ifeed; 

cw={¢ ifeeE\A. 
Now the compact map G* : E > E has a fixed point b = G*(b). Since G*|A = G 

has no fixed point, we have bC E\ A, ie. a= G*(b)=b ¢ A. oO 

5-6.3. Outward Normal Theorem Let A be an open set containing the origin 

of E. If F : A = E is a compact map such that for every « € OA and for every 
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> 1 we have F(z) 4 Az, then F has a fixed point in A. 

Proof. Define H(z, t) = tF(a) for all (c,t) €¢ Ax J. Clearly H is a compact 

map on Ax J. Assume H(z, 1) + x for all x € OA otherwise F has a fixed 

point at OA. Take any « € OA. If0 <t <1, then F(x) 4 Az where A= i, ie. 

A(a,t)=tF(a) 4a. Ift =0, then H(z,t)=04 2 because 0 ¢ OA. Thus H isa 

compact homotopy in C(A, 0A). Now Hp is singular and so is H,. Therefore, 

F = H, has a fixed point. ial 

5-6.4. Inward Normal Theorem Let A be an open set containing the origin 

of E and let f be a compact field on A. If f(x) 40 for all x € A, then there is 

az € OA and t > 0 such that —tx = f(x). 

Proof. Let F=I—f be the compact map associated with f. Then F has no 

fixed point in A. So there exist z € OA and A > 1 such that F(x) = Az, i.e. 

f(z) = —tx where t=A— 1. oO 

5-6.5. We shall study the closed unit ball B and its sphere S in a normed 

space F;. The following exercise follows immediately from the Outward Normal 

Theorem. 

5-6.6. Exercise Let F be a compact map from B into E. If for each x € S, 

there is \ > 0 such that (1 — Ajx + AF(ax) € B, then F' has a fixed point. 

5-6.7. Lemma If F': B — E is an antipodal compact map, then for every 

€ > 0 there is a finite dimensional antipodal compact map G: B — E such 

that ||F(2) — G(a)|| < for every x € B. 

Proof. For every ¢ > 0 there is a finite dimensional compact map F* : B > E 

such that for all  € B we have ||F(x) — F*(x)|| < 4e. For each x € S, define 

H* (x) = F*(x)4+F*(—x). Then ||H*(x) || < || F*(x)||+||F*(—2)|| < ¢. Let E, bea 

finite dimensional vector subspace containing F*(B). Since H* is a continuous 

map from S into the finite dimensional compact convex set E) NIB(O,¢), it has 

a continuous extension H : B > E, NB(0,«). Now the map G: B — E, given 

by G(z) = F*(x) - $H (x) is a finite dimensional compact map. For x € S, we 

get 

G(a) + G(—2) = F*(2) — 4 H(2) + F*(-2) - $H(-2) 

= F* (x) — 3[F*(2) + F*(-2)] + F*(—2) — 5[F*(-2) + F*(@)] = 0. 

Hence G is an antipodal compact map on B. Finally for every x € B, we have 

F(z) — G(a)|| = ||F(x) — F*(2)|| + || F*@) — G(2)|
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= ||F(x) -— F*@)|| + $ | H@)| < «. O 

5-6.8. Theorem Every antipodal compact map F on B is singular in C(B, S) 

and hence has a fixed point. 

Proof. Let f =1I—F be its associated compact field and 6 the distance from 

the origin to f(S). There is a finite dimensional antipodal compact map G such 

that ||F(c) — G(a)|| < 6 for all € B. Then F ~ G in C(B,S). Suppose to 

the contrary that F is non-singular. Then G is also non-singular. Hence G|S' 

can be extended to a finite dimensional compact map H in C(.B, B). Define 

h(x) = x — H(z) for all x € B. Then A(z) ¥ 0 for all x € B. Let FE) bea 

finite dimensional vector subspace of E containing H(B). Applying the finite 

dimensional intermediate value theorem to the antipodal map h|(BN £}), there 

is some x € B such that h(x) =0. This contradiction establishes the proof. O 

5-6.9. Intermediate Value Theorem [If f is an antipodal compact field on B, 

then we have f(x) =0 for some x € B. 

Proof. The compact map F' = I — f is antipodal and hence has a fixed point 

a which is also a solution to the equation f(x) = 0. o 

5-6.10. Parallel Vector Theorem Let f be a compact field on B. If f(x) #0 

for all « € B, then there is some x € S and A > 0 such that f(z) = Af(—z). 

Proof. For every (z,t) € B x J; define H(z,t) = EIF@) — tF(—2)] and 

G(z) = H(z,1). It is easy to verify that H is a compact homotopy on B. 

Suppose that for all z € S and \ > 0 we have f(x) #Af(—z). Then H has no 

fixed point in S and hence is a homotopy for F ~ G in C(B,S). Because the 

antipodal compact map G is singular in C(B,S), so is F. Therefore f(x) =0 

for some x € B. This contradiction establishes the proof. Oo 

5-6.11. Exercise Prove that the map 7 in last theorem is a compact map. 

5-6.12. Antipodal Theorem Let f be a compact field on S. If f(S) is 

contained in some vector subspace Mf 7 E then there is some x € S' such that 

f(z) = f(-2). 

Proof. Suppose to the contrary that for all  € S, f(z) — f(—x) #0. Define 

g(x) = 5L f(x) — f(—2x)} for each x € S. Then g is an antipodal compact field 

on S into M. Furthermore g(x) #0 on S. Take any b € S\ M and define 

L= {Ab: X > O}. Since g(S) C M, we obtain g(S)N L = @. We claim that the 

distance from LE to g(S) is strictly positive, i.e. d[L,g(S)] > 0. Assuming that 
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this is false, there are x, € S and 4, > 0 such that ||g(tn) — AnOl| < 4. Since 

G =I —g is a compact map, replacing by subsequence we may assume that 

G(t,n) — y € E. Thus 

OS An S [And] < len] + |C@ WI + 2 <a < 00 
where a: is some real constant. Hence {,,} is a bounded sequence. Replacing 

by subsequence, we may assume that A, — ». By |ltn — G(an) — Andl| < 5, 

we obtain z, — y+Ab € S. Therefore g(y + Ab) = Ab. Since O ¢ g(S), we 

have A > 0. Consequently Ab € g(S)M LD offers a contradiction. Now let 

O<ée< 5 min{d[L, 9(5)], a0, g(S)]}. Choose a finite dimensional compact 

map H* on S such that ||G(x)— H*(x)|| < ¢. Then H(z) = 5{H*(2)— H*(-2)} 

defines a finite dimensional compact map on S. Since G is antipodal, we have 

||G(x) — H(x)|| < $1G@) — H*(zx)|| + 4||G(—2) — H*(—a)|| < 2e < d[0, 9(S)]. 

Therefore H has no fixed point on S, i.e. A(a) #0 for alla € S whereh =I-H. 

Since |/h(a) — Ablj > ||g@@)— Adl| — ||k() — g(a) || > ALL, g(S)] — 2¢ > 0, we have 
h(S)N L =. Let FE, be a finite dimensional vector subspace of F containing 

H(S) and the point b. By finite dimensional antipodal theorem, there is a € S 

such that h(a) = h(—a). Since h is antipodal, we have h(a) = 0 which is a 

contradiction. oO 

5-6.13. Theorem on Invariance of Domain Let Y be an open subset of EF. If 

g:Y — Eis a locally injective compact field, then g(Y) is open in F. 

Proof. Take any a € Y. There isr > 0 such that g is injective on B(a,r) CY. 

Define f : B > E by f(x) = 1[9(a+rz) —g(a)J=x—- 1[G(a+rz) — G(a)]. Then 

f is an injective compact field on B. In particular, 0 = (0) does not belong to 

the closed set f(S). The distance 6 from 0 to f(S) is strictly positive, i.e. 6 > 0. 

Take any |jv|| < 6 in BE. Then f ~ f—vin C(B,S). Leth: Bx J E be 
x —tx . defined by A(x, t) = f (Con: - ) _f (= - :): Clearly h is a field homotopy on B. 

Suppose that h(x, t) = 0 for some (z,t) € S x J. Then f (= ) =f = 
PP ? ? . l+t/  ° \iet/)? 

( + Tx ) —rtz By iniectivit h Tx + —rtz 
or a+—}= at . ectivity, we have a + —— = a+ —— 

9 l+t) 9 l+t Y mnjecon wy l+t l+t’ 

i.e. = 0 giving a contradiction. Therefore h is a homotopy in C(B,S). Since 

h, is antipodal, it is singular and so is hg = f. Thus f — v is also singular. 

There is x € B such that f(r) —v = 0, ie. g(at+rax) = g(a)t+rv. Since v is 

arbitrary, we have B[g(a),ré] C g(Y). Consequently, g(Y) is open in E. oO
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5-6.14. Corollary Every locally injective compact field f on the whole space 

F& is surjective. 

Proof. Since F is open and closed in EF, so is f(#). By connectedness of E, 

we have f(£)= E. Oo 

5-6.15. Exercise Prove that the norm of a locally injective compact field on 

an open subset Y of & cannot have a local maximum. 

5-99. References and Further Readings : Borsuk, Granas-62,90, Fan-52,84, 
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Joshi, Borisovich-80, Gwinner, Aubin, Brown-93, Deimling-85, Mawhin, Caristi, 

Halpern, Browder, Kransnoselskii-84, Allgower, Alexander, Rybakowski and 

Bartsch.



Chapter 6 

Foundation of Functional Analysis 

6-1 Transfinite Induction 

6-1.1. In order to show that every infinite dimensional normed space has 

sufficiently many continuous linear forms, elementary mathematical induction 

is unable to help. Zorn’s Lemma seems to be quite easy to apply to situation 

involving transfinite induction and hence it gains the popularity. Since it 

touches the foundation of pure mathematics which is supposed to be built 

solely on set theory, its equivalence to other propositions, e.g. axiom of choice, 

is beyond our scope. We begin with introduction to glossary which will be 

needed to understand the statement of Zorn’s Lemma. Then follow up with 

a simple application before we apply it to more involved extension problem in 

next section. 

6-1.2. Let P be a set. A binary relation < on P is called a partial order on 

P if for all x,y,z € P, we have 

(a) x < 2, reflexive 

(b) « <y and y <2 imply z= y, anti-symmetric 

(c) a <y and y < z imply z < z, transitive. 

A set together with a partial order is called a partially ordered set, or a poset. 

The symbol z < y is also read as x dominated by y. 

6-1.3. Let P be a partially ordered set. A non-empty subset C of P is called 

a chain if for all z, y € C, we have either x < y or y < x. An element me P 

is said to be maximal if m < x in P implies m = 2. Similarly, minimal elements 

are defined. The notions of upper bounds, lower bounds, suprema, infima are 

defined in the same way as on the real line. 

6-1.4.. Zorn’s Lemma _ Let P be a non-empty partially ordered set. If every 

chain has an upper bound, then every element is dominated by some maximal 

element. In particular, P has at least one maximal element.
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6-1.5. Let E be a vector space. A subset M of E is said to be linearly 

independent if every finite subset of M is linearly independent, i.e. the equation 

0e,.E1 + 02.E2 + +++ + OnLy = O where {x;} are distinct elements in M and {a;} 

are unknown scalars, has only the trivial solution a; = a, =+:-=a, =0. The 

empty set is defined as a linearly independent set. A vector z € E is called 

a linear combination of vectors in M if x = a,a, + a2a2 +--++ Ona, for some 

a; € M and some a; € K. The zero vector is defined as a linear combination 

of vectors in the empty set. A subset M is said to span F if every vector x € EF 

is a linear combination of vectors in M. A subset M is called a basis or Hamel 

basis for F if it is linearly independent and spans F. These definitions agree 

with those in finite dimensional linear algebra. For a vector space consisting 

of one single zero vector, the empty set is its basis. 

6-1.6. Example Every independent subset N of a vector space E can be 

extended to a basis. In particular, every vector space has a basis. 

Proof. The family P of all independent sets of FE is non-empty since the 

empty set belongs to P. Suppose that IP is ordered by inclusion, ie. A< B 

in P iff A c B. It is easy to see that P is a poset. Let € be a chain in P. 

Let M be the union of all sets in ©. We claim that M is independent. In fact, 

consider the equation a2) + a2%2 +-+++On,2, = 0 where z; € M and a; € K. 

Then x; € A; for some A; € ©. Since € is a chain, we have either A; C A; 

or A; C A, for all 1 < 4,7 <n. Hence there is some 1 < k < n such that 

A; C A, for all j7. Hence all 2; € A,. Since A; is an independent set, the above 

equation has only the trivial solution a; = a2 =---=Q, =0. Therefore M is 

linearly independent, that is Mf € IP. Consequently, M is an upper bound of 

the chain ©. By Zorn’s Lemma, the independent set N is dominated by some 

maximal element M of P. Clearly N c M and M is independent. Suppose 

to the contrary that there is some y € E which is not a linear combination of 

vectors in M. It is easy to verify that the set V = M U {y} is an independent 

set containing M. This contradiction to the maximality of M shows that M 

also spans . Therefore M is a basis for F. Oo 

6-1.7. Exercise Let E, F be vector spaces. Let {a; : 2 € I} be a basis of E 

and {b; : i € I} an indexed subset of F. Prove that there is a unique linear 

map f: E — F such that f(a;) = b; for eachi € I. 

6-1.8. Exercise Prove that every infinite dimensional normed space has at 

least one discontinuous linear form.
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6-1.9. Exercise Let M be a vector subspace of a vector space FE and 

a € E\ M. Prove that every vector in the vector subspace N generated 

by M U {a} has a unique representation m+ a for some m € M and A € K. 

Prove that g(m+ Aa) = A is a linear form on N. 

6-1.10. Exercise Let E, F be vector spaces and M a vector subspace of E. 

Prove that every linear map g: M — F has a linear extension over E. 

6-1.11. Exercise Prove that for every x #0 in FE, there is a linear form f on 

E such that f(r) 40. 

6-1.12. Exercise Let f,g be linear forms on a vector space E. Prove that if 

they have the same kernel, then there is 0-4 € K such that f = Ag. 

6-2 Hahn-Banach Extension Theorems 

6-2.1. Every linear form on a finite dimensional vector subspace of a normed 

space EF is continuous. To extend a continuous linear form, the continuity will 

be isolated from linearity in terms of gauges. In this section, we start with an 

analytic extension theorem. It will be applied to continuous linear forms later. 

6-2.2. Let p be a real-valued function on a vector space &. Then p is called 

a gauge on F if for all z,y € E we have 

(a) 0 < p(x) < 00; positive 

(b) p(x +y) < p(x) + p(y); triangular inequality 

(c) p(ax) = ap(x) for all a > 0; positively homogeneous. 

A gauge p on E£ is called a seminorm if p(ax) = |alp(x),V « € E and V ae K. 

6-2.3. Example Let f be a linear form on a vector space &. Then 

p(x) = |f(z)|,V 2 € E defines a seminorm on E. 

6-2.4. Exercise Let p,q be gauges on a vector space F and0 <a,f eR. 

Show that max{p,q} and ap + Gq are gauges on FE. 

62.5. Exercise Prove that if a gauge is continuous at the origin of a normed 

space E, then it is continuous on the whole space E. , 

62.6. Analytic Extension Theorem Let FE be a real vector space and let p 

be a gauge on #. If g is a linear form on a vector subspace M of F satisfying 

g(y) < p(y) for all y € M, then g can be extended to a linear form f on EF such 

that f(z) < p(x) for all x € E.
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Proof. Let P be the family of all ordered pairs (H,h) where H is a vector 

subspace of & and h a linear form on H such that A(y) < p(y) for all y € H. 

Then P is non-empty since (M,g) is a member of P. For all (H, h), (K,&) in 

P, define (#,h) < (K,k) iff H C K and k|H = /h. It is easy to verify that 

P is partially ordered set. Let C = {(H;,h;) : i € I} be a chain in P. Define 

Ke= Uier HH. For every x € K, there is i € J such that x € H; and then define 

k(x) = A,(x). We claim that k(x) is independent of the choice of i. In fact, 

suppose z € H; and x € Hj. Since C is a chain, we may assume by symmetry 

that (H,,h;) < (Hj,h;). Then H, C H; and hj|H; = hi. Hence h,(x) = h;(2). 

Therefore k(x) is independent of the choice of i for which x € H;. Next, we 

claim that K is a vector subspace and & is a linear form on K. Indeed, take 

any z,y € K anda,@e¢ BR. There are i,j € J such that 2 € H; and y € H;. 

Since € is a chain, we may assume by symmetry that (H,, h,) < (Hj,h;). Then 

A, C H; and h,|H; = h;. Hence both z,y belong to the vector subspace H;. 

Therefore ax + By € H;, or ax + By € K. This proves that K is a vector 

subspace of EF. Since h, is linear on H;, we have 

klax + By) = hj(ax + By) = ahj(z) + Bhy(y) = ak(x) + Pky). 

Therefore k is a linear form on K. Clearly k(y) = hj(y) < ply), Vy € K. 

Consequently (K, k) is a member of P. Obviously H; C K and k|H; = hy, i.e. 

(H;, h;) < (K,k) for all 1 € IT. Therefore every chain in © has an upper bound 

in P. By Zorn’s Lemma, there exists a maximal element (Ff) > (M,qg). It 

remains to prove F = EF. Suppose to the contrary that there is a € E'\ F. Let 

HT be the vector subspace spanned by F and a. For all u,v € F, we have 

f(utv) < put), 

or, fu) + f@) < pu — a) + pw +a), 

ie. f(u) — plu — a) < —f(v) + (v +a). 

Let A= sup{f(u) — p(u—a): ue F}. 

Then f(s) — p(u-—a) <A < —f(v)+ (+a), Vuve Fk. 

Since a ¢ F, every vector in H can be written uniquely in the form 

x = y+aa where y € F anda € R. Define A(x) = fly) + ad. It is 

easy to verify that hisalinearformon H and A|F=f. Ifa >0, taking 

v = y/a we have \< —f (2) +p(Z+a), or ad < —f(y) + ply + aa), ie. 

h(x) < p(x). If a < 0, taking u = —y/a we have f (-2) —p (-2 - a) <A, 
a a
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ie ~2f()- (=) Ply +a) <>, or, f(y) ~ ply +a) < —a, that is, 
h(x) < p(x) again. Clearly, g(x) < p(x) for a = 0 because (F, f) is in P. 

Therefore F c H and A\F = f. This proves that (H,h) is in P and 

(F, f) < (Ah). Since (F, f) is a maximal element we have (F, f) = (H,;h). 

We obtain F' = H which is a contradiction. This completes the proof. oO 

6-2.7. Exercise Let f be a linear form on a normed space E. Prove that if 

there is a continuous seminorm p on E such that |f(x)| < p(x) for all x € FE, 

then f is continuous. 

6-2.8. Exercise Let f be a linear form on a real normed space E. Prove that 

if there is a continuous gauge p on & such that f(x) < p(z) for all x € EF, then 

f is continuous. 

6-3 Extension of Continuous Linear Forms 

6-3.1. In order to combine the real and complex normed spaces into a single 

framework, we start to reduce the complex linear forms to the real ones and 

then work with seminorms instead of gauges. 

6-3.2. Let EB be a complex vector space. The vector space obtained from FE 

by restricting the scalar multiplication to the real numbers only, is called the 

real vector space associated with the complex vector space FE and it is denoted by 

E,. Let f be a complex linear form on the complex vector space EF. Let f,(x) 

be the real part of the complex number f(x) for each x € EF. Then f, is a 

real linear form on £,. and it is called the real part of the complex linear form f. 

Clearly we have f(x) = f,(x) — if, (ix) for all 2 € E where i? = —1. 

6-3.3. Exercise Let & be a complex normed space and let f be a complex 

linear form on FE. Prove the following statements. 

(a) E, is a real normed space. 

(b) f is continuous iff the real part f, is continuous. 

6-3.4. Dominated Extension Theorem Let p be a seminorm on a vector space 

E and g a linear form on a vector subspace M of E. If |g(y)| < p(y), Vy eM, 

then g can be extended to a linear form f on E with |f(x)| < p(x) for all x € E. 

Proof. Consider a real vector space E first. Since g(y) < |g(y)| < p(y) for 

all y € M, g can be extended to a linear form f on F such that f(r) < p(x) 
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for all c € E. If f(x) > 0, then |f(x)| = f(z) < p(x). If f(x) < 0, then 

we obtain |f(z)| = f(—x) < p(—2) = p(x). This completes the proof for the 

real case. Next, assume that F is a complex vector space. Let g, be the 

real part of g. Then for every y € M, we obtain g(y) = 9,(y) — ig,(¢y), that 

is, g-(y) < lgr(y)| < |g(y)| < p(y). There is a real linear form f, on E such 

that f,(x) < p(x) for all x © FE and f,(y) = g-(y) for all y € M. Define 

f(z) = f(x) — if,-(ix) for each x € FE. Then f is a complex linear form on E 

and f(y) = g(y) for all y € M. Given x € E, let f(x) = |f(x)le where @ is 

some real number. Then the proof is complete by the following calculation: 

| f(z)| =e? f(z) = fle" 2) = fe x) < plex) = pla). Oo 

6-3.5. Exercise Let p be a seminorm on a vector space #. Then for every 

a € E there is a linear form f on EF such that f(a) = p(a) and |f(x)| < p(z) for 

alla ec E. 

6-3.6. Theorem Let M be a vector subspace of a normed space &. Then 

every continuous linear form g on M can be extended to a continuous linear 

form f on E such that ||f|] = ||gll- 

Proof. Let p(x) = |lg|| {|z|| for all zc € E. It is easy to verify that p is a 

seminorm on E£. For each y € M, we have |g(y)| < |lg{} llyll = p(y). Hence g 

has a linear extension f over FE such that |f(z)| < p(x) for all x € BE. Now 

If(z)| < |lg|} [|x|] for all « € & implies the continuity of f and ||f|| < |lg||. The 

proof is completed by the following calculation: 

Ilgll = sup{lg@| - ¥ € M, llyl| < 1} < sup{|f@)|-2€ M, lz] <1p=|fl- 0 

6-3.7. Theorem Let M be a closed subspace of a normed space &. Then for 

every b € E'\ M, there is a continuous linear form f on EF such that f(M)=0, 

if || = 1 and f(b) = d(b, M), the distance from b to M. 

Proof. Let N be the vector subspace spanned by M and b. Then every vector 

in N can be expressed uniquely in the form y = m+ Ab where m € M and 

» €K. Since M is closed, we have 6 = d(b, M) > 0. Define g(y) = 46. Clearly 

g is a linear form on N such that g(M) = 0 and g(b) = 6. To compute the norm 

of g, let m+ Ab be in N. If X #0, then ||4 + bl] > 6 and hence 

5||m + Adl| < 6|| m+ Adi 

a a 
For 4 = 0, we have |g(m+Ab)| = |g(m)| = 0 < || m+Ab||. Therefore g is continuous 

on N and |{g|| < 1. On the other hand, let ¢ > 0 be given. There ism € M such 

[g(m + Ab)| = |Ad| = 4A} = ||m + ABI.
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that ||m—b|| < d+. Then 6 = |g(5)| = lg@m) — 9()| < |Igl| | — 4] < |lg ll +e), 
ie. [[gl] > ge: Letting « — 0, we have ||g|| > 1. Therefore we conclude 

||gl| = 1. Now there is a continuous linear form f on E such that f|N = g and 

f|| = llg|] = 1. Hence f(M) = g(M) = 0 and f(b) = 9(b) = 6. This completes 

the proof. oO 

6-3.8. Corollary For ever x #0 in a normed space EF, there is a continuous 

linear form f on E such that ||f|| = 1 and f(z) = |[zll. 

Proof. This is a special case of last theorem when M = {0} and b= 2. a) 

6-3.9. Exercise Find an example of a normed space E and 0+ f € E”’ such 

that there is no x € E satisfying z|| = 1 and f(x) = || fll. 

6-3.10. Corollary Continuous linear forms separates points of a normed space. 

More precisely, if x + y are distinct points of F then there is a continuous linear 

form f on F such that f(x) ¥ f(y). We normally apply to the case when y = 0. 

6-3.11. Exercise Let M be the closed vector subspace generated by a non- 

empty subset Y of a normed space E. Prove that x € F belongs to M iff for 

every f € E’ we have f(x) =0 whenever f(y) =0,V y € Y. 

6-4 Closed Hyperplanes 

6-4.1. Some preliminary algebraic concept will be introduced first and 

elementary results are stated for easy reference. Then the geometric form of 

Hahn-Banach Extension Theorem in terms of closed hyperplanes will follow. 

6-4.2. Let E denote a vector space. A subset M of E is called a flat or a 

linear manifold if M = S +a for some vector subspace S of E and some a é E. 

Points, lines, planes are examples of flats. 

6-4.3. Lemma Let M be a flat in FE. Then M is a vector subspace iff the 

origin belongs to M. 

6-4.4. A vector subspace S of EF is called a hypersubspace if S # E and if for 

any vector subspace N satisfying S C N C E, we have either N=S or N=E. 

A translate of a hypersubspace is called a hyperplane. Clearly every hyperplane 

is a flat. 

6-4.5. Theorem Let M be a vector subspace of EF. If M + EF, then the 

following statements are equivalent.
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(a) There is a linear form f on EF such that M =ker(f), the kernel of f. 

(b) M is a hypersubspace. 

(c) For each a € EF \ M, the whole space EF is spanned by M and a. 

6-4.6. Corollary A subset M of E is a hyperplane iff M = f—'(A) for some 

non-trivial linear form f on F and some scalar A € K. 

6-4.7. Theorem Let M be a subset of a normed space FE. Then M is a closed 

hyperplane iff there is a non-trivial continuous linear form f and a scalar A 

such that M = f—!()). 

Proof. Since the translate of a closed set is close, it follows immediately from 

the fact that a linear form is continuous iff its kernel is a closed set. 

6-4.8. Theorem Let E be a complex normed space. A subset M of E is a 

closed complex hypersubspace iff there exists a closed real hypersubspace H 

satisfying M = H iH, where i? = —1. Consequently every closed complex 

hyperplane is the intersection of two closed real hyperplanes. 

Proof. (<=) Let H be a closed real hypersubspace. There is a continuous 

real linear form g on E satisfying H = g~'(0). Define f(x) = g(x) — ig(izx) 

for all x € E. Then f is a continuous complex linear form on FE. Suppose 

f(z) = 0. Then g(x) = 0 and g(iz) = 0. Thus x € A and iz € H, ie. 

a € -iH =iH. Hence x € HMid. Clearly the argument is reversible. 

Therefore H iH = ker(f) is a closed complex hypersubspace. 

(=) Suppose M is a closed complex hypersubspace. Let f be a continuous 

complex linear form on E such that M = f-'(0). Then the real part g of 

f is a continuous real linear form on E. Then H = g7!(0) is a closed real 

hypersubspace. As before, we have H NiH =ker(f) = M. The last statement 

follows by translation. 

6-4.9. A subset V of a vector space E is said to be absorbing if for each « € EB 

there exists A > 0 such that z € AV. Clearly the origin is in every absorbing 

set. The set V is said to be balanced if for every scalar |a| < 1, we have 

aV CV. Let V be a convex absorbing set in LE. The gauge of V is defined as 

the function p: E — R given by p(x) = inf{A>O0:2eErAV},Vare EL. 

6-4.10. Exercise Let V be a subset of a normed space &. Prove that if the 

origin is an interior point of V, then V is absorbing. 

6-4.11. Theorem Let p be the gauge of a convex absorbing set V in a vector 

space F.
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(a) p is a gauge on E. 

(b) If pz) < 1 thenz eV. 

(c) Ifa € V then p(2) < 1. 

(d) If V is balanced, then p is a seminorm. 

Proof. (a) Let x,y be given points in &. From absorbing, the set 

{A > 0: 2 € AV} is non-empty and hence 0 < p(x) < oo. Let e > 0 

be given. There are a, > 0 such that a < p(z)+e, B < ply) +e and 

xz eéaVv, y € BV. Since V is convex, we have x+y € (a+ B)V. Hence 

pPet+y) < a+B < p(x) + ply)+2e. Since € > O is arbitrary, we have 

piety) < plz) + ply). Now if z = 0 € EB, then z € AV for all A > O and 

hence p(z) = 0. Thus p(ax) = 0 = ap(x) holds for a = 0. Suppose a > 0. Then 

pox) = inf{A > 0: ax € AV} =inf{ap > 0:ar €CayuV}, where A= ap 

=ainf{p > 0:2 € pV} = ap(z). 

Therefore p is a gauge on E. 

(b) Suppose p(z) < 1. There is p(z) < A < 1 satisfying « € AV. Hence 

xE(l—-ANO+AV CV. 

(c) Ifa eV, then z € AV for A= 1 and hence p(x) < A= 1. 

(d) Take any a # 0 in K. Since V is balanced, ax € AV iff lalz € AV. 

Therefore we have 

plow) = inf{A > 0: a2 € AV} =inf{A > 0: ale € AV} = p(lal|x) = lalp(x). 

6-4.12. Geometric Extension Theorem Let A be a non-empty open convex 

set in a normed space E. If M is a flat disjoint from A, then there is a closed 

hyperplane H containing M and disjoint from A. 

Proof. Consider the real normed space FE first. By translation, we may assume 

O¢ A. Then A is a convex absorbing set. Let p be the gauge of A. Since M is 

a flat, there is a vector subspace S and a € E such that M =a+S. Because 

AO M =9, we have 0 ¢ M,i.e. ag S. Let T be the vector subspace spanned 

by S and a. Then every vector in T can be written uniquely in the form Aa+s 

where s € S and A&R. Define g(Aa +s) =X. Clearly g is a linear form on T’. 

If \ > 0, we have a+(s/A) € M, or a+(s/A) ¢ A. It follows pla + (s/X)] > 1, 

Le. p(Aa+s) > A= g(Aats). If X < 0, then gAat+s) =A <0 < p(Aats). Thus 

for all y € T, we have g(y) < p(y). Hence g can be extended to a linear form 

f on E satisfying f(x) < p(x) for all x € E. Since 0 € A, there is BQO, 5) c A. 

Take any x € B(O,6). Then +2 € A and hence p(+x) < 1. If f(x) > 0, then
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If(@)| = fle) < p(x) < 1. If fie) <0, then | f(a) = f(z) < p(—x) < 1. Thus 
f is bounded on the ball B(O,r) and consequently, f is a continuous linear 

form on E. Let H = {x € E: f(x) = 1}. Then @ is a closed hyperplane 

in E. Now, suppose x € M. Write x =a+s wheres € S. Then xz € T. 

Hence f(x) = g(x) = g(a+s)=1,ie. x € H. Therefore H c M. Finally, 

take any x € A. Let y(A) = Ax for all A € IR. Then ¢ is continuous on R. 

Since y—!(A) is an open subset of IR and 1 € y7!(A), there is 1 < 6 € y~'(A), 

ie. Bx = y(B) € A. Thus f(z) < p(x) < (1/8) < l,ie. x ¢ H. Therefore 

# is disjoint from A. This proves the case for real normed space &. Next, 

suppose E is a complex normed space. By translation, we may assume 0 € M. 

Let F,. be the real vector space associated with FE. By the real case, there is 

a closed real hyperplane H, in E, containing M and disjoint from A. Since 

0 ¢ H,, H, is a real hypersubspace in F,. Hence H = H,MidH is a closed 

complex hypersubspace in F. Since M is a complex vector subspace, we have 

M =iM CiH,, ie. MC H. Observe that AN H =(AN A,) iH, =9. This 

completes the proof. Oo 

6-4.13. Exercise Prove that a hyperplane in a normed space is either closed 

or dense. 

6-4.14. Exercise Prove that a normed space is infinite dimensional iff there 

is a dense hypersubspace. 

6-5 Separation by Hyperplanes 

6-5.1. Let E be a vector space. Let H be a real hyperplane given by 

H = f7'(a) where f is a real linear form on E and \ € R. A subset A of 

E is said to lie on one side of the real hyperplane H if we have f(a) < 4,V a € A; 

or f(a) > 4,Vae A. A subset A of E is said to lie strictly on one side of the 

real hyperplane H if we have f(a) < A,V a € A; or f(a) > A,Va € A. It can 

be easily proved that the definition is independent on the representation of H 

in terms of f, A. 

6-5.2. Lemma Let A be a convex set in a vector space F and FH a real 

hyperplane in F. Then A lies strictly on one side of H iff AN H =@. 

Proof. Let H = f~'(\) where A € R and f areal linear form on E. Assume 

ANH =9. Suppose to the contrary that A does not lie strictly on one side of 

H. Then there are a,b € A such that f(a) < A < f(b). There is 0 <t < 1 such
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that A = (1 — t)f(a)+tf(b). Since A is convex, x = (1 —tH)a+tbis in A. Also, 

f(x) =. Hence x € ANH which is a contradiction. Therefore A lies strictly 

on one side of H. The converse is obvious. oO 

6-5.3. Lemma Let H be a closed real hyperplane in a normed space E. If 

A C E lies on one side of H, then its interior A® lies strictly on one side of H. 

Proof. Let H = f-'(A) where f is a continuous real linear form on E and 

» € R. Since A lies on one side of H, we may assume f(a) < A,V a € A; 

otherwise replace f by —f and » by —A. Since f 40, there is b € E such that 

f(b) > 0; otherwise replace b by —b. Take any a € A®°. There is r > 0 such that 

B(a,r) C A. LetO< p< Te Then ||b|] <r and hence a+ pb € B(a,r); or 

atub € A. Therefore we have f(a) < f(a)+uf(b) = f(atpub) < A. Consequently, 

A lies strictly on one side of H. im 

6-5.4. Exercise Let A be a convex set that lies on one side of a hyperplane 

H. Prove that if A has at least one interior point, then H must be closed. 

6-5.5. Exercise Let H be a closed hyperplane in a normed space £ and let 

AC E lie on one side of H. Prove that its closure also lies on one side of H. 

6-5.6. Theorem Let A,B be two non-empty convex sets in normed space 

E. If the interior of A is a non-empty set disjoint from B then A,B can be 

separated by a closed real hyperplane. 

Proof. Since both A,B are convex, B — A° is convex and also open because 

B- A°=\J-36— A®. The condition Bm A° = @ ensures that the flat {0} 

consisting of one point is disjoint from the non-empty open convex set B— A°®. 

There is a closed real hyperplane H containing {0} and disjoint from B— A°. 

Since H contains the origin, it is a hypersubspace. There is a continuous real 

linear form f one E such that H = ker(f). It follows that B— A°® lies on 

one side of H. Without loss of generality, we may assume f(r) > 0 for all 

a € B—A?, otherwise replace f by —f. Then for all a € A®° and all b € B, we 

have f(a) < f(e). Let A = sup{ f(a): a € A°}. Since f is continuous, we have 

f(a) < A for all a € A°- = A~. Hence f(A) < A < f(B). Therefore A, B are 

separated by the closed real hyperplane {z € E': f(z) = A}. oO 

6-5.7. Theorem Let A, B be two disjoint non-empty closed convex sets in a 

normed space E. If one of A, B is compact, then A, B can be strictly separated 

by a closed real hyperplane.
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Proof. For convenience, assume that A is compact. Then the function d(x, B) 

is continuous on A. Since B is closed, d(z,B) > 0 for all ec € A. By 

compactness, we have r = 4d(A, B) > 0. Let V = {tf € E: d(z,A) < r} 

and W = {x € E:: d(w, B) < r}. Since d(z, A) is continuous in x, V is an open 

set. To show the convexity of V, take any x,y € V and 0 <¢< 1. There are 

a,b € A such that ||z — || <r and |ly— || <r. Since A is convex, (l—t)a+tb 

is in A. Hence 

d{(1 — t)r + ty, A] < |{[(. — t)x + ty] — [1 — Ha + tb) 

< (1-282 — all + tly — d|| <r, 

ie. (1 —t)e+ty € V. Therefore V is an open convex set. Similarly W is also 

an open convex set. By simple calculation, V,W are disjoint. They can be 

separated by some closed real hyperplane H. Since V is open, V lies strictly 

on one side of H and W strictly on the other side of H. Since A Cc V and 

BCW, A,B are strictly separated by H. oO 

6-5.8. Corollary Let A be a non-empty closed convex set in a normed space 

E. Then for every b € EF \ A, there exists a continuous real linear form f on E 

such that f(b) < inf f(A). 

Proof. The singleton {b} is a compact convex set disjoint from the closed 

convex set: A. There is a closed real hyperplane H which strictly separates A 

and b. There is a continuous real linear form f on E and A € R such that 

f(b) <A < f@,V¥ae€A. The result follows immediately by taking infimum 

over a € A. Oo 

6-5.9. Important topics such as closed convex hulls represented in terms of 

supporting hyperplanes are beyond the scope of this book. It would be better 

done in the framework of locally convex spaces. 

6-6 Extreme Points 

6-6.1. Extreme points were introduced in §4-4.10. It was proved that 

extreme points of a simplex are the vertices. A simplex is the closed 

convex hull (§4-2.7) of its extreme point. This result will be generalized to 

infinite dimensional spaces. It is another example of applying Zorn’s Lemma. 

Since sophisticated applications are beyond the scope of this book, this section 

may be skipped without discontinuity.
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6-6.2. Let A be a non-empty subset of a vector space F. A non-empty subset 

X of A is called an extreme subset of A if for all x,y € A satisfying (2, y)NX #9, 

both x,y are in X. When X is a singleton, it becomes an extreme point. The 

following lemma follows immediately from definition. 

6-6.3. Lemma Let A, B,C be subsets of a vector space F. 

(a) If the intersection of a family of extreme subsets of A is non-empty, then 

it is again an extreme subset of A. 

(b) If A is an extreme subset of B and if B is an extreme subset of C’, then A 

is an extreme subset of C. 

(c) If Ac BC C and if A is an extreme subset of C, then A is an extreme 

subset of B. 

6-6.4. Lemma Let M be a non-empty closed extreme subset of a compact 

convex set A in a normed space &. If X is a closed convex set in E satisfying 

M\X #@ and Mn X +9, then there is a closed extreme subset N of A such 

that NC MandN CX =9. 

Proof. Suppose a € M\X. There is a continuous real linear form f on & such 

that f(a) < inf f(X). As a closed subset of the compact set A, M is compact. 

There is m € M such that f(m) = inf FM). Let N = {z 6 M: f(z) = f(m}. 

Since m € N, N is a non-empty closed subset of M. Now for all z € N, we 

have 

f= fm = inf f(M) < fla) < inf F(X). 

Thus NOX = 9. Finally suppose x,y are in M satisfying z = (1—t)r+ty € N 

where 0<t <1. Then f(x) > inf f(M), f(y) > inf f(M) and 

(1 —t) f(z) + tf) = f(% = inf Ff). 

This implies f(x) = inf f(/) and f(y) = inf f(M). Hence x,y € N. Therefore 

N is an extreme subset of M. It follows that N is also an extreme subset 

of A. o 

6-6.5. Krein-Milman Theorem Every non-empty compact set A in a normed 

space / has an extreme point. 

Proof. Let P be the family of all non-empty closed extreme subset of A. 

Then P is non-empty since A ¢ P. It becomes a partially ordered set under 

inclusion. Let {C; : 7 € I} be a chain in P. Let C =(),-,; C;. As closed subsets 

of the compact set A, all C, are compact. Take any finite subset J of J. By 

definition of a chain, C; C; is either C; or C;. Hence Nic 7 Cj is actually
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one of C; and thus the intersection is non-empty. By compactness, we have 

C #6. Consequently, C is a closed extreme subset of A. Therefore C is a 

lower bound of the given chain. By Zorn’s Lemma, P has a minimal element, 

say M. Suppose to the contrary that M contains at least two points a = b. 

There is a closed extreme subset N of A such that N Cc M anda ¢ WN. This 

contradiction to the minimality of 44 shows that M is a singleton. Therefore 

A has at least one extreme point. oO 

6-6.6. Theorem Every non-empty compact convex set A in a normed space 

£ is the convex hull of its extreme points. 

Proof. Let X be the closed convex hull of extreme points of A, ie. the 

intersection of all closed convex sets containing all extreme points of A. Since 

A itself is a closed convex set containing all extreme points of A, we clearly 

have X Cc A. Suppose to the contrary that A\ X #0. Then there is a closed 

extreme subset B of A such that BM X = @. Let b be an extreme point of 

B. Then it is also an extreme point of A and hence b € X which contradicts 

BOX =9. Therefore A\ X =, ie. Ac X. This completes the proof. oO 

6-6.7. Exercise Let A be the smallest convex set in IR? that contains the 

points (1,0,+1) and (cos @, sin 6,0) for 0 < 9 < 2a. Show that A is compact 

but that the set of all extreme points of A is not compact. 

6-6.8. Exercise Prove that for 1 <p < oo, every point on the unit sphere of 

IR; is an extreme point of the closed unit ball. 

6-6.9. Exercise Prove that the unit sphere of cp has no extreme point. 

6-7 Baire’s Property 

6-7.1. The nested property of a complete metric space will be translated into 

Baire’s Theorem which has become an important tool to derive existence in 

many occasions. Originally, metric spaces were classified as first and second 

categories in terms of nowhere dense sets. These topics have been dropped in 

this book in order to shorten the path for the reader to get through the subject 

and then to start their own research as soon as possible. 

6-7.2. Lemma Let M be a closed subset of X. If M has empty interior, 

then every open ball contains a closed ball which is disjoint from M. 

Proof. Suppose to the contrary that there is an open ball B such that every 

closed ball B(a, 5) C B contains a point of M. We claim B c M. In fact, take 
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any a € Bandr > 0. Since B is open, there isO < 6 < r such that Ba, 6) c B. 

By assumption, there is some x € B(a,d)O M. Hence d(z,a) < 6 < 1, ie. 

xz € Bia,r) NM. Therefore a is a closure point of M. Since M is closed, we 

have a €¢ M. This proves B c M. Since B is open, B Cc M°. Therefore M° is 

non-empty. This contradiction establishes the proof. Bb 

6-7.3. Baire’s Category Theorem Let X be a complete metric space which 

is not empty. If it is covered by a sequence {A,} of closed sets, then at least 

one A, has non-empty interior. 

Proof. Suppose to the contrary that all A, have empty interior. Take any 

ag € X and define rp = 1. Since A; has empty interior, the open ball B(ag, 79) 

contains a closed ball B(a1, 6,) which is disjoint from A,. Let r; = min{1/2, 6}. 

Inductively, since A, has empty interior, the open ball B(e,_),rn_1) contains 

a closed ball Bian, 5,) which is disjoint from A,. Let r, = min{1/2", dy}. 

Observe that B(an,7n) C Blan, dn) C Blag_1,tn—1) C Blan_1,Tn—1). Hence 

{B(an,Tn)} forms a decreasing sequence of closed sets. Furthermore, 

diam Blan, fn) < 2rn < 1/2"! 4 0. 

By Nested property of complete metric spaces, the set (\72, B(an,7n) contains 

some point, say b. Since {A,,} covers X, we have b € A, for some n. Now the 

contradiction b € Bi@n, tn) M An C Blan, bn) An establishes the proof. oO 

6-7.4. Exercise Prove that an infinite dimensional Banach space is not a 

countable union of compact sets. 

6-7.5. Exercise Let f, : X — IR be a sequence of continuous functions on 

a complete metric space X. Prove that if for each z € X, SUP, >1 In(z) < oc, 

then there is a non-empty open subset V of X such that 

sup{fn(z): n> 1.x € V} <0. 

6-8 Uniform Boundedness 

6-8.1. In addition to applications to some classical problems which will be 

formulated as exercises in this section, Uniform Boundedness Theorem asserts 

that pointwise bounded sets are normed bounded. This result will be used to 

develop complex analysis on Banach spaces and will form the foundation of 

weak convergence.
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6-8.2. Uniform-Boundedness Theorem Let E, F be normed spaces and let 

{fi : «© I} be a family of continuous linear maps from £ into F. If E isa 

Banach space, then sup || f;(x)|| < oo, V 2 € E implies sup || f,|| < 00. 
ier ier 

Proof. For each integer n > 1, define H, = {zc € E: ||f,(x)|| < n, Vi € I}. 

Since the function x — || f,(z)|| is continuous, its inverse image of the closed 

set [0,7] is closed. Hence each H, is closed in E. The given condition ensures 

E =U? An. Since E is a Banach space, it follows from Category Theorem 

that some H,,, has an interior point, say B(a,2r) C Hm where r > 0. We claim 

sup || fil] < =, In fact, take any ||z|| <1 in B and any i € I. Then both a 

and a+rzx are in B(a,2r) and hence in H,,. Thus, 

firz)|| < | flat rz)|| + || — fila)|| < m+m=2m, 

or || fi(x)|| < orn Taking supremum over ||z|| < 1, we have |[f;|| < 2m for all 

ié J. This completes the proof. Bo 

6-8.3. Banach-Steinhaus Theorem Let E,F be normed spaces and 

{fn im > 1} a sequence of continuous linear maps from £ into F. If E is 

a Banach space and if the limit g(x) = limp—oo fn(z) exists for each x € EF, 

then g is a continuous linear map from EF into F’. Furthermore we have 

Ilg|| < lim inf || fa || < sup || fall < o°. 
n—00 n> 

Proof. For each x € E, the convergent sequence {f,(x) : n > 1} is bounded 

in F. Since E is a Banach space, we have sup || f,,|| < oo. Clearly, g is a linear 
n>) 

map. Next, let ¢ > 0 be given. Take any eal < lin E. Since g(x) = lim f,(2), 

there is an integer & such that for all n > k, we have ||g(z) — fn(x)|| < €, ie. 

IIg@)|I < lg) — fa(@)|| + Ifn@)!] S € + IIfall- 
Hence || g(z)|| < ¢ + lim infp_..0 || fn ||. Taking supremum over ||z|| <1, we get 

IIgll < ¢ + lim inf || fall < € + sup || fall < 00. 
n—00 n> 

Therefore g is continuous. Since € > 0 is arbitrary, we have |{g|| < lim inf || f,|l. 

This completes the proof. Oo 

6-8.4. Corollary Between Banach spaces, pointwise limits of continuous 

linear maps are continuous. 

6-8.5. Exercise Let y, be the projection of a sequence to its n-th term and 

let fa =NYn. Show that
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(a) Each f, is a continuous linear form on F,,. 

(b) For every x € F,., the set {|fn(z)|:n > 1} is bounded in R. 

(c) The set {il f,|| : 2 > 1} is not bounded. 

6-8.6. Example Let a = (a);,a2,a3,--:) be a given sequence of numbers. 

If for every x = (21, %2,23,---) € &, the series yet aj; converges, then we 

have a € £,, 

Proof. Define fn : £; —~ K by fa(v) = yet a;x;. Then each f, is a 

continuous linear form with ||f,|| = maxi<j<, |a;|. For each x € 4), since 

the partial sums of the convergence series an a,x; are bounded, we obtain 

sup, |fn(z)| = sup, | }25-, 4j2j| < 00. By Uniform Boundedness Theorem, we 

get sup, lan} = sup,, || fll < 00, ie. a € Loo. B 

6-8.7. Exercise Let a = (a;,a2,03,---) be a given sequence of numbers and 

1 <p <oo. Prove that if for every x = (x1, 42, £3,:-+) € £p the series yp a52; 

converges, then we have a € £, where at ; =1. 

6-8.8. Exercise Prove that the series an a, of complex numbers converges 

absolutely if for every x = (x1, 22,---) € co, the series Sp a;Z; converges. 

6-8.9. Exercise Prove that there is no sequence {a,} of complex numbers 

with the following property: a series vie x; of complex numbers converges 

absolutely iff the sequence {a,z,,} is bounded. 

6-9 Open Map and Closed Graph Theorems 

6-9.1. Let X,Y be metric spaces and let f : X — Y bea surjection. Then f is 

called an open map if for every open subset M of X, the image f(M) is open in 

Y. Note that a bijective open map means that its inverse map is continuous. 

6-9.2. QOpen-Map Theorem Let E, F be Banach spaces. Every continuous 

linear surjection f : E — F is an open map. 

Proof. Let V = {x € E: ||z|| < r} be a ball in £. We claim there is a 

closed ball contained in f(V). In fact, for every x € E, there is m > ||z||/r, ie. 

z/m € V, or z € mV. Hence we have E = J”, mV. Since f is a linear 

surjection, we obtain F = UJ°°_, mf(V) C UP_, mfV), ie. F = UP, mf(V). 

Because all mf(V) are closed subsets of the Banach space F’, Category theorem 

guarantees that mf(V) has an interior point. Since « > x/m is a homeomor- 

phism, f(V) also has an interior point, say a. Suppose B(a,3s) c f(V) where
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s>0. Let W={ye F: |ly|| < s}. Toshow W c f(V), take any w € W. Then 

both a and a+2w are in B(a,3s) and thus in f(V). There are zn, y,, in V such 

that f(tn) - a and f(y,) — a+2w asn — oo. Clearly, fGun _ En) —w. On 

the other hand, since ||}¥n — 32n|| < $|lyn{| + 4lleall <r, ie. yn — dan € V. 

Therefore w € f(V). This proves W c f(V). Next, we claim W c 2f(V). Take 

any w © W. Then w € f(V). There is 2; € V such that ||w — f(#,)|| < 48. 

Let y, = 21. By induction, suppose that £,, yn, have been chosen so that, 

1 1 1 
Un = 2 + 522+ 5703 ato: + ypaT tn: #1 

1 
and lo — F@nd|| S mn #2 

Then 2"[w — f(yn)] is in W and hence also in f(V). There is 2,4, € V such 

that |]2"[2 — fn)] — f(r) < 38. Let Yns1 = Yn t+ Ena. By induction, we 

have chosen sequences {z,,} and {yn} satisfying both # 2. Now observe that 

all < Beal + slheall + splleall +--+ se—plleall Sr 5+ tS S Or 
Hence {y,} converges to some y € E. The continuity of f gives f(yn) — f(y). 

By #2, we also have f(y,) + w. Therefore w = f(y). Since |ly|| < 2r 

fu = fGy) € f(V), or w € 2f(V). So we obtain W Cc 2f(V) as required. 

Finally, let H be an open subset of E. Take any + € H and let y = f(a). 

Since H is open, we have B(z,2r) Cc H for some r > 0. Let V be defined as 

above. Construct W as above. We claim B(y, 38) c f(A). In fact, take any 

ze Buy, 4 s). Then ||z — yj] < 3s, Le. z—-ye 3W. There is v € V such that 

z—y=f(v). Thus z=y+ fw) = f(e+v). Now (a+ v) — 2|| = |lv|| <r < 2r, 

ie. c+v € Baz,2r), or e+v € H. Therefore z € f(H). Since z is arbitrary, 

we have Biy, 38) Cc f(A) as claimed. Because y € f(A) is arbitrary, the set 

f(A) is open in F’. This completes the proof. 0 

6-9.3. Banach’s Inversion Theorem Every continuous isomorphism between 

two Banach spaces is a topological isomorphism. 

Proof. It is left as an exercise. oO 

6-9.4. An exercise to show that a continuous isomorphism of which the inverse 

need not be continuous, was given in §3-6.3. 

6-9.5. Since continuous linear maps are bounded above, it would be natural 

to ask questions about linear maps that are bounded below. This result will 

be used to deal with spectral theory in Hilbert spaces. Let EF, F be Banach



132 Foundation of Functional Analysis 

spaces and f : EF — F a continuous linear map. Then f is said to be bounded 

below if there is 6 > O such that 6||z|| < || f(«)|| for all 2 € E. 

6-9.6. Lemma If f is bounded below, then the range f(£) is closed in F. 

Proof. If suffices to show that f(£) is complete. Let {f(zn)} be a Cauchy 

sequence in f(£). Since f is bounded below, there is 6 > 0 such that 

d||z|| < || f(e)|| for all z € #. Hence 

tm ~ all < [fm ~ fn)||/6 = ||f@m) — f@n)|/6 > 0. 
Therefore {z,} is a Cauchy sequence in the Banach space £. The limit 

y = limz, exists in &. Since f is continuous, f(t) — f(y) and f(y) € f(E). 

Therefore f(£) is closed. oO 

6-9.7. Theorem The continuous linear map f is a topological isomorphism 

iff it is bounded below and has a dense range f(£). 

Proof. (=) Assume f is topological isomorphism. Then f(£) = F is dense in 

F. Now for every z € E, we obtain ||x|| = ||f-' (| < F7'Il [| f@||- Since 

1 = |Z] = FEF I < FTE ISI, we have |[f7!|| 40. Therefore the number 

6 =1/||f|| > 0 satisfies the requirement. 

(<) Since f is bounded below, f(£) is closed in F. Because f(£) is dense in 

F, we have f(£) = F, ie. f is surjective. Let 6 > 0 satisfies é||z|| < || f(x)|| 

for all z ¢ FE. Then f(x) = 0 implies z = 0. Hence f is injective. Now f is 

a continuous isomorphism. By Banach Inversion Theorem, f is a topological 

isomorphism. Oo 

6-9.8. Let X,Y be metric spaces and f : X — Y a given map. Then the set 

{(a, f(z) € Xx Y : a4 € X} is called the graph of f. The map has closed graph 

if its graph is a closed subset of the product metric space X x Y. Clearly, f 

has closed graph iff z, — x in X and f(z,) — y in Y imply y = f(z). Hence 

whether the graph is closed in the product space, is independent of the choice 

of the product metric. 

6-9.9. Exercise Prove that every continuous map from a metric space into 

a metric space has closed graph. 

6-9.10. Closed Graph Theorem Let &, F be Banach spaces and f: FE — F 

a linear map. If the graph of f is closed, then f is continuous. 

Proof. Let G be the graph of f. Since f is linear, G is vector subspace 

of the product space E x F. Since both EF, F are Banach spaces, so is the
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Ex F. Since G is closed in E x F, G is also a Banach space. Let A(z, y) =x 

and k(x, y) = y be projections from E x F onto E, F respectively. Then both 

h,k are continuous linear maps. The restriction h|G is actually a continuous 

isomorphism from the Banach space G onto the Banach space & and hence it 

is a topological isomorphism. Its inverse map (h|G)~' : E — G is a continuous 

linear surjection. Hence the composite map f = k(h|G)~' is also continuous.0 

6-9.11. Exercise Let f : F.. — Foo be defined by f(x) = (x1, 222, 323,---), 

for all x € F,,. Prove that the inverse map f—! is continuous and hence f has 

a closed graph. Show that f is discontinuous. 

6-9.12. Exercise Let A,B be closed vector subspaces of a Banach space E 

such that AM B = {0}. Prove that A+ B is closed in E iff there is \ > 0 such 

that for each a € A and b € B, we have |la|| < Alla + bd]. 

6-9.13. Exercise Let E, F be Banach spaces and g: & > F a linear map. 

Show that if for every u € F’, ug: E — K is continuous then g is continuous. 

6-99. References and Further Readings : Antosik, Cohen, Fan-63, Asimow, 

Horowitz and Holland-73. 



Chapter 7 

Natural Constructions 

7-1 Bidual Spaces 

7-1.1. Let & be a normed space. The dual space E’ of E is a Banach 

space. Again the dual space of E’ is also a Banach space which is called the 

bidual space of E and is denoted by E”. Next theorem says that E can be 

identified as a subspace of EF”. Bidual spaces provide a very simple proof of 

the existence of completions. Later, it will be shown that every element f € E” 

can be approximated by a vector « in & on any given finite dimensional vector 

subspace of E’ without increasing too much of its norm. 

7-1.2. Bidual Embedding Theorem Let E be a normed space. For each 

xz € E, let (Jx)(u) = u(x) for all u € E’. 

(a) Jz is a continuous linear form on LE’. 

(b) J: E + E” is a linear isometry. 

(c) For every x € E, we have ||z|| = sup{|u(x)| : uw € EB’, |lul| < 1}. 

Proof. Clearly Jz is a linear form on E’. Since |(Jx)(w)| = |u(x)| < full lle, 

Jz is continuous on E’ and ||Jz|| < ||z||. Therefore Ja ¢ E”. It is routine to 

show that J is a linear map from FE into E”. Take any x € &. There is v € E’ 

such that ||v|| = 1 and v(x) = ||x||. Hence 

|| Zz} = sup{|(Jx)(u)} : u € EB’, jul} < 1} 

= sup{|u(x)|: u € EB’, |lul] < 1} > v@) = lle]. 

Therefore J is a linear isometry. Finally for each 2 € &, we have 

|x|] = Fel] = sup{|(Fx)(u)| = |Iul] < 1} = sup{le(x)| : lull < 1}. 0 

7-1.3. The map J above is called the natural embedding from E into its bidual 

space E’, We shall identify E as a vector subspace of E” via the natural 

embedding. 

7-1.4. Let E be anormed space. Then a Banach space F is called a completion 

of £ if E is isometrically isomorphic to a dense subspace of F. Clearly, every 

Banach space is a completion of itself.



7-1 Bidual Spaces 135 

7-1.5. Theorem Every normed space has a completion. 

Proof. Let J be the natural embedding of a normed space E into its bidual 

space E”, Let F be the closure of J(E) in E”. Since E” is a Banach space, 

F is also a Banach space. Consequently F is isometrically isomorphic to the 

dense subspace J(£) of F. Therefore F is a completion of E. Oo 

7-1.6. Generalized Orthonormalization Process Let E* be the algebraic dual 

of a vector space FE. If 1, u2,--+,u, are linearly independent in E*, then there 

are £1, %2,°--,£p in E such that u,(x;) = 6,; for all 1 <i, 7 <n where 6,; = 1 if 

i= 7 and 6,; = 0 otherwise. This should be compared with the corresponding 

result in linear algebra. Note that Chapter 13 especially §13-2.7 should be read 

concurrently. 

Proof. We shall prove by induction on n. For nm = 1, since wu; is non-zero, 

there is y, € E satisfying ui(y,) #0. Let 2; = y)/ui(yi). Then u(21) = 1. 

Next, assume that uj, v2,---,tUn,Un41 are linearly independent in E*. By 

inductive assumption, there are y;, y2,---,Yn in & such that u;(y;) = 64; for all 

1<1,j7 <n. Define 

U= Und — ea Uns (Yi)Ui- 

Since uw, t2,--+, Un+1 are linearly independent, we have u #0. There is y € E 

such that u(y) #0. Let 

ray a us(ydyy- 

Observe that for all | < i,j <n, we have 

uly) = Uns Yj) — ~~ Uns (ysuilys) = 0, 

us(@) = ust) — YO es(yus(ys) = 0, 

ula) = uly) — D0”, us(Wutys) = wy) #0. 

Define 2ys) = a and 23 = yj; —Unn(yj)Pn41 for 1 <j <n. Then for 
u 

1<i,7 <n, we have ui(n41) = ui(x)/u(x) = 0, 

Unei(2ns1) = “a _ u(x) + Sr Boe =1, 

Une+l (x3) = Until (y;) _ Uns (Yj Unsi (Fn41) =0 

and Ui(x 3) = Uys) — Una yp UilEns1) = big. 

This completes the proof. oO
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7-1.7. Corollary Let EF be a normed space. If 2;,22,---,2, are linearly 

independent in &, then there are continuous linear forms u),u2,---,U, on EF 

such that ui(7;) = 64; for all 1 <i,j <n. 

Proof. Since J(2), J(x2),--+,J(2n) are linearly independent in E”, there are 

Uy,U2,°'+,Un € E’ such that u,(x;) = J(x;)(us) = 6; for al 1 <i,7 <n. Oo 

7-1.8. Bidual Approximation Theorem Let F be a Banach space and J the 

natural embedding of E into its bidual space &”. Given any f € FE”, for any 

U1, U2,°+',Un € EB’ and for each ¢ > 0, there is x € E such that ||x|| < ||7|| + 

and (Jx)(u;) = f(us), for all lb <i<n. 

Proof. Since the theorem is linear in u;, we may assume that wu), u2,-+-, Un are 

linearly independent. For each x € E, define y(r) = (ui (2), UZ), «°° ,Un(2)). 

Since all u; are continuous on EF, y is a continuous linear map from E into 

KK”. The independence of w,u2,-+-,U, offers a1,02,---,Q, € FE such 

that ui(a;) = 6;; for all 1 < i,j <n. For each r = (r1,12,---,7n) in K”, 

let b = Le r;a;. Then we have u,(b) = r; and hence y(b) = r. This 

shows that y is a continuous surjection from the Banach space E onto 

the Banach space IK". By Open-Map Theorem, ¢ is an open map. Let 

B={reE: |x| < ||f||+e}. Since B is open convex balanced, so is y(B) and in 

particular absorbing. Let p be the gauge of y(B). Then p is a seminorm on Kk”. 

Let s = (f(u), f(u2),---, f(un)). Suppose to the contrary that s ¢ y(B). Then 

p(s) > 1. There is a linear form g on KK” such that 9(s) = p(s) and |g(y)| < ply) 

for all y € K”. Assume that the linear form g on KK” has the representa- 

tion gy) = STL, As for all y = (y1,y2,:--, Yn) € KK” where d4,A2,-°-,An 

are some constants in K. Let u = Ayu, + Aqua +++: +AnUn. Then we get 

[u(b)| = | STL, Actea(b)| = [ge()| < 1 for all be B. Taking supremum over b € B, 

we have |lull(||fl| +€) < 1. Also 1 < g(s) = S72, Aft) = fu) < [fll lull. 
Hence we obtain a contradiction ||f|| +e < ||f||. Therefore s € y(B). 

Consequently there is « € B such that v(x) = s, ie. |[z|| < |[fi| + ¢ and 

u,(x) = f(u;) for all l<i<n. oO 

7-2 Quotient Spaces 

7-2.1. Let & be a normed space and M a closed vector subspace of &. Let y 

be the quotient map from £ onto the quotient space F/M. For each a € E, 

the quotient norm of y(a) in E'/M is defined by 

ily(@)|| = d(a, M) = inf{|la — zl] : 2 € My}.
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Clearly it is independent of the choice of a. The quotient vector space F/M 

together with the quotient norm is called the quotient normed space. 

7-2.2. Lemma The quotient norm is a norm on the quotient vector space. 

Proof. Clearly ||p(a)|| = d(a,M) > 0. Observe that ||~(@)|| = d(a, M) = 0 iff 

aé M” =M iff y(a) =0. Next, suppose a,b € E are given. Choose any ¢ > 0. 

There are x,y € M such that ||a—z|| < ||p(@)||+ 46; and ||[b—y|| < |e@)|l+ fe. 

Hence 

lp(a) + p(b)|| = || pla + || < |(a+ 6) — (w+ y)||, because r+ y € M 

< lla—2|| + |]b — yl} < Ie@ll + eI] +e. 
Since € > 0 is arbitrary, we have |l(a) + y(b)|| < ||y(@)|| + |]e(b)||. Next, take 

any scalar 4. If \ = 0, then ||Ay(a)|| = || e(0)|| = 0 = |A||}~(a)||. Suppose A + 0. 

Then 

Iga) = keQa)]| = inf [ra — 2 
x =f ff Pte to inf |All — |] = IAI inf, Hla — all = Alllec@)| 

Therefore the quotient norm is a norm on the quotient space. QO 

7-2.3. Theorem ‘The quotient map is an open continuous linear surjection. 

Proof. Clearly ¢ is a linear surjection. Since ||y(a)|| < |le|l, ¢ is continuous. 

Let A be an open subset of E. Take any a € A. Since A is open, there is 

r > 0 such that Bia,r) c A. We claim Biy(a),r] Cc y(A). In fact, suppose 

l(c) — y(a)|| <r. Then ||y(e— @)|| <r. There is x € M with ||e—a—2|| <r. 

Hence c— x € Bia,r), or e— 2 € A. Thus y(c) = y(e— z) € (A). This proves 

Bly(a),r] C (A). Therefore y(A) is an open set in F/M. DR 

7-2.4. Theorem If & is a Banach space, then so is the quotient space F/M. 

Proof. To show that E/M is complete, let {a,} be a sequence in EF such 

that ||~(ansi) — 9(@n)|| < 2~” for all n > 1. It suffices to prove that {y(an)} 

converges in F/M. Choose x; = a1. Inductively, assume that x, € E has been 

chosen such that y(tn) = Yan). Since ||~(ans1) — g(an)|| < 27-™', there is 

z € M such that |l@n4j — Qn — 2|| < 277. Let tag, = Gna) — Qn —Z+2n. Then 

P(En+1) = Plans) — PlGn) — p(2) + P(@n) 

= Panu) — Plan) — 0+ Glan) = (ans). 

Furthermore, we have ||tn+1 —Zn| = |lang1 —@n —2|| < 27"*!. By completeness 

of E, z, — a for some a € &. Because the map ¢ is continuous, we obtain 

plan) = P(fn) — va). Therefore {y(a,)} converges in F/M. gq
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7-2.5. Theorem Let E,f be normed spaces and f : E — F a linear map 

from F into f°. Suppose M is a closed vector subspace contained in the kernel 

of f; and y the quotient map from E onto F/M. 

(a) There is a unique linear map g from E/M into F such that f = gy. 

(b) The map g is continuous iff f is. 

Proof. (a) It follows algebraically from M C ker(f). 

(b) Suppose f is continuous. Let ¢ > 0 be given. Then there is 6 > 0 such 

that for all ||z|| < 6 in E, we have ||f(z)|| < ¢. Now take any ||p(a)|| < 46 in 

E/M. There is y € M such that |la — y|| < 6. Hence 

Ilge(a)|| = llge@ — yl = Ife - wll <e. 
This proves that g is continuous. The converse is obvious. oO 

7-2.6. Exercise Suppose f is continuous. Prove that the map g is an open 

surjection iff f is. Prove that if M =ker(f) then ||f|! = |tgll- 

7-2.7. Exercise Let F be a normed space and M a closed subspace of FE. 

Prove that if both M and E/M are complete, then so is E. 

7-2.8. Exercise Let M be a vector subspace of a vector space E. Prove that 

the vector space (F/M) x M is isomorphic to F. 

7-3 Duality of Subspaces and Quotients 

7-3.1. Let FE be a normed space and EF’ its dual space. The orthogonal 

complement of a subset M of E is defined by M+ = {u € E’ : u(M) = O}. 

On the other hand, the orthogonal complement of a subset H of E’ is defined 

by H+ = {xz € E: H(z) =0}. The duality theory of this section will be used 

to develop Riesz-Schauder theory of compact linear operators. 

7-3.2. Lemma (a) M+ is a closed vector subspace of E’, 

(b) H+ is a closed vector subspace of F. 

Proof. (a) Let J be the natural embedding of E into E”. Because 

M+ = (yen ker(Jz) and since all Jz are continuous on E’, M+ is 

therefore closed in E’. 

(b) It follows from H+ = ()j,¢, ker(A). 

7-3.3. Double Complement Theorem If M is a closed vector subspace of a 

normed space E, then M14 = M. 



7-8 Duality of Subspaces and Quotients 139 

Proof. Clearly we have M Cc M+. Conversely, suppose a € E\ M. Then 

there is u € E’ such that u(a) = d(a, M) and u(M) = 0. Hence u € M+ and 

u(a) #0. This shows a € E\ M+. Therefore M1! c M. It completes the 

proof. Oo 

7-3.4. Theorem Let B be a subset of a normed space FE. If M is the closed 

vector subspace spanned by B, then M+ = B+ and Bt1 =M. 

Proof. Clearly we have B C M and hence M +c B+. Conversely suppose 

u € Bt. Let x be a vector in the subspace N spanned by B. Then 

r= ve Ajb; for some scalars 4; € K and some b, € B. Therefore we get 

uU(Z) = wy Aju(b;) = 0. Next, let y be a vector in M. Then there is a sequence 

{xn} in N convergent to y. The continuity of u gives u(y) = lim u(x,,) = 0. Since 

y € M is arbitrary, we have u € M+. Consequently B4 c M+. The proof is 

completed by B14 =(Bt)! =(M+)t = M. oO 

7-3.5. Theorem Let M be a closed vector subspace of a normed space E. 

Let y be the quotient map from E’ onto the quotient space E’/M1+. Let f be 

the map from E’/M+ into M’ defined by f[y(u)](z) = u(x), for all u € E’ and 

all € M. Then f is a linear isometry form E’/M+ onto the dual space M’ 

of a closed vector subspace M. Therefore we can identify E’/M+ and M’. 

Proof. Suppose y(u) = y(v) where u,v € E’. Then u—v € M+. Hence for 

all « € M, we have (u — v)(z) = 0, ie. f[y(u)](x) = u(x) = v() = flyp(e)](2). 

Therefore f[y(u)] = f[y(v)]. Consequently, f is well-defined on E’/M+. Since 

u is continuous linear on M, f[y(u)] is in M’. Take any scalars a,@ € K. 

Observe that for all « € M, 

Flap(u) + Be@)\(z) = flplou + Bv)\(x) = (au + Bv)(x) 

= au(z) + Bo(z) = afly(u)\(z) + BFly()\(z) = {a fly(u)] + BAlP@)}@) 

ie. flap(u) + Py(v)] = af[y(u)] + Bfly)]. Hence f is a linear map from 

E'/M* into M'. Now consider u € E’, w € M+ and x € M. We have 

[flecu)](w)| = fu(a)| = |(u — w)(x)| < |}u — w]] [lor]. 
Taking infimum, we obtain 

FLoCeoN(o)| ink fu — wh fel = oe le. 
Since x € M is arbitrary, we get || f{y~(u)ll] < || y(u)|| for all u € E’. Finally, let 

h € M' be given. Then h has an extension u € E" such that |u|! = ||A||. Now 

for all c € M, we obtain f[y(u)](x) = u(x) = A(z), ie. f{p(u)] = h. Hence f is
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surjective. Furthermore, we get ||y(u)|| < ||u|| = |[A|| = ||fl~()]||. Therefore f 

is a linear isometry from E’/M+ onto M’. a 

7-3.6. Theorem Let M be a closed vector subspace of a normed space F. 

Let y be the quotient map from EF onto the quotient space F/M. Suppose 

that g: M+ — (F/M) be given by [g(u)}[~(x)] = u(x), for all u € M+ and all 

x € E. Then g is a linear isometry form M+ onto (E/M)’. Therefore we can 

identify M+ as the dual space of F/M. 

Proof. Suppose g(r) = y(y) and u € M+. Then z—y € M and hence 

uz — y) = 0, ie. fg ][y(z)] = [9(x)[y()]. Hence g(u) is well-defined on 

E/M. Next, for z,y € E and a, B € K, we have 

[g(u)]lop(x) + Bely)] = ou) I[p(ar + By)] = ular + By) 

= au(r) + Buly) = afg(u)][y(x)] + Blame]. 

Hence g(u) is linear on E'/M. Furthermore, for every z € M, we get 

[9(u)]l(a)] = Juta)| = Jule — 2)] < luli — 2. 
Taking infimum over z € M, we obtain |[g(u)][y(z)]| < ||ul| I|~(e)||. Hence g(x) 

is in (E/M)'. Moreover, we get ||g(u)|| < |lul]. For u,v € M+ and a,f € K, 

observe that 

[g(ou + Bvlly(2)] = (au + Bv)(z) = au(z) + Bo(z) 
= alg(ullp(2)] + AlgwIle(2)] = [ag(u) + BovIIP@)I, 

ie. g(au + Bv) = ag(u) + Ba(v). 

Hence g : M+ — (E/M)Y is a linear map. Next let h : E/M = K bea 

continuous linear form. Then u = hy is a continuous linear form on FE. Clearly 

u(M) = 0 and hence u € Mt. Since [g(u)]y(2) = u(x) = Aly(x)], we have 

g(u) = h. Therefore g is surjective. Finally, for all 2 € E and uc M+, we 

obtain |u(x)| = |[gw)]lo@)]! < lle) {IIle@)|| < llg@)|} Hel, Le. lull < la@ll- 
Therefore g is a linear isometry from M+ onto (E/My’. Oo 

7-4 Direct Sums 

7-4.1. Let E be a vector space and M,N vector subspaces of E. Then E is 

called an algebraic direct sum of M,N if every vector x in FE can be expressed 

uniquely as x = a+b where a € M andbe N. In this case, the map p: E 4 M 

defined by p(x) = a is called a projection from E onto M along N. Clearly, p is
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a linear map and it is also an idempotent, i.e. p? = p. The vector subspace N 

is called an algebraic complement of M. 

7-4.2. Lemma Let M,N be vector subspaces of a vector space E. Then the 

following statements are equivalent. 

(a) E is the direct sum of M and N. 

(b) F=M+N and MNN = {0} 

(c) The addition map f(a,b)=a+b:M x N > Eis an algebraic isomorphism. 

7-4.3. Let M,N be vector subspaces of a normed space &. Then F is called 

a topological direct sum of M,N if the addition map f: Mx N = EFisa 

topological isomorphism. In this case, N is called a topological complement 

of M. For convenience, write M = EON. See §13-10.6 for Hilbert spaces. We 

work with the norm ||(a, b)|| = |la|| + ||8|| for the product space M x N. 

7-4.4. Lemma Let M,N be vector subspaces of a normed space FE. If 

E=M®@N isa topological direct sum, then both M, N are closed. 

Proof. Let a, > x where a, € M. Write r =a+6withace M andbeN. 

Define 6, = 0 and rz, = an +by. Then x, — x in E. Since the addition 

map f(a,b)=a+b: Mx N — E is a topological isomorphism, we have 

fo'tn) — fo (2), Le. (an, bn) > (a,b) in M x N. Hence a, — a. Therefore 

x=aé€M. Consequently, M is closed in EF. Oo 

7-4.5. Theorem Let M,N be closed vector subspaces of a Banach space E. 

If FE is the algebraic direct sum of M, N, then E is also the topological direct 

sum of M,N. 

Proof. As closed subspaces of a Banach space EF, both M,N and hence 

their product space are also Banach spaces. Since FE is the algebraic direct 

sum of M,N, the addition map f : M x N — E is a continuous algebraic 

isomorphism from a Banach space M x N onto a Banach space EF. Therefore 

f is a topological isomorphism. Oo 

7-4.6. Theorem Let MM be a vector subspace of a normed space &. Then 

the following statements are equivalent. 

(a) M admits a topological complement. 

(b) There is a continuous linear idempotent from FE onto M. 

(c) There is a closed vector subspace N of EF such that 

(i) E is the algebraic direct sum of M, N; 

(ii) the quotient map is a topological isomorphism from M onto E/N.
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Proof. (a => b) Let N be a topological complement of M. Then the addition 

map f: Mx N — E is a topological isomorphism. Let g be the projection 

from the product space M x N onto M. Then p= gf7! is a continuous linear 

idempotent from F onto M. 

(b > c) Let N =ker(p). Then E = M+N is an algebraic direct sum. Since p is 

continuous, N is closed. Let p: E — E/N be the quotient map. Then y|M is 

a continuous algebraic isomorphism from M onto E/N. Since p = (y|M)~'¢ is 

continuous, (¢~|M4)~! is continuous. Therefore the quotient map is a topological 

isomorphism from M onto E/N. 

(c = a) Because F is the algebraic direct sum of M and N, the addition 

f:MxN = EB is an algebraic isomorphism. Clearly f is continuous. Let 

y: E = E/N be the quotient map. To show that f—! is continuous, let 

ty, —> xin FE, Let 2, = a, +b, and r = a+b be decompositions into M+ N. 

Then y(@n) = (En) > 9(z) = yla). Since y|M is a topological isomorphism, 

we have a, — a. Hence b, — 8, or (an, bn) > (a,b), i.e. fan) > fol (2). 

Therefore f is a topological isomorphism. Consequently, M admits a 

topological complement. Oo 

7-4.7.. Corollary Let F be a normed space which is an algebraic direct sum 

of two vector subspaces M,N. If M is closed and N is finite dimensional, then 

& is the topological direct sum of M,N. 

Proof. Let py: E — E/M denote the quotient map. Since F = M+ N is an 

algebraic direct sum, y|N is an algebraic isomorphism from a finite dimensional 

vector space N onto &/M and hence it is a topological isomorphism. Therefore 

F is the topological direct sum of M,N. oO 

7-4.8. Corollary Every finite dimensional vector subspace M in a normed 

space £ admits a topological complement. 

Proof. Let €;,€2,+++,€, be a basis in M. Define the linear forms g; on M by 

gi(Are, + Aze2 +: + + An€n) = A; for all scalars \;. Since M is finite dimensional, 

each g; is continuous on M. Let f; be a continuous linear extension of g; 

over the whole space F. Let p(z) = pe f;(z)e; for each z € &. Then p is 

a continuous linear idempotent onto M. Therefore M admits a topological 

complement. g 

7-4.9. Corollary Let MM be a closed vector subspace of a normed space E. 

Then for every finite dimensional vector subspace N of FE, the sum M+ N is 

a closed vector subspace of F.
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Proof. Let py be the quotient map from FE onto the quotient space F/M. 

Then y(JN) is a finite dimensional vector subspace of the normed space F/M. 

Hence (NV) is closed in E/M. Therefore the inverse image y—'[w(N)] = M+N 

of the closed set (NN) is also closed in E. 

7-4.10. Exercise Let E be a Banach space and P,@ two idempotents on E 

such that P+Q=TJ and PQ=QP=0. Let M =ker(P) and N = ker(Q). Show 

that E = M @N is a topological direct sum and that Im(Q) = ker(P). 

7-4.11. Let M be a vector subspace of a vector space EF. Then the dimension 

of the quotient space E’/M is called the codimension of M. 

7-4.12. Theorem Let M be a finite codimensional vector subspace of a 

normed space FE. If M is closed and if H is a vector subspace of E satisfying 

McCHCE, then GH is also closed in E. 

Proof. Let p: E — E/M be the quotient map. Since y(H) is a vector 

subspace of the finite dimensional vector space F/M, y(#) is closed in F/M. 

Therefore H = H + M = y~'[y(H)] is closed in E. 

7-4.13. Lemma Let M be a vector subspace of a vector space E. Then M 

has finite codimension iff there is a finite dimensional vector subspace N of F 

such that F = M @ N is an algebraic direct sum. 

Proof. Let p: E — E/M be the quotient map. Suppose E= M@N. Then 

y|N : N — E/M is an isomorphism, so dim E/M = dimN < oo. Therefore 

M has finite codimension. Conversely, assume dimE/M < oo. There are 

€1,€2,°'',€n € E such that y(e1), y(e2),--+, (en) form a basis for E/M. It 

is easy to verify that e;,¢€2,---,é, are linearly independent. Hence the vector 

subspace N spanned by e¢), €2,---,@€n has dimension n. It is routine to show 

that E is the algebraic direct sum of M,N. Oo 

7-4.14. Theorem Let E,F be Banach spaces and f : E > F a continuous 

linear map. If f(£) is finite codimensional in F’, then f(£) is closed in F. 

Proof. Let pg: EB — E/ker(f) be the quotient map. Since f: F > f(F) isa 

surjection, there is a continuous isomorphism g : E/ker(f) > f(£) such that 

f =. By finite codimension of f(F) in F, there is a finite dimensional vector 

subspace N of F' such that F’ = f(E)@N is an algebraic direct sum. Then the 

restriction of the quotient map h: f(E) — F/N is a continuous isomorphism. 

Now hg : E/ker(f) — F/N is also a continuous isomorphism between two 

Banach spaces. By Banach-Inversion Theorem, its inverse map is continuous.
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Therefore g-! = (hg) 'h : f(E) — E/ker(f) is continuous. Now f(£) as a 

topological isomorphic image of the Banach space E'/ker(f) is complete and 

hence closed in F. oO 

7-5 Transposes 

7-5.1. Let E’, F’ be the dual spaces of normed spaces E, F respectively. Let 

f : E — F bea continuous linear map. For every u € F’, let ft(u) = uf. 

Then f'(u) as composite of continuous linear maps is a continuous linear form 

on E. Clearly f* is a linear map from F’ into E’. It is called the transpose of 

f. In order to take the advantage of symmetry between E’ and E, we write 

<w,z > = w(z) for all w € E’ and all z € E. Similar notation will be applied 

to F. Then we have < ftu,z >= <u, fz > for alluc F’ and alla € E. 

7-5.2. Theorem Let FE, F be normed spaces and f : EF — F a continuous 

linear map. Then the transpose f* of f is a continuous linear map from F’ 

into E’. Furthermore, we have || f*|| = ||f||- 

Proof. Since ||f*(u)|| = ||uf|| < |lull || fl], the lmear map f* is continuous and 

it satisfies || f*|| < |||]. On the other hand, let « > 0 be given. There is z€ E 

such that ||z|| = 1 and |/f|| —e < || f(z)||. Choose u € F’ such that ||u|| = 1 and 

uf (x) = ||f(x)||. Now observe that 

IIfll —€ < F@) = uf@) = luf@| < lle] [ell = FCO < MFM ell = FP 
Since € > 0 is arbitrary, we have || || < ||f‘||. This completes the proof. n 

7-5.3. Theorem Let E, F,G be normed spaces. 

(a) (f +9) = f' +9! for all f,g € LIE, F). 

(b) (Af)' = Aft for all f ¢ LCE, F) and all \ € K. 

(c) (gf) = ftg* for all f € L(E, F) and all g € L(F,G). 

7-5.4. Theorem Let E,F be normed spaces and let f: F ~ F bea 

continuous linear map. 

(a) (im f)t = ker(f*). 

(b) Im f c (ker f+. 

(c) Im f = (ker f*)+ iff Im f is closed in F. 

(d) (im f*)+ =ker f. 

(e) Im f* c (ker f)t. 

Proof. (a) ue Um fy iff <u,fe>=< flue > =0,V2E E iff flu =0 

iff uw € ker(f*).
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(b) Take any y € Im(f), ie. y = f(z) for some x € E. Then for all u € ker(f*), 

we have f'(u) = 0. Hence < uy >= < ufe >= < f'uz > = 0, or 

y € (ker f*)+. 

(c) By (a), we get (ker f*)+ = (Im f)!+ which is the closure of Im(f). The 

result follows. Both (d) and (e) are left as exercises. o 

7-5.5. Lemma Let 2, F be Banach spaces and f : E — F a continuous 

linear map. If Im(f) is closed in F’, then there is a constant A such that for 

each y € Im(f) there is x € E satisfying y = f(x) and ||z|| < Ally|l- 

Proof. As a closed subspace of a Banach space, G = f(E) is also a Banach 

space and f : F — G is a continuous surjection. By Open-Map Theorem, the 

image f(V) of the open unit ball V in FE is open in G. There is 6 > 0 such 

that GN BO, 6) c f(V). Let A= : Take any y € F. If y = 0, then choose 

6 
x = 0 and obtain ||z|| < Ally||. Assume y #0 in G. Then Ww € GN B¢O, 64). 

_ by _ allyl| - There is a € V such that f(a)= Tyl Let 2 = 5; Then f(r) = y and 
y 

all IY | = Me sy. 0 
7-5.6. Theorem Let EF, F be Banach spaces and f : E — F a continuous 

linear map. If Im(f) is closed in F, then Im(f*‘) = (ker f)+. Hence, Im(f*) is 

closed in EF’, 

Proof. Take any uv € (ker f)+. For every f(x) € f(E), define g[f(x)] = v(z). 

Suppose f(x) = f(a). Then x—a € ker(f) and hence v(x—a) = 0, i-e. v(x) = u(a). 

Thus g is well-defined on f(£). Clearly g is linear on f(E). There is \ > 0 

such that for every y € f(E) the conditions y = f(z) and ||z|| < Ally|| for some 

xz € E. Due to |9(y)| = |g f(@)| = |v(x)| < lll [|x|] < Alle] lz], ¢ is a continuous 

linear form on f(E). Let g be extended to a continuous linear form u on F. 

Since for every x € E, (f'u)(x) = uf(x) = gf(x) = v(x), we have f*(u) = v. 

Therefore (ker f)+ C Im(f*). This completes the proof. o 

7-5.7. Exercise Let E,F be normed spaces and f : FE — F a continuous 

linear map. Identify F, F as vector subspaces of FE’, F” respectively. Prove 

that the second transpose f'! : FE” — F” is an extension of f. 

7-5.8. Let € =[e,---,e,] and ¥ =([f\,---, fm] be ordered bases for be finite 

dimensional vector spaces &, F in matrix form respectively. The coordinate 

vector of x € E with respect to € is a column vector [z] = (21, 22,---+,Zn)*
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defined by x = €[z] = jel e;z;. The matrix representation of a linear map 

A: E — F relative to €,F is the matrix [A] = [ai;] defined by AE = FLA], 

ie. [Aey,---, Aen] = [fi,--+, fm] [A], or Aes = ae aif; foreach l<j<cn. 

Suppose that § = [g),---, gn] also an ordered basis for F. The transition matrix 

from € to G is the matrix representation P of the identity map I: Eg > Eg 

with the indicated ordered basis, ie. € = 9P. Clearly if EH = EK fornxt 

matrices H,k, then H = K. In particular, coordinate vectors and matrix 

representations are uniquely defined. 

7-5.9. Example The ordered basis {(1, 3), (2,5)} of E = IR® is represented 

by a matrix € = E 5) The vector x = (3,8) € F has the coordinate vector 

{z] = I because « = E[x]. Suppose another ordered basis is given by the 

matrix § = F at Then the transition matrix P from E to G is given by 

I€=GP, ie. P=S~€ = ir 7}: 

7-5.10. Exercise Prove the following statements by concise matrix notation. 

(a) [Az] = [A][z] is the coordinate vector of Ax with respect to the basis ¥. 

(b) The matrix representation of an identity map is the identity matrix and 

the zero map the zero matrix. 

(c) The map A — [A] is an isomorphism from the vector space L(E, F) of all 

linear maps onto the vector space mat(m, n) of all m x n matrices. 

(d) If B is a linear map from F into a finite dimensional vector space with a 

piven basis, then we have [BA] = [B][A]. 

(e) For every linear map T: E> E, we have [T]e = P7'[T]oP. 

7-5.11. Exercise Let 2),22,---,2p be vectors in E and let uj, u2,---,Un 

be linear forms on EF. Prove that if u,(z;) = 6;; for all 1 < i,j <n then 

{21,@2,°++,@n} and {uj,u2,---,U,} are linearly independent. Prove that 

{21,Z2,-°++,2n} is a basis of EF iff {u;, ug,---, Un} is a basis of the algebraic dual 

E*. In this case, {x1,22,---, Zn} and {u),uz,---, un} are called dual bases. 

7-5.12. Exercise Let €’ = {e},e4,---,e),} and F = {ff, fh,---, f/,} denote 

the bases for E’, F’ dual to €,F respectively. Show that [A*] = [A]’ with 

respect to the bases €,F and their dual bases.
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7-6 Reflexive Spaces 

7-6.1. Let E be a normed space and J the natural embedding from E into 

the bidual space £”. Then FE is said to be reflexive if J is surjective, i.e. for 

every s € FE”, there is x € E such that s(u) = u(r) for all u € E”. 

7-6.2. Lemma (a) Every finite dimensional normed space £ is reflexive. 

(b) Every reflexive space is a Banach space. 

Proof. (a) It follows from dim EF = dim E’ = dim E”. 

(b) The dual space of a normed space is always complete. Oo 

7-6.3. Theorem Let E be a Banach space. Then E is reflexive iff E’ is. 

Proof. (=) Let J: E > E” and J': E’ — E" be the natural embeddings. 

Let s € E’” be given. Now the composite sJ is a continuous linear form on 

FE. Then u=sJ € E’. Take any a € E”. Since F is reflexive, there is x € E 

such that a = Jx. Consider (J’u)(a) = a(u) = u(x) = (sJ)x = s(Jx) = s(a). Since 

a € &" is arbitrary, we have s = J’u. Therefore J’ is surjective. Consequently 

E” is reflexive. 

(<) Since F is a Banach space and J is an isometry, J(F) is also a Banach space 

and hence it is closed in £”. Suppose to the contrary that there isa € E”\J(E). 

Then there is s € E’” such that s(a) #0 and s(JFE) = 0. Since E’ is reflexive, 

there is u € E” such that s = J’u. Now a(u) = (J’u)(a) = s(a) #0. On the other 

hand, for all « € FE, we have u(x) = (Jx)(u) = (J’u)( Jz) = s( Jz) = 0, ie. u = 0, 

or a(u) = 0. This contradiction shows JE = E”. Therefore E is reflexive. 0 

7-6.4. Theorem Every closed subspace M of a reflexive space EF is reflexive. 

Proof. Let 6 € M” be given. For every u € E’, the restriction u|M is 

a continuous linear form on M. Hence b(u|M) is a well-defined scalar. Let 

f(u) = b(u|M). Clearly f is a linear form in u. Furthermore, 

| F(e)| = |b(u|.M)| < [LI] ||| M4] < ||| |lell- 
Hence f is continuous, ie. f € E”. Since E is reflexive, there is x € E such 

that f = Jz, i.e. for all u € EB’, we have u(x) = (Jz)(u) = f(u) = b(u|M). Now 

suppose to the contrary that s ¢ M. There is u € F’ such that u(M) = 0 

and u(x) #0. Hence u|M = 0 and so u(x) = b(u|M) = 0. This contradiction 

establishes z € M. Finally, take any v € M’. Let u be an extension of v over 

E. Then v(x) = u(x) = b(u|M) = b(v). Therefore M is reflexive. Oo 

7-6.5. Let E be a normed space. A subset M of E is said to be total if the 

vector subspace spanned by M is dense in E.
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7-6.6. Theorem Ifa normed space £ has a countable total set {z,}, then E 

is separable. 

Proof. Let Q be a countable dense subset of the scalar field IK. Then the set 

of all linear combinations of {z,} with coefficients in Q is a countable dense 

subset of E. oD 

7-6.7. Exercise Let 1 < p < oo. Prove that the sequence {e, : n > 1} is 

total in £, and co. Prove that £, and cg are separable. 

7-6.8. Example The space @,, of all bounded sequences is not separable. 

Proof. Suppose to the contrary that @.. is separable. Let {2” : n > 1} be 

a countable dense subset of £... Let x” = (af, 23,23,:--) for each n. Define 

Yn = 1 if the real part of 2? is negative and y, = —1 otherwise. Then clearly 

y = (41,92, 93.°*) in £4. Furthermore, 1 < |y, — 2”| < |ly — 2" ||.o for each 

n, Therefore {2” : n > 1} is not dense in €,. which is a contradiction. This 

proves that &. is not separable. oO 

7-6.9. Theorem Let FE be a Banach space. If the dual space FE’ is separable, 

then so is FE. 

Proof. Let {un} be a countable dense subset of the dual space E’. For each 

n, there is z, € E such that ||zn|| = 1 and |un(an)| > $|lunll. Let M be the 

closed vector subspace spanned by {r,}. Then M is separable. Suppose to 

the contrary that M # E. Then there isa € E\ M. Since M is closed, we 

have d(a, M) > 0. There is u € FE’ such that u(M) = 0, ||ul| = 1 and u(a) 40. 

Since z, € M, u(rp) =0 for all n. Hence 

bIfunl] S [um (tn)| = un ~ 290) || Sen el = [dn — 
Therefore we have 

[= |lul} < |] — wall + [lua] < [4 — eal] + 2||u — unl 
=3|lu—upll, ie. |Ju— unl] > 4. 

This contradiction shows {un} is not dense in &’, contrary to our assumption. 

Therefore M = EF. Consequently F is separable. Oo 

7-6.10. Corollary If E is a reflexive and separable Banach space, then so are 

E” and E’. 

Proof. Let {xn} be a countable dense subset of FE. Then {Jx,,} is a countable 

subset of FE”. Let a € E” be given. Since F is reflexive, there is z € E such 

that Jz = a. For every € > 0, there is n such that |lz,, —z|| < ¢. Hence we 



7-7 Weak Convergence 149 

have ||Jz, — all = ||J(e, — 2)|| = |lvn — z|| < €. Consequently {Jz,} is also 

dense in FE”. Therefore EF” is separable. As a result, E’ is also reflexive and 

separable. g 

7-6.11. Exercise Show that co is not reflexive. 

7-6.12. Exercise Show that @, is reflexive for I < p< 00. 

7-6.13. Exercise Prove that if X is a compact metric space, then the Banach 

space C..(X) is separable. 

7-6.14. Example If Q is a separable vector subspace of a Banach space F, 

then there is a countable set P in E’ such that |{x|| = sup{|v(2)| : v € P} for 

each « € Q and |lv|| = 1 for every v € P. Furthermore for all z,y € Q if 

v(z) = v(y) for all v € P, then x = y. 

Proof. Let {x,} be a countable dense subset of @. For each n, let un € E’ 

such that |v;r,| = ||Zal| and ||v,|| = 1. Take any x € Q. For every ¢ > 0, there 

is n such that ||z, — x|| < ¢. Observe that 

lz\| < |lvall + = |ental +e < |vn(tn — 2)| + |vnz| +e 

< |lvall ||gn — el] + |unz| +e < t+ 2e 

where ¢ = sup, |v,z|. Letting « | 0, we have ||x|| < ¢. It is an exercise to 

show t < |x|]. Therefore P = {v,} is the required set. Finally, ||xz — y|| = 

sup, |va(z — y)| = sup,, Mrz — Uny| = 0 gives x = y. q 

7-7 Weak Convergence 

7-7.1. Let {x,} be a sequence in a normed space E. 

(a) The sequence {2,} is said to be weakly Cauchy if for every u € E’, 

the sequence {u(x,)} is a Cauchy sequence in IK. The sequence {z,} is 

said to converge weakly to the weak limit a € E if for every u € E’, we have 

u(Zn) — u(a) in K. Therefore the weak convergence is to measure the nearness 

in terms of one arbitrary direction given by uw. 

(b) For convenience, {z,,} is said to be strongly Cauchy if ||2m — £n|| — 0 as 

m,n — oo. Also {2} is said to converge strongly to a € E if |la_ —al| + 0 

as n —+ oo. Therefore the strong convergence is to measure the nearness in 

terms of norm. By ||2, — all = supjp<i [u(@n) — u(a)|, strong convergence is 

also called the uniform convergence on the unit ball of its dual space. Uniform 

Boundedness Theorem will be the main tool for this and next sections.
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7-7.2. Theorem (a) If x, — a strongly, then zr, — a weakly. 

(b) If {z,} is strongly Cauchy, it is weakly Cauchy. 

(c) If x, — a weakly, then {x,,} is weakly Cauchy. 

(d) If z, — a weakly and z, — 6 weakly, then a = b. 

Proof. Both (a) and (b) follow from |u(z)| < ||ull ||z||. Part (c) follows from 

the completeness of IK. Part (d) follows because the dual space E’ separates 

points of E. 

7-7.3. Let M be a subset of a normed space EF. Then M is strongly bounded 

or norm bounded if sup,¢y ||x|| < co. A set M is weakly bounded if for each 

u € E’, sup,ey |u(x)| < oo. A set M is bounded if it is either strongly bounded 

or weakly bounded. 

7-7.4. Theorem A subset M of E is strongly bounded iff it is weakly bounded. 

Proof. (=>) It follows from |u(x)| < |lul| ||]. 

(<=) Suppose M is weakly bounded. For each a € M, consider the continuous 

linear form Ja on E”’ where J is the natural embedding from E into E”. Since 

M is weakly bounded, for each u € E’, 

sup |(Ja)u| = sup |u(a)| < A < oo. 
ae€M aeM 

By Uniform Boundedness Theorem, supy¢ yg ||Ja|| < 00, ie. supgegg |lal| < 00. 

Therefore M is strongly bounded. Oo 

7-7.5. Corollary Weakly Cauchy sequences are strongly bounded. 

7-7.6. Exercise Prove that a subset M of a normed space is bounded if every 

sequence in M has a weakly Cauchy subsequence. 

7-7.7. Corollary If x, — a weakly, then {x,} is weakly bounded. Moreover, 

we have |la|| < lim inf ||z,||- 

Proof. Since {x,} is weakly Cauchy, it is weakly bounded. Next, for each 

u € E", we have (Jz,)u — (Ja)u. Hence by Banach-Steinhaus Theorem, we 

obtain ||Jal| < liminf||Jz,||, i.e. |lal] < lim inf ||z,|[. o 

7-7.8. Theorem Let {z,} be a bounded sequence in E and let a € EF be 

given. If there is a total subset M of the dual space FE’ such that for every 

ué M, u(z,) — u(a), then we have x, — a weakly. 

Proof. Take any v € E’. For the bounded sequence {x,,}, there is A > 0 such 

that ||x,|| <A for all n and also |la|| < A. Since M is total in E’, the vector 
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subspace Q spanned by M is dense in E’. For every ¢ > 0 there is w € Q such 

that |lv — wll <¢/A. Write w = ayu) + au, +--+ + au, where all a; € K and 

uj € M. Take any p > ia |A;|. Since u;(an) > u;(a) as n — oo, there is 

an integer p such that for all n > p we have |u,(t,) — u;(a)| < e¢/p. Now for 

n > p, we have 

|u(2n) — v(a)| < Jv(an) — w(en)| + [wen) — w(a)| + [w(a) — v(a)| 
k 

 |lv — |] [zal] + yet |@5| |uj(@n) — u;(a)| + [lw — el] |lalh 
é k € € < yt Dialed +7 S3e. 

Hence v(2n) — v(a). Since v € E’ is arbitrary, we have x, — a weakly. a 

7-7.9. Theorem Let £,F be normed spaces and f : E — F a continuous 

linear map. If x, + @ weakly in FE, then f(tn) — f(a) weakly in F’. 

Proof. Take any u € F’. Then uf : E — K is a continuous linear form on E. 

Since 2, — a weakly, we have uf(x,) — uf(a). Because u € F" is arbitrary, 

we have f(tn) — f(a) weakly. Oo 

7-17.10. Exercise Show that in &, the sequence {e,} converges weakly but 

not in norm. Prove that in a finite dimensional normed space, every weak 

convergent sequence is convergent in norm. 

7-17.11. Exercise Prove that for | < p < 00, a sequence fp = (a7, 27, 23,---) 

converges weakly to a = (@),@2,a3,---) in é, iff the following conditions hold: 

(a) the sequence {z,,} is bounded; 

(b) for every j, x? — a;. 

7-7.12, Exercise Let {z,,} and {y,} be given sequences in a normed space 

&. Prove that if xr, — a and y, — 6b weakly in EF, then for all a,@ € K, 

AZn + BYn > aa+ Bb weakly in EF. 

7-7.13. Exercise Let {xz,,} be a sequence in a normed space E. If rz, > a 

weakly in EF, then for every € > 0, there are A; > 0 such that a A, = 1 and 
k 

la — Doya1 Aczill < €. 

7-7.14. Exercise Prove that every closed convex set H of a Banach space 

contains the weak limit of every sequence in H.
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7-8 Weak-Star Convergence 

7-8.1. Let E be a normed space and {u,} a sequence in the dual space E’. 

(a) {un} is said to be weak-star Cauchy if for every x € E, the sequence {up(2x)} 

is Cauchy in K. The sequence {u,} is said to be weak-star convergent to the 

weak-star limit v € E’ if for every x € E, we have u,(x) — v(2) in K. 

(b) The strong and weak convergences on E’ were defined in last section when 

E’ is considered as a normed space by itself. Hence the strong convergence 

in £’ is in terms of the norm. The weak convergence in L’ is in terms of the 

bidual E”. 

7-8.2. Theorem Let {u,} be a sequence in the dual space E’ of a normed 

space FE, (a) If un — v weakly in FE’, then u, — v in weak-star. 

(b) If uz, — v in weak-star, then {un} is weak-star Cauchy. 

(c) Every weak-star convergence sequence has a unique weak-star limit. 

Proof. We shall prove (c) only and leave (a), (b) as exercises. Let un — u 

and u, — v in weak-star. Suppose to the contrary that uv. There is ¢ € £ 

such that u(r) # v(z). Since un(z) — u(x) and u,(r) > v(x) in K, we obtain 

a contradiction u(x) = v(x). This completes the proof. oO 

7-8.3. Theorem Every weak-star Cauchy sequence {u,} in E’ is weak-star 

convergent and norm-bounded. In other words, the dual space is always weak- 

star sequentially complete. 

Proof. It follows immediately from Banach-Steinhaus Theorem. oO 

7-8.4. Corollary Every reflexive space EF is weakly sequentially complete. 

Proof. Since E” = J(F) is weak-star sequentially complete, the result follows 

immediately. oO 

7-8.5. Theorem Let EF’ be the dual space of a normed space E. If E is 

separable, then every bounded sequence {u, : n > 1} in E’ has a weak-star 

convergent subsequence. In other words, bounded sets in E’ are weak-star 

sequentially compact. 

Proof. Let {rp, :m > 1} be a countable dense subset of E. Since {u,} is 

bounded, there is \ € R satisfying sup,,>, ||un|] < A < 00. Now observe 

Iun(21)] < [lal [xl] < Azul] < 00, n, 
There is a subsequence {u},} of {un} such that {u!,(x)} converges. Again 

Uy (% nN Un £2\| i) oO, nr |up(@2)| < |leeall [le2]| < Allazall < 00,
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gives a subsequence {u2} of {u},} such that {u2(x2)} converges. Similarly we 

can construct a subsequence {uk} of {uk~!} such that {uX(x,)} converges. 

Let vp, = u® for each n > 1. Then {vp} is a subsequence of {u,} such that 

{un(t.) : n > 1} converges for each k. Now take any x € E. Since {x,} is 

dense in E, fore every € > 0 there is k such that ||z — 2,|| < 4. Since the 

convergent sequence {vp(z,)} is Cauchy, there is an integer p such that for all 

m,n > p, we get |Um(Tk) — Un(2x)| < fe. Therefore we have 

|Um(x) _ Un(Z)| < \um(x) _ Um(Lx)| + |Um(xe) _ Un(£x)| + \en(2e) — Un(x)| 

S [lem lle — zal] + 5€ + llenll [lee — 2] < Ale — xel] + 56+ Allen — 2] Se. 
Now {vn} is weak-star Cauchy. Hence it is weak-star convergent. This 

completes the proof. Oo 

7-8.6. Theorem If E is a reflexive space, then every bounded sequence {z,} 

in & has a weakly convergent subsequence. In other words, the closed unit ball 

in £ is weakly sequentially compact. 

Proof. Let M be the closed vector subspace spanned by {z,} and 

I: M — M” the natural embedding. Then {z,,} is bounded in M and hence 

{I(@n)} bounded in M". By construction, M is separable and so is its dual 

M’. Therefore {I(x,)} has a weak-star convergent subsequence {I(yn)} in M”. 

As a closed subspace of a reflexive space EF, M is also reflexive. So, there is 

y € M such that I(y,) — I(y) in weak-star on M”. Now for each v € E’, 

the restriction v|M is in M’. Hence v(yn) = (v|M)(yn) - (v|M)(y) = vy). 

Therefore the subsequence {y,,} converges weakly to y € E. Oo 

7-8.7. Exercise Consider the Banach space F = cg. Show that the sequence 

{en} in E’ = 2; is weak-star convergent but not weakly convergent. 

7-8.8. Exercise Let E,F be Banach spaces and f, : E — F continuous 

linear maps. Then the following statements are equivalent: 

(a) {||fn||} is bounded in IR. 

(b} {||fn(2)||]} is bounded for each x € £. 

(c) {|luf,(2)||} is bounded for each x € E and each u € F’. 

7-99. References and Further Readings : Kadison, Jarchow and Wong-92. 



Chapter 8 

Complex Analysis 

8-1 Derivatives of Vector Maps 

81.1. Elementary results of complex analysis will be developed in the 

context of vector-valued maps of a complex variable. After the introduction 

of spectrum, functions of an operator will be introduced. Actually, it may be 

more natural to do this chapter on general Banach algebra even thought we 

are contented with operators on Banach spaces. Meanwhile, we start with a 

short treatment of differential and integral calculus. 

8-1.2. Let F be a Banach space. Let X be an open subset of the scalar field 

K and f : X — Ea given map. Then f is said to be differentiable at a € X if 

J@-f@ exists, i.e. for every € > 0, there is 6 > 0 such 
xr-a 

f(@) - f(a) 
xr—-a 

the limit f’(a) = lim 
rea 

that for every 0 < |lx —al| < 6, we have x € X and <e. “1 
It is said to be differentiable on X if it is differentiable at every point of X. 

A map f : X — E is said to be continuously differentiable if its derivative 

f': X > E is defined and continuous on X. 

8-1.3. Theorem If f: X — E is differentiable, then it is continuous. 

Proof. Take any a € X. Fore = 1, there is 6 > O such that for all |x—a| < 6 we 

have ||[f(«) — f(@)]/( —a) — f"(a)|| < Lie. ||f@)—f@ll < IIP/@I+)|z—4l. 
Therefore f(x) > f(a) asx — a. a) 

8-1.4. Exercise Prove that if f: X — E and g: X — K are differentiable 

at a © X, then the scalar product g.f is differentiable at a. Furthermore show 

that (9. f)'(a) = g(a) f(a) + g(a) f(a). 

8-1.5. Exercise Prove that linear combinations of differentiable maps are 

differentiable. 

8-1.6. Theorem Let f: X — E be a map differentiable at a € X. Then for 

every continuous linear map g from E into a Banach space F’, the composite
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map gf : X — F is differentiable at a € X. Furthermore, we have a special 

case of chain rule: (gf)'(a) = g[f’(a)]. 

Proof. It follows immediately from the calculation: 

_ 94(%) — gf(@) _ [Ao = 0) _ “ -— f@ 
im ——————— = lim g | —_——_| = —S 

ra =r 
1 
2a x—-—a ra 

g lim 
ra 

=glf'(a@)]. 0 

8-1.7. Exercise Let F = C,.[7,27]. Define f : R > E by f(z)(t) = sintz 

for all x € R and t € [7,27]. Sketch the graphs of the functions f(0), f(1) and 

also f(x) for small x. Find a formula for the derivative f/(0) and sketch its 

graph. 

8-2 Integrals of Regulated Maps 

8-2.1. To find the area under a curve y = f(x) from 2 = a to x = b, we 

cut the z-axis into subintervals and approximate the true area by the sum of 

areas of columns. This is the basic idea behind the Riemann integral. Since 

the treatment is slightly different from the standard undergraduate textbook, 

a different name will be used in order to avoid confusion. Alternatively, we 

cut the y-axis into small subintervals and that is the foundation of Lebesgue 

integral. 

8-2.2. Theorem Let EF be a Banach space. The set B(X, F) of all bounded 

maps from a non-empty set X into E forms a Banach space under the pointwise 

operations and the sup-norm given by ||f|l.o = sup{||f(@|| : t € X}. If X is 

a compact metric space, then the set C(X, E) of all continuous maps from X 

into E is a closed subspace of B(X, F) and hence it is also a Banach space. In 

order to emphasize the sup-norm, we write B,.(X, £) and C..(X,£). When 

E is K, we simply write B(X) and C(X) instead. 

8-2.3. Let F bea Banach Space and a < bbe givenin R. A map f : [a,b] - # 

is called a step map if there is a partition 

Pra=ty<t) <tp<-:-<t,=b 

such that f is constant on every semi-interval (t;_),¢;]. The set S([a, 6], E) of 

all step maps forms a vector subspace of B([a,b],&). For every step map f 

given above, its integral is defined by 

b n I Fat = YO" FN — ty).
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It is easy to prove that this integral is independent of the choice of the partition 

P. Hence it is well-defined. In order to emphasize the sup-norm, we sometime 

write S.o([a, b], E) 

8-2.4. Lemma The integral f — fp f(dt is a continuous linear map in f 

from 5$,o((a, 6}, £) into E. Furthermore for every step map f on [a,b] we have 

b 5 

[ fiat} < | f@|ldt <b —a)||fleo- 

Proof. It follows immediately from routine calculation as follow: 

b 

| f(tat 
5 nr = [feo ide < OIF = 5-1 = O= a flew 0 

82.5. Let A([a,}], £) denote the closure of S({a,b], ) in the Banach space 

B,.((a, 6], £). The continuous linear map iM f in f can be extended uniquely 

from S([a, 6], £) to A({a, 6], E). We shall use the same notation f f for the ex- 

tended linear map when f € A([a,b], &). Maps in A({a, b], &) can be uniformly 

approximated by step maps. For convenience, they are called regulated maps. 

= ><... F(ts\ty - t-1)| < en I F(t ICs ~ ty) 

It is easy to show that every regulated real function is Riemann integrable. 

Hence in order to conform with the popular terminology, regulated maps are 

also said to be integrable when no ambiguity would occur. 

8-2.6. Theorem There is a continuous linear map f > i f from the normed 

space A,,([a, 6], £) into F such that the following conditions hold: 

b 

[ f(ddt 
b 

(b) uf f@dt - | uf(t)dé for all u € FE’. 

Proof. Define y(f) = f’ ||f(®lldt— || [° fal] for each f € A((a, 1, E). Then 
y : A((a, 6], £) — R is a continuous function. We have proved that S({a, 6}, F) 

is contained in the closed subset y7![0, 00) of A([a,b], £). Since S({a, b], F) 

is dense, we obtain A((a,b],£) C py ![0, co), ie. f |FO||dt > || f f()dé||, 

Vv f € A((a, 6], Z). The proof can be completed in similar way or by passing 

b 

(a) < / Flat < © —@)|| flocs 

limits to approximations by sequences of maps in A((a, 8], F). oO 

8-2.7. Exercise Let F be a Banach space and g: EF — F a continuous linear
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map. Prove that for every regulated map i: {a,b} > E, the composite gf is a 

regulated map. Furthermore, we have g [ f@dt = [ gf dt. 

8-2.8. Exercise Prove that for every step map f : [a,b] — E, the integral 

mx iL f()dt belongs to the convex hull of the image f[a,b] of f. Also prove 
b 

that for every regulated map, the integral —_ | f(t)dt belongs to the closed -aJa 
convex hull of f[a, 6]. 

8-2.9. Theorem Every continuous map f : [a,b] — E is integrable. 

Proof. By uniform continuity on the compact space [a,b], for every € > 0 

there is 6 > 0 such that for all x,y € [a,b] satisfying |x — y| < 6 we get 

f(z) — fy)|| < e. Let Pi:a=tp <t) <t2 <--- <t, =b be a partition with 

mesh(P) = maxi<j<n(t; —tj;-1) < 6. Define g(a) = f(a) and g(t) = f(t;) for all 

ty-1 <t<t;. Then g © S(fa, 6}, E) and || f(t) — g(t)|| < for all t © [a,d], ie. 

If — gallo <¢. Therefore f € A((a, b), £). oO 

8-2.10. Exercise Let f,(z) = n*2(1—-)" for all x € [0,1]. Show that f, > 0 

pointwise but fy fr{zydx / 0. 

8-2.11. Exercise Let f,(x) =na(1 — x)” for all x € [0, 1}. Show that f, — 0 

pointwise but not uniformly. Also show that f fr(ajdz — 0. 

8-2.12. Let f be a continuous map defined on a closed interval containing 

a,b,c ER. For a < b, the value f f has been defined. Now for a > b, define 

fp f=—Jf f. For a=8, define f f =0. In this case, the value ff is called 

the integral of f from a to b. By case study, clearly Rf = i + i holds. 

Furthermore for all a,b € R, we have || fp f(dadt|| < [b— a |lfll.o and also 

uf? f@dt = fo uf(dt,V ue BE’. 

8-2.13. Exercise Let a < b be given real numbers. A map f : [a,b] — E is 

said to be piecewise continuous if there is a partition 

Q=a <a, <a. <-++<a,=b 

such that f is continuous on the open interval (a;— tray) and both one-sided 

limits lim f(z) and jim f(z) exist for all 7 = 1,2,---,n. Define the integral 
alajey 

of f. Show that it is “ndlependent of the choice of any particular partition. 

Derive some standard properties of this integral.
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8-3 Fundamental Theorems of Calculus 

8-3.1. Although the integrals of regulated maps were not defined in the usual 

way as the Riemann integrals, with the fundamental theorem of calculus we 

can evaluate integrals in terms of antiderivatives. Consequently, the techniques 

developed in elementary calculus can be used in our context. 

8-3.2. Theorem Let X be a metric space. If f : [a,b] x X — EF is continuous, 
b 

then the map given by g(x) = | f(t, x)dt is continuous on X. 
a 

Proof. Let 9 € X and € > 0 be given. By compactness of [a, b}, it follows 

from §2-7.6 that there is 6 > 0 such that for all x € B(x, 5) and t € [a, b}, we 

have || f(¢,z) — f(t, 29)|| < ¢. Therefore 
& b 

lIg(x) — gl20)|| < / ft, 2) — f(t, z0)|Idt < / edt = <(b—a). 
a 

Consequently g is continuous at every point zy of X. Oo 

8-3.3. Change Order of Integration Let f: {a,b} x [a,8] ~ EF bea 

continuous map. Then the repeated integrals exist and they are equal. 

Proof. Since fe f(z, y)dy is continuous in 2, it is integrable and hence the 

repeated integral f. fe f(z,y)dydzx exists. Similarly, the other repeated 

integral also exists. To show that they are equal, let « > 0 be given. By 

uniform continuity of f on the compact set [a,b] x [a, f}, there is 6 > 0 such 

that for all |x; — x2] < 6 and |y, — y| < 6 we have | f(a, y1) — f(x2, y2)| < €. 

Cut the rectangle into pieces by a = a < a) < a2 < +--+ <@, =b and 

a= a <a <a <-:: < a, = 8 where n > (b—~a+f-a)/d. Define 

g: [a,6] x [a, 8] > FE as follow. If x = a let p = a and if a;_; < x < a; let 

p=a,;. Similarly if y = a let q = a and if ax_| < y < a; let q = ax. Define 

(x,y) = f(p,q). Then clearly || f(x,y) — g(a, y)|| < € for alla < @ < 6 and 

a<y<. Observe that 
B pb non b— _ 

[ [ (a, ydady = S> So flas,ay) =P = © 
jel kel 

en —ajb—a & 78 
= Se fa; BP -| / g(a, y)dyde. 

k=l j=l a ta 
On the other hand, we have 

B pb B pb 
| [ f(a, y)dady — / | g(x, y)dady 
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< [ 

a 

B pb 

< / | Ia,y) — ole, plldardy < e(b — a)(B — a. 
Similarly, we get 

b 6 b /pB 

J [seve - / g(x, y)dydx 

Combining together, we obtain 

B pb b pp 
/ | f(x, ydrdy — | / f(x, y)dydx 

Since € > 0 is arbitrary, we have fe f F(x, y)dxdy = f fe f(z, y)dydx as 

required. Alternatively, appealing to one dimensional case, we have 
b pf B pb 

| / uf(x, y)dydz = | [ uf (a, ydudy 

for all u € EB’, ie. 
b PB B pb 

u | | f(x,ydyde =u | | fx,ydedy 
and the result follows because E’ separates points of P. a 

8 pb b 

[ | Lf(«,u) — 9x, yldrdy | f(a, y) — g(x, wide) dy 

< e(b— a)(B — a), 

< 2e(b — a)(8 — a). 

8-3.4. First Fundamental Theorem of Calculus Let f : {a,b} —~ E bea 

continuous map where a < b. Then the map g: [a,b] — E given by 

g(a) = | fiat 
is differentiable on the open interval (a, 6). Furthermore we have g’(x) = f(z). 

Proof. Take any zq € (a,6). Then for any ¢ > 0 choose 6 > 0 such that 

|| f(z) — f(xo)|| < ¢ for all {a2 — xp| < 6. Suppose 0 < |x — xo| < 6. If x > xo, 

then we have 

[ soa fo seoae— | fees 

[ soa f fees] < [ 40 ~ Flanyfde < f edt = elx — 29]. 

If x < zo, then we get 

l1g(x) — glo) — (@ — 20) f(20)]| < | 
x 

lo) — oxo) — (2 — 20) f (#0) = 

xo 

If@ — flao)|ldt < | edt = ele — aol. 
In both cases, we obtain
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| 

8-3.5. Exercise Show that the map g in last theorem is continuous on [a, 8}. 

g(x) ~ gto) _ 
r— Xo 

(Zo) I<e, 

tim £2 = 9) _ p45). 
zr £24 

or, oO 

8-3.6. Lemma Let f : [a,b] — X be a continuous map which is differentiable 

on (a, 6). If f/(z) = 0 for each x € (a,b) then f is constant on [a, }). 

Proof. Take any x € (a,b) and any u € EB’. Then (uf)'(z) = ul f’(2)] = 0. By 

one dimensional case, the continuous function uf is constant, ie. uf(z) = uf(a) 

for all x € [a,b]. Since E’ separates points of E, we have f(z) = f(a) for all 

z € [a, 0d). o 

8-3.7. Second Fundamental Theorem of Calculus Let f : (a,8) — FE bea 

continuously differentiable map. Then for all a, € (a, 8), we have 
b 

| fat = fb) — fla). 

Proof. For every x € (a,/3), define p(x) = fF f'(dt — f(x). Then ¢ is 

differentiable on (a, 3) and y’(r) = 0,V x € (a, 8). Hence y is constant on 

(a, 8). Now (b) = y(a) gives f f'@®dt — f(b) = fe f'(Odt — f(a) which is 

the result. It is an exercise to give an alternative proof by reducing it to one 

dimensional case. oO 

8-3.8. Integration by Parts Let f : (a,@) — FE and g: (a,f8) - K be 

continuously differentiable maps. Then for all a,b € (a, 8) we have 
b ra) 

| Sf @g(t)dt + / Fg’ Dat = F(b)g(b) — fla)g(a). 

Proof. It is easy to verify that [f(gOY = fat) + f(Hg'() and the result 

follows immediately from the Second Fundamental Theorem of Calculus. O 

8-3.9. Exercise Let X,Y be open subsets of K. Let a : X — Y and 

f :Y — E be differentiable maps. Prove that the composite map fa is 

differentiable on X. Furthermore we have (fa)'(x) = f'[a(z)Ja'(z). 

8-3.10. Change Variables Let g : (a,8) — (u,v) be a continuously 

differentiable function and f : (u,v) + E a continuous map. Prove that 

g(b) 
for all a,b € (a, 8), we have | 

g(a) 

b 

f(a)de = | fig(t)lg'¢tyat.
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8-3.11. Exercise Let E = C..[7,27]. A map g: R — E is defined by 

g(x)(t) = tsinta for all « € R and ¢ € [7,2a]. Find a formula for the integral 

f g(x)dx. Note that the integral is a function from [7,27] to R. Sketch the 

graph of this function. 

8-4 Holomorphic Maps of One Complex Variable 

8-4.1. A primitive contour is a map z : fa, 8] — C which has at least one 

partition a = a9 < a, <--: <Q, = such that the restriction of z to every 

subinterval [a;_1,a;] has a continuously differentiable extension over an open 

interval containing [a;_1,a;}. In this case, z is called a parametrization. A 

contour is the formal sum of a finite number of primitive contours. Hence 

two disjoint circles can form a contour but both are parametrized on the 

same interval, say [0,27]. By abuse of language, we call the image IT to be 

the contour. Equivalence of parametrizations is defined as usual in terms of 

changing variable. The arc length of T is well-defined and is independent of the 

choice of any particular parametrization. Our definition is relatively narrower 

but more convenient than rectifiable curves. 

8-4.2. We shall work with a given complex Banach space E. Let T be a 

primitive contour described by a parametrization z : [a,8] — C. Let 

f : TI — E be a continuous map. Define the contour integral of f on I by 

fr f(ajdz = f? flz@]2/@dt. Clearly Ir f(2)dz is independent of the choice 

of equivalent parametrization. The integral of a map on a contour is 

defined as the sum of integrals on the corresponding primitive contour. For 

example, if [ = A+B is a formal sum to two disjoint circles A,B, then 

Sp f@dz = f, f(adz+ f, f(2)dz. We always work with contours and abandon 

the transitional terminology of primitive contours. 

B 

(| ) | [rerdel < [ireaniael = [ istecomeolae 
(b) u [ fede = | uf(z)dz for every u € E’. 

8-4.3. Theorem 

84.4. Let X be an open subset of C and f : X + Ea given map. Then f is 

said to be holomorphic on X if it is differentiable on X and weakly holomorphic 

if the composite uf is differentiable on X for each continuous linear form 

u € E",. Clearly every holomorphic map is weakly holomorphic. We shall 

prove that the converse is also true.
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8-4.5. Lemma If f is weakly holomorphic on X then f is continuous on X. 

Proof. Let a € X be given. Since X is open, it contains some closed ball 

FOALO .9.< (2a) < rh, To 
z-a 

show that M is weakly bounded, take any u € E’. Then the expression 

uf@ = uf(@ if0 <|z—al <7; 

ge) = 

B(a,r). Define a subset of EF by M = 

zZ-a 

(uf)'(a), ifz=a 

defines a continuous function from the compact set B(a,r) into ©. Hence 

the image g[IB(a,r)] is compact. It follows by simple calculation that 

u(M) C g[IBfa,r)}. Since u(M) is bounded for every u € E’, the set M is 

weakly bounded and thus norm-bounded. There is 0 < A < co such that for 

fa)" fe) <A, ie. ||f(2)— fall < Alz al. any 0 < |z —a| <r we have 

Consequently f is continuous at every point of X. Oo 

84.6. Theorem If f is weakly holomorphic on X, then for every a € X we 

f(z) 1 
have f(a) = im Jp ——dz where T is any simple closed positively oriented 

a 

contour in X enclosing a with interior contained in X. 

Proof. For each u € E", the composite uf is holomorphic on X. By one 

dimensional case, we get 

1 uf(a) = [ Ul oy (+ fO-a), 
Imi T z-a 201 JT z—a. 

Since E’ separates points of £, the result follows. oO 

8-4.7. Theorem Every weakly holomorphic map f : X — E is holomorphic. 

Furthermore, for each a € X we have f(a) = —_ fe) 
2 2 me JT (2 — a) 

positively oriented circle: C(a,r) = {z € € : |z—a| =r} satisfying B(a,r) c X. 

dz where [ is any 

Proof. Since C(a,r) is compact, write || f(z)|| <A < oo. LetO<d < ir and 

take any 0 < |b—a| < 6. Observe that 

[29-20 fla) | oa | f(2) a| 
aso 2nt T (-a)* * 

| f@)  f® dz f@) d 
=e Tlz-b za 2ni Jp (2 — a)? 

1 f@) f@) 
20 d i b) -- | T @—ap 
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Jt _ f(z) 

Qn | a) T (z-a(z- ne 

< |b—al IF@II | 

~ Qn Jp \(z— az — d)j 

Aldz| _ =o An ar) = a 

* On Jp dr) mr 
Therefore we have 

f'@= jim Oo 
1O~ f(a) -= [ f@) 

i JT —a (z — a) 

8-4.8. Theorem Let X be a simply connected open subset of € and let 

f:X —- Ebeacontinuous map. Then the following statements are equivalent. 

(a) The map f is holomorphic on X. 

(b) For every simple closed contour T’ in X, we have fp f(z)dz = 0. 

(c) For every a € X, the integral fe f(z)dz is independent of the contour in 

X from a to w. 

(d) The map f is weakly holomorphic on X. 

Proof. We have proved (a © d). For (d © 5), note that fp f(z)dz = 0 iff 

Ir uf(z)dz = 0 for every u € E’. For arbitrary T, it is equivalent to say that 

uf is holomorphic on X which is (d). Similarly, we can prove (b © c). Oo 

8-4.9. Note that (a2 => 6) of last theorem generalizes Cauchy-Goursat Theorem 

and (b = a) Morera’s Theorem. As a result of (8), the circle C(a,r) of previous 

theorem can be replaced by more general contours. 

84.10. Exercise Let F be a complex Banach space andg: FE + F bea 

continuous linear map. Prove that for every holomorphic map f : X — E, the 

composite gf is a holomorphic map. Furthermore, we have 

9 i fle)dz = | of (tat 
T T 

8-4.11. Cauchy’s Integral Formula Every holomorphic map f : X — E is 

for every contour [ in X. 

infinitely differentiable. Furthermore, for n =0,1,2,3,---, we have 

ni jomoya Bt [| IO 
2mi Jp (2 - a)! 

where I’ is any simple closed positively oriented contour in X enclosing a with 

interior contained in X.
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Proof. We have proved the case when n = 0. Inductively, assume that theorem 

is true for 7. Hence f is n-times differentiable on X and for each u € E’, we 

have 
! 

ul f™(a)] = — f Oa: =(uf)"(a), VaeX. 

Since uf is (n + 1)-times differentiable on X, uff] = (uf) : X —> C is 

differentiable. Hence f™ is weakly holomorphic on X, i.e. differentiable on 

X. Therefore f is (n+ 1)-times differentiable on X. Finally, observe that 

ul for (a)] = [uf VQ) = (Uf @) = Uf") 
_(r+t)! uf(z) _. m+)! f 
Ont fe tSkaae=u| Qni [ Bal. 

Since u € & is arbitrary, the required formula follows. Oo 

8-4.12. AverageLemma Let f : X -+ EF be a holomorphic map. Suppose 

X contains the closed ball B(a,r). Then for each n = 0,1,2,3,--- we have 
1 20 ; : 

f™(a)= mim [ flatre ye da. 
2ar” Jo 

In particular when n = 0, the value f(a) at the center is the average of the 

values on the circle. 

Proof. It follows immediately from the substitution z = a+re*® into Cauchy's 

Integral Formula. oO 

8-4.13. Cauchy’s Inequality If || f(z)|| < A for every point z on the circle 
! 

C(a,r), then we have || f°(a)|| < rin , for each n = 0,1,2,3,---. 
rn 

Proof. By Average Lemma, we have 

nt?" i 
WFP @l= | om f farrelye do 

t 20 . . t Qn 1 
< | fla + re!?)e-™\d9 < af yao = 

2ar” Jo 2mr” Jo r 

84.14. Fundamental Theorem of Calculus Let f : X —> E be a given 

holomorphic map on a simply connected open subset X of C. Then for every 

a,z € X we have 4 [ f@dt = f(z) and [ f'()dt = f(z) — f(a). 

Proof. It is left as an exercise. Oo 

8-4.15. Exercise Let A, B be contours in C parametrized by z(s) for s € [a, 6] 

and by y(t) for t © [a,@] respectively. Let f : Ax B — E be a contin- 
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uous map. Show that the repeated contour integrals [, {, f(z, y)dydx and 

fats fe, y)dedy exist. Prove that they are equal. 

8-4.16. Exercise Let f,,g : X — FE be continuous maps on an open subset 

X of C. Prove that if f, — g uniformly on a contour I in X then we have 

Sr frlz)dz > fp g(z)dz in E. 

8-4.17. Exercise Let X be an open subset of C. Let A © E be given and let 

g:X —C bea holomorphic map. Then f : X — E given by f(z) = Ag(z) is 

holomorphic on X. Furthermore, f’(z) = Ag’(z) on X. 

8-5 Series Expansion 

8-5.1. As in one dimensional case, holomorphic maps will be identified as 

analytic maps which can be expanded locally into infinite series. Taylor series 

expansion will be derived as from Laurent series expansion. Then polynomials 

will be characterized and Liouville’s theorem follows as a special case. This 

will be used to show that the spectrum of an operator is non-empty. Finally 

the vector form of identity theorem will be given. 

8-5.2. For convenience, let H(X,£) denote the set of all holomorphic maps 

from an open subset X of C into a complex Banach space E. Write f, —- g 

in H(X, £) if all fn,g are maps in H(X, EF) and f, — g uniformly on every 

compact subsets of X. We also write Dg instead of g/ for the derivative of a 

map g in H(X, £). It would be more natural if the following two theorems are 

stated in terms of compact open topology which we do not assume. 

8-5.3. Theorem Let f,,9g:X — FE be given maps. Ifall f, ¢ H(X, E) and if 

fn — g uniformly on every compact subsets of X, then we have g © H(X, E). 

Proof. Take any a € X. Pick any closed ball B(a) C X. Since the continuous 

maps f, converge to g uniformly on the compact set B(a), g is also continuous 

on B(a). In particular, g is continuous on the open ball B(a) and hence integral 

of g along every contour in (a) is well-defined. To show that g is differentiable 

on the simply connected open set (a), let P be a simple closed contour in Bia). 

Since f, —+ g uniformly on T, we have fp fn(z)dz — fp g(z)dz. Because all 

fn are holomorphic, we have fp fn(z)dz = 0, ie. fp g(z)dz = 0. Therefore g is 

differentiable on Ba). Since a € X is arbitrary, g is differentiable on X, i.e. 

holomorphic on X. a
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8-5.4. Theorem If f, — g in H(X,£), then Df, — Dg in H(X,E). In 

other words, the differential operator D is continuous under the compact-open 

topology. 

Proof. Replacing f, by f, — g, we may assume that g = 0. Let A be a 

compact subset of X. For every x € A, there is a ball B(z,3r,) c X. Now 

{B(z,rz) : z € A} is an open cover of A. By compactness, there is a finite 

subset J of A such that A C U,¢, Bla,ra). Now K = Uues Bia, 2r,) is a 

compact subset of X. For every ¢ > 0, let 6 = j¢-min{r, : a € J}. Since 

fn — 0 uniformly on K, there is p such that for all n > p and all z € K we 

have ||fn(z)|| < 6. Now pick any z € A. Then z € B(a,rq) for some a € J. 

Let T be the positively oriented circle |w — a] = 2rq. It follows from Cauchy 

integral formula that 

Di= x [| ROS Qni Jp (wz)? 
Now for all n > p, we have 

Lf [fn@o)llldwl 1 / 5 {dw} 1 Gera)(2m.2ra) Df,(z)|< — |) ee =— <e. 
IPin@il s Qa fp |jw—2)? ~ aa yp rz Qn rz = 

Since p is independent of z € A, Df, — 0 uniformly on A. oO 

8-5.5. Lemma Let IT be a contour in © and K an index set. Let 

hn, hk : Tx K — C be maps such that for each z € K, both h,(w,z) and 

h(w,z) are continuous in w € T. Suppose h,,(w,z) > A(w,z) uniformly on 

T x K, then for every continuous map f :T -+ E we have 

fp fw)hnlw, 2)dw — fp f(w)h(w, z)dw uniformly on K. 

Proof. Since h,(w,z) — h(w,z) uniformly on [ x K, for each ¢ > 0 there 

is an integer p such that for all (w,z) ¢ [ x K and all n > p, we obtain 

|hn(w, z) — h(w,z)} < ¢. The continuity of f on the compact set TI gives 

A= sup{||f(w)|| : w ET} < co. Now for any z € K and any n > p we have 

a f(w)hn(w, 2)dw — [ f(wyh(w, 2) au 

< [ I f(w)Lantw, z) — hw, 2] [deo] 

< [ |f@x)||]Rn(w, z) — h(w, z)| |dw] < A€e 

where £ denotes the arc length of the contour T. This completes the proof. O 

8-5.6. Laurent Series Expansion Let X ={z¢ C:r < |z—al < R} bean 

annula. Let f : X — FE be a holomorphic map. For any r <t < R, let 
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1 f(wdw 
=~ ————__, where C; denotes the positively oriented circle 

27% Jo, (way 
oo 

jw —a| =¢. Then the series f(z) = Ss; A,(z — a)” converges uniformly on 
n=— oo 

every compact subset of X. 

Proof. Let K be a compact subset of X. Let m = minzcx |z — al and 

M = maxzex |z — al. Choose a, satisfying r<a<m<M<6< R. 

Take any z € K. By Cauchy integral formula, we obtain 

1 F(w)dw 1 F(w)dw 
A mel —_— —— 

F@) ani Jo, W-2 ami Jo, W-z 

where Cy,Cg are positively oriented circles with center a and radii a, 8 

—a M 
respectively. Consider w on the bigger circle Cg. Since | < 3B <1 

is independent of (w,z) in Cg x K, the series 

1 | > (2 —a)” 
woz ~ & (w — ayn 

converges uniformly in (w, z). Hence, the following series converges uniformly 

on K: 
1 Flw)dw _ f(w)(z — a)"dw 

~ Oni =e 2nilo, W-z Cp (w—aml 

= [5 [Lem e-o 
£F | Art Icy (w — ay! 

Sf f(w)dw ny n [54 [ foe |e-9 => A,(z — a)”. 

n=0 t n=0 

Next suppose that w lies on the smaller circle C,. Since —* <1 
a 

z—-al” om 

is independent of (w,z) in Cy x K, the series 

(z a)” 
wae yl gets (w — ay 

n=—1 

converges uniformly in (w,z). Hence the following series converges uniformly 

on K: 

1 f@w)dw _ f(w\(z — a)" dw 

= > [. Qni Jo, w-z (w — a) 

f(w)dw n 

~ -¥ ls (w — jo] (2~ @) 
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_s [Lf fwd — ; 

>a E [, a (2 —a) = Do Ane —a)". 

Combining above two terms of f(z), the proof is complete. Oo 

8-5.7. Theorem Consider the series f(z) = )>7°y An(z —@)” on the open ball 

B(a, R) where A, € E. If it converges pointwise on B(a, R) then it converges 

uniformly on every smaller ball B(a,r) with O<r< R. 

Proof. For a fixed r, choose b € € satisfying r < |b—a| < R. Since the series 

F() = 7725 An(b — a)” converges, so is the series uf(b) = S772) ulAn(b — @)"] 

for every u € E. Hence the set {u[A,(b— a)"] : n > 0} is bounded in C. Thus 

{An(b — a)” : n > 0} is weakly bounded and therefore norm-bounded in E, 

ie. A = sup{||A,(o — a)"|| : n > O} < 00. For every € > 0 there is an integer p 
r kei 

= (52a i) < e. Now for every such that for every k > p we have 

z € Bia,r), 

Pp P kam 

> Akim(% — am < S {| Ansm(b 

m=1 m=l 

oo kim nN r k+l 

<2) (ga) —— (gra) <© 

en =k+1 Ante — a)"| 

it is independent of z € Ba.) the convergence f(z) = {7° An(z — a)” is 

uniform on the open ball Ba, r). in 

<e. Since Therefore we get [fe _ An(z — a)” 

oO 

8-5.8. Corollary Consider the series f(z) = > on an open set 
An 

x (z-a)” 

X ={z eC: |z—al > R} where A, € E. If it converges pointwise on 

X then it converges uniformly on every compact subset of X. 

Proof. Apply last theorem to the map g(z) = f(a+ +) on the open 

ball BO, R) a 

8-5.9. Uniqueness of Laurent Series Expansion Consider the series 

f(z) = SR ., An(z — a)” on an annula X = {2 € OC: r < |z-al < R} 

where A, € EH. If it converges pointwise on X then f is holomorphic on X. 

Furthermore we have A, = — _S (wd 
2nt Jo (w— ay! 

oriented circle |z — aj =t withr <t< R. 

where C’ is any positively
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Proof. We have proved that f@ = re. An(z—@)” converges uniformly on 

compact subsets of X. Since yA ;, An(z—a)” is holomorphic on X, so is f. To 

verify the formula for A, take any u € E’. Since uf(z) = 772. ul(AnMz—a)” 

converges on X, the proof is completed by one dimensional case as follow: 

lf @pw)dw -uf2 f(w)dw 

Ini Jo (w— art Qri Jo (w— ayn |" 

n= 

u(A,) = oO 

8-5.10. Taylor Series Expansion Every holomorphic map f : B(a, R) — E 

has a series expansion f(z) = ary A,(z — a)” which converges uniformly 

on compact subsets of B(a,R). Furthermore, the coefficient is uniquely 

determined by 

n= 
FM) _ 1 | f(w)dw 

nt! ni Jo (w— a)! 
where C is any positively oriented circle |z — a| =r withO<r< R. 

Proof. By Laurent series expansion, we have f(z) = > An(z — a)” for each 

0 < |z—a| < R. Take any n < 0. Since (w — a)-” f(w) is holomorphic in 

w € Ba, R), we obtain 

An= 1 fw) 
ri c (w—a)" 

Therefore f(z) = 77°, An(z — a)” holds for each 0 < |z —a| < R. Obviously, 

the expansion also holds for z = a. QO 

-+ dw = 0. 

8-5.11. Let E be a complex Banach space. A holomorphic map defined on 

the entire complex plane is also called an entire map. 

8-5.12. Theorem Let f be an entire map. If the set {f(z)/z™ : |z| > r} 

is bounded in FE for some integers m,r, then f is a polynomial of degree 

at most m. 

Proof. Consider the Taylor expansion f(z) = 37°: n=0 Anz” at 0€C. Take any 

real R > r and integer n > m. Let C be the positively oriented circle |z| = 

Since A = sup{|| f(z)/z™|| : Jz| = - < 00, we have 

1 | Flw)dw A. f ole 
Qri Jo wel SOR Jw|rrt 

! | f(w)|| 1 r 
<— == 
— On [ ( ew|™ jw|r—ml |dro| Rr-m +0 

as R — oo. Therefore A, = 0 for all n > m. Consequently f(z) = an Anz” 

is a polynomial of degree at most m. oO 

|| An] = 
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8-5.13. Generalized Liouville’s Theorem Every bounded entire map is 

constant. 

8-5.14. Theorem on Removable Singularity Let f : X — E bea holomorphic 

map on a punctured disk X = {z € ©: 0 < |z—a| < R}. If f is bounded on 

X, then f can be extended to a holomorphic map on the open ball B(a, R). 

Proof. Suppose |} f(z)|| <A < co for all z € X. Consider the Laurent series 

expansion f(z) = }772_.., An(z — a)” for each 0 < |z—al < R. For each 

0<r< R, let C, denote the positively oriented circle |w — al] = r. Then for 

every n < 0, we get 

1 f(w)dw 1 nel 
A, || =(|— | ——-——]}] < — —a)" alls |g [ eer <a [leo rele 

< J 7?! )\\dw| = Ar7® > 0 
2m Jo 

as r > 0. Therefore A, = 0 for all n < 0. Consequently pans Anz” is a 

holomorphic extension of f over the ball B(a, R). Oo 

8-5.15. Identity Theorem Let f,g be holomorphic maps on an open 

connected subset of € into FE. If f(z) = g(z) for all z in a bounded infinite 

subset of X then f =g on X. 

Proof. For each u € E’, both uf,ug are holomorphic on X. By one 

dimensional case, we have uf(z) = ug(z) for each z € X. Since E’ separates 

points of F, we obtain f(z) = g(z),V z EX. Oo 

8-5.16. Exercise Let f be a holomorphic map on an open connected subset 

X of C into E. Prove that if f is not identically zero on X then the zeros of 

f are isolated points. 

8-5.17. Exercise Let X be an open connected subset of C. Let f: X > E 

and g: X —+ € be holomorphic maps. Prove that if f(z)g(z) =0,V z € X then 

either f =0 or g=Oon X. Note that the set of all holomorphic functions on 

X is an integral domain and all holomorphic maps a module over this integral 

domain. 

8-6 Spectrum 

8-6.1. An eigenvalue \ of a matrix A is defined by an algebraic equation 

(AI — A)x = 0 for some non-zero vector x, ie. Af — A is not injective. It is 

well known that every matrix has at least one complex eigenvalue. There is an
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explicit formula to express the eigenvalues of polynomials of a matrix. These 

results will be generalized to infinite dimensional spaces in terms of spectrum. 

Later in this chapter, spectrum will be used to define holomorphic functions 

of operators. 

8-6.2. Let #,F be Banach spaces. A topological isomorphism from FE onto 

F is also said to be invertible. The set of all such topological isomorphisms is 

denoted by T(F, F) or simply by T(/) if EF = F. The identity map on E is 

denoted by I or Ig. A continuous linear map from F into itself is also called 

an operator. 

8-6.3. Theorem Let A be an operator on £ satisfying ||Al| < 1. Then J-—A 

is invertible. The series ([ ~ A)~! = [+ A+ A*+A3+--- is absolutely convergent 

in the Banach space L(E). Furthermore, we have ||(I — A)~!|| < TIT: 

Proof. Since ||I\| + ||Aj] + ||A7l| + || 42] +--- < 1+ |/Al] + |All? +||Al]? +---, the 

series 1+ A+ A?+A*+--- is absolutely convergent in L(E). Letting n — oo in 

(I—A\I+A+A?4+---4+A% =F -—A™, 

we have (I — A) 0725. A® = (072) A”) — A) = I. Therefore I — A is invertible 

and (I — A)“! = 0°, A”. Furthermore, 

Seat] < SS < DeyNar = ay 
8-6.4. Theorem (a) The set T(E, F) of all topological isomorphisms is open 

in the Banach space L(E, F). 

(b) The map A > A™! is a continuous map from T(E, F) into L(F, E). 

(c) Suppose A,B € L(f,F). If A is invertible and if ||A — Bl] < ue then 

|= ayy = 

B is also invertible. Furthermore we have 

pty < 1AM Jaa PIA = BI 
~ 1— [Am] JA Bh 1— ||A~*]| [A — Bh 

Proof. Both (a) and (b) follow immediately from (c). Observe that 

B=A-—(A—B)=A[I— A7(A — B)]. 

Since ||A71(A — B)|| < ||A7"|] ||A — Bl] < 1, the operator J -— A71(A— B)isa 

topological isomorphism. Therefore B itself is also a topological isomorphism 

from FE onto F. Consequently, T(E, F) is an open subset of L(£, F). Next, 

observe 

|B] = IIL — AA — By AM] < | — Av! ~ By" A] 

and |B! —A} < 
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| |A~"I| -1 . 

<{—47a- By "S$ yaaa BF 
and also 

|B! — A“ | =||B°MA—- BA || <||B'}| ||A- Bl] A] 
|A7 PA — Bll 

<T-44] 4— By 
This inequality proves that A — A7! is continuous. Oo 

86.5. Exercise Let A,,A be operators on EF. Suppose that all A, are 

invertible. If sup ||A;,'|! < oo and if lim ||A, — A|| =0, then A is also invertible. 

8-6.6. We shall work with a given operator A on £&. A scalar X is called a 

resolvent value of A if AJ — A is invertible. The set of all resolvent values of A is 

called the resolvent of A and it is denoted by p(A). The map R(A) = (AI — A)7! 

from p(A) into L(E) is called the resolvent map of A. The set oA = K \ p(A) 

is called the spectrum of A and its elements are called spectral values of A. 

Equivalently, A is a spectral value of A if AJ — A is not invertible. 

8-6.7. Theorem (a) The resolvent set p(A) is open in K. 

(b) If \ € K satisfies |A| > || All, then \ is a resolvent value of A. 

(c) The spectrum of A is a compact subset of K. 

(d) Every eigenvalue of A belongs to the spectrum. 

Proof. (a) The map A — AI — A is a continuous map from K into L(E). 

Hence the inverse image p(A) of the open set T(£) is open. 

(b) Suppose |A| > ||Al|. Then J — {A is invertible. Hence AJ — A is also 

invertible. Therefore A is a resolvent value. 

(c) It follows from (a) and (b) that A is closed and bounded in K and hence 

it is compact. 

(d) If A is an eigenvalue, then AJ — A is not injective and hence a spectral 

value. Oo 

8-6.8. Lemma (a) The resolvent map R(A) is continuous. 

(b) lim R(A) = 0 as A > 00. 

(c) For all resolvent values \, u, we have R(A) — R(w) = —Q — ) RO)R(y). 

(d) R(A) is holomorphic on p(A). 

Proof. (a) As the composite of two continuous maps: 4 — AI — A on p(A) 

and Q — Q7' on T(E), R(A) is continuous. 

(b) Clearly, R(A) is well-defined for all large value of A. Furthermore we have
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-1 

lim R(A) = (lim AT!) tim [ = A] =O. =0. 

(c) It follows immediately from 

RO) — Rw) = OF — AT! — (ud — AY 

= (AT — A)“ [(ul — A) — AI — Aut — Ay7! 

= RAMeT — ADR(y) = —(A — ROAR(p). 

(d) Since p(A) is open, for each A € p(A) and for all small h, we have 

A+h © p(A). By (c), we have RA +h) — RA) = —AR(A+ h)R(). It follows 

from (a) that 

. RA+h)-— RO) 
lim. ————_—— = . —-_ 2 _ 2 lim 5 fim RO + h)RQ) = —-[ROYP = (AT — Ay. Oo 

8-6.9. Theorem The spectrum of an operator A on a non-trivial complex 

Banach space & is non-empty. 

Proof. Suppose to the contrary that the spectrum is empty, ie. p(A) = C. 

Then the resolvent map R(A) is bounded and entire. Hence (AI — A)7! is a 

constant, or its inverse \J — A is a constant which is a contradiction. oO 

8-6.10. Theorem [If A is invertible, then o(A™!) = [o(A)]“!. 

Proof. Since A is invertible, 0 € IK cannot belong to the spectrum. The right 

hand side is interpreted as {A~! : X € o(A)}. Now suppose A ¢ o(A)!, ie. 

A7! ¢ o(A). Then \~!J — A is invertible. Hence Af — A7! = —\A7!(\7!T — A) 

is also invertible. Therefore \ ¢ a(A7'). We have proved o(A7!) C [o(A)]7!. 

Now replacing A by A~!, we have a(A) C [a(A7!)]“!, ie. ¢(A)"! Co (A). 

8-6.11. Let A be an operator on a Banach space &. Let f be a polynomial 

function given by f(A) = apta1A+a2A7+- --+anA” where ap, Q1,02,---, An € K 

are constants and \ a scalar variable. Define f(A) = ap{+a,AtazA*+---+a,A”. 

Clearly, f(A) is again an operator on FE’. Clearly if f,g are polynomial functions 

which are equal in the sense f(A) = g(A), V A € K, then f(A) = g(A). 

8-6.12. Spectral Polynomial Theorem Let EF be a complex Banach space 

and A an operator on &. Then for every polynomial function f, we have 

oLf(A)] = flo(A)]- 

Proof. The right hand side is interpreted as {f(A) : \ € o(A)}. Take any 

p € ofA). Then pul — A is not invertible. On the other hand, there is a 

polynomial q satisfying f(z) — f(A) = (u — AYq(A). Then
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FUL — fA) = (ut — Ajg(A) = gC A(t — A) 

is not invertible, otherwise 

= (FQ) — FCA g( Al — A) = Ge — ADGA FCT — FCAT! 

gives the left and right inverses of 4J—A. Therefore, f(y) is in the spectrum of 

f(A). We have proved f[o(A)] C o[f(A)]. Conversely, take any p € of f(A)]. 

Write w — f(A) = ai — Af, — A)-+- (Bn — A) where (1, 62,-+-,8n is an 
enumeration of all roots of 4: — f(A) and a 40. Hence we have 

pl — f(A) = offyT ~ A)(GT — A)--- (Bal — A). 
Since yl — f(A) is not invertible, there is at least one 1 < 7 < n such that 

8,1 — A is not invertible, i.e. 6; € o(A). As a result, p = f(6;) € flo(A))]. 

Therefore we have proved of f(A)] C f{o(A)]. oO 

8-6.13. Exercise Let A,, B be operators on a Banach space £. Suppose that 

all A, are invertible satisfying sup ||Az!|| < oo. If lim||A, — Bl| = 0, then B is 

also invertible. 

8-7 Spectral Radius 

8-7.1. Let A be an operator on a Banach space E. Then the spectral radius 

of A is defined by r(A) = sup{|A| : A € o(A)}. Of course, it measures the size 

of the spectrum. Equivalent formulas which is easier to apply will be given. 

8-7.2. Lemma The Laurent series expansion of the resolvent map is given 

— ” 
by RO) = ~- > (4) . It converges absolutely for all |\| > r(A). 

» “x aS 

Proof. Since R(A) is holomorphic on p(A), it has a Laurent series 

expansion (AJ— A)! = R(A) = 702, ByA" for |A| > r(A). On the other hand, 

QI- Ay! = 5 t ony (4 y" holds for all |A| > {[ Al]. By identity theorem, the 

corresponding coefficients must be the same. Therefore R(A) = byee 0 (ay 

also holds for || > r(A). Oo 

8-7.3. Theorem r(A) = lim Ar ||!/" - inf Aary/r. 
noo n> 

Proof. Let a= inf,>, ||A”||!/". Take any \ € o(A). By Spectral Polynomial 

Theorem, A” € o(A®). Hence |A|" < ||A"l|, or JA] < |[A"||!/" for all n, ice. 

r(A) < a Clearly, a < liminfy_oo |[A"|]/"_ < limsup,_,., ||A||!/". Now 

take any |A| > r(A). Since the series R(A) = 4 3772, (4)” converges, the set 
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{|A"/A”|| : m > 1} is bounded. There is ¢ € R such that for all n > 1, we 

have ||A"/A" || < t, ie. At" < Alel/?. Thus lim sup |[A"||}/" < Jd] for 

all || > r(A). Letting JA} | 7(A), we have lim sup || A”||!/" < r(A). Therefore 

lim || A”||!/" exists and the required equality is proved. qo 

8-7.4. Theorem Let A, B be operators on a Banach space FE. 

(a) rAA) = |A|r(A). 
(b) r(AB) = r(BA). 

(c) r(A”) = [r(A)]”, for all n > 1. 

Proof. (a) r(\A) = lim ||(AA)"||!/" = lim [A] |] A!" = [Alr(A). 
(b) r(AB) =lim (ABy"*! pi/oreb < lim PAOD CBA ry /erb | Byer 

< lim |] Alf!/ fim {||(BAY"|!/7 7) Tim | Br = (BA). 

Similarly, r(BA) < r(AB). This proves (b). 

(c) r(A* = lim, amr t/me = [tim Amr | 1/Gnn) = {r(A)]". QO 

8-7.5. Theorem Let A,B be operators on a Banach space EL. If AB = BA, 

then r(AB) < r(A)r(B) and r(A + B) < r(A)+r(B). 

Proof. Letting n — oo in ||(AB)"||/" = ||A"B"||/" < Am ||!/"||Br||1/", we 
prove the first formula. For the second, take any a > r(A) and @ > r(B). Let 

P=A/a and Q = B/8. Then r(P) < 1 and r(Q) < 1. For each integer n > 1, 

there is an integer 0 < g(n) <n such that 

g(r) mgr) k nk PA] Qn] = max PFI IQ" 
Let h(n) =n — g(n). Then 

A+B) < a+ Bry < [SO (2) akar-F Py nk)” 
n n k na \/n g(r) 1/n h(n) l/r < < [57 (jf) 2 P| Qrer| 

= (a+ BPI || Qher|t/n. 
Since 0 < i g(n) < 1, there is a sequence n, < nz < nz < --+ of integers such 

that limjioo g(nj)/nj = y <1. Then limj_.o h(nj)/nj; = 1 — y. Consider the 

case when g(n;) — 00 and h(n;) - 00 as j — oo. Then 

Jim, || pari” = im, || paren ft/aemsrtiosn/n = (PY <1 

Similarly we have 

lim |[Qho|] < r(Qy'-7 <1 
joo
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Hence r(A + B) < a+. Next consider the case when {g(n;) : 7 > 1} is 

bounded. Then we have limjioo g(nj)/nj = 0, or limjoo h(nj)/n; = 1, ie. 

h(n;) — oo. Therefore 

Him Qh |/"s = lim [Qh yl sae ithes/na] = (Q)! < 1 
300 JO 

I/n; 
and Pars) yt/ns < in pay 1. 

Consequently r(A+ B) < a+. Similarly when {h(n;): 7 > 1} is bounded, we 

obtain the same result. Now letting a | r(A) and 8 | r(B), we 

get r(A+ B) < r(A)+r(B). oO 

8-7.6. Exercise Let A, be an invertible operator on E. Suppose that 

r(Az!) < X < oo for all n. Prove that if B is an operator on E satisfying 

lim || A, — B|| = 0 and A,B = BA, for all n, then B is invertible. 

8-7.7.. Exercise Prove that the following statements are equivalent for an 

operator A on L£. 

(a) A is quasinilpotent, i.e. r(A) =0. 

(b} sup, ||(AA)"|| < 00 for all A € K. 

(c) limp_soo ||(AA)" || = 0 for all \ € K. 

8-7.8. Exercise Let A be a quasinilpotent operator on FE. Prove that if 

lim sup |An|!/” < 00, then the series So, AnA” converges absolutely. 

8-7.9. Exercise Show that r(A) = r(B) = 0, r(A+ B) =1, r(AB) = 1 and 

Saja AB 4 BA where A=[) 0 1 oor 

8-8 Holomorphic Maps of an Operator 

8-8.1. Let A be an operator on a complex Banach space #, V an open set 

containing the spectrum o(A) and f : V — C a holomorphic function. We shall 

define the operator f(A) by Cauchy integral formula over certain contour. 

8-8.2._ A bounded open subset W of € is said to be Cauchy if its boundary 

OW consists of a finite number of disjoint simple closed contours which are all 

oriented with respect to W according to the right handed rule. For example, 

the set {z: |z| <1, or 2 < {z| <3, or |z+9| < 1} is a Cauchy open set when 

the circles |z| = 1, |z| = 3 and |z + 9| = 1 are oriented counter clockwise but 

|2| = 2 clockwise.
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8-8.3. Lemma Let K be a compact subset of an open set V in C. Then 

there is a Cauchy open set W such that K CWCWcY. 

Proof. Write z = 2+ iy and w = u+iv where z,y,u,v are ali real. Let 

Q(z, 6) = {w:|u—2| < 4,|v—y| < 6} denote the square with center z. Then 

for each z € K there is 6, > O such that Q(z,36,) C V. By compactness 

of K, there is a finite subset J of A such that K Cc Uses Qt, 6z). Clearly 

W =U.e7 Oz, 24) is a required open set. Q 

8-8.4. Let & be a complex Banach space. Then the space L(E) of operators 

is also a complex Banach space. Let A be an operator on FE. Suppose V is an 

open set in © containing the spectrum o(A) of A and f : V - € a holomorphic 

function. There is a Cauchy open set W such that o(A) CW CW CV. Now 

in terms of the following line integral, 

it — pywtay — FO) f(A)= 5 [ fOalArtdd= 55] sp aan 

is well-defined in the Banach space [L(F). 

8-8.5. Lemma The definition of f(A) is independent of the choice of W. 

Proof. Let M be any Cauchy open set satisfying (A) C MC MCV. Then 

WM is an open set containing the compact set o(A). There is a Cauchy open 

set N such that o(A) CN CNC WWMM. Now ON is completely contained 

in the interior of OM and there is no singularity of f(A)AT — A)~! between 

them. It follows from Cauchy-Goursat Theorem that 

| FOI — Ay! dd = | fOAAT ~ AT! dd. 
ON OM 

Similarly, we have 

| FIAT — Ay7'dd = | FMA — Ay! da. 
ON ow 

Therefore 

lf fh) ,_1 f fH 
Qmi Joy I-A” 2m Jong A —A 

di. a 

8-8.6. Exercise Prove that for every x € FE, we have 

f(A)z = = [ fOAT — Ay! add. 
271 Jow 

8-8.7. Theorem (af + (@g)(A) = a[f(A)] + B[g(A)] for constants a, 2. 

Proof. Let g be a holomorphic function on an open set U containing o(A). 

There is a Cauchy open set W such that (A) CW CWCUNV. Then 
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1 A (af Bay Ay= =f) CEO an 

=— LY) a4 8 9M) 4) = af f(A] + BIg(AD]. o Qni Jow I-A Imi Jow I-A 

8-8.8. Theorem If f,g are holomorphic functions on an open set V containing 

o(A), then we have (f - g)(A) = [f(A)Ig(A)]. 

Proof. Let M,W be Cauchy open sets satisfying 

o(ACMCMCWCWCY. 

Then OW  isexterior tothe contour 9M. In particular, they are disjoint. 

f) 
8M wz 

Furthermore, for every w € ON we have dz=0. Now the result 

follows from the following calculation: 

fi Le) 4 i gw) 
FA)G(A) = {an [, zl— az} {a5 [., wl - rag 

= [, [, f(z)g(wy(2l ~ Ay '(wI — Ay dzdw R 

= [. [. f(z)g(w)(w — 2)" [Cel — Ay! — (wl — A) Idzdw = 

=f SOL [200 toh a 
2nt Jay zl—A | 20 Jow w—-2 

- aff {/ LO teh qewyeut ~ A)! dw 
—4r* Jaw (Jam w 

_ 1 f f@@), _ = Dei Ioyy at a Oe IAD. 0 

8-8.9. Theorem Let f be a holomorphic function on an open ball B(0,r) 

containing o(A). If the series expansion f(A) = )>°2,b,A” holds for every 

A € BO,r), then we have f(A) = an b, A” in norm. 

Proof. By compactness of o(A), there is ¢ € R such that o(A) Cc B(0,t) and 

t <r. Then the series f(A) converges uniformly on the positively oriented 

circle [ siven by {A.: |A| = ¢}. Therefore, 

SO | n - 
fA) = 55 DELAY d= fe by AMAL — Ay7'd ad 

= i MOA nae [ a (oy Ath") da 

= bn - parka = yoy bn”. D 
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8-8.10. When f is a polynomial, we have proved that the functional definition 

of f(A) agrees with the algebra of operators. The exercise below follows by 

argument similar to last theorem. After that, the spectral polynomial theorem 

will be generalized. 

8-8.11. Exercise Let f, be a sequence of holomorphic functions on an open 

set V containing o(A). Prove that if f, — f uniformly on compact subsets of 

V, then f,(A) — f(A) in norm. 

8-8.12. Spectral Function Theorem For every holomorphic function f on an 

open set containing o(A), we have o[f(A)] = f[o(A)]. 

Proof. Suppose » ¢ f[o(A)]. Then for every A € o(A), we have yu ¥ f(A). 

Since g(\) = [u — f(A)]~' is holomorphic on a(A), it is holomorphic on some 

open set W satisfying 0(A) CW c V. Now g(A)[u — f(A)] = 1 on W gives 

MANET ~ F(A) = P= [wl — fA) 9A). 

Hence pl ~— f(A) is invertible, ie. jy ¢ of[f(A)]. Therefore, we have 

o[f(A)] Cc flo(A)]. Conversely, assume yz € o(A). Then the function 

—f(rA 90) = LO =LM 
p~-r 

is holomorphic on V. Now f(z) — f(A) = (uw — A)g(A) gives 

Fu)L — f(A) = (ul — A)g(A). 

Thus f(z) — f(A) is not invertible, otherwise 

(ul — Ag AL FQ) — f(A)! = T= [fol — f(A" 9( Al — A) 

provides an inverse for uJ — A. Therefore f(u) € o[f(A)]. Consequently, we 

obtain f[o(A)] C o[f(A)]. o 

8-8.13. Theorem Let f be a holomorphic function on an open set V 

containing o(A) and g a holomorphic function on an open set U containing 

o[f(A)]. Then we have (gf)(A) = gl f(A)]. 

Proof. Let M be a Cauchy open set satisfying o[f(A)] C Mc M CU. Then 

o(A) C f-'(M) Cc V. Since f~'(M) is open, there is a Cauchy open set W 

such that o(A) CW CW c f7'(M). Now take any \ € W. Then f(A) € M. 

Hence for every z € OM, we have z — f(A) #0. Thus 2 fO) is holomorphic z— 

in \ on W. Therefore, 

1 dd 
zl — f(A! ==— | SPT oa EE FON dai Jow Te = FOOT = A)
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Now the result follows from the calculation: 
1 otf A= =f gate ~ sy tde 
Tt Jam 

1 I dy 
= i Joy 9 lami Le [z— fOO]OT— A) 
ss 1 ff glade et 

om ae I, zZ- rp Ayan 

= If (a fQAT — Ay~!dd = (9 f(A). no 
At ow 

8-8.14. Exercise Let A,B be operators on E. Let f be a holomorphic 

function on an open set V containing o(A) and g a holomorphic function 

on an open set U containing o(B). Prove that if AB = BA, then we have 

F(A)g(B) = g(B) f(A). 

8-8.15. Exponential Function of Operators Since the exponential function 

is holomorphic on the spectrum of A, the operator e4 is well-defined. 

(a) The series e4 = [+ A+ A+ ZA? + ZA‘ +--+ converges in norm. 

(b) e& =T and Ae = Ae’ = = ANA for all AEC, 

(c)  AB= BA then e“B = Be and e4*8 = e4e®. 

(d) e4 is invertible and its inverse is given by (e4)~! = e~4. 

Proof. (b) follows immediately from differentiating the following series term 

by term: e4* = J+ AX+ aN + Ata + aie + 

(c,d) Suppose AB = BA. Then e4B = Be* follows from last exercise. Next, 

let F(A) = eft 8) e—Bre-A4 for all X € ©. Then F’(A) is given by 

(A+ ByeAtBr e—Bre~Ar + eA+B)\(_ Bye BAe AA + elAtB) e—BAr_ Aye A, 

It follows from (b) that F’(A) = 0. Thus F(1) = F(0), ie. e4t8eFe-4 = I. 

Taking B = 0, we have e4e~4 = I. Replacing A by —A, et A= I. Therefore 
A AeBe is invertible and we have (e4)~! = e—4. Since e = I, we obtain 

e4*B — eAe® by uniqueness of left inverses. dO 

e€ 

8-8.16. Finally, we shall present a practical way to evaluate a holomorphic 

function of a square matrix. To do so, we need the following standard result 

from linear algebra. It will be used again by Fulmer’s Method in §11-4.2. 

8-8.17. Cayley-Hamilton Theorem Let A be an n X n matrix with 

characteristic polynomial given by 

pA) = det(AI — A) = NX" + Gg A"! + + aQdA* +A 4 a.
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Then we have p(A) = A” + a,_,A"~! +--+ +a ,A*+a,A+ aol =0. 

8-8.18. Let A be a square matrix of order n and let f be a function analytic on 

the spectrum of A. Suppose that the characteristic function of A is factorized 

into the form p(A) = det(AI — A) = TjaQ — A; where Ay, A2,+++,As are 

eigenvalues of A and each m(j) is an integer > 1. By partial fraction, there 

are polynomials u;(A) of degrees < m(j) respectively such that 

1 _ 8 uj(A) 

pay Dit DPT" 
Define ug(A) = IT. ik (A—Ay™™. 

Let 70) =r 1 fe Le) a dy 

denote the Taylor’s expansion of f at 2, trancated to the degree m(j)—1. Then 

we have the following practical expression for function of a square matrix: 

FA)= 7), u(Av( ANT (A). #1 

Indeed, from em ug(A)u;(A) = 1 

we get 

10) = S21 wOHOY/OE) = 2 yO, TI” 2 E—ayh = jet Uj Hy = jel Uy Us x0 ki! v] 

m dj 

= ot £0) aynj0V0 24)! 

re mae) eee ayyirmo 
jam) 

= Os ) = Aj AT (A a AMA — Aj IT™. >a us(AjA)TJO) + pC >a > in) uj(A)(A — Aj) 
Now replacing X by the matrix A, since p(A) = 0, we prove the formula #1. 

21 0 -!I 
. : A 21 0 -2 

8-8.19. Exercise Find e* where A = 72 ~1 ~2\° Compare the result 

3 1 0 -2 
in §11-4.3. 

8-99. References and Further Readings : Taylor-71, Zhu, Murphy, Stout, 

Gamelin-69, Garnett, Gohberg-82 and Aron-91. 



Chapter 9 

Differentiation in Banach Spaces 

9-1 Differentiable Maps 

9-1.1. Let f be a map from a Banach space E into a Banach space. We 

cannot define the derivative at a point in terms of difference quotient because 

it does not make sense to divide a vector f(x) — f(a) by another vector x — a. 

However the following lemma gives an equivalent formulation which motivates 

the definition of derivatives as linear maps. Elementary properties such as 

continuity of differentiable maps, chain rule will be given in this section. 

9-1.2. Lemma Let f be a map from an open subset X of the scalar field 

f(z) — f@ 
r~-a 

IK into a Banach space F. Then the limit f’(a) = lim exists for 

a é X iff there is a continuous linear map Df(a): K - F such that for every 

& > O there is 6 > 0 satisfying || f(x) — f(a) - Df(a)(z —a)|| < e|x2 —a| whenever 

|z —a| <4. In this case, we have Df(a)t = tf’(a) for all t € K. 

Proof. (<) Suppose that Df(a),¢,6 satisfy the given conditions. Let 

f'(a) = Df(a)t where 1 € K. Then for all |x — a| < 6, we have 

lf) — f@ — (@& - a) f'(@)| | =f@ _ fa)| _ 
r—a la - a| 

_MW@-f@-@-a™Df@lll _ |f@ ~-~f@~- Df@l@ ~ a)Ill 
|x —a - eal 

_ WF@) = f@=-Df@e—all — . 
- |z ~ al —_ 

(=) Define Df(a)t = tf’(a) for allt € K. Then Df(a): K — F is a continuous 

linear map. Since f’(a) = lim[ f(z) — f(@)]/(a — a), for every & > 0 there is 6 > 0 

such that for all 0 < |x—a| < 6 we have ||[f(x) — f(a)I/(2 — a) — f’(a)|| <¢, ie. 

|f@)— f(@)~(z~a)f"(a)|| < e|z—al, or || f(x)— f(@ — Df (a(x —a)|| < elz—al. 
Note that last inequality is also true for |z — a|=0. The proof is complete. G 

9-1.3. Let E,F be Banach spaces and L(E,F) the vector space of all 

continuous linear maps from £ into F. Let X be an open subset of F and
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f :X — F a given map. Then f is said to be differentiable at a € X if there is 

D f(a) in LE, F) such that for every < > 0 there is 6 > 0 satisfying 

f(z) — f(a) — Df (a(x — a)|| < ellz — al| 

whenever ||z — al| < 4, i.e. 

fim LO TIM =~ DI@E-a _ 
im = 

a I|z — all 
0. 

In this case, D f(a) is called the derivative of f at a or total derivative in order to 

distinguish from the partial derivatives introduced later. The map f is said to 

be differentiable on X if it is differentiable at every point of X. A holomorphic 

map refers specifically to differentiable maps among complex Banach spaces. 

9-1.4. Theorem If f : X — F is differentiable at a € X, then its derivative 

is unique. 

Proof. Let A,B be derivatives of f at a © X. For every ¢ > 0 there is 6 > 0 

such that for all x € Bia, 26) we have || f(x) — f(a) — A(z — a)|| < ella — al| and 

I f(c) — f(a) — Bea —a)|| < elle — al). Hence (A — BY(a — a)|| < 2e\le ~ al). 
Now take any ||v|| < 1 in &. Let « = a+ dv. Since x € Bia,26), we have 

||(A — B)6v)|| < 26, ie. ||A— Bll = sup ||(A—- B)ul| <2e. Because e€ is 
lest 

arbitrary, ||A — Bl] =0, ie. A=B. o 

9-1.5. Exercise Let f : X — F be given by f(z) = Axr+6 where A: EF + F 

is a continuous linear map and b € F a constant. Prove that f is differentiable 

on X and Df(a)= A for each a € X. In particular when A = 0, the derivatives 

of constant maps are zero. 

9-1.6. Theorem If f is differentiable at a € X, then f is continuous at a. 

More precisely, for every 4 > ||Df(a)||, there is 6 > 0 such that 

|f(@) — f(@)|| < Allz — al] for all ||z ~ al] < 6. 

Proof. For every 0 < ¢ < A—||Df(a)||, there is 0 < 6 < €/X such that 

for all ||z — a|| < 6 we have ||f(z) — f(a) ~ Df(a\(z — a)|| < ellz — all, or 

|f(z) — f(@)|| - || Df@(« — a)|| < el|z — all, that is, 

I|F(@) ~ F@)|| < |DF(@@ — a)|| + €llz — al] 
< |DF@|||@ — @)|] + Elz —al| < Allz — al] <e. Oo 

9-1.7.. Exercise Show that the function h(z) = Z is continuous but not 

holomorphic from the complex plane into itself.
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9-1.8. First Order Chain Rule Let EF, FG be Banach spaces and X,Y open 

subsets of EB, F respectively. Let f : X — Y and g: Y — G be two given 

maps. If f is differentiable at a € X and g differentiable at b= f(a) € Y, then 

the composite map gf : X — G is differentiable at a € X. Furthermore, we 

have Digf)(a) = Dg(b)Df(a). 

Proof. Let ¢ > 0 be given. There is 6 > 0 such that for all ||z — all < 6 we 

have 

| f@) — f(@ — Df(aye — a)|| < e|/z— al , 

lf@) — f@)|| < {|DF@)|| + Diz — all, 

and also lla(y) — gb) — Dgbx(y — d)|| < elly — 5 
for all ||y — 5|| < (|Df(a)|| + D6. Writing y = f(x), it follows that 

\lg f(a) ~ 9 f(a) — Do()D faa — a)| 
< |Ig(y) — 9) ~ Dg Vly — || + ||Do®|lIf(@) ~ Fla) ~ Df(a)(a ~ a)|| 
< elly — | +€l|Da()| lle — al 
< e{||Df(a)|| + I}lle — all + el|D9)|| lle — al 
< e{||Df(a)|| + 1+ ||Dg()||}lle ~ al. 

Therefore the composite of operators Dg(b)D f(a) is the derivative of gf at 

aé X,ie. Dig fia) = Dg(b)Df(a). oO 

9-1.9. Exercise Let yy: EF, — E andy: F — F; be topological isomorphisms. 

Prove that f : X — F is differentiable iff the composite fy : p~'(X) — F 

is differentiable. In particular, if a map from K” into K™ is differentiable 

with respect to some norms on K",K”™, then it is differentiable with respect 

to every norms. 

9-1.10. Let LCE, F) denote the Banach space of all continuous linear maps 

from F into F. A map f : X — F is said to be continuously differentiable if f is 

differentiable on X and its derivative Df : X — L(E, F) is a continuous map. 

Continuously differentiable maps are also called C!-maps. 

9-1.11. Theorem Composites of continuously differentiable maps are 

continuously differentiable. 

Proof. Let E,F,G be Banach spaces and X,Y open subsets of £,F 

respectively. Suppose f : X + Y and g: Y — G are C!-maps. Then y = f(z) 

and Dg(y) are continuous in 2, y respectively. Hence the composite map
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(Dg)[f(2)] is continuous in x. Since the product L(E, F) x L(F,G) > LCE, G) 

is jointly continuous, D(g f)(x) = (Dg)[f(«)] Df (x) is continuous in z. oO 

9-1.12. Exercise Let f,g : IR — R be given by f(0) = g(0) = 0 and for 

all ¢ #0, f(x) = zsint, g(x) = 2” sini. 

differentiable. Show that g is differentiable but not continuously differentiable. 

Show that f is continuous but not 

9-1.13. Theorem Let &, F',G be Banach spaces and X an open subset of E. 

The product space F x G consists of all column vectors S| where u € F and 
v 

uv € G. Suppose f : X — F and g: X — G are given maps and p: X ~ FxG 

is given by p(x) = ba for each x € X. Then p is continuously differentiable 

on X iff both f,g are. In this case, the derivative of p is given in matrix form: 

Df(z) 
Dp(x2) = . 

p Dg(z) 
Proof. Let 7: F x G — F be the projection onto the first coordinate. Let 

yg: + FxG be the natural injection given by y(u) = (51 andy: G—oFxG 

by w(v) = HE Then f = xp and p= yf +g with chain rule give the result.0 

9-2 Mean-Value Theorem 
2 

9.2.1. Let f:IR-+IR’? begivenby f(z)= BI: It is easy to show that 

there is no ¢ € [0,1] satisfying f(1) — f(0) = Df(d — 0). Hence the classical 

form of Mean-Value Theorem in one dimensional case fails in IR*. There will 

be several versions of generalization of this important theorem. We start with 

the following preparation. Let #, F be Banach spaces and X an open subset 

of F&. We shall continue to work on a map f : X > F. 

9-2.2. Lemma Let M be an open subset of K. Suppose g: M = X 

and f : X — F are differentiable maps. Then for each t € M we have 

(f9)'() = Df(x)g'(t) where x = g(t) and both (fg)'(#), g’(t) are defined as the 

limits of difference quotients. 

Proof. By Chain Rule, D(fg)(t) = Df(z)Dg(Q), i.e. for each vector h € K, we 

have D(fg)\®h = Df(z)Dg@h. Regarding h as a scalar and (fg)'(t), 9’(t) as 

vectors, we obtain h(fg)'(t) = Df(x)[hg’()], ie. (fg) = hDf(x)q’'(. The 

result follows by letting h = 1. Oo
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9-2.3. Inequality Mean-Value Theorem Let f be differentiable on X. 

Suppose the line segment [a,b] = {(1 — tha + tb: 0 < t < 1} is contained in X. 

Then we have || f(b) — f(a)|| < || — all sup{||Df(z)|| : z € [e, b)}. 

Proof. It suffices to prove the real case because every complex Banach space 

is also a real one. Define g(t) = (1 — Ha+tb for allt ¢ R. Theng: R-—- FE 

is differentiable. Applying the Chain Rule to the composite map fg, we have 

(f9)'(t) = Df(x)g'(t). Since [0,1] is a subset of the open set g~!(X), it follows 

from the mean-value theorem for R that for every u € F" there is t € (0,1) 

such that (ufg)(1) — (ufg)}(0) = (ufg)’@), Le. uffg DI — uflg@)] = uD fg’) 
where x = g(t) € [a,b]. Hence uf f(b)— f(a)] = ul[D f(z)(b—a)]. For any |lul| < 1, 

we have jul f(b) — f(a)ll < [lull Df) |b — all < [> — all sup,era.p IDF) 
The result follows by taking supremum over ||u|| < 1. oO 

9-2.4. Exercise Let g: X — R a differentiable map. Prove that if the line 

segment [a,b] = {(1 —t)a+tb:0<t < 1} is contained in X show that there is 

x € [a,b] such that, g(b) — g(a) = Dg(x)\b — a). 

9-2.5. Exercise Prove that if M,N are disjoint non-empty open subsets of 

a normed space EF’, then M U N is disconnected. Also prove that every pair 

of points in an open connected subset Y of # can be joined by a broken line 

contained in Y. 

9-2.6. Exercise Let f : X -— F be a differentiable map. If the derivative 

Df(z) = Ais a constant on X and if X is connected, then there is some b € EF 

such that for every x € X we have f(r) = Ar+b. 

9-2.7. Integral Mean-Value Theorem Let f : X — F be continuously 

differentiable. If the line segment [a,a+h] = {a+th : 0 <t < 1} is 
1 

contained in X, then we have f(a+h) = f(a) «f/f Df (a+ thjhdt. 
0 

Proof. The map g: R — E defined by x = g(t) = a+ th for allt € R is 

continuously differentiable. The composite map fg has continuous derivative: 

(fg) = Df(z)¢'() = Df(a+th)yh. Now the Second Fundamental Theorem of 
1 

Calculus gives f(b) — f(a) = fg(1) — fg) = [ Df (a+ thyjhdt. o 
0 

9-2.8. Uniform Mean-Value Theorem Let f be a continuously differentiable 

map from an open subset X of E into F. Then for every a € X and every 

€ > 0 there is 6 > 0 such that for all x, y € Bia, 6) we have
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f(x) — f(y) — Df(ayz — y)I| < ellz — yl]. 

Proof. Define g(x) = f(x)— Df (a)z for all ce € X. Given that f is continuously 

differentiable, so is g. Since its derivative Dg(x) = Df(x) — Df(a) vanishes at 

a, for every ¢ > 0 there is 6 > 0 such that for all ||z — a|| < 6 in X, we obtain 

||Dg(z)|| = ||Df(@) — Dfta)|| < ¢. Now for any z,y € Bia, 5), the following 

estimation completes the proof: 

f(x) — f(y) — Df@e — yl = lla — o@l 

< |lz — yll sup{|| Dg) : 2 € [z, y]} < lz — ye. 0 

9-2.9. Exercise Let f : X — F be a continuously differentiable map and Q 

a compact subset of X. Prove that for every ¢ > 0 there is 6 > 0 such that for 

all x,y € Q with ||x — y|| < 6 we have || f(y) — f(z) — Df(x)\(y—=)|| < elly—all. 

9-2.10. Lemma Let X be a convex open subset of EF and f, : X > F 

a sequence of differentiable maps. Suppose for some a € X, the sequence f,,(a) 

converges. If Df, — g converges uniformly on X for some g: X — L(E,F), 

then f, — f converges uniformly on bounded subsets of X for some f : X — F. 

Furthermore we have Df = g on X. 

Proof. By uniform convergence of Df, — gon X, {Df,} is uniformly Cauchy 

on X, i.e. for every € > 0 there is an integer p such that for all m,n > p and 

for all 2 € X we have ||Df,,(z) — Df,(x)|| < ¢. For each x € X, since X is 

convex we have 

[fmn(2) — frn(a)] — fn @) — Fall = lfm) — fae) — [fm(a) — fa @l 

< ||z — all sup{\|Dfn(z) — Df] : z € [z,a]} < |Jz — alfe. 
Thus {f,,(2) — fn(a)} is Cauchy in the Banach space F and hence it converges. 

Since {f,(a)} converges, we may write f,(z) — f(z) € F. Now a map 

f : X — F has been defined. The above inequality shows that {f,(r)— fn(a)} 

converges uniformly on every bounded subset of X and so does {f,,(z)}. Take 

any x9 € X. We want to show that g(x) is the derivative of f at zo. Repeating 

what we have proved by replacing a with xo, for every € > 0 there is an integer 

p such that for all m,n > p we have 

Lfm(x) _ fm(20)] _ [fn(2) _ fro) lll < [x _ aglle. 

Letting m — oo, we obtain |{[ f(z) — f(o)] — [fa(@) — fn(xo) lll < lle — zolle. 

Since Df,(#o) — g(xo), there is an integer g such that for all n > g, we get 

||Dfn(®0) — g(xo)|| < €. Now choose n = p+q. By differentiability of f, at zo, 

there is 6 > 0 such that for all ||z — zq|| < 6 in X we get
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|fn(%) — fn(vo) — Df(xo)(e — xo)|| < ellz — oll. 

The following estimation 

|f@) — F(zo) — g(x0)(e — 2o)|| 

< |ILF@) — fo) — [fal@) — fr(20))|| 

+||fn(2) — fa(to) — Dfn(z0)(x — 29)|| 

+||Df,(@o)(% — Zo) — g(zo(z — Xo)|| 

< 3ellz — xo, 
shows that f is differentiable at x9 and Df(xo) = g(2o). Oo 

9-2.11. Closed Graph of Differential Operators Let X be an open subset 

of F and let f,, f : X — F be given maps. Suppose each f, is continuously 

differentiable and f, — f pointwise on X. If {Df,,} converges locally uniformly 

on X, then so is {f,}. Furthermore, f is continuously differentiable on X and 

Df =lim Df, on X. 

Proof. Let a € X be given. Then there is 6 > 0 such that Df, > g 

uniformly on B(a,6) C X. It follows from last lemma that f, — f uniformly 

on the bounded convex set Bia, 5). Since a € X is arbitrary, f, — f locally 

uniformly on X. Also f is differentiable and Df = g = limDf,. As uniform 

limit of continuous maps Df, on B(a, 6), the derivative Df is also continuous 

on B(a, 6). Since a € X is arbitrary, Df is continuous on X. Oo 

9-2.12. Exercise Let f,(x) = ze-"™” and g(x) = 0 for all z € [-1,1]. Show 

that f, > g uniformly on [—1, 1] but limn oo f/,(0) ¥ g’(0). 

sinnaz 
9-2.13. Exercise Let f,(r)= for all  € IR. Show that f, — 0 

n 
uniformly on R but lim, _.o f/(z) does not exist at any point. 

9-3 Partial Derivatives 

9-3.1. In this section, continuously differentiable maps will be characterized 

in terms of partial derivatives. As a result of §§9-1.2, 3.7, finite dimensional 

derivatives are identified as matrices. Differentiation under integral sign will 

be done. 

9-3.2. Let E',G be Banach spaces and Y a given set. Let X be an open subset. 

of &. The product space & x Y consists of all columns { IF] fe Bye y} 
¥
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which will be written as rows (z, y) for the sake of convenience unless matrix 

operations are involved. Let f : X x Y — G bea given map and (a, b) a given 

point of X x Y. Then the partial map f’ : X —> G is defined by f°(x) = f(z, b). 

If f° is differentiable at a € X, then its derivative is called the partial derivative 

of f at (a,b) which will be denoted by 6,f(a,b) = Df®(a). Similarly, f* and 

Oy f(a, 6) are defined when Y is an open subset of a Banach space. 

9-3.3. Theorem Let F, F,G be Banach spaces and X,Y open subsets of F, F 

respectively. If f : X x Y — G is differentiable, then both partial derivatives 

exist. Furthermore we have in matrix form: Df(a,b) = [0; f(a, b), dy f(a, b)]. 

Equivalently, if 7,7 are projections of EF x F onto E, F respectively, then we 

have Df (a, b) = 0, f(a, b)m + A, f(a, byw. 

Proof. Leto: E> Ex F andr: F — Ex F be the natural injections. 

0 
Consider the composite map f° = fg where g(x) =a + ( ). Since f,g are 

b 
differentiable, so is f°. Furthermore 0, f(a,b) = Df*(a) = Df(a,b)o. Similarly 

f° is differentiable at b ¢ Y and 0, f(a, 6) = Df(a,b)r. Consequently for every 

he Eandk € F we have 

h h 0 
Df(a,d) 4 = Df(a, 6) 4 + Df(a,) | = Df(a, byo(h) + Df (a, b)r(k) 

h 
= Oy f(a, b)h + Oy f(a, b)K = [Oz f(a, b), Oy F(a, 6) ] K o 

9-3.4. Theorem Let EF, F,G be Banach spaces and X,Y open subsets of EF, F 

respectively. Then f : X x Y — G is continuously differentiable on X x Y iff 

both partial derivatives 0,f and O,f exist and are continuous on X x Y. 

Proof. Leto: E+ Ex F andt:F — Ex F be the natural injections. 

If f is continuously differentiable on X x Y, then the partial derivative 

0,f(a,6) = Df(a,b)o is a composite of continuous maps and hence it is a 

continuous map of (a,b). Conversely assume that both 0, f(a, b) and 0, f(a, b) 

are continuous maps of (a,b). For each (a,b) ¢ X x Y, define a linear map 

A(a,b): Ex F > G by A(a,b) = 6, f(a, b)o + Oy f(a, b)7. Fix (a,b) Ee X x Y. 

By continuity of partial derivatives, for every « > 0 there is 6 > 0 such that 

for all ||h|| < 6 in E& and all {[k|| < 6 in F we have (a+h,b+k) eX XY; 

Or: flat+h,b+k)—O,f(a,b)\|<e and la, fiat+h,b+k)— d,f(a,d)|| <e-. 

Observe that 

\|f(a+h,b+k) — f(a, b) — A(a, b)(h, )I| 

< || f(a+h, b+k)— f(a, b+k)— dy f(a, b)h||+|| f(a, +k) — f(a, b) — 8, f(a, b)k||
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1 
= I (0, f(a+th,b+k) — 0, f(a, by|hdt 

0 

+ 

1 
| [Oy f(a, b + tk) — Oy f(a, by] kdt 

0 
1 

< [ If. f(a+th,b +k) — 8, f(a, b)I||||hillae 
0 

1 

+ [ I, fa, b+ tk) — 8, Fa, byl [leat 
1 1 

< [ elyae+ [ e||l|dt = e(|]hl| + |[Al))- 

Therefore f is differentiable at (a, 5) and its derivative is given by 

Df (a,b) = A(a, b) = 0, f(a, b)o + Oy f(a, b)r. 

As a composite of continuous maps of the point (a,b), the derivative Df(a, b) 

is also continuous in (a, b). a 

9-3.5. Exercise Let f : IR? > R be given by 

x _— xy” 

say ‘if 0,0); 
f(z,y)= rty? if (x, y) # (0, 0) 

0, if (x,y) = (0,0). 

Show that at (0,0), the partial derivatives exist but the total derivative does 

not. 

9-3.6. Exercise Let f : IR? > R be given by 

1 2 2 . . 

az + y*) sin ———., if(a, 0, 0); joan= ¥) Jaa (x, y) # (0, 0) 

0, if (x, y) = (0,0). 
Prove that at (0,0), the total derivative exists. Show that the partial deriva- 

tives exist but not continuous at (0,0). Derive that f is not continuously 

differentiable. 

9-3.7. Exercise Let E = [J]? hi, F = Wn F; denote the product spaces 

of Banach spaces E}, £2,---,#, and Fi, F2,---, Fm respectively. Let X be an 

open subset of E and f : X — F a differentiable map. Write 

ay xy hy fi) 

a=|@)eXx=|"lenn=|"])ensa=| "| er 
an In hn fm (2) 

Show that the partial derivatives 0,f;(a) of the map f; : X — F; exist. 

Furthermore verify that
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Oj fi(ayhy + hfi(ayhz +--+ + Onfi(@hn 
O1 fala)hy + Oo fala)ha + +++ + On fo(a)lin 

Dian |e nee neeee 
Afmlayhy + O2fim(ayha treet On fm(@hn 

fia) &fila) --+ Onfilady [hi 
Ofro(a) Orfr(a) On fr(a) hg 

1 f(a) 02 fm(a) “+ Onfm(a) hn 

Therefore in terms of matrix of linear maps we may write 

Ofi@) Aafia) ++ Afila) 

7 
Ofna) fm a) On Fm(a) 

9-3.8. Example We always identify an m x n matrix as a linear map from 

IK” to K™. The total derivative of the map f :IR* > R? defined by 

U 3 

u vsinu 

f ( ) = | ew | is given by the expression 
w+ut 

VCOS U | 

Df () = [Ou f,Oofl= | ve” ue 
3u2 4u3 

0 1 0 

4 is the matrix Df(a)= : 0). 

0 4 

9-3.9. Differentiation under Integral Sign Let X be an open subset of & and 

let a < 8 be real numbers. Suppose f : [a, G] x X — F is a continuous map. If 

the partial derivative 0, f : [a, 8] x X — L(E, F) exists and is continuous, then 

Therefore the derivative of f at a= 

8 
the map g: X — F given by g(x) = / fC,x)dt is continuously differentiable 

B 
on X. Furthermore we have Dg(x) = | 0, Ff, x)dt. 

Proof. For fixed a € X, 0,f(t,a) is continuous in t € [a, f] and hence 

A= fe 0, f(t, a)dt is well-defined in L(E, F). To show that A is the derivative 

of g at a, observe that 

g(a t+ h) — g(a) — Ah 
B B B 

= | f(t,a+th)dt — [ f(t, a)dt — I Ox f(t, ont h 

B B 

- | Lf(t,a+h) — f(t,a)ldt — | | anjeayt) 
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B 1 
a pl 

-| I afta oy dt — i [ asta h 
Qa 0 

x 0 

B pl 
B pl 

= iL [ Desa aba h- i [ asa h 

B pl 

= / [ (204 01) ~ 2,50, 0) h. 
a JO 

Since 0, f : [a, 8] x X — L(E, F) is continuous and [a, @] is compact, it follows 

from §2-7.6 that for every ¢ > O there is 6 > 0 such that for all t € [a, 6], we 

have ||0, f(t,a +h) — 0, f(t, a)|| < € whenever |[A|| < 6. Therefore we obtain 

I|g(a + h) — g(a) — AAI] 
B pl 

< i | Ox f(t,a + Oh) — anja [hI] < (3 — adellAl], 
a J0 

B 

ie. Dg(a)= A= / Ox f (t, a)dt. 

Since 0,f(t,a) is continuous in (t,a), fe 0,f(t,a)dt is continuous in a. 

Therefore g is continuously differentiable on X. oO 

ze, 4? 1 eee +1) 
9-3.10. Exercise Let f(r) = / e* a| and otz)= f aa 

) 0 
Show that both f,g: IR — R are differentiable. Evaluate f’(x)+9’(xz). Deduce 

eT 2 i 
F(z) + g(a) = in. Hence prove that lim e ' dt= av" 

z-CO 0 

9-4 Fixed Points of Contractions 

9-4.1. Let X be a metric space and A: X — X a given map. Then A is 

called a contraction on X if there is 0 < 4 < 1, called a contraction constant of 

A, such that d(Az, Ay) < Ad(z, y) for all x,y € X. Clearly every contraction is 

uniformly continuous. Contraction is one of the most popular tool to provide 

existence of solutions in many problems. 

9-4.2. Contraction Fixed-Point Theorem Let A be a contraction on a non- 

empty metric space X. If X is complete, then A has a unique fixed-point. 

Proof. Choose any 2 € X. Define x, = Ary_,; for alln > 1. Let A be a 

contraction constant of A. Then for each n > 1, we have 

A(Ln41,Ln) = A ALy, ATp_1) < Ad(Ln, Fn-1)
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< Md(ay_1, 2°77) < +++ < X*d(x1, 29). Next, for each k > 1, we have 

UEntk, En) S ASn+k, Pnek—1) + d(Sn+k—1, Enek—2) +++ + A(En+1,2n) 
n 

< (APHEMT 4 ymRRW2 4X) d(2y, £9) < A Aa So), 

Since 0 < A < 1, the last term tends to zero as n — oo. Therefore {x,} is a 

Cauchy sequence in the complete metric space X. Let rz, — y in X. Since A is 

continuous, we have Ar, — Ay, i.e. Tna1 — Ay, or Zp — Ay. By uniqueness 

of limit, we have Ay = y. Therefore A has at least one fixed point. Finally, 

suppose x,y are fixed points of A. Then d(z,y) = d(Az, Ay) < Ad(x,y), ie. 

0> (1 —A)d(z,y). Since 0 < A < 1, we have d(x, y) =0, ie. r= y. a 

9-4.3. Example Let X =[l,o0) and Ar = z+i : X — X. Asa closed subset 

of the complete space JR, X is a complete metric space. Simple calculation 

shows that |Ax — Ay| < |x —y| on X but A has no fixed point. 

9-4.4. Theorem Let X be a complete metric space and A: X — X a given 

map. If A? is a contraction for some integer p, then A has a unique fixed-point. 

Proof. Because A? is a contraction, there is 0 < 2» < 1 such that 

d(APax, APy) < Ad(z, y) for all x,y € X. Let x be a fixed point of A?. Then 

d(Az, x) = d(AAP x, APx) = d(A? Az, APx) < Ad(Az,zx) 

gives d(Az,z) = 0. Therefore x is also a fixed point of A. Since every fixed 

point of A is also a fixed point of A?, the uniqueness follows immediately. O 

9-4.5. Exercise Let A be an operator on a Banach space F andbeé Ea 

given vector. Prove that if r(A) < 1 then the equation x = Ar+b has a unique 

solution x € E. 

9-5 Inverse and Implicit Mapping Theorems 

9-5.1. In this section, we shall apply the Contraction Fixed-Point Theorem to 

establish Inverse and Implicit Mapping Theorems. An advantage of contraction 

allows us to estimate the error but numerical flavor is beyond our scope even 

we make provision in the following contraction lemma. 

9-5.2. Contraction Lemma Let FE, F be Banach spaces, X an open subset of 

E and f: X — F acontinuously differentiable map. If the derivative Df(a) at 

some point a € X is invertible, then there is 6 > 0 such that for each ||u|| < $4, 

the map g(a) = «+ v — [Df(a))“![f(2) — f(a)] is a contraction on the closed 

ball B(a, 6). 
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Proof. Let A = Df(a) for simplicity. Define h(x) = z — A~! f(a) for all x € X. 

Then h is differentiable on X. Moreover, Dh(x) = [—A7! Df (x) and Dh(a) = 0. 

Since f is continuously differentiable, so is h. Therefore for € = 5 there is 6 > 0 

such that for all {| — al] < 5 we have ||DA(z)|| < 4. Take any x € B(a, 5) and 

any ||v|| < 36. Observe that 

\|g(z) — al] = |lz+v — Ag'TF (a) — Flay] - al} 

< |lul] + [lz — A“! f@)] — [a — Am! F@I]| < $46 + AC) — A(a)I| 

< 46 + Ile — all sup{||DA(2)|| : z € [a,z]} < 4546-456. 

Therefore g carries IB(a, 5) into itself. Finally to show that g is a contraction, 

take any 21,22 € B(a,6). The following calculation completes the proof: 

[g(a1) — g(@2)|| = lar — 22 — AWE f(a) — f(a) = Ae) — h@2)|| 

< |lx1 — z2|| sup{||DA(z)|| : 2 € [21, 22]} < lar - z2|| 5. o 

9-5.3. Inverse Mapping Theorem Let X be an open subset of EF and 

f :X — E a continuously differentiable map. If the derivative Df(a) at some 

a € X is invertible in L(£), then there are open subsets V,W of F such that 

the following conditions hold: 

(a)aeEVcXx; 

(b) f: V — W is a bijection; 

(c) the local inverse map f—!: W — V is continuously differentiable. 

Furthermore for every x € V we have D(f~!)(y) = [Df()]“! where y = f(a). 

Proof. The same notation of Contraction Lemma is used. We claim that for 

all 21,22 € Bla, 5) we have 

lle. — al] < 2A] fe) — F@2)IL- 
In fact, let g be the contraction with v =0 in last lemma. Then 

g(@1) — glag) = 2 — 22 — Ag'[f(x1) — flar)] 

Le. © — 2 = g(x1) — g(a2) + AL f(a) — f(a2)). 

Hence Ilzi — 22] < |lge1) — g(a2)|| + AT") F@en) — F@a)ll 

< 5llz1 — veil + [A] Fed — fa) |), 

or, slle1 — zal] < Auf Alen) — F@)ll 

that is, Ilz1 — waif < 2A" ]| fle) — F@2)|- 
Therefore, f is injective on WB(a,6). Next, choose 6, > 0 satisfying 

JA 5, < 36. Let W = B[f(a),6)] and V = Bia,d)n f-\(W). Then V
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is an open set in E and satisfies ae V cC X. Clearly f : V — W is injective. 

Take any y € W. Let v= A7'{[y — f(a)]. Then we have 

lvl] < AT lly — FI] < JAM I8 56. 
Hence g with this v in last lemma is a contraction on B(a, 6). Since E is a 

Banach space, the closed ball B(a, 5) is complete. There is « € (a, 5) such that 

g(#) = x, ie. e+v—A™'[f(x)— f(a] = 2, or Am [y— f(@)]-A“'[f(@)— f(@] = 0. 
Hence y = f(x). Observe 

jz — al] < 2AM" [I F@) — F@L < 2471] ly — F@|] < 2AM <6. 
Thus x € Bia, 6) f-'(W) = V. Therefore f : V — W is bijective. To show 

that f~! is differentiable at any point yo € W, let x9 = f~'!(yo) € V. Since f is 

differentiable at x9, for every € > 0 there is 6. > O such that B(zo, 62) C Ba, 4) 

and for every x € B(ao, 62) we have 

|f(@) — f(zo) — Df (xox ~— x0)|| < ellz — zoll- 

Take any lly — f(a)|| < min{d), 52/(@2||A7!||)}. Write y = f(z) for some z € V. 

Then ||x — all < 2}|A7 [|| f(z) — f(@]] < 62. Now the following calculation: 

F-'@) — £7"@o) — [PF (20) 7" — yo) || 

= ||z — 2 —[Df(@o)] If @) — Fo) Il 

< || Df(@o)~"|| ]F@) — f(wo) — Df(o)(e — 0) 
< ||Df(xo)“"|| € ||z — xol| 

< ||Df@o)"" || € 2 AT] NF@) — Fo) 

< 2e||D feo) "|| ||A7" || lly — voll 
shows that f—! is differentiable at yo and its derivative is given by 

DF )yo) = [Df (ao). 

Since D(f~!)(yo) = {DFLF~'(yo)I} 7! is a composite of continuous maps, D(f—!) 

is continuous on W. Oo 

9-5.4. Implicit Mapping Theorem Let E, F' be Banach spaces; M an open 

subset of Ex F; jf :M — F a continuously differentiable map; (a,b) ¢ M 

and ¢ = f(a,b). If the partial derivative 0, f(a,b) : F — F is invertible, then 

the equation f(z, y) = c has a unique local implicit solution y = g(x) near (a, b). 

More precisely, there are open balls X,Y with centers a,b respectively and a 

unique continuously differentiable map g: X — Y such that 

(a) X x Y CM and g(a) = 5; 

(b) for all @,y)E Xx Y, y= g(a) iff f(z ya
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(c) Dg= —(Oyf)7 "(Or f) on X. 

Proof. Defineh: Mc ExF > ExF byh F] = * for all (x,y) € M. 
oe y f(z, y) 
Then at (a,b), the derivative of h and its inverse are given by 

IE 0 _ Ip 9) 

Dhe lay ot and (DRY = | caypetons on] 
By Inverse Mapping Theorem, there are open subsets V, W of & x F such that 

(a,b) €V CM; h: V — W is bijective and h-! : W — V is continuously 

differentiable. Now for (a,b) € V, we have h(a, b) = (a,c) € W. Choose open 

balls A, B with centers a,c respectively such that Ax B Cc W. By continuity of 

h, there are open balls Q, Y with centers a, b respectively such that Qx Y c M 

and h(Q x Y)c Ax B. Now Qc A because for every x € Q; (2,0) € Q x Y; 

thus h(a, b) = (z, f(z, b)) € Ax B and sox e€ A. Next, let 7: Ex F > F be 

the projection m(z,y) = y. For every x € Q, we have (x,c) € A x B and so 

k(z) = th-'(z, 0) is well-defined with k(a) = th7!(a,e) = x(a,6) = b. Clearly 

k:Q— F is continuously differentiable. By continuity, there is an open ball 

X with center a such that k(X) C Y. Then g = k|X : X — Y is a continuously 

differentiable map with g(a) = b. To prove (b), for every (x,y) € X x Y, 

y = g(x) iff y = th (a, ©) iff (x, y) = A(z, ©) iff h(a, y) = (2, ©) iff f(x,y) = c. 

Finally using the notation of column vectors to differentiate f aa) =f A ; 

we have [O,f Q,f] EA =(Df)D Pa = 0, that is 0, f + (Oy f)(Dg) = 0. 

Since Dh is invertible, so is 0,f. Consequently Dg = —(dyf)—'(Ozf) holds 

as required. Finally for uniqueness, let g, be another implicit solution on A. 

Then Dg = —(0,f)~'(O2f) = Dg on A. Since the ball A is connected, gi — g 

is constant on A. Since g;(a) = b = g(a), we have g; = g on A. Oo 

9-5.5. Let E,F be Banach spaces, X an open subset of EF and f : X = F 

a differentiable map. Then for every a € X the map g: X — F defined by 

g(x) = f(a)+ Df(a)(az — a) is called the linearization of f at a. It is supposed to 

be a convenient approximation of f when z is near a. 

: -TR2 2 . ul ,|2] _ | a+sinzy 
9-5.6. Exercise Let f : IR“ — RR’ be given by | =f IF = yet F 

(a) Evaluate f(a) where a = HE Find the linearization of f at a. Find 

the inverse map of this linearization. 

(b) Show that f is locally invertible at a.
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(c) Find the total derivative of the local inverse map f—! at the point f(a). 

Also find the linearization of f—! when A is near f(a). Compare the results 

obtained from (a) and (c). 

(d) Define a vector map g to represent the system of equations: u =z + y and 

v =a2-—y. Find an explicit formula for the composite map gf. Verify the 

matrix form of Chain Rule at the point a. 

9-5.7. Example Let f ; IR? x IR? — R?’ be given by 

rstuv —1 
f(z, y)= acetal 

Tr 1 1 

where x = | and y = Br Suppose a = | and b= Hi Calculate the 

t 1 

partial derivatives as follow 

Ox fla,b)=[f def afi=|4 ; o| 

and also a, f(a,b) = [Ouf afl = E 3]: 

Since det 0, f(a, b) = 1 #0, there is an implicit solution y = g(x) for the equation 

f(z, y) = 0 when (2, y) near (a,b). Although we do not know the exact values, 

we may approximate g(x) by its linearization as follow 

A = g(a) + Dg(a)(x ~ a) = b— (8, f)"(Arf(a — a) 
fa] fa ay 'fa at a _[ r+2s—3t+1 
man! 2 3 45 0|1* ~ | ar —354+2t4+4]° 

t-—1 

In terms of scalar equations, the approximate implicit solution is given by 

w=rt2s—3t+1 and v= —2r—354+2t+4. ia 

9-6 Local Properties of Differentiable Maps 

9-6.1. Let f be a continuously differentiable function from an open subset X 

of KK” into K™. Properties f near a point a € X will be derived based on the 

corresponding properties of the derivative Df(A). As a result of Surjection 

Theorem below, being interior point is invariant under coordinate transfor- 

mation. Hence the interior and consequently the boundary of a differentiable 

manifold is well-defined in terms of charts. Most of the results of this section
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have been generalized to the context of Banach spaces. We restrict ourselves 

to finite dimensional case so that our students can see the link with linear 

algebra. 

9-6.2. Lemma For every constant k, the set M = {x € X : rank Df(x) > k} 

is open. 

Proof. Take any a € M. Then rank Df(z) > k. It follows from linear 

algebra that there is a submatrix S(a) of Df(a) such that det S(a) #0. Let 

S(z) be the submatrix of D f(z) with the same corresponding rows and columns 

of S(a). Then det S(x) is a continuous function of z € X. Hence there 

is a ball Ba) Cc X such that for all cz € Bia), we have det S(x) # 0, ie. 

rank Df(z) > k. Thus Bia) c M. Therefore M is an open set. oO 

9-6.3. Lemma [Ifa linear map A: K” — K” is injective then it is bounded 

below, ie. there is a constant 4 > 0 such that for all ¢ € K” we have 

Axl] > Alle. 
Proof. Suppose to the contrary that for all j, there is ||,|| = 1 satisfying 

|Ax;|| < 4||z;||, ie. Av; — 0. By compactness of the unit sphere, there is a 

convergent subsequence y; > y. Then Ay; — Ay by continuity of A. Thus 

Ay =0. On the other hand, since ||y,;|| = 1 we get ||y|| = 1. Therefore A is not 

injective. QO 

9-6.4. Injection Theorem If the derivative Df(a) is injective at a point 

a € X, then there is a ball B(a) C X such that 

(a) the derivative D f(x) is injective for every x € Ba); 

(b) the map f is injective on B(a). 

Proof. (a) Since Df(a) is injective, we have ker Df(a) = {0}. Hence we have 

rank Df(a)=n— nullity Df(a)=n. 

There is 6 > O such that for all  € B(a, 6) we obtain rank Df(x) > n which 

means nullity Df(z)=n— rank Df(z) <0, i.e. ker Df(z) = {0}. Therefore 

D f(z) is also injective. 

(b) The proof is independent of (a). Since Df(a) is injective, there is A > 0 

such that for all z € K” we get ||Df(a)a|| > Allz||. By Uniform Mean-Value 

Theorem, for ¢ = 5A there is 6 > 0 such that for all z, y € Ba, 5) we obtain 

f(z) ~ f@) — Df (aa - y)|| < elle — yl: 

ice. |Df@y@ — yl - If@ — F@)I| < gAlle — yl.
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Now by the choice of 4, we get 

Mle ~ yll < |DFf(aya — ll < |F@ — F@I|+ ZAllz — yll. 
Thus lz — yl] < Z1f@) — MV aye X. 
Therefore if f(x) = f(y) then x = y. Consequently, f is injective on B(a,5). 0 

9-6.5. Interior Theorem If D/f(a) is surjective where a € X then f(a) is an 

interior point of f(X). 

Proof. Write Df(a) = [0; f(a), 2f@,:--,Onf(a)] where 0; f(a) is the j-th 

column of Df(a). Since Df(a) is surjective, rank Df(a) =m. Hence Df(a) 

has m columns which are linearly independent. Without loss of generality, 

we may assume that the first m columns 0, f(a),---,8nf(a) of Df(a) to be 

independent. Then the matrix A = [0; f(a),---, Om f(a)] is an invertible square 

matrix. Define B = [Omi f(@),:--,Onf(a)|. So, Df(a)=[A, B]. Let b= f(a) 
-1 

and define g(y) = “o | (y — 6)+a for each y € K™. Then g : K” — K” is 

a continuous map and g(b) = a. Hence Y = g~!(X) is an open subset of K™ 

containing 6. Now fg: Y — K™ is a continuously differentiable map satisfying 
-1 

fo(/)=6b and D¢(fg)(b) = Df(a)Da(b) = [A, B] 40 | =1,. By Inverse 

Mapping Theorem, b = fg(b) is an interior point of fg(Y) = f(X). 0 

9-6.6. Corollary If Df(x) is surjective for every c € X then f(X) is open 

in K™. 

9-6.7. Surjection Theorem If Df(a) is surjective for some a € X, then there 

is 6 > O such that the following conditions hold: 

(a) Df(x) is surjective for every x € B(a, 6); 

(b) f carries every open subset of the open ball Bia, 5) onto an open subset 

of K™. 

Proof. Since Df(a) is surjective, rank Df(a) = m. There is 6 > 0 such 

that for all x € B(a,5) we have rank Df(x) > m and consequently Df(x) 

is surjective. Next take any open subset, M of B(a,6) and any « € M. Then 

x € Ba, 4) and thus Df(z) is surjective. So, f(x) is an interior point of fi). 

Therefore f(M) is open in K™. Oo 

9-6.8. Lagrange Multipliers Let X be an open subset of IR” and let 

f,g; : X — R be continuously differentiable functions for j = 1,2,---,p <n. 

Suppose f(z) has a local maximum or minimum at x =a € X subject to the
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constraints g(x) = 0 for all 7. Then there are constants 4, A2,---, Ap such that 

all partial derivatives of the Lagrangian function: L = f+A191+A292+---+Ap9p 

vanish at a. 

Proof. Let m be the rank of the p x n-matrix [0,9,(a)]. Without loss of 

generality, we may assume that the first m rows are linearly independent. 

gi(@) jo 

: and A(x) = 

on g(a) 
is an (m+1) x n matrix. Suppose to the contrary that 

Define g: X > R™ and A: X 4 R™! wae=| 

Df(a) 
Dg(a) 

rank Dh(a) = m+1. By Surjection Theorem, there is 6 > 0 such that h 

carries open subsets of B(a,5) onto open subsets of IR’. For any € > 0, 

choose 0 < t < min{e,6}. Then h(a) belongs to the open subset h[B(a, t)] of 

R”™*!. There is 6, > 0 such that B[A(a), 5] C A[IB(a, t)]. Hence 

1 

h(x) = h(a) + 3": 

That is, ||x — al| < «; fi) = f(a) + 551 and g;(“) = 0,V j = 1,2,-+-,m. 

Therefore f cannot have a local maximum or a minimum. This contradiction 

shows rank Dh(a) < m+ 1. Since the rank of Dg(a) is m, so is the rank of 

Then Dh(a) = 

Dh(a). Therefore the first row of Df(a) 

Dgi(a) 
_ | Df(@)j _ pied [Do |= | PRO 

Dgm(a) 
is a linear combination of the other rows. For some constants 41, 2,°-:,Am, 

we have Df(a) = —A,;Dgi(a) — A2Dg2(a) ~ --- — AmDgm(a). Define A; = 0 for 

allm <j <pand L= f+Aig1+---Apfp- Then clearly it follows 0;L(a) = 0 

forall l<j<p. q 

9-99. References and Further Readings : Cartan, Lang, Sagan, Berger, 

Ma-01, Dineen-81, Hamilton, Janos, Meyers and Wong-66. 



Chapter 10 

Polynomials and Higher Derivatives 

10-1 Multilinear Maps on Banach Spaces 

10-1.1. Polynomials are probably the simplest nonlinear maps. Higher 

derivatives allow us to approximate certain nonlinear maps by Taylor 

polynomials. In the context of vector spaces, polynomials are defined in terms 

of multilinear maps. Continuity of multilinear maps will be treated in the same 

way as linear maps. 

10-1.2. Let Ey, B,---, By, and F be vector spaces. A map f from the product 

space [[;_, E), into F is said to be multilinear if f(a), v2,--+,£x,-*-, Tn) is linear 

in each variable z,, ie. for all a, 8 € K, all 2; € Ej, ax, by € Ex, we have 

f(@1,22,+++, @ay + Bbq, +++, Zn) 

= af (£1, 2,+++, Gk, ++ +, En) + Of (a1, £2, +--+, Oey - ++ En). 

It is casy to prove that the set of all multilinear maps from ]]j_, E;, into F 

forms a vector space under pointwise operations. A scalar-valued multilinear 

map is also called a multilinear form. 

10-1.3. Let FE), Eo,---, En, F be normed spaces and let f : ut E; > F be 

a multilinear map. The norm of f is defined by 

Fil = sup{||f(z1, #2, - £n)|l : ral < 1,Vv 1 < J s n}. 

Note that f need not be continuous and its norm may be infinity. Because of 

f(0,22,---,2n) =0, we have ||f|| > 0. 

10-1.4. Lemma For all x; € BE; we have 

| fer, 22,°++,&n}l SFI] lead) [zal --- lle. 

Proof. Consider the following cases. If some rz; =0 then we get 

| f@1,22)°++52n)] =O < [Fl] [leu] [zall «++ lanl. 
If all 2; #0 then we obtain
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| f(1, £2, +++, Zn)I| 

zy x2 x. - | Jou loa lellt (2 | 
nm 

oa x2 x. = {lel [leak --- ken aC zl” | nm 

< |lecill [lz2ll--- onl IF. o 
10-1.5. Theorem Let f : a E; — F be a multilinear map. Then the 

following statements are equivalent. 

(a) f is continuous on |], E;. 

(b) f is continuous at the origin. 

(c) {fll < 00. 
Proof. (a > b= c) It is obvious. 

(c = b) For every € > 0 there is 5 > 0 such that ||f||6" < ¢. Now for every 

lz; || < 6 in E,, we have 

| f(e1, 22, +++, tn) — £0, 0, --- ,0)]] = || Fe, 22,--- tn) 

SUFI eal Mleall--- [zal < IF|6" < . 
Therefore f is continuous at the origin of er E;. 

(6 = a) Take any aj,h; € E; for each 1 < j <n. To show that f is 

continuous at (@,,@2,---,@n), let € > 0 be given. Choose 0 < 6 < 1 such that 

nll fi(A+ D"-15 < € where » = supf{|la;i] : 1 <7 <n}. Now for all ||A;|| < 6 

we get 

IW f(ar + hy, a2 + he, +++ an + hp) ~ far, @2,+++, an)l 

= ||f(a, + hi, a2 + ho,-++, Gn +h) — flar, a2 +he,--+, An + hn) 

+f (a1, a2 +he,-++, Qn thn) — far, @2,°++, Ant An) 

tereees + f(Q1,@2,°++)Qn—1, An + hn) — f(a1,42,°°*,@n—1,4n)]| 

= || fCri, a2 + ha,- ++, Qn thn) t+ fai, he,--+, an thn) 

terres + f(a1,42,°-+,4n—1,An)|| 

< | fCh1, a2 + ha,-+ +, Gn +hp)ll + || f(@1, ha,--+ an + hn) 

eeeee + || f(@1, @2,°°+,@n—1, An)|| 

< [Fl] Pall loz + Pall >= llan + Aral] + Ill flail] Wall ++ flan + Pn | 
tosses [fll [leu] lleall + [len—all [ral 

SNF WPallGlaall + hall» Can | + Poll + FI Mould Azll + (lent + ln ID 
fees [ll [lal laall = llan—til [all
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S [Ifill WlA+ D---A+ D+ {FO + DllAall--- A+) 

tereee + FIA+DA+D--- At Dllrall 
=nllf\lA+ D"-15 <e. 

Therefore f is continuous at (a;,a2,°++,@n). o 

10-1.6. Theorem The set M(E), Fy,---,E,; F) of all continuous multilinear 

maps from Wes E; into F forms a normed space under pointwise operations. 

Furthermore, if F is a Banach space, then so is M(E,, fo,---,£,;F). Since 

the proof is almost identical to the linear case, it is left as exercise. When 

&, =---= E, =F, write L"(-, F) instead of M(E), Fo,---, En; F). If F is the 

scalar field IK, we simply drop it. Hence M(E), £2,---,E,) and L"(£) denote 

the sets of all continuous multilinear forms on Ta E; and E” respectively. 

Finally for convenience, define L°(E, F) = F. 

10-1.7. Example Let f : C.[0,1] x Ci[0,1] — K be a map defined by 

f(z,y) = f a(t)y(t)dt. Clearly f is bilinear. Since |f(z,y)| < ||zlloollyll: < 1 

for all ||z||o. < 1 and ||y||: < 1, we have ||f|| < 1. Thus f is continuous. Taking 

the constant function z = y = 1, we have ||f|| = 1. 

10-1.8. Exercise Let 1 <p < oo and dad = 1. For every x = (4), 42,---) in £, 

and y = (y1, y2,-++) in £y, let f(z, y) = (ziy1, Z2y2,-+-). Show that f : £, xl, > £ 
is a continuous bilinear map. Find the norm of f. 

10-1.9. Exercise For every x = (2), 22,---) and y = (w1, y2,---) in Foo, let 

f(z,y) = 21y1 + F2y2 +--+. Show that f is a bilinear form. Is it continuous? 

10-1.10. Exercise Let F,,F,,---,E, and F be Banach spaces and let 

M(F), E2,++-, En; F) denote the Banach space of all continuous multi-linear 

maps from the product space jar E; into F’. Prove that the formula 

A(xy22°++ Ly) = (AT). +++ Bp) = (AL, ++ Lp) Tn 

establishes unique isometric isomorphisms among the Banach spaces 

M(E\, Ep,---, Eni F) ~ LLB), MCEy,- ++, Ens PY) = M[Ey,- ++, Bn—1; L(En, FY). 

10-1.11. Exercise Prove the following Uniform Boundedness Theorem for 

Multilinear Maps. Let E\, E2,---, E, be Banach spaces and let F be a normed 

space. A family {f;: 7 € I} of continuous multilinear maps from [J/_, E into 

F is norm bounded, i.e. sup{||f;|| : 7 € J} < 00 iff it is pointwise bounded, that 

is for each (11, %2,+-+, Tn) € []j, Ej, we have sup{|| fi(x)|| : i € I} < 00.
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10-1.12. Exercise Prove the following version of Banach-Steinhaus Theorem 

for Multilinear Maps. Let E\,E2,---,En be Banach spaces and let F be a 

normed space. Let {f, : n > 1} a sequence of continuous multilinear maps 

from Tj E; into F. If for each x1, 22,+--,%n € ITs E;, the limit 

W21,22,°++ Ln) = liMp +00 fr(21, 22, +++, En) 

exists, then g is a continuous multilinear map from Tj E; into F. Further- 

more we have ||g|| < liminf||f,|| < sup || f,|| < 0. 
N00 n>l 

10-1.13. Exercise Prove that for Banach spaces, separate continuity implies 

joint continuity. More precisely, let Fy, E2,---,H, and F be Banach spaces 

and f a multilinear maps from Tj E; into F. If for each 1 < k < n, the 

map f(21,°°-,2k,**+,%n) is continuous in x, € E,, then f : Wa BE; > F is 

continuous. 

10-2 Polynomials on Banach Spaces 

10-2.1. Let E,F be Banach spaces. A multilinear map from FE” into F is 

also called an n-linear map on EF. An n-linear map A: E” — F is said to be 

symmetric if we have A(raqy, 2x(2).°**) Fa(ny) = A(41, £2,°+-, En) for all c; € E 

and all permutations 7 of order n, or equivalently, 

Aer 2 5y0 ty Ley En) = ACE, ++ Ley Ljy0 Tn) VISIR Sn. 

The set of all symmetric continuous n-linear maps from E” into F will be 

denoted by L?(E, F). 

10-2.2. A finite sequence a = (a1,02,---,Qm) of positive integers a; > 0 

is called a multi-index. In this case, m is called the length of a. The 

order of a is defined by |a| = a) + a2 +--+ + a and the factorial by 

a!=aj!az!---Q,!. For each integer 7 > |al, the multinomial coefficient 

n! 
For m=1, it is reduced to binomial is defined by (") 

a 

coefficients. For every symmetric n-linear map A: E” — F we shall adopt the 

“(n— ja|)fa!” 

following abbreviation: 

OH Cm 
Aap! ry? +25" = A(@1, +++) 21,2208 Lay 12myt+';Lm) 

where x is repeated a-times, x2 repeated a -times and z,, repeated a,,-times.
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10-2.3. Multinomial Theorem For every given symmetric n-linear map 
n 

A: E" — F we have A(x, + 22 +-+-+2m)" = y ( ) Aatag ane 
a 

Jal=n 

Proof. It follows by induction on m: 

A(ap + 2g +05 +04 + Ly41)” 
nm 

mt 
j -3 . a 

= » in — 9)! A 4024-0404 ry)? ; Binomial Theorem 
n— 

= - Lae An = Zane. ae ‘any ; inductive assumption 

Jal = 

Sb eae alin —7)! 1 ko“ k+1 

9-9 lakes ai 

= (5) act a Bie! > B=(a,n— 9). 

{Blan 

10-2.4. For any symmetric n-linear map A: EB" — F, let A:E->Fbe 

defined by A(z) = Az”. The map A is called an n-homogeneous polynomial 

from E' into F’. The following lemma when 2p = 0 generalizes the corresponding 

formula in inner product spaces of linear algebras. See e.g. §§13-1.4c,6.3. 

10-2.5. Polarization Formula Let A: £” — F be asymmetric n-linear map. 

Then for all 29, 21,---,2m € FE, we have 

1 2 
A(@,22,+°+,%n) = AA ++ ApA(tq tA, 2, +A222 +++ +Anen)- 

MP neh +1 MAB Ane 

Consequently if A =0 then A = 0. 

Proof. By Multinomial Theorem, we have 

> Az toe AnA(zo + AL) + A222 test An&n) 

dat 

= s> AA2 tte An A(x + AZ| + A222 feet Ann)” 

Ajztl 

= a AiA2°+* An a (") Aa? (Arz1)" (Azt2)™ + ++ An n)*" 

atl antl | antl ag ay oe a =) (ea AQ ARNT Aaa as? +s ant 
jalan Aj=+1
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n 

= > CI [2 + (-1)%3*"] Arg xp as? +00, 

jaj=n j=l 

where the multi-index is of the form a = (a9, 01,02,-++,@,). If a; = 0 for some 

j > 1 then 14+ (—1)*+! =0 and the whole term disappears. So we may assume 

that all a),---,a,, > 0. Now the condition |a| = a) + a2 +-+-+a, = 7 implies 

a = 0 and a; = 1 for all j > 1. Therefore we obtain 

> dy A2Q . -d, A(xo + 2 + Agr tet An&n) 

dy =Ht1 

ii HI 1+(- b' | Agr: +Bp = n!2" AD) 22-++ En. oO 
= Tit 

10-2.6. Lemma Let A: E” — F be a symmetric n-linear map which need 

not be continuous. Let ||A{] = sup{||A(z)|| : ||z|] <1 }. Then we have 

(a) || A@)|| < |All lel”. 
2 n” 4 

(b) All s IAI s VAI. 

Proof. If x =0 in E, we have ||A(z)|| = 0 = |{All ||z!|". For « 40 we have 

A (387) < lev" 14 
This proves (a). For part (b), observe that 

||Al] = sup{||A@)||: [lal] < 1} = sup{||AG@, 2, ---,)]] : [lel] < 1} 

< sup{||A@1,22,°--,n)ll : Heyl] < 1,4 9} = All 
On the other hand, take any ||x;|| < 1 in &. By Polarization Formula, we get 

Axl = |] let (7) || = 421" 

||A(z1, 22, +++, £n)If 

~ ntanr » Arvo + An Aaa + Agty + +++ + Antn)l 
 dgetl 

< — S> All vei + Avw2 +--+ Antal” 
djetl 

= nlon » {| Allc [An| []21|| + |A2| lel] +--- + [An] |lanl|)” 

jel 

<A Aint = he jAlinn 2" = ao 
~ nian hh ~ lon er : 

10-2.7. Exercise Let A(z1,22,---,%n) = 21)%2-+- 2, for all z; € IK. Show 

that A: 1K" — K is a symmetric multilinear form and that ||A|| = [Al] = 1.



10-2 Polynomials on Banach Spaces 207 

10-2.8. Exercise For all column vectors x; = (zh, x, 12? ‘in Rf, let 

! 1 2 
A(@1, 22, +++, Ln) = ni SS Lulu) ** Lain) 

* tESn 

where S, is the permutation group on {1,2,---,n}. Show that A: KT — K 

is a symmetric multilinear form on IR. Derive that ||Al| = 4, and || Al} = a. 

Therefore the inequalities of last lemma are sharp. 

10-2.9. Theorem For every symmetric n-linear map A: E” — F, the 

following statements are equivalent. 

(a) A is continuous on E”. 

(b) A is continuous on E. 

(c) A is bounded on the unit ball of E. 

Proof. It follows immediately from §10-1.5. Oo 

10-2.10. Theorem Let P: E — F be a polynomial given by 

P(a) = Ag + Ajax + Aga? +---+ Anz”, VreE 

where the coefficients A; : E1 — F are symmetric j-linear maps. 

(a) P=0 iff all A; =0. 

(b) P is continuous iff all A; are. 

Proof. (a =) Suppose P = 0. Then for each x € F and for all \ € K, we 

have P(\r) = 0, ie. Ap + Ay(Ar) + Ap(Az)* +--+ + An(Ax)” = 0, or 

Ag + \Ayz t+ X27 Age? + +--+ AP Anz” = 0. 

For every u © F’ we get uAg + UA a + \2uAga? +--+ X*uAne”™ = 0 which 

is a polynomial with scalar coefficients uA;x3. Since A is arbitrary, we have 

uAjx) =0. Because u € F” is arbitrary, we obtain A;z7 =0. Hence A; =0 by 

Polarization Formula. 

(b =>) We shall prove by induction on n. Observe that 

2" Pla) — P(x) = S02" — 2) Aja! 
j=0 q 

is a polynomial of degree at most n — 1. Since the left hand side is continuous, 

it follows by induction that for each 0 < 7 <n-— 1, the map (2” — 2))A; is 

continuous, i.e. A; is continuous. Next, 

Ana” = P(x) — (Ao + Aju + Aga? +---++Ap—12"7!) 

is continuous in x € E. Therefore A, is continuous and so is Ap. 

The converses (a <) and (b <) are trivial. q
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10-2.11. Exercise Prove that for every multilinear map A € ["(K, F), there 

is a unique vector @ € F such that A(z1,22,---,2%p) = a%)2%2---2,, for all 

LzyE K. 

10-2.12. Exercise Prove that every polynomial P : K — F is of the form: 

P(x) = ag + a, 2 + a9" +-+-+an2" for all c € K where a; EF, 

10-2.13. Exercise Prove that all multilinear maps and polynomials on finite 

dimensional Banach spaces are continuous. 

10-2.14. Exercise Let EF, be Banach spaces and P: E — F a polynomial. 

Prove that if P(Ax) = A” P(z) for all X € K and all z € EF, then P is an 

n-homogeneous polynomial. 

10-3 Higher Derivatives 

10-3.1. Let &, F be Banach spaces and X an open subset of EF. Let f : X > F 

be a given map. Define D°f = f. Note that for alln > 1, L"(E, F) is a Banach 

space. Assume that D°-!f : X — L”—'(E, F) has been defined by induction. 

Then f is said to be n-times differentiable on X if D”—' f is differentiable on X. 

In this case, let D* f = D(D"—'f). With the identification §10-1.10, D’f is a 

map from X into the Banach space L"(£, F). The original map f is called a 

C™-map if D° f : X — L”(E, F) is continuous and in this case, f is also said 

to be n-times continuously differentiable on X. The map f is called a C™-map 

if it is a C"-map for all n = 1,2,3,--- and in this case, f is also said to be 

smooth. Clearly D”f is linear in f. Also if f is n-times differentiable then f 

is a C*-map for all k <n — 1. Before we dig in, we need the following special 

case of higher chain rule. 

10-3.2. Lemma If f:X — F is a C”-map then for every continuous linear 

map g: F — G the composite gf is also a C"-map. Furthermore for each 

aeé X we have D"(gf)(a) = gD" f(a). 

Proof. We have proved the case for n = 1. Inductively, assume that it is 

true for n in order to prove the case for n+ 1. For each A € L"(E, F) let 

(A) : BE" — G be defined by p(A)hy --- hy = g(Ah,--- hy). Clearly p(A) is an 

n-linear map. Since |lp(A)hy --- hal] < |[gll [|All lari] ---[lAnll, ¢ is continuous. 

Hence the map y: L"(E, F) — L"(E, G) is well-defined and linear. Because 

eA = sup e(A)ar+--Aall < sup [gil IAT! Arl]--- nll < Ilgll [All 
AstS1 ests
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y is a continuous linear map. Now by induction we have 

D°(gf\la) = g 0 D" f(a) = (po D" f(a) 

ie. D'(gf) = yo D"f. Applying the first order chain rule again, D"(gf) is 

continuously differentiable because both y, D"f are. Now 

Dg fy(a) = Diy o D” f(a) = (Dy) D(D" f)(a) = pD™"' f(a). 

Hence D™"(gf)(a)hg = gL D™*"! f(a)hol. 

Thus D™ lg fya)yhohy ---hn = e[D"*! fla)ho}hy «++ Pn 

= 9[D"*! f(a)hoh) --- hn] ={g 0 D™*! f(a)hohi --- hy. 

Therefore D""(gf)(a) = g 0 D™" f(a). o 

10-3.3. Lemma If f is a C?-map then for all h,k € FE and all s,t € K we 

have D? f(a)hk = jim, =I flat sh+tk)— f(a+ sh) — f(a+tk)+ fa)]. 

Proof. Observe that 

f(at sh+tk) — f(a+ sh) — flat tk) + f(a) 
1 1 

= | Df(atsh+ Btk)tkdB — [ Df (a+ Btk)tkdg 
0 0 

1 
= [ (Df(a+ sh+ Stk) — Df(at Btk)]tkaB 

0 
1 1 

= | I D*f(atash+ puysh| tkdB 
0 |Jo 

1 pl 
= xt [ [ D? f(atash+ Btk)hkdadG 

o Jo 
Hence 

lim digas sh+tk) — f(a+sh) — f(at+tk)+ f(a] 
s,t0 st 

1 pl 
= lim [ [ D* f(atash + Btk)hkdadB 

0 Jo s,t-0 

1 1 

= | [ lim D* flat ash + Btk)hkdadp 
0 0 

8,tl 

1 1 

= | | D?f(a)hkdadf = D?f(a)hk. o 
o 0 

10-3.4. Symmetry Theorem If f is a C”-map then the n-linear map D” f(a) 

is symmetric.
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Proof. Since the right hand side of last lemma is symmetric in h, k, we obtain 

D? f(a)hk = D* f(a)kh. This proves the case for n = 2. Next, for n > 3 to prove 

D? f(a@hyhyh3 +--+ hn = D flahyhghz-++ hn, #1 

let H : L” (2, F) — F be defined by H(A) = Ahgh3:::hn andg: X —~ F 

by g(x) = D"™—!f(@)hgh3---hn. Then H is a continuous linear map and hence 

continuously differentiable. Since D"~'f : X — L”~!(E, F) is continuously 

differentiable, so is the composite g = H o D"-'f. Therefore we have 

Dg(a) = HD(D"~' fy(a), ie. Dg(a)hy = HD" f(ahy = D" f(@hihoh3-++ hn. 

By induction, we have g(x) = D®~'f(x)hjh.---Ayn. Repeating the above 

argument, we get Dg(a)h, = [D°f(@]hihgh2---hy. Therefore #1 is proved. 

In a similar way we obtain 

D” f(ayhy + fy ++ Age hn = D” f(ayhi <b e hy -- Bn 

as long as j,k > 2. Next to show 

D? f@)hyhzhy +--+ hn = D” fla)hohihs---hn, #2 

let g(z) = D"-*f(z)h3---hn = HD"-?f(2) where H : L"-*(E,F) > F is 

a continuous linear map defined by H(A) = Ah3---hn. Since g: X — F 

is a C?-map, we have D*g(a)h, hz = D?g(a)hoh,. On the other hand, 

Dg(z) = HD(D"~? f(2)|= HD"! f(a). 

Since D?g(x) = HD" f(x), we obtain HD" f(a)hyhz = HD" f(a)hzh, which is 

#2. Finally according to algebra, every permutation can be decomposed into 

a product 1,72 ---7p, where each 7, is either the transpose (1,2) or a transpose 

Gj, k) with j,k > 2. This completes the proof. Oo 

10-3.5. Exercise Let f : IR?  R be given by 
242 

jew = we), ite 400 
ety 

0, if (x, y) = (0, 0) 

Show that 0,0, f(0, 0) ¥ 0,0, f(0, 0). 

10-3.6. Lemma _ Every continuous n-linear map f : £; x £2 x---x Ey, 3 PF 

is smooth. Furthermore at (a;,a2,---,@n), the derivative is given by 

Df (ay, a2,+++,@n)(hi, ha, +++ An) 

= f(hy,@2,-++,Gn) + f(@i,ha,-++, an) +--+ + f(ai,02,°++, An). 

Proof. The linear case (n = 1) has been done. For n > 2, consider 

D1 Flay, d2,°-+,On)hy = f(A, @2,+++,4n). Define g(az,---,an) : Ey + F by 
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G(d2,---,Qn)hy = f(h},a2,-+-,@n). Then g(a2,---,@,) is continuous linear. 

Hence g: FE, x--- x E, — F is well-defined. Because 

I|9(@2.°++,@n)Il < IF Il lleall + Hlenll 
g is continuous (n—1)-linear. Next define a : Fy x Ey) x-+-x Ey 3 Eyx--+x By 

by m(21,2%2,°++,2n) = (£2,-++,2n). Then 7 is continuous linear. Since 

01 f(@1, @2,+++ Qn) = (g 0 T)(a1, 42,+*+, An), 

O; f (a1, @2,--+,@n) is continuous jointly in (a), @a2,---,@,). By characterization 

in terms of partial derivatives, f is continuously differentiable. Furthermore 

we have 

Df(aryag, +++, an)(h1, Ra, ++ Rn) = Ty Oj far, a2,-+an)hy 
= f(hy,d2,°++ An) + f(Q1, ha, + On) + +++ + f(a1,@2,°++, hn). Oo 

10-3.7. Exercise The (n + 1)-times derivative of a continuous n-linear map 

is zero. 

10-3.8. Exercise All continuous polynomials are smooth. Furthermore if 

f(x) = Ax” where A € L"(E, F), then we have Df(a)h =nAa™'h. 

10-3.9. Exercise Let C(O, 1] be the Banach space of continuous real functions 

on [0,1] under the sup-norm and f : IR — R a smooth function. Prove that 

the function g : C[0,1] — R given by g(z) = f f{x@]dt is a smooth function 

and find formulas to express the first and second derivatives of g. 

10-3.10. Exercise For every x € C([0,2], let f(z) = sin[x(1)]. Show that f is 

a C™-function on C0, 2]. 

10-4 C”-Maps 

10-4.1. In this section, we shall start with characterization of the C”-maps 

in terms of coordinates of domain and target spaces. Then show that taking 

inverse of an operator is a smooth map and apply it to get the C”-version of 

inverse and implicit mapping theorems. Finally, Newton’s method of solving 

nonlinear equations will be given. 

10-4.2. Lemma Let Fj, /o,---,Fm be Banach spaces. Let P; be the 

projection from [],., F, onto F; and Q; the natural injection from F; into 

II, Fe given by Q;(y;) = (0,---,0,y;,0,---,0)* which is a column vector. 

Then we have P;Q; = Ip, and Vr Q;P; = Ip where Ip, and Ip denote the 

identity maps on F;, F respectively.
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10-4.3. Theorem Let f : X — sn Fj; be a given map. Then f is a 

C™-map iff all coordinate maps f; = P;f are C"-maps. In this case, we have 

the following formulas: D" f;(a) = P; D" f(a) and 

D° fi(a) 
D" f(a) = Lp Q,;D" f;(a) = | . 

D" f(a) 
Proof. Suppose that all f; are C™-maps. Then each Q,f; is also a C™- 

map. Hence f = Or, QP) f= iat Q;f; is a C”-map. By linearity and 

§10-3.2, we obtain 
m m 

D*f@) = V7 "Qi fNO =), WD" LO. 
The converse follows immediately as composite maps. Oo 

10-4.4. Higher Chain Rule Let £,F,G be Banach spaces and X,Y open 

subsets of E, F respectively. If f : X — Y and g: Y — G are C"-maps then 

so is the composite gf. 

Proof. It follows from n= 1 that 

D gfe) = Dal f@)|DF(@) = [((9) ° FI) DF (2). 

By induction, x > f(z) — Do[f(z)] is a C"—'-map. Since x — Df(z) is a 

C”™—|_map, so is the map x — (Do{[f(2)], Df(z)) : X > L(F,G) x L(E, F) by 

last theorem. Since the composition L(F, G) x L(E, fF’) — L(E,G) is continuous 

bilinear, it is a C"—'-map. By induction, the composite + — D(gf)(z) is a 

C”—!_map. Consequently gf is a C”-map. Oo 

10-4.5. Lemma Let a = (a),---,a,) be a point in Ie E,. For every x; let 

9j(%j) = (@1,°*+,@j-1,2%5,4;41,°++, a4). Then each g; is a differentiable map. 

Furthermore, Dg;(x;) is the natural injection and D?q; = 0. 

Proof. Let Q; be the natural injection from E; into Tp E,. Then we have 

95 (25) = (ay, ---,@5-1, 0, @j41,---, Ak) + Q5 (25). 

Hence Dg; = DQ; = Q;. Since this is a constant map, we get D9; =0. 0 

10-4.6. Theorem Let X, be an open subset of a Banach space H, and f a 

given map on the product set X = TWh X, into a Banach space F. Then f 

is a C"*!_map iff each partial derivative 0,f : X = LCE;, F) exists and is a 

C”-map. 

Proof. Assume that f is a C™!-map. For n = 0, f is continuously 

differentiable. Hence 0; f(a) = D(fQ;)(a) = Df(a)Q,; is continuous in a € X. 



10-4. C"™-Maps 213 

In general, since D f(a) is a C"-map, so is 0; f(a) = Df(a)Q; by Higher Chain 

Rule. Conversely, suppose all 0;f : X — L(E;,F) are C”-maps. We have 

proved that Df(a) = wea 0; f(a)P; where P; is the projection of Th, E,; onto 

the j-th coordinate Ej. Since each 0, f(a) is a C”-map ina € X, f isa 

C™!_map. Oo 

10-4.7. Lemma Let T(E, F) denote the set of all topological isomorphisms 

from a Banach space E onto a Banach space F. Then the map f(A) = Aq! 

from T(E, F) onto TF, F) is smooth. Furthermore for all A € T(E, F) and 

H é€ L(E, F), we have Df(A)H = —A~!HA7!. In general, the following holds 

for every n > 1, D°f(A)H® =(-1)"n!A7!( HA7!)® = (-D"n'(A7! A)" Am! 

Proof. Clearly —A~!HA7! is a continuous linear map in H. To show that f 

is differentiable at A € T(E, F), by its continuity for every ¢ > 0 there is 6 > 0 

such that for every ||H|| < 6 in L(E, F) we have ||A~!—(A+H)~'|} < e/||A7} |). 
Since 

I f(A +H) — f(A) —(-A'HA™)| = |[[A7! — (A+ A) "HA" 

= ||[A71 — (A+ Ay] WA NAT < el, 
f is differentiable and Df(A)H = —A7~'HA™!. Next, for all B,C € L(F,E) 

and all H € L(E, F) define 9(B,C)H =—BHC. Then the map 

9 B,C): LE, F) > LP, E) 

is continuous linear. Thus g: L(F,&) x L(P,E) > L{L(E, F), LCP, E)] is a 

continuous bilinear map and thus g is a smooth map. It is easy to verify 

Df(A)H = 9(A7!,A7')H. Hence Df(A) = g(A~!, Aq!) is continuous in A. 

Therefore f is a C'-map. Now assume n > 1. Since each step of 

A> (A7!,A7!) > g(A™!, A7) = Df(A) 

isa C’—!-map, Df isa C”~!-map, ie. f is a C"-map. Therefore f is smooth. 

The general formula can be proved by induction. It is left as an exercise. O 

10-4.8. Let X,Y be open subsets of Banach spaces /, F respectively. Then 

a bijection f : X — Y is called a C"-diffeomorphism if both f and f—' are 

C™maps. If f is a C”-diffeomorphism for all n, then f is called a 

C@™-diffeomorphism or simply a diffeomorphism. Local diffeomorphisms are 

defined in an obvious way. 

10-4.9. Lemma Let X,Y be open subsets of F, F respectively and f : X — Y 

a bijection. If f is a C"-map and if Df(z) is invertible for each x € X then f 

is a C”-diffeomorphism.
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Proof. It follows from Inverse Mapping Theorem that D(f~!)(y) = [Df(z)]7! 

where y = f(x). Assume inductively that f~! is a C’—-!-map. By Higher Chain 

Rule, DUf~')() = [(Df) o f7'!(y)17! is a C"~!-map. Hence f~! is a C™-map. 

Therefore f is a C”-diffeomorphism. Oo 

10-4.10. C®”-Inverse Mapping Theorem Let f be a C"-map from an open 

subset X of EF into F. If Df(a) is a topological isomorphism from F into F 

then f is a local C"-diffeomorphism at a € X. 

10-4.11. C"-Implicit Mapping Theorem Let FE, F be Banach spaces; M an 

open subset of Ex F; f: M — F a C™-map; (a,b) € M and c= f(a,b). 

If the partial derivative 0,f(a,b) : F — F is invertible, then the equation 

f(x,y) =c has a unique local implicit C”-solution y = g(x) near (a,b). 

Proof. For n = 1, it was done and the given formula holds. Now suppose 

f is a C™-map for n > 1. Then both 6,f,0,f are C?—!-maps and therefore 

Dg = —(Oyf)~'(Ozf) is a C?~'!-map. Consequently, g is a C?-maps. Oo 

10-4.12. Newton’s Method Let X be an open subset of a Banach space EB, 

f :X — EaC*-map and f(a) = 0 where a € X. If Df(a) is a topological 

isomorphism then there is 6 > 0 such that for each rg € B(a, 45) the sequence 

{tn} defined by tn4i = In —[Df(2n)]7'f(en) converges to a. 

Proof. Because Df(a) is a topological isomorphism, g(x) = x—[Df(z)]~“' f(x) 

is defined for all x near a. For each h € E, observe 

Do(z)h = h — D{[Df(a)l'f@)}a 

=h— < D{[Df(a)I""'}h, f@) > — < (Df@I"', Df@h > 

=h- <—[Df(x))'DIDF(@ADf(@)I"!, f@) > —A 

={Df(x)1"'D? f@h{[Df@)"'f@)}. 

Since Dg(a) = 0, there is \ > 0 as in Contraction Lemma such that for all 

0 <5 <4, the map g carries B(a, 6) into itself. Replacing \ by smaller one, 

there is L > 0 such that for all x € (a, ) we have || f(x) — f(a)|| < Liz — all 

and |[[Df(2)]"!||*||D?f@]|| < L. Now choose 0 < 6 < X such that £75 < 1. 

For all x, y € B(a, 5), write h = x — y. Then the following calculation 

1 

Ilg(e) — g@|| = li Dg(z)hdt ;z=ytth 

1 

< [ IDF PID2FI| ||F@odI| [lallat
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1 

< i LIif(a) — f(a)|| ix — ylides fla) =0 
1 

< | L||x —al| |x — ylldt = L752 — y| 
0 

shows that g is a contraction on the complete metric space B(a, 5). For each 

ao © Bia,6d), the sequence defined by 2n4; = g(%n) converges to the unique 

fixed point of g which is a by direct verification. Oo 

10-5 Taylor’s Expansion 

10-5.1. Taylor’s formula will be studied in this section. We also give numer- 

ical examples to interpret high derivatives in terms of matrices. Convenient 

tests to classify stationary points will be given. We hope that educationalists 

will support by making these examples as an integral part of undergraduate 

multivariate calculus. 

10-5.2. Taylor’s Formula Let X be an open convex subset of E and let 

f:X 3 F beaC”™!-map. Then for all a,z € X we have f(x) = Ty(z)+ Rn(x) 

where the Taylor polynomial and the remainder are given by 

Tax) = fla) + Dflala — a) + =D? Flax — a)? +--+ D*flay(a — a)" 
1 

and R,(2) = i [ (1—t)?D™' f[ — Ha + tr](x — a)" dt. 
+ JO 

Proof. To simplify the notation, let h = x —a. For n = 0 it is reduced to 

Mean- Value Theorem. Integration by parts gives 

1 

Ra) =——, | (1 —t)""!D" f(a + th)h"dt 
(n—D! Jo 

1 ff [| O=8")\ on 1 -ao | {5 |- - |} Defeas tine dt 

- 2=" pn flat thyh”™ 
n! 

1 

1 /' nf denn n tm han? {40 flat+th)h ih a 
tt 

1 

= * pm flayn + © [ (1 —#)" DD"! f(a 4 thyh™* dt 
! Jo nm 

1 
= 7D" faye — a)" + Rn(2).
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Finally the proof is completed by induction as follow: 

f(z) = Toa) + Ry_1(2) 

= T,-1(a) + WP Fae — a)” + Ry(x) = Th(x) + Rn(2). Oo 

10-5.3. Corollary Let X be an open subset of F and f: X — Fa C™-map. 

Then for every a € X and every € > 0 there is 6 > 0 such that B(a,d6) Cc X 

and for every x € B(a, 5), we have || f(x) — T,(z)|| < e|lz — all”. 

Proof. Since D" f is continuous at a € X, for every € > 0 there is 6 > 0 such 

that B(a, 6) C X and for all x € B(a, 4) we have ||D" f(z) — D” f(a)|| < nie. 

Now take any + € B(a,6) and let kh = x — a. Then for all t € [0,1] we have 

a+th € B(a,6). Therefore the proof is completed by the following estimation: 

mee — T,(2)|| = |[Pn-1@) + Ra-1(@) - Tr) I 

=|laz ah [ (1 —2)""'D" f(a + thyh"dt — <D" flak 

= anf (1 —#)""'D" fiat th)a"dt 

- aon f (1 —t)?"'D" f(ayh" dt 

1 1 

~ a ai 

5 [oD yea+th) — D* faye 

< — (—t)?"'ntel|hl|"dt < ellAl|” = ellz — all”. oO 

10-5.4. Corollary Let X be an open convex subset of F and f : X ~ F 

a C™-map. Then for every a € X and every integer n, there is a C™-map 

g: X — L?(£, F) such that for all « € X, f(r) = Tr_i(z) + g(x)(@ — a)” and 

g(a) = 4D" f@. 

Proof. From the remainder of Taylor’s formula, the expression 

1 

g(x) = af (1 —t)""'!D" fl — Ha + tax]dt 
(n— 1)! Jo 

defines a map g: X — L?(E, F). Then g is a C™-map by differentiation under 

the integral sign. The equalities follow from trivial calculation. o



10-5 Taylor’s Expansion 217 

10-5.5. Following §9-3.7 and also §9-1.2, identify the higher derivatives as 

matrices. We only deal with the case of two variables but the same matrix 

forms work for many variables. Let FE, F,G be Banach spaces and X,Y open 

subsets of E,F respectively. Then for every higher differentiable map f : 

X x Y —G and (a,b) € X x Y, we have in matrix form: 

Df(a, b) = [Az f(a, b), Ay fla, dy, 

D? (a,b) = [8, Df (a, b), OyD f(a, b)] = [FF, Or Oy f, Inf, HHI, 

D? f(a, b) = [0,D? f(a, b), 8, D? f(a, b)] 

= [Bf Boy f, iOyOrf, On02 f, 02 f, AyOr Oy f, Br f, O3f). 

As a result of Symmetry Theorem, we have D”*! f =[D"0,f, D" 0, f]. 

2 
- TR2 2 . z\ _|x+a'+sin(2zr+y) 

10-5.6. Example Let f : IR° — R* be given by f (5) = eY + cos(x — 2y) | 

Then the first derivative at the origin is given by 

O\_ _ | 14+2a%42cos(2x + y) cos(2x + y) {3 1 
Df (3) = lef, Oy fl = —sin(z — 2y) e¥ +2sin(z —2y)| | 0 1 

The second derivative at the origin is 

0 ps ($) =(0-Df,4,DF 
_|2-4sinQe+y) —2sinQQz+y) —2sin(2z + y) — sin(2x + y) 

~ | —cos(z — 2y) 2cos(a4 —2y) 2cos(x¢—2y) e% —4cos(x — 2y) 

_|2 00 0 

~J-1 2 2 -3]° 

The third derivative at the origin is 

0 —-8 -4 -4 -2 -4 -2 -2 —-] 3 - 2 27) = 
ps (5) =10b* 002 [ 0 0 0 0 0 0 |: 

The third Taylor’s polynomial of f at the origin is given by 

(p)=1(0)-P7(6) [i] a0 (0) [F] x24 (6) [7] 
Now the approximate value of f (2, ) is supposed to be 74 e ) which is 

evaluated as follow 

mr(o)[A]=[o aJLA]=[4] 
er(s)[a)-[2 22 S)[J[AJ-[4 s][4]-[4)



218 Polynomials and Higher Derivatives 

00) Gla Ce eee I) 
sean © © SL LA= [6] [4] >} 

s(2)-E]+Lals[a]e(a}-s [5]: 
10-5.7.. Exercise Let E,F be Banach spaces, X an open subset of E& and 

f:X—F agivenmap. Then f is said to be differentiable at a € X in the 

f(a +te) — f(a) 
t 

direction of e € E if lim exists. In this case, the limit is called 

the directional derivative of f at a in direction of e. 

(a) Prove that if f is differentiable at a € X, then the directional derivative of 

f exists and it is given by Df(a)e. 

(b) Let f : IR? — R be given by 
zy 

f(aye= e+y’ 
0, if a?+y=0. 

Show that the directional derivative of f at (0,0) in every direction exists but 

f is not differentiable at (0,0). 

if 22 +y 40, 

10-5.8. Let A: £2 > K bea continuous bilinear form. For each h € EB, define 

Ap(k) = A(h,k),V & € E. Prove that y(h) = A, defines a continuous linear 

map from F into the dual space E’. Estimate the norm of y. We normally 

identify A as the element y of Z(E, E’) which consists of square matrices when 

E =k". Note that this is a special case of §10-1.10. 

10-5.9. Let X be an open subset of IR” and f : X — R a twice continuously 

differentiable function. It is easy to verify that for alla € X and x € R”, 

D? f(a)(z — a)* is identical to 

Of n0,f Ono; f ZL) — ay 

(t1-@1,+++,2n—Gn)| Anf BF OnOrf Tz — az 

nr Onf On f a a f In —An 

Therefore the second order Taylor’s polynomial is of the form 

Tx(x) = f(a) + Df(a)(a — a) + 3(a — a)‘ D? fala — a) 

where D* f(a) = [0;0;f(a)] is'a real symmetric matrix. Suppose that a is 

a stationary point, ie. Df(a) = 0. In linear algebra, there is an orthogonal
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matrix M such that MD?f(a)M*t = diagonal(d,,42,--+,An) is diagonal. 

Letting u = (uw, U2,--*, Un)’ = M(x — a), we have 

Th(x) = f(a) + $012 + Ague +--+ + Anua). 

Now we arrive the following conclusion: 

a) If all eigenvalues Aj, A2,--+,An > 0, f has a local minimum. 

b) If all eigenvalues 4), A2,---,An <0, f has a local maximum. 

c) If all eigenvalues ;,2,---,An # 0 but some are positive while some are 

negative, f has a saddle point a. 

d) If at least one eigenvalue A; = 0, this method fails to offer any information. 

10-5.10. Note that the eigenvalues A; have nothing to do with the matrix 

M. They are roots of the characteristic polynomial det[AJ — D?f(a)] = 0. 

In fact, we are not interest to actually find the eigenvalues. All we want to 

know is whether they are all positive, or all negative, or mixed, or some zeros. 

Combined with theory of equations, we have the following. 

10-5.11. Theorem Let X be an open subset of IR” and f : X — R a twice 

continuously differentiable function. Let a be a stationary point of f and let 

p(x) = det{AY — D?f(a)] denote the characteristic polynomial of the second 

derivative. If the constant term p(0) = 0, then this test offers no information. 

Therefore we have to make sure that p(0) #0 to start with. 

a) If all coefficients are non-zero and positive, f has a local maximum at a. 

b) If the coefficients are non-zero and have alternative signs, f has a local 

minimum at a. 

c) Otherwise f has a saddle point a. 

10-5.12. Exercise For each of the following expressions, find its stationary 

points and classify them as local maxima, local minima or saddle points. 

a) 8+ yi 4 234 32y 4 3yz +322 

b) 2 + y2 + 27 + l2zy +22. 

10-5.13. Exercise Let f be a continuous real function on the closed unit ball 

of R”. Suppose that f is differentiable on the open unit ball B. Prove that if 

f is constant on the unit sphere, then Df(a) = 0 for some point a € B. 

10-6 Higher Chain Formula and Higher Product Formula 

10-6.1. Lemma Let E, F be Banach spaces and X an open subset of EF. Let 

f :X — F be a C¥*!-map and for every 1 < k < j, let u,: X + Ebea
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C!-map. Then g: X — F given by g(x) = D) f(x)u,(2)-- -v;(z) is a C!-map. 

Furthermore for every h € E we have 

j 

Dg(a)h = DI f(x)uy(a) +++ v;(a)h + D> D? f(xyuy(2)--- [Dug(ayh] + v;(2). 
k=l 

Proof. Define a continuous multilinear map 7: X — LI(E, F) x E! by 

a(x) = (D3 f(x), u(x), +++ v;(2))* ; transpose 

and a Cl-map y : LY(E,F) x E? = F by ylyo,¥is-+-5¥3) = Yours Y; 
respectively. Then the composite map f = yr is a C!-map. It follows from 

Chain Rule that 
D{Di f(ayih 

[Do(x)}h = Diglm(a)|Da(a)h = [doy Arp, --,9;9) | PPC 
Doj;(x)h 

J 

= (Di! fayh], (0), ++, v;(z)}+ D> p(D! f@), v1(@), +» LDvg(aph], «+, 14(2)) 
k=l 

J 

= Di f(aywy(x)-+- vj(ayh + 57 DY flaywj (a) + [Doela)h] + 05(2). a 
k=l 

10-6.2._ Higher Chain Formula Let EF, F',G be Banach spaces and X,Y open 

subsets of F, F respectively. If f : X - Y and g: Y — G are C”-maps then 

for all (x, h) € X x E we have the follow formula for the composite map: 

D™(gfy(ayhr= a, » (") Di gl f(x)] [D™ flayh™] +--+ [D% f(x)h®?] 
aS a€AGjn) 

where A(j, 7) denotes the set of all multi-indexes a = (a1,---,a@;) satisfying 

Ja] =n and all a; > 1. 

Proof. Let T,(a) = Do glf(x)\[D% f(Mh™]------ [D% f(z)h®] in order to 

simplify the notation. To prove the case for n+1 by induction, it follows from 

last lemma that 

D"™*"gf(a)h™! = DID" (gfa)h™Jh = D yay (:)ne9] 
j=l 7 > a€AGj,n) 

rvs 
j=l a€AG,n) 

where eg = (O14, d2n,---, 5j¢) with 6; = 0 fori #k and 6, = 1 fori=k. Now 

for 7 = 1, it must be k = 1. Hence A(1,n) has only one multi-index a = (n) 

and therefore we have T,(n + 1) = Dg[f(x)]D"" f(z)h™*!. On the other hand, 

Tyla, pe Vne+e),
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for 7 =n, A(n,n) has only one 

221 

multi-index u, = (1,1,---,1) and therefore we 

obtain Thai (tins) = D™*' g[ f(x) |[Df(2)h]™!. Consequently, we have 

DD” gf 

=T(n+1)+ 3 > 
j=1 a@€AQj,n) 

nmr 

yy 
j=2 a€AG,n) 

nm 

=T(n+)+ > SO 
i=2 peAGcin) § 

nj 

“yy 
g=2 k=1 a€A(j,n) 

=Tnsye> 
i=2 BEA(i-1,n) 

yy 

Fal 

Fiat 

+ 

M
s
 

jlalax + 1D) 

1 Jot(ae +1) 

5 Thilo) 

5 E044) + Taub 

=] 

GED s ;t=jtlanda=f 

nifaz + 1) 
Tj (a+ ex) + Tasi(un, I) 

noise 
Gams BO Ben 1, Bky-++, Bi-1) 

t 

MOK * Dh Co €4) + Tast (tins 1) 
j=2 k=1 a€ AG 

n t 

=T(n+)+S>¥> YO Fe TAB i Braay byes 8-0 
i=2 k=1 BEAG—1,n) 

ni(az tl 
+ 3 > ea THO# €4) + Traits 1 
j=2 k=l a€ A(j,n) 

n 3 

=T(n+h+ >_> > la Tilo, . >, O&p—-1, 1, Om, +++, aj-1) 

7-2 k=l acAG—in) 7° 

wy s- MOK * DP 4 64) + Toa (ttn, 1) ee ©) k ntl(Un, 
j=2 kk eal ag ny IMO + Ck)! 

n j 
nia 

=Tn+ +S pilots yey 05) + Trai (ns 1) 
j=2 k=l w€ AG n41) ‘ 

“ n! 
=Tmt Dt Se YE piles ss etey +5 45) + Tet Uns 1) 

g=2 ac AGnel ! . 

ntl 
n+1 SO ane yan s05) 
j +a j=l a€AG,n4)
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n+l 

= “Li a> (": ') patron [D™ fayh®] ++ [D® f@yh). 0 
acéAG n+l) 

10-6.3. Higher Product Formula Let FE, F,G,H be Banach spaces and X 

an open subset of &. Let f : X — F and g: X — G be C”-maps. Suppose 

(u,v) > (u,v) is a continuous bilinear map from F x G into H. Then the 

composite map z — (f(z), 9(z)) from X into H is also a C"-map. Furthermore, 

we have 
n 

D" (f(z), g(a))h” = S- (5) (DI f(xyh', D? 7 g(zyh" 4), 0 h € B. 
j=0 

Proof. Only the formula requires a verification by induction as follow: 

D°( f(x), (2))h” = D[D™ (f(a), ga)yh'] 
n-l 

> (“5 Pipe Don) h 
j-0 

=D 

n-l 

“X(; ') (DID' Faye’ D?—!"Fg(ayh"—'-7) 
3° 

n-l1 

+> (" - ‘) (D? f(ayh), DID" !~5 g(x)h"—!-4]h) 
jo SI 

=> (5~ 1) (DIF D"~Fg(x)h"7) ; replacing j by j — 1 
j=l 

=; ‘y D! f(a)h3, D?~Fg(x)h"~7) 

n 

-\> (") (Di f(ayhi, D™~) g(x)h”-), g 
j0 4 

10-99. References and Further Readings : Abraham, Fraenkel, Barroso, 

Franzoni, Herve, Mujica, Abt, Araujo and Aron-01. 



Chapter 11 

Ordinary Differential Equations 

11-1 Local Existence and Uniqueness 

11-1.1. Let FE be a real Banach space and Q an open subset of IR x E. Let 

f :Q— E be a continuous map and (to, Zz) € 2 a given point. The initial 

value problem is to find an open interval J containing to and a map x(t) from 

J into E which satisfies the differential equation: x'(t) = f[t, x()] for all t € J 

subject. to the initial condition: x(ty) = x9. In this case, x(t) is called a solution, 

J a solution interval and the graph of x(t) a solution curve through (to, 79). We 

also call f a vector field on 2. Clearly every solution, if exists, is continuously 

differentiable on J. It is obvious that a map x(t) is a solution on J to the given 

initial value problem iff 
t 

a(t) = xo + Fs, x(s)]ds, VteJ. 
to 

Therefore the initial value problem is equivalent to existence of solution to 

an integral equation which can be formulated as the fixed point of an integral 

operator. The fixed point will be guaranteed by contraction in §11-1.6, direct 

calculation in §11-3.2 and topological method in §11-6.9. We shall use the 

value x(t) to denote the map z itself. 

11-1.2. Theorem If f : Q — E is a C"-map then the solution x(t) to 

the initial value problem 2’ = f(é,2) and 2x(to) = x9 where (to,%9) € QD isa 

C™]_map. 

Proof. It is trivial when n = 0. Suppose that f(¢, x) is a C”-map in (t,x). Then 

it is a C"—'-map and by induction z(t) is a C’-map in t. Hence z’(t) = f[t, 2(d)] 

is a C"-map. Therefore x(t) is a C™*!-map. oO 

1]-1.3. Exercise Prove that there are constants M, > 0 such that for all 

|t — to] < A and |[a2 — xo|| < A we have (¢,2) € Q and || f(é, x)|| < M. 

11-1.4.. Throughout this section, we shall assume that f is locally Lipschitz in 

x, i.e. for every (to, 20) € 2 there are constants L, A > 0 such that if |t—to| < A,
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la — zol| < A and |ly — xol| < A then both (,z), (, y) € © satisfy 

IF, 2) — fw) < Ex — vl 
In this case, L is called a Lipschitz constant on the square 

{d,z)€ Rx E: |t — tol < A, |lz — xol] < A}. 

We also assume that || f(t, z)|| < M4 on the same square. 

11-1.5. Exercise Prove that if the partial derivative 0, f(t,x) exists and is 

continuous on 2 then f is locally Lipschitz. 

11-1.6. Local Existence Theorem There are J, > 0 such that for every 

|r — to| < 6 and fla — xo|| < 6, the initial value problem x’ = f(t,x) and 

z(r) =a has a solution z(t) on the open interval J = (t) — 6,t9 + 6) with range 

lx —zo|| < A. Note that the solution interval J and the range are independent. 

of the choice of the initial condition (r, a). 

: . : 1 » 
Proof. Let L,M,A be given in §11-1.4 and 6 = min {ior om} Let 

C..(J, F) denote the Banach space of all continuous maps from the compact 

set J = [tg — 6,t9 + 6] into E under the sup-norm. Let 

B= {xz € CU, E): |lz@) — xoll <A, Vt € J}. 

Considering x9 as a constant map, B is a closed ball in C.,(J, E) and hence B 

becomes a complete metric space. Now Suppose |r — to| < 6 and |la — xol| < 6 

are given. For each map x € IB define 
t 

(Kx\(t) = a+ | fls,x(s)lds, Vt € J. 

Take any ¢ ¢ J and x € B. Then |t — to| < 6 < A and |[x(t) — xo] < . Since 

(é, z(t)) is in Q, f(t, x(t) and so (K x(t) are well-defined. Because (Kx)(t) is a 

continuous map in t, we have Kz € C(J, FE). Now for every t € J we get 
t t 

| fis, x(s)|ds / Mds 

Hence Kx € B. Consequently we have defined a map K from B into itself. 

|| x)(t) — ol] < |la — zol| + < 6+ <d4+26M <d. 

Next, for all z,y € IB we have 
t 

IK 2V¢) — Ky) || = | (ls, 2(s)] — fls,y(s))}ds 
t 

< | ILfls,2(s)] — fls,y(s)I|Ids 
t 

< | L}x(s) — v(s)l\as] < (25L)||2 — aloo 
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2L 
ive. - wo < |r — lla. ie Ka -— Kylloo < [225 !* y|| 

Now the contraction K on the complete metric space IB has a fixed point, say 

az satisfying Kx =x. More precisely, for all t € IB, we have z(t) = (Kz)(t), that 

is x(t) =a+ f fils, x(s)]ds. In particular, the map « is a solution to our initial 

value problem on the open interval (to — 6, to + 4). Oo 

11-1.7. Gronwall’s Inequality Let k(¢), v(t) > 0 be continuous functions on 

an open interval J containing to. If there is a constant C > 0 satisfying 
t 

vot) < C+ | k(s)u(s)ds}, Vte J 
to 

then we have an estimation for v(t) as follow: 
t 

u(t) < Cexp | k(s)ds|, Vte J. 
to 

Proof. Define 

t 
Qt) =C + | k(s)u(s)ds 

to 

for allt € J. Then Q(2) is differentiable on J. It is given that v(t) < Q(t) for 

all > tp in J. Since Q’(d) = k(@)u(t) < kKHQM), we have 
t t 

5 {QWexp - | bisyds] } = (QO — RNQOIexp - | syd] <0. 
to to 

Integrating from tg to t we obtain 
t to 

Q(exp |- | isys| — Qto) exp - | syd] <0, 
to to 

t 
i.e. Q® exp -f ky] —-C <0, 

to 

t 
or v(t) < QM) < Cexp | k(s)ds,V t > to. 

to 
t 

For ¢ < to, let O@) =C — | k(s)u(s)ds and the proof is completed by similar 
to 

argument. oO 

11-1.8. Local Uniqueness Theorem If x(¢), y(f) are solutions to the initial 

value problem x’ = f(t, x) and x(to) = x9 then there is 6 > O such that x(£) = y(t) 

for all |t — to| < 6. 

Proof. Since x(t), y(t) are continuous in t, there is O < 6 < X such that 

both z(t), y(t) are defined on J = (to — 6, tp + 6) and both ||x(t) — zo|| < A and 
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ly) —20l| <A hold on J. Hence f(t, 2(8)] — fle, yx) < Liz) — y(t)|| holds. 
Since z(t), y(t) are solutions to the initial value problem, we have 

t t 

{0+ | fts,sylas} - {0+ | fls,y(s)ids} 
to to 

t t 

| I fs, 2(s)] — fs, y(s)]||ds | Llle(s) — y(s)|lds 
ty to 

If follows from Gronwall’s Inequality that ||z(¢) — y(t)|| < Oexp L|t — to| = 0, 

that is, (f) = y(t) on J. oO 

I|xt) — yO)|| = 

< < 

11-1.9. Exercise Show that 2’(t) = 3227/3 subject to 2(0) = 0 has infinitely 

many solutions on R. In fact, for each a > 0, a solution is given by 

a(t) = 0, fort <a; 

~ | (-a), fort >a. 

11-1.10. Our Local Existence Theorem §11-1.6 ensures that two solutions 

x(t), y(t) are defined on the same open interval (to — 6, tp + 6) as long as their 

initial conditions are near (tp,29). This is important in order to be able to 

estimate |/x(¢) — y(#)|| in §11-5. Consider dr/dt = 1/t on the real line. With 

initial condition z(1) = 0 we have x(t) = én ¢ for ¢ > O and with condition 

y(—1) = 0 we have y(t) = én (—t) for t < 0. Does it make sense to talk about 

Iz) — yO? 

11-2 Integral Curves 

11-2.1. In this section, local uniqueness will be used to provide global unique- 

ness and continuation. Because all our results include infinite dimensional 

Banach spaces, compactness has to be imposed as condition for the solution 

curve to approach to the boundary of 2. 

11-2.2. Global Uniqueness Theorem Let F be a real Banach space and Q 

an open subset of R x EB. Let f : Q — E be a continuous map which is 

locally Lipschitz in the second variable and let (to, 29) € Q be a given point. If 

a(t), y(€) are solutions on a common open interval J to the initial value problem 

x’ = f(t,z) and x(to) = Zp then we have x(t) = y(t) on J. 

Proof. Suppose to the contrary that there is vu > to in J with x(u) # y(u). 

Define K = {s € J: z(t) = y(t) on [to,s]}. Since t) € K and u ¢ K, we 

have v = sup K < u. Choose a sequence t, € K so that t) <t, T v. Since 

a(tn) = y(ty) for all n, the continuity ensures x(v) = y(v). By Local Uniqueness
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Theorem, there is 6 > 0 such that x(é) = y(t) on (v — 6,v +4) C J. Thus 

a(t) = y(t) on [to,u + 36] which implies v + 36 € K. This contradiction to 

v = sup K shows a(t) = yt) for all t > t in J. Similarly we can prove that 

a(t) = y(t) for all t < tp in J. go 

11-2.3. For every solution x to the initial value problem x’ = f(é, x) subject 

to r(tg) = x9, let J, denote its solution interval. A solution z(t) is said to be 

maximal if J, C J, for every solution x(t). The graph of a maximal solution is 

called the integral curve through (fp, Xo). 

11-2.4. Continuation Theorem There is a unique integral curve through 

each point (to, to) € 9. 

Proof. By definition, it is obvious that maximal solutions have the same 

solution interval. The uniqueness follows immediately from the Global 

Uniqueness Theorem. To prove the existence, let F' be the family of all 

solutions to the initial value problem. Define J = U{J, : ¢ € F}. Since 

each J, is an open connected set containing to, so is J, ie. an open interval 

containing fo. Now for each t € J there is x € F so that t € J,. Define 

2(t) = x(t). Suppose y € F satisfies ¢ € Jy. Then both z(t), y(t) are solutions 

to the initial value problem on the interval J, 1 Jy. By Global Uniqueness 

Theorem, z(s) = y(s) for all s € J, M Jy and in particular z(t) = y(¢). 

Therefore z(t) is independent of the choice of z(t). Consequently, it is 

well-defined. Clearly z(¢) is a solution of the initial value problem on the 

interval J. oO 

11-2.5. From now on, by a solution to an initial value problem, we always 

mean the maximal solution and the solution interval is always the maximal 

one. 

11-2.6. Boundary Theorem Suppose that the boundary 00 of Q is 

non-empty and that d(t) denotes the distance from x(t) to 02 for each £ in 

the solution interval J,. If the graph {(t, x(t)) : to < t € J,} is contained in a 

compact subset C of IR x EF then d(¢) — 0 as t tends to the right endpoint of 

J,. Similar result holds for the left endpoint of J,. 

Proof. Without loss of generality, we may assume that |é| < ||(¢,z)|| and 

|x] < |G, x)|| for all @,2) €¢ R x E. Since the C is bounded, there is M > 0 

such that for all fp < ¢ € J, we have ||(t, x(¢))|| < M which gives |t| < M. 

Hence u = sup J, < co. Now suppose to the contrary that d(t,) > ¢ andt, Tu 
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for some € > Oand to < ty € Jz. Since C is compact, without loss of generality, 

we may assume that (¢,,2(t,)) converges to (u,v) for some v € F. Thus (u, v) 

is a closure point of Q. We claim that (u,v) is a boundary point of 9. In fact, 

suppose to the contrary that (u,v) € 2. Since f is locally Lipschitz at (u, v), 

there is 6 > 0 such that for every |r ~u| < 6 and ||z—v|| < 6 there is a solution 

on the open interval (u — 5,u +6) to the initial value problem y’ = f(t, y) and 

y(r) = z. Choose large n such that |£, — ul <6 and ||x(tn) — u|| < 6. Then the 

solution curve «(¢) can be extended to the interval [tg, u+6) which contradicts 

the maximality of x(t). Therefore (u,v) is a boundary point of Q. Finally the 

contradiction: ¢ < d(tn) < |\(in, r(tn)) — (u,v)|| + 0 as n — oo establishes 

d(t) +0 ast} u. oO 

11-2.7. Example The solution curve to x’ = =* subject to x(0) = 1 on the 

open set 2 = {(t,2) € R? : x > 0} approaches to the boundary of 2. Without 

compactness, the solution curve to 2’ = x subject to 1(0) = 1 on the open set 

Q = {(,2) € R®: x > —1} never comes close to the boundary of 2. 

11-3 Linear Equations 

11-3.1. The nonlinear equation 2’ = 2? is defined for all ¢ and yet its solution 

subject to z(0) = 1 is not defined at t = 1. For a linear equation of the form 

a’ = Ar+tb, the solution is defined on the whole domain interval of A and b. The 

following theorem can be proved by contraction §9-4.2. We follow the direct 

approach because it offers more information on the approximate solutions. 

11-3.2. Theorem Let A(E), b(t) be a continuous map of ¢ in an open interval 

J into L(E), E respectively. Then for every tg € J and 2p &€ EF, the initial value 

problem 2’(t) = A(£)x(t)+ b(£) subject to (to) = x9 has a unique solution on the 

whole interval J. Furthermore the exact solution x(t) can be approximated by 

Yn(t) defined inductively by yo(t) = 2 and 
t 

Ynsi(t) = Zo + | { Avsrua) + us) \ds 
to 

with an error bound 
1 In) — lll < Bp 

where L = sup ||A(s)|} and M = sup || A(s)zo + 6(s)|| for all s between tp and t. 

ML"|t _ to teh lt-tol 

Proof. The uniqueness follows from the general theory. To prove the existence 

of solution on the whole interval J rather than a neighborhood of tg, we shall
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give a direct proof. Take any a < ty < Gin J. Define 

K =sup{||A(s)|| : <8 < B} 
and N = sup{||A(s)29 + 6(s)| : @ < s < fy}. 

We claim that the given approximate solution satisfies the following inequality: 

Ivnsi(t) — un(BI| S RANK — tol, t € Cex Bl 
~ (n+)! 

In fact, for n =0 we have 
t 

/ {Ae + Ks) \ds 
to 

t 

[ A(s)[yn(s) — yn—1(s)]ds 
to 

< < Nit — tol. 
t 

/ || ACs) + b(s)||ds 
to 

ly) — yott)|| = | 

Next for n > 0, 

llvner(d) _- Yn(d)]| < | 

t 

< / ACI llan(s) — yn —1(s)|ids 
to 

< [x 4 NK™'¢— to|ds| = ——NK" It — t9|™*! 
“Iden! el (ne DD! of 

Thus for all p > 0, we obtain 

\|Yn+p(t) _ Yn(t)|| 

< lured (t) _ Yn(E)|| + llyns2t) _ Yn+i(b)|| tet l|yn+p(t) _ Ynsp—1(t)|| 

< NK" It _ t| NK™* ¢ _ t|"*? NK"? |¢ _ to|"*3 

~ (n+1)! (n+ 2)! (n+ 3)! 

_ NK" t-tol™" [, Kit=tol | Kjt-toP 
(n+! n+2 (n+ 3)(n+2) 

eo NAM t= tol cactetal < NK™B =a)" pay 
(n+)! ~ (n+ 1)! 

Hence the approximate solutions {y,} is uniformly Cauchy on [a, 8] and 

therefore it converges uniformly to some map x(t) which is continuous on 

[a, B]. Since a, 8 are arbitrary, x(é) is defined and continuous on J. Let- 

ting m — oo in the defining equation of y,, it follows from uniform continuity 

that a(t) = 29+ / {A(s)x(s)+ b(s)}ds which gives a solution to the given 
to 

initial value problem on (a, 3). Since a, @ are arbitrary, z(t) is also a solution 

on the whole interval J. Finally, letting p — oo we have for each t € [a, §], 

NK" \t _ ty |"! eK lt-tel li) — yl S Gy
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If t > to, letting @ | t) and § | t we obtain a better estimation in terms of 

M, L as stated in the theorem. Similar touch-up for t < tp completes the proof 

of existence. Oo 

11-3.3. Lemma _ Let c(t), A(t), v(t) > 0 be continuous functions in ¢ on an 

open interval J containing ty. Suppose that c(t) is decreasing for t < t) and 

increasing for ¢ > to. If 

u(t) < c(t) + [ k(s)v(s)ds|, Vte J 

then v(t) satisfies the following estimation: 

u(t) < e(t) exp [ k(s)ds}, VWte J. 

. t 
Proof. For any small number 6 > 0, we have u(t) < 5 + c(t) + [ k(s)u(s)ds|, 

that in Fray SI [Hog woes! M0 ray 
By Gronwall’s Inequality, we have 2 « < exp [ k(s)ds|, or 

v(t) < [6+ c(d] exp Since 6 > 0 is arbitrary, the result follows. O 
t 

| k(s)ds|. 
to 

11-3.4. Theorem The solution x(¢) of 2’ = Axr+b subject to z(t) = x9 satisfies 

the following estimations on its solution interval J: 
t t 

| | A(s)2o + b(s) {ds | | ACs)||ds 
to to 

t t 

/ 1st] } exp [iacntes 
to to 

t 
Proof. From x(t) = 29 + / [A(s)a(s) + b(s)| ds, we have 

fo 

(a) |z@ — oll < exp 

(b) lle@|l < { loll + 

t t 
a(t) — 29 = / A(s) [zo + b(s)] ds+ / [A(s)x(s) _ ag|ds 

to to 

ie. x(t) — xol| < + 
t t 

/ || A(s)20 + b(s)||ds | A(s)|| |lx(s) — zolfds}. 
to to 

Part (a) follows from last lemma. Part (b) is obtained by working with 
t t 

toto < { ell + / yoeyft|b [40 tavotas. 
to to 
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11-3.5. Jn order to present rich matured results, we shall restrict ourselves to 

E=IR”. The equation x’ = Az is called the associated homogeneous equation of 

az’ = Ax+b. Clearly the set of all solutions to z’ = Ax forms a vector subspace 

of all maps from J into IR”. Elements of the solution space of x’ = Az are 

called complementary solutions. If x, is any particular solution of x! = Az +b, 

then a general solution can be expressed in the form 2 = ap +z, for some 

complementary solution z.. 

11-3.6. Let y;,%,°-+,Y% be solutions of x’ = Az. Then the matrix-valued 

map Y(t) = [y(@), y2),---, yn(D] for t € J satisfies the differential equation 

Y’(t) = A@Y(t). The determinant W(t) = detY(t) is called the Wronskian of 

Yrs Ya, Un- 

t 
11-3.7. Lemma W(t) = W(to)exp {/ int Acids} where the trace tr[A(s)] 

to 
is the sum of the diagonal entries of the matrix A(s). 

Proof. Write A(t) = [a,;(t)] and let r; denote the i-th row of Y(t). Equating 

the entries of Y’(é) = A(t)Y(t), we have rj = a aijtj;. Observe that 

ry ry 

W'(t) = 5 det rota > det | aury +--+ + ure t- +++ GinTn 
i=l . i=l vee 

Tn Tr 

rl rl 
n ae n ee nm 

= > det | ari | = Do audet | ri | = So anW() = WHtrlAO)] 
i=l wae i=l see i=l 

Tr Tr 
t 

i.e. a {Weeap - / ir.Atsias \ =0. 
dt to 

t 

Integrating from t) to t, we obtain weoenp {~ f trLAsylds} — W(to) =0 
t 

which gives the required result. ° Qo 

11-3.8. Corollary If Y(t) is invertible then Y(é) is invertible for each t € J. 
t 

Proof. It follows from detY (t) = [detY (to)exp { / irLAteyids} 70. oO 
to 

11-3.9. Exercise Let y,42,-::,Yn be solutions of 2’ = Az on the open 

interval J. Show that if the column vectors y;(4), y2(t),---,yn(£) are linearly
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independent at some point of J then they are linearly independent at every 

point of J. 

11-3.10. The matrix-valued map Y(é) is said to be fundamental if it is 

invertible, or equivalently its columns are linearly independent. It is called 

a principal fundamental matrix of x' = Az at ty if Y(ép) = J, the identity matrix. 

Principal fundamental matrix exists and is unique because it is the solution to 

the linear differential equation: X’ = AX subject to X(t) = J in the Banach 

space of n x n matrices. The matrix X(¢) is also called the transition matrix of 

a’ = Ax from t to ty. 

11-3.11. Exercise Verify that if Y(t) is a fundamental matrix of the 

homogeneous equation «’ = Ag then X(t) = Y(@[¥(to)|"! is the principal 

fundamental matrix. 

11-3.12. Exercise Show that a fundamental matrix Y(t) completely 

determines the coefficient matrix A(t). In fact, we have A= Y’Y7!. 

11-3.13. Variation of Parameters If X(¢) is the principal fundamental matrix 

at f then the unique solution of the initial value problem 2’ = Ax + b subject 

to x(to) = Zo is given by 
a 

a(t) = X@) {ua + | X(sy"twe)as}. 
to 

Proof. Jt can be verified by direct substitution. Historically, the columns 

z(t), 2(t),---,2n(t) of X(é) were first found by solving the homogeneous 
f 

j 

basis of IR”. Let. p,(t), m(t),---, pn(t) be unknown parameters so that 

equation 2 = Aw; and 2;(to) = ej where {e1,€2,---,é€,} is the standard 

© = pyr, + pot, +--+ + PnLy is the required solution of x’ = Azr+b. Let p 

be the vector function with coordinates p;. Then substitution of = Xp 

into x’ = Ar+b produces X’p+Xp'=AXptb, ie. AXp+Xp' = AXptb, 
t 

or p' = X7'b which is integrated to p(t) — p(to) -| X(s)~1b(s)ds. Since 
to 

t 

X(t) = I, we have ro = X(to)p(to) = p(to), ie. p(é) = 19+ [ X(s)'B(s)ds 
to 

which gives the required formula. oO 

11-3.14. Corollary The dimension of the solution space of x’ = Az is n. 

Proof. Let 21,22,---,2, be the columns of a principal fundamental matrix 

X(t) of x’ = Ax at to. Then they are linearly independent by evaluation at to. 

They also span the solution space by last theorem. The proof is complete. 0
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11-4 Exponential Functions of Matrices 

11-4.1. The solution to a first order scalar differential equation z’ = ax with 

constant coefficient a € R is an exponential function x = ce*'. Exponential 

functions of operators have been introduced in §8-8.15. 

11-4.2.  Fulmer’s Method To find e4¢ where A is a square matrix 

independent of t, consider the characteristic polynomial p(,) of A. It is easy to 

verify that p(#)e4! = p(A)e“! = 0. Hence every entry z(t) of e#* 

differential equation with constant coefficients: p(4)z = 0. Therefore e4* has 

the same form as the general solution of z(t) except the arbitrary constants 

are replaced by constant matrices which can be calculated by evaluation of 

satisfies the 

derivatives of e4* at t =0. 

11-4.3. Example To find e“! where A is given by 

21 0 -1 
21 0 -2 

A=} 9 1 -2]> 
3 10 -2 

consider its characteristic polynomial: p(\) = det(AI — A) = (A+1)°(A—1)*. The 

eigenvalues of A are —1,—1,1,1. The general solution of the scalar differential 

equation: (¢ + 1) (4 - 1)"2 = 0 is of the form z = (at + Be! + (yt + Det 

where a, 3,,6 are arbitrary constants. Hence an expression for e4* is 

eAt = (Et+ Fye* + (Gt + Hye! 

where FE, F,G, H are constant matrices. Taking derivatives, we have 

Ae* = (—Et+ E —~ Fye*+(Gt+G+ He, 

Are = (Et —2E + Foe +(Gt+2G+ Het, 

Ade4t = (—Et+3E — Fye* + (Gt+3G+ Het. 

Letting t = 0, they become 

l=F+H, 

A=E—-F+G+dH, 

A? =-2EF+F+2G+H, 

A=3E—F+3G4+H. 

Rewrite into matrix notation as follow: 
0 1 0 17/7£8 I 
1 -1 1 is; |F A 

—2 1 2 1/|)G) "ja 
3 ~1 3 1J LH A
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Hence the matrices E, F,G, H can be found by 

E Oo 1 01771 TT 1 -1 -1 1 I 
Fl |i -1 11 A/_,/2 -3 0 1 A 
Gi -|—2 1 21 A?}~ 41-1 -1 1 1 A? 
H 3 -1 3 1 A} 2 3 #O -14 LA? 

Therefore we obtain 

0 000 110 -1 100 0 
-1 001 000 0 110 -1 At —t t 

Fy. -1 1 1t®& t)lo 00 of *tli 1 0 -11 0° 
-1 001 110 -1 100 0 

(t+ Let te! 0 —te! 
_ —e-tyet et 0 et — et 

~ —et+et —e tte et ev -t—et 

—e*+ (t+ let te! 0 e tte! 

11-4.4. Theorem Consider the homogeneous differential equation: 

a(t) = A(t)x(t) 

for ¢ in an open interval J containing to. If A(t) commutes with [, , A(s)ds for 

every t € J then the principal fundamental matrix at to is given by 
t 

X(H= exp | A(s)ds,t € J. 
to 

Proof. Clearly X(t) = J. Direct calculation completes the proof as follow: 

X(t) = {exp Se A(s)ds} A(t) = AQ@)X(2). O 

11-4.5. Corollary Let A be a constant matrix. Then the principal 

fundamental matrix for the homogeneous equation: z‘(f) = Ax(t) is given by 

eAt—), The unique solution of the initial value problem 2’ = Az + b subject 

to x(to) = Z is given by 
t 

x(t) = et {ea +f eA yeas}. 
to 

11-4.6. Corollary For every square matrix A, we have det e4 = e'”4. 

Proof. We may assume that A is constant. By §11-3.7, we have 

t 
det e4—) = det eA%—Werp if tras} = elt ANE to) 

to 

The result follows by letting ¢t = 1 and ty = 0. Oo
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11-5 Global Dependence on Initial Conditions 

11-5.1. Let E be a real Banach space and 2 an open subset of R x E. Let 

f : Q —> E be a continuous map which is locally Lipschitz in the second 

variable. Consider the initial value problem x’ = f(t, x) subject to r(u) = a 

where (u,a) € 9. In this section, we shall show that the solution depends 

smoothly on the initial condition (u,a@) and parameters. 

11-5.2. To investigate global properties of integral curves, we shall work 

with tubes rather than just small neighborhoods of the initial point. Let 

y : (a, 8) > E be a continuous map. Then the set 

{é,z2)E Rx B:a<t<,jlz—y|| < p} 

is called the tube of radius p along the curve y(t) between a, 8. The function 

g in the following lemma is the maximum of norms of the derivatives, partial 

derivatives of f when we deal with the smooth case later in this section. For 

the time being, it is considered as a constant function and hence it should be 

ignored. 

11-5.3. Global Bound Lemma Let g : 2 — R be a continuous function. For 

each continuous curve y : [a, 8] — 9, there exist a tube U Cc 2 along y(t) and 

constants L,M > 0 such that for all (¢, a), (t, b) € U, we have || f(t,a)|| < M, 

g(t, a) < M and || f(t, a)— f(é, d)|| < L||a—b|. In this case, L is called a Lipschitz 

constant of f on U and M an upper bound of f,g on U. 

Proof. Since f is locally Lipschitz and locally bounded, for each s € [a, 8] 

there exist 6;(s) > 0 and L(s), M(s) > 0 such that 

Rs) = {(t, a): | — s| < 61(s), lla — y(s)|| < 6:(s)} CQ 

and for all (¢,a),(¢,b) € R(s), we have ||f(t,a) — f(t,®)|| < Z(s)||a — b|| and 

||f(t,@)|| < M(s). By continuity of g, we may assume that g(t,a) < M(s) 

when 461(s) is replaced by a smaller one if necessary. Since y(é) is continuous 

at s, there is 0 < 62(s) < 361(s) such that for all | — s} < 6)(s) we obtain 

lly) — yCs)|| < 351(s). By compactness, write 

la, 8] Cc U,., (s; — 62(83), 85 + wa), 

Define p = min{éd2(s;):1 <7 <n}, L = max{L(s;): 1 <7 <n} and 

M = max{M(s;): 1 < 7 < n}. Let U be the tube of radius p along y(t) 

between a, G3. Finally take any (t, a), (t,b) € U. Then |t — s;| < 6;(s,) for some 

j. Thus |}y(t) — y(s;) || < $51 (35). Since (¢,a) € U, we get 
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lla ~ y(t) || < @ < 49(s3) < $64(s;). 

Combined together, we get ||a — y(s;)|| < 6)(s;). Since |t — s;| < 6;(s;), we 

have (t,a) € R(s;). Similarly, (¢,b) € R(s;). Therefore we obtain 

|| F(t, a) ~ f(E, || < L(s,)I]a — bl] < Lija — b}), || F(t, @)|] < M(s;) < MGs) 
and g(t,a) < M(s;) < M(s). o 

11-5.4. Global Continuity of Initial Condition Given a differential equation 

a’ = f(t,x) on 2, let z(t) be an integral curve passing through (u,a) € 2 

and let a < £ be two points in the solution interval. Then for every « > 0 

there is 6 > 0 such that whenever |v — uj] < 6 and ||b — a|| < 6, the solution 

interval of the integral curve y(t) passing through (wv, 6) contains (a, 8) on which 

||z7@) — y(t)|| < €. More precisely, if E is a Lipschitz constant and M an upper 

bound of f(t,z) on a tube of radius p along x(¢) between a, then we can 

choose 6 small enough so that for every t € (a, 3) we have 

z(t) — y(£)|| < (la — b|| + M|v — ul) exp(L|t — ul) < minf{e, p}. 

Proof. Without loss of generality we may assume a < a; < u< {, < 6 where 

a, 8; are arbitrary constants close to a, 8 respectively. By continuity of z(t), 

for each t € [a;, G,] there is y(t) > 0 so that for each {[s — t| < 31(t) we have 

a<s < 6 and ||z(s) — x(d)|| < ip. By compactness, write 

far, AIC J (« ~ U(ty), tj + tt). 
j=l 

Pick A > 0 so that A < ip and also A < v(t;),V 1 <7 <n. For each fixed 

t € [a1, A], consider the point (s, y) in the square |s—t| < A and ||y—2(@)|| < A. 

Select j with |t — ¢;| < v(t;). Then |s—t,;| < |s—t|+|é—t,| < 2v(t;) < 3v(t,). 

Since ||y—2(s)]] < |ly~x@|] + ||z@ — x(¢;)|[+ ||zts) ~ 2(3)|| < A+ de+4p < p, we 

obtain (s,y) € U. It follows from the Local Existence Theorem, the solution 

interval of the integral curve through (s,y) contains the interval (¢ — 2,¢ + 2) 

where 

€=min {TE a} 
1+2L°1+2M 

is independent of t. Now choose 

min{e, , p} 

(1+ M)exp[L(6 — a)] 
Fix any initial condition |v — u| < 6 and ||b — a|| < 6. The solution interval J, 

O0<é6< 

of the solution curve y(t) through (v, 6) contains the open interval (u— @,u+2£).
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Since | flé,y@Il| < M and ||f[é,2@)] — flt,y@I|| < Lijec) — y@)|| for all 
|t — u| < £, we have 

t t 
{a+ [ fis, x(s)] as} - {0+ [ ftsusnds | 

ue t 

| fis, y(s)] ds [ (fls.200- fis. yeas 

I|2-(t) — yO) = 

< |la — b|| + + 

t 
< |la — bl| + Mju — vj) + / L||x(s) — y(s)||ds 

By Gronwall’s Inequality, we obtain 

lx) — yO) < (la ~ Bl] + Miu — vp) expt ~ ul # 
< 6(1 + M) exp[L(6 — @)] < minf{e, A, p}. 

Finally let S be the set of real numbers z satisfying u < z < 6), [u,z] C Jy 

and also satisfying the inequality #1 on [u,z]. Clearly «+ ze € S. Let 

js = sup S. Suppose to the contrary that p< 6,. Let s =u — ie. Then by #1, 

|z(s) — y(s)|| < A. Now the solution interval J, of the solution curve through 

(s,y(s)) contains the open interval (s — £,5+ 8, ie. p+ te € S which is a 

contradiction. Therefore yp > (), ie. for all t € [u, 61), inequality #1 holds. 

Similarly it also holds for ¢ € (a;,u]. Since a, 8; are arbitrary, the proof is 

complete. o 

11-5.5. For each (u,a) € Q, let tqu,a)(t) be the solution of the initial value 

problem z’ = f(t,z) subject to z(u) = a and let J(u,a) denote its maximal 

solution interval. Then Qf = U{J(u, a) x (u, @) : (u,@) € 2} is a subset of Rx. 

Define a map y : Qf — E by v(t, u, a) = 2u,0)(t) for every (t,u,a) E Ny. The 

rest of this paragraph can be skipped if you only want to read the statements of 

theorems. However, it will provide common notations for several proofs in this 

section. Let (r,u,a) € Ny and € > 0 be given. Then r belongs to the solution 

interval J(u,a) of tw,a)(t). Select a,8 € J(u,a) such that a < min{r,u} 

and max{r,u} < 8. Choose 6 > 0 according to §11-5.4. We may assume 

6 < min{r —a,6—r}. 

11-5.6. Corollary The set Qf is open in IR x and the map y: 2; — E is 

continuous. 

Proof. The notation of §11-5.5 is used. By continuity of z(,4)(¢) at 

t=r, we may demand |[z(u,a)(r) — tu,0)(s)|| < € for every s € R satisfying 

|r —s| <6. Take any s € R and (v,b) € 2 such that |r — s| < 6, |ju—v| <6 

and ||a — b|| < 6. Since the solution interval J(v, 6) contains the interval [a, 8], 
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we have s € J(v, 6), ie. (s, u,b) € OQ. Therefore 2+ is open. Furthermore, the 

continuity of y is established by the following estimation 

lle(r, u, a) — y(s, v, BDI] < ||2~u,a)(7) — Lu,a)(5)|| + [|Z ~,0)(8) — Zv,(9)]] <2e. 

11-5.7. Let f : Q — E be a continuously differentiable map. We shall 

prove that ¢ is also continuously differentiable on Qf by considering its partial 

derivatives separately. Letting g(t,x) = ||Df(é,x)|| + ||: f(¢,2)|| + |]0. f(t, 2)|| 

in §11-5.3, we assume that g(t,z) < M on a tube of radius p along tq@,a)(t) 

between a, (3. 

11-5.8. Lemma The solution z;,,)(t) is differentiable with respect to the 

initial location a. Furthermore, its derivative satisfies the linear differential 

equation 

,0a2cu,a)(t) = Ox f [t, Leu,ay(t)] Oa (u,ay(t) 

subject to OgLu,a(u) = I. 

Proof. The notations of §11-5.5,7 will be used and write z(t) instead of 

Zwu,a)(t). Then x(t) is governed by 

t 

tg()=at / fils, xe(s)]ds. 

Take any ||h|| < 6 in £. The integral curve x,,,;,(¢) through (r,a+h) is governed 

by the integral equation 
t 

tasn(t)=ath+ / fs, vaan(s)Ids 

and its solution interval contains (a,8). Since 0,f[t,ra()] € DCE), the 

composite 0,f[t,za()]z is in LCE) for each z € LCE). Because the map 

0,f : 0 — L(E) is continuous, A(t)z = 0,f[t,2_(t)]z defines a continuous map 

A: (a, B) > L[L(E), L(E)]. The linear equation z’ = A(t)z subject to z(u) = I 

has a unique solution on the whole interval (a, 3). In fact, it is governed by 

the integral equation: 
t 

2(it)=I+ / 0,f[s, £a(s)]2(s)ds. 

Define A(A) = Lain (t) — Za(t) — z(t)h for every t € (a, 8). Clearly, we have 
t 

A(h) = / {Fls,toas) ~ fs, 2a(s)] - defts,res)lecoh bas
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It follows from integral mean-value theorem that 

f[s, ®asn(s)] — f Ls, 2a(s)] 
1 

= [defi — 8)2a(s) + Braan(s)kzaan(s) ~ tas), 
0 

Letting a(s,0,h) = 0, f[s, (1 — @)ra(s) + OZa+n(s)], we have 
t pl 

ainy= ff {x(s,8,h) —m(s,8,0)}t00n(8) — 2a(s)hdbds 
u JO 

t 

+f Ox fs, Za(s)] A (s)ds. 

Since a : [a, 8) x [0,1] x B0,5) — L(£) is continuous and [a, 2] x [0,1] is 

compact, it follows from §2-7.6 that there is 0 < 6, < 6 such that for all 

(s, 6) € [a, 6] x [0, 1] and for all ||A|| < 6; in EB, we have 

\|z(s, A, h) ~~ ms, 8, 0)|| <€. 

By §11-5.4, we get ||ra+n(s) —a(s)|| < [|PlleXP-™, Since ||02f[s, £..(s)]|| < M4, 

we obtain 

|| A @)l| < (B — adel||fe2O-® + | t 

/ Ml A(s)lids 
By Gronwall’s inequality, we have 

IItarn(t) - tat) — 2(¢)hl] = || A(A)|| < (6 — e*™ME“Me|ih I], |LAl] < 61. 
Therefore x,(t) is differentiable in a. Furthermore we have 0,24(¢) = z(t). This 

completes the proof. ia 

11-5.9. Lemma The solution rq,.)(¢) is differentiable with respect. to the 

initial time u. Furthermore, its derivative satisfies the linear differential 

equation 

O:0uFcu,a)(t) = Oz f(t, Zu,a)(t)]OuZ(u,a)(t) 

subject to OyZu,a)(u) = —f(u, @). 

Proof. The notations of §11-5.5,7 will be used and write 2,,(t) instead of 

Lu,a)(t). Then 2,,() is governed by 

t 
ty(t)=a+ | fis, ru(s)lds. 

Take any |A| < 6 in R. The integral curve 2,,)(t) through (u+A, a) is governed 

by 
t 

tux) 0+ | fls,twa(s)lds 
utr
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and its solution interval contains (a, @). Since 0,f[t,2.(] € LCE) is a 

continuous map of t € (a,@), the linear equation z’ = A(t)z subject to 

z(u) = —f(u,a) has a unique solution on the whole interval (a, 6). In fact, 

it is governed by 
t 

at)=—fuay+ [ Oz f[s, Tu(s)]z(s)ds. 

For fixed t € (a, 8), define AQ) = ft ftusa(t) — 2£,(t)] — z(t). The proof is 

complete if we can prove lim A(X) = 0 as A — 0 in R. So let € > O be given. 

From the above integral equations, 

_ [ FIs, Zusa(s)] — fis, tu(s)] AQ) 
1 utr 

; ds—> | fs rusa(s)lds 
t 

+f(u, a) -[ 3d, fs, tu(s)]2(s)ds. 

By integral mean-value theorem, we have 

fis, tusn(s) — fis, tu(s) 
Xr 

Lusrr($) — Tu(s) 
1 

= | By flsy(1 ~ Oras) + Ouen(s) 
0 

Letting 2(s, 0, A) = 0, f[s, (1 — 9)ry(s) + 92u4)(s)], rewrite 
t 1 

AQ) = i [ [n(s,,) — m(s, 4, 0)] M2 — 249) dogs 
u J0 

dé. 

ms 
utr 

L 

4 / {fe a) — fis,euscon}ds+ 8d, FS, 2u(s)] A (s)ds. 

Since a : [a, 8] x [0,1] x (—6,6) — LE) is continuous and [a, 8] x [0,1] is 

compact, it follows from §2-7.6 that there is 0 < 6; < 6 such that for all 

(s, 8) € [a, B] x [0,1] and for all |X| < 6, in E, we have 

||7(s, 8, A) — m(8, 8, O)|| < €. 

By §11-5.4, we get 

I|Zuer(s) — ru(s)|| < M|AleXO-™. 

This takes care of the first term. Next, by continuity of f at (u,a), there is 

52 > such that ||f(u, a) — f(v, &)|| < € whenever |u — v| < 42 and |la — d|| < &. 

Also from the continuity of y : Q, > E at (u,u,a), there is 63; > 0 such that 

for all |u — s| < 63 and |u—v| < 63 we have ||y(u, u, a) — p(s, v, @)|| < do, Le. 

la — #,(s)|] < 62. We may assume 63 < 6). Hence for every || < 63 we obtain 

1 Utd 

x | {fe a) — fls,2uun(0)1}ds <E. 



11-5 Global Dependence on Initial Conditions 241 

Finally since ||0, f[s,r.(s)]|| < M for all a < s < £, we have 
t 

jf miacvlis | AQ] < [(B- a MeF¥-% + es 

It follows from Gronwall’s inequality that 

| AQ) < [G— aMe®4-% 4 1] MOM, 

ie. lim A(A) = 0 as A 0. oO 

11-5.10. Global Smoothness Theorem If f : Q — E is a C"™-map for some 

n> 1, then p: Q, —- E is also a C™-map. 

Proof. By induction, assume that the partial derivatives 0;¢(t, u, a), 

d,p(t,u,a) and O,y(t,u,a) are C"™-'-maps. Now the partial derivative 

pelt, u,a) = ft, p(t,u,a)] is a C™~'-map. Next, since the integrands of the 

following equations 
t 

Auiplt, ua) = —f(u,a) + | Be fs, Oxie(s,u, a)|ds 
t 

and Oat, u,a) = I+ | 0. f[s, 9(s, U, @))Oap(s, u, ads 

are C"—!-maps, so are the partial derivatives 0, p(t, u, a), Oap(t, u, a) by §9-3.9. 

Therefore y is a C"-map. qo 

11-5.11. Corollary If f :Q— E is smooth then so is gy: OQ; — E. 

11-5.12. Finally, we shall study equations with parameters. Let E, F be real 

Banach spaces and let ,IP be open subsets of IR x EF, F' respectively. Let 

f :Q-x BP — E bea C™-map where n > 1. For any (u,a,p) € 2 x P, let 

Lu,a,p(t) be the integral curve of the initial-value problem z’ = f(t, x, p) subject 

to z(u) = a and let J(u, a, p) be the solution interval of r@,c,p)(¢). On the set 

OQ; = U{ J(u, a, p) x (u, a, p): (u,a,p) € 2 x P}, define y(t, u, a, p) = Lw,a,p)(t)- 

11-5.13. Lemma Let a < £ be two given points in J(u,a,p), then there is 

5 > 0 such that for all |v — u| < 6 in R, ||[b— || < 6 in FE and |g — p|| < 6 in 

F, the solution interval J(v, b, g) contains both a, 8. 

Proof. Consider the initial-value problem on Q2 x P Cc Rx (E x F) given 

by z’ = (f(t, z),0) subject to z(u) = (a,p) where z = (x,y) € E x F. Clearly 

2(t) = (2u,0,p)(t), p) is a solution by direction substitution and hence the only 

solution by uniqueness. Observe that t@,a,»(¢), z(t) have the same solution 

interval. Now the result follows from §11-5.4. Oo
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11-5.14. Theorem The set 9, is open in IR x E x F and the map yp: —- E 

is a C"-map. Furthermore, if f is smooth, so is y. 

Proof. It follows immediately by applying §11-5.6 to z(é) of last lemma. O 

11-6 Solutions without Uniqueness 

11-6.1. Let E be a Banach space and 2 an open subset of R x E. Let 

f :Q— E be a continuous map and let. (to, 29) € 2 be given. Consider the 

initial value problem 2’ = f(t, x) subject to x(t)) = x9. In general, the problem 

has no solution in infinite dimensional Banach space as shown in [Godunov]. 

The main result of this section is a generalization of Peano’s Theorem which 

demands additional condition that f is locally compact. We start with certain 

preparation in a general framework. 

11-6.2. Let M be a non-empty subset of a normed space FE. Then the 

intersection of all balanced set containing M is called the balanced hull of 

M. It is denoted by ba(M). 

11-6.3. Theorem The balanced hull of a compact set is compact. 

Proof. Let M be a non-empty compact set in F and B the closed unit. ball 

of K. Since the scalar multiplication f : K x M — E given by fQ, 2x) = Ax 

is continuous, the image f(IB x M) of a compact set is compact. It is easy to 

show that f(IB x M) is the balanced hull of M. Oo 

11-6.4. Theorem The convex hull of a precompact set M is precompact. 

Proof. Let ¢ >0 be given. Write IB = B(0, ¢) for simplicity. There is a finite 

subset A of M such that M Cc U,<, Bae) = A+B. Since the convex hull 

co(A) is compact, there is a finite set V such that co(A) C Unev Biv, ¢) = V+B. 

Because co(A) + B is a convex set containing M, we have 

co(M) c co(A) +B CV +2B=U,¢y Be, 2¢). 

Consequently, co(M) is precompact. oO 

11-6.5. Exercise Prove that the convex hull and the closure of a balanced 

set is balanced. What is the natural definition of the closed convex balanced 

hull of a non-empty subset of a normed space? 

11-6.6. Theorem The closed convex balanced hull of a relatively compact 

set M in a Banach space F is compact.
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Proof. The balanced hull ba(M) of the compact set Mf is compact and hence 

its subset ba(M) is precompact. The convex hull co[ba(M)] is precompact. 

Therefore the closed convex balanced hull ¢é[ba(M)] is closed precompact in 

the Banach space EF’. Consequently, it is compact. Oo 

11-6.7. Exercise Prove that if M is a balanced set, then for all |a| < {@| in 

K, we have aM c 8M. 

11-6.8. Let £ be a Banach space and 2 an open subset of IR x E. Suppose 

that f : Q — E is a continuous map which is locally compact, i.e. every 

point of Q has a ball B contained in Q such that f(B) is relatively compact 

in &. Note that when F is finite dimensional, every continuous map on 2 is 

automatically locally compact. 

11-6.9. Generalized Peano’s Theorem The initial value problem z’ = f(t, z) 

for a locally compact field f subject to the initial condition x(t 9) = xo has at 

least one local solution for each (tp, 9) € 2. 

Proof. Without loss of generality, we may assume ty = 0 € IR and zy = 0 € EL. 

There is ¢ > 0 such that the set 

Q= {(t,2) € Rx E: |t| <q and ||z|| < gq} 

is contained in 2 and f(Q) is relatively compact in E. Then the closed convex 

balanced hull K of f(Q) is compact. There is A > ||z|| for all z € HK. Let 

O<r< and J=[-r,r]. Let C.(J, E) be the Banach space of all continuous 

maps from the compact interval J into E. Then the closed ball X = Bi, q) in 

Coo(J, FE) is a closed convex set. For every x € X, the integral 
t 

(Az)(t) = [ FIs, x(s)]ds 
0 

of continuous map is defined for each ¢ € J. Because 

tz 

| fls, 2(s)]ds 
ty 

the set {Az : x € X} is equicontinuous on J. Since (Az)\(é) € tK C rk, 

we obtain ||(Azx)(€)|| < rA <q, ie. Ax € X. Since (AX)() C rK which is 

relatively compact, it follows from Ascoli’s Theorem that AX is a relatively 

I|(Az)(é2) — (Az)t)|| < <li, -— tA 

compact subset of X. Because X is closed, AX is contained in a compact 

subset of X. To show that A: X — X is continuous, take any r € X 

and any € > 0. For every s € J, by continuity of f at [s,2(s)] there is 

a(s) > 0 such that for all |f — s| < a(s) and ||u — f[x(s)]|| < 2a(s) we have
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| f(t, u) — fis, x(s)]|| < €. Since z(t) is continuous at s, there is 0 < 6(s) < a(s) 

such that for all |t — s| < 6(s), we get ||z(¢) — z(s)|| < a(s). By compactness 

of J, write JC Ui (s; — 6(s;), 8; + 6(s;)). Let 6 = min{é(s;): 1 <7 < n}. 

Now take any y € B(z,6). Then ||z(é) — y(t)|| < 6 for all ¢ € J. Choose 

any t € J. Then |t — s,| < 6(s;) for some j. Now ||x(t) — z(s;)|| < a(s;) 

and |t — z;| < 6(s;) < a(s;) give || f[t, x(¢)] — f[s;,x(s;)]|| < ¢. Furthermore, 

since ||y(t) — x(s,;)|| < lly) — x@)|| + |lz@ — x(z;)|| < 2a(s;), we also get 

f(t, <@®] — fls;,2(s;)]|]| < ©, or || flt, 2(t)] — fle, y(t] || < 2e for all t € J. 

Therefore 
t 

Ie — Ay) (t)|| = [ (flt,e(s)] — ft, y(s)I}ds|l < |e|(26) < 2re, 
0 

or || Ax — Ay|| < 2re. Consequently, A: X — X is a compact map. It has a 

fixed point, say z, Le. 
t 

x)= | fls,x(8)ds 
0 

for allt € J. Clearly, it is a solution to 2’ = f(t, x) subject to 2(0) = 0. go 

11-6.10. It can be proved by Zorn’s Lemma that maximal solution always 

exists. Because local uniqueness is not available, z(t) may branch out to 

different directions. 

11-6.11. Exercise Show that the solution z(t) to a locally compact initial 

value problem 2’ = f(t, x) need not be continuous map of the initial condition 

x(tp) = Xp. See §11.1-9. 

11-99. References and Further Readings : Arnold, Godunov, Astala, Barbu, 

Deimling-77,78, Cullen, Yeh, Hadzic, Li and Lobanov. 



Chapter 12 

Compact Linear Operators 

12-1 Basic Properties 

12-1.1. A square matrix B = [b;;] can be regarded as a function of two 

variables i,7 in a finite discrete set N = {1,2,---,n}. The image y = Bz can 

be written in terms of coordinates as (Bz); = a bijx,j for x = (21, %2,--+, Zn). 

As shown in §12-1-9, a trivial way to consider an infinite dimensional 

analogue would be to change N by the closed unit interval [0,1]. Then B is 

replaced by a continuous function & on the unit square and the summation by 

an integral. It turns out that this kind of integral operators are compact 

linear operators on C,,[0, 1]. It motivates the study of this chapter. However, 

the interesting topics of linear integral equations and determinants in infinite 

dimensional spaces are beyond our scope. More examples on compact linear 

maps will be given in §§12-1.14, 14-5.5. 

12-1.2. Let &,F be normed spaces and V the closed unit ball of E. 

A linear map f : EF — F is said to be compact if f(V) is a relatively 

compact subset of fF. The set of all compact linear maps from £ into F 

is denoted by K(E, F). 

12-1.3. Lemma Let f: F — Fa linear map. Then the following statements 

are equivalent: 

(a) f is a compact linear map. 

(b) For every bounded sequence {z,,} in E, there is a convergent. subsequence 

of {f(x,)} in F. 

(c) f carries every bounded set into a relatively compact set. 

Proof. Let {x,} be any bounded sequence in EF. There is X > 0 such that 

lan|| < A for all n. Now all f(zn/A) belongs to the relatively compact set f(V). 

There is a subsequence {y,,} of {x,} such that {f(yn/A)} converges. Hence 

{f(yn)} also converges. This proves (a = b). The rest is left as an exercise. 0
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12-1.4. Theorem If f : # — F a compact linear map, then for every weakly 

convergent sequence z, — a@ in E, we have || f(z,) — f(a)|| > Oin F. Further- 

more if & is reflexive, then the converse is also true. 

Proof. Assume that f is a compact linear map. Suppose to the contrary that 

there is € > 0 and a subsequence {y,} of {z,} such that || f(yn) — f(a)|| > e. 

Since y, — a weakly, {y,} is a bounded sequence. By compactness of f, there 

is a subsequence {z,} of {y,} such that || f(z,)—}|| — 0 for some b € F. Hence 

f(én) — 6 weakly. By continuity of f, f(zn) — f(a) weakly. Thus 6 = f(a), 

ie. € < || f(zn) — F(@)|| = || fn) — || — 0 which is a contradiction. Therefore 

every compact linear map carries weakly convergent sequence into a strongly 

convergent sequence. Conversely, if F’ is reflexive, then every bounded sequence 

in F& has a weakly convergent subsequence which is carried to a strongly 

convergent sequence in F’ and hence f is compact. Oo 

12-1.5. Theorem K(£, F’) is a vector subspace of L(E, F). 

Proof. Let f,g: E — F be a compact linear map. Since f(V) is relatively 

compact, it is bounded and hence f is continuous, i.e. K(E£,F) Cc L(E, F). 

Next, let a, 6 € K be given scalars. Since f(V), 9(V) are relatively compact, 

so is af(V) + 89(V) which contains (af + 8g)(V). Therefore af + Gg is also a 

compact linear map. Oo 

12-1.6. Theorem If F is a Banach space, then K(F, F’) is closed in L(E, F). 

Proof. Let g be a closure point of K(E, F) in L(E, F). Since F is complete, 

it suffices to show that g(V) is precompact. Let ¢ > 0 be given. There is 

f € K(E,F) such that ||f — gl| < He. Since f(V) is precompact, there is a 

finite subset J of V such that for every x € V we have || f(x) — f(a)|| < ie for 

some a € J. Now observe 

|9(z) — g@)]] < |lg@) — F(2)|| + |F(@) — F(@)|| + | F@ — g@)]] 

< |ig— fll Nell + 3€+ lo — fll lall < $e 14 ge4+ ge-1=e. 
Therefore g(V) is precompact. Consequently, K(E, F) is closed in L(E, F). O 

12-1.7. Let E, F be vector spaces and f : EF — F a linear map. Then f is 

said to be finite dimensional or of finite rank if f(E) is a finite dimensional vector 

subspace of F. For the rest of this section, let E, F be normed spaces and 

f:#— F a continuous linear map. 

12-1.8. Theorem If / is finite dimensional, then it is compact.
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Proof. By continuity, f(V) is bounded in F. Since f(£) is finite dimensional, 

f(V) is bounded in a finite dimensional subspace f(£) of F. Hence f(V) is 

relatively compact in f(E). Since f(E) is closed in F', f(V) is also relatively 

compact in F’. Oo 

12-1.9. Example Let E = C7,[0,1] and k: [0,1] x [0,1] — R a continuous 

function. Each x € & is a continuous function on [0,1]. Let f(x) be a function 
1 

on [0,1] given by f(z)(s) -| k(s,Ha2(t)dt. Then f : EB > E is a compact 
0 

linear map. 

Proof. It is obvious that f(z) is linear in x. Let V be the closed unit ball of 

E consisting of z € E with ||x|| = sup{|z(t)| : t € (0, 1J}. It is required to prove 

that f(V) is relatively compact in C’7,[0, 1]. It suffices to show that f(V) is 

uniformly bounded and equicontinuous on [0,1]. Since k is continuous on the 

compact space [0, 1] x [0, 1], it is bounded, i.e. there is A > 0 such that for all 

s,t € [0, 1], we have [k(s,t)| < A. Now for any 2 € V, 

[f(z)(s)| = 
1 1 

[ k(s, tha(t)dt </ |k(s, t)| |a(t)|dt < A. 
0 0 

Hence f(V) is uniformly bounded. Next by uniform continuity of & on the 

compact space [0,1] x [0,1], for every < > 0 there is 6 > 0 such that for all 

(s, t), (s’, t’) € [0, 1] x [0, 1], {[(s,t) — (s’, t)|| < 6 implies |k(s,t) — k(s’,t’)| < e. 

Now take any s, so € [0, 1] with |s — s9| < 6. Then for every x € V, we have 

1 

|f(@(s) — f(@)(s0)| = Lf [k(s,t) — k(so, t)]a(thdt 

1 
< | |k(s,t) — k(so, t)| |x(t)|dt < e. 

0 

Hence f(V) is equicontinuous on [0,1]. This completes the proof. oO 

12-1.10. Theorem Let £,F,G be normed spaces. Suppose f : & — F and 

g: F — G are continuous linear maps. If f or g is compact, then the composite 

gf is also compact. 

Proof. Firstly assume that f is compact. Then the closure f(V) is compact 

in F and hence so is g[f(V)]. Its subset gf(V) is relatively compact and hence 

gf is compact. Next assume that g is compact. Take any bounded subset B of 

£&. By continuity of f, f(B) is bounded and hence gf(B) = g[f(B)] is relatively 

compact in G. Therefore gf is again compact. Oo
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12-1.11. Theorem If f is compact, then so is its transpose f*. 

Proof. Let V,U be the closed unit balls of £,F’ respectively. Since f is 

compact, the closure X of f(V) is compact in F. There is A > 0 such that 

|z|| < A for all « € X. Consider U as a subset of C..(X). Take any u € U. 

Since |u(z)| < |[zl||[z]] <A, for all z € X, we have ||u||,, < A. Therefore U is 

uniformly bounded on X. Next, for all x,y € X, we get 

|u(x) — uly)| = fue — y)| < Jel] lz — yll < le — gl 
Hence U is also equicontinuous on X. Therefore U is relatively compact in 

Cy.(X) and consequently, it is precompact. Let ¢ > 0 be given. There is a 

finite subset J of U such that for each u € U, we have 

lu — wlloo = sup{|(u — wi(x)|: 2 EX} <e 

for some w € J. Hence for each b € V, we have 

|< f'u-—w),b>|=|<u-—w,f) >| 

< sup{|(u — w(x): 2 € X} = |lu—wllo <e. 

Taking supremum over b € V, we obtain || f*(u) — f*(w)|| < e. Therefore f*(U) 

is precompact in the Banach space E” and consequently f*(U) is relatively 

compact. This proves that f! is a compact linear map. Oo 

12-1.12. Theorem If F is a Banach space and if the transpose f’ is compact, 

then f itself is a compact linear map. 

Proof. It follows from last theorem that f* : E” -+ F” is compact. 

Let V,V” be the closed unit balls of E,E” respectively. Then f"(V”) is 

relatively compact and hence it is precompact. Since f* is an extension of 

f and J(V) c V” where J: EF — E” is the natural embedding, J[f(V)] is 

precompact. Therefore f(V) is precompact in the Banach space F and so it is 

relatively compact. Consequently, f is a compact linear map. Oo 

12-1.13. Exercise Prove that if the identity map of a normed space F is 

compact then & must be finite dimensional. 

12-1.14. Exercise Let @ = (a),@2,a3,---) be a bounded sequence and let 

1<p<oo. Prove the following statements: 

(a) For every x € £p, f(x) = (@121, A222, 0323,+++) € &p. 

(b) f : 4, — €, is a continuous linear map. 

(c) f is compact iff a, + 0 as n > oo.
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12-1.15. Exercise Let EF, F be Banach spaces, X an open subset of E and 

g:X — F a differentiable map. Prove that if g is locally compact, i.e. every 

point z € X has a ball B(x) Cc X such that g[B(z)] is relatively compact in 

F,, then every derivative Dg(z) is a compact linear map. 

12-2 Riesz-Schauder Theory 

12-2.1. In this section, we shall work with one given compact operator A and 

its displacement operator T = [— A. The closed unit ball of # will be denoted by 

V. The close relationship between compact operators and finite dimensional 

vector subspaces will be unfolded. 

12-2.2. Theorem § ker(T) is a finite dimensional vector subspace of EF. 

Proof. Since ker(T) is closed in E, the closed unit ball W of ker(T) is closed 

in E. For any z € W, we have |[z|| < 1 and Tx =0, ie. ¢ = Ax € A(V). 

Hence W c A(V). Since A is a compact operator, W is a closed subset of 

the compact set A(V). Therefore W is compact. Consequently, ker(T) is finite 

dimensional. oO 

12-2.3. Lemma For each integer n > 1, we have 

(a) ker(T”—!) C ker(T'); 

(b) If ker(I"—!) = ker(T”), then ker(T™) = ker(T"*?). 

Proof. (a) For any x € ker(T"—'), we have T™x = T(T"-'xz) = TO = 0, 

ie. x € ker(T”). 

(b) Take any x € ker(T™*). Then T"(T'z) = 0, i.e. Tx € ker(T”) = ker(T"—!), 

or Tx = T™ (Tx) = 0. Thus z € ker(T”). This proves ker(T™*!) C ker(T”). 

The reverse inequality follows from (a). Oo 

12-2.4. Lemma There is an integer n > 1 such that ker(T”~') = ker(T”). 

Proof. Suppose to the contrary that for all n > 1, ker(T?-!)S ker(T”). There 

is x, € ker(T”) such that ||z,|| = 1 and d(@,, kerT”—!) > h Then for all p > 1, 

we have 

TMP" Tanip + Atn) = TP yyy + AT™P 2, = 0, 

Le. Trnip + ADy € ker(T™?—!). Now 

|Atnsp — Atn|l = |l2nep — (Trip + AEn)|| > Utnsp, ker T™*P—!) > 4 

shows that {Az,,} cannot have convergent subsequence. This contradiction to 

the compactness of A completes the proof. Oo
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12-2.5. Theorem There is an integer k such that ker(T"~!) 4 ker(T”) for all 

n < k and ker(T”) = ker(T™*!) for all n > k. This integer is called the ascent 

of T. 

Proof. The smallest integer k satisfying last lemma is the solution. a 

12-2.6. Lemma There is A > 0 satisfying the following condition: for each 

y € T(&), there is at least one solution x € E for Tx = y and ||z|| < Allyl]. 

Proof. Suppose to the contrary that for each n > 1, there is y, € T(E) 

such that for every  € E, Tr = yp implies ||z|| > nlly,||. Choose any 

ty, © E satisfying Tx, = yn. Since y, #0, 2, does not belong to the closed 

set ker(T) and hence d, = d(an, ker T) > 0. There is 2, € ker(T) such that 

In — 
an fn Now T(2tn — 2n) = Trp = Yn implies En — 2Zn|| < 2d,. Let by = 

Zn — 2n|] > nllyn[l, or 

[Tn = zn)l)_—_livall 
Zn — 2nll tn — 2n|] 0 

Therefore Tb, > 0 as n — oo. On the other hand, since {6,} is bounded and 

A is a compact operator, there is a subsequence {},,;)} and some b € EF such 

Tb. | = 

that Abagy - bin E as 7 — oo. Consequently bag) = Thay) + Abnyy — 0. 

Observe that Tb = lim Tb, = 0, ie. 6 € ker(T). Now 

\lbn _ b|| = Tn 2n —pll= llrn i (Zn i lan = Zn{l0)|| > dy > I 

Zn — 2nll ||z=n — 2nll Zn — 2n]| ~ 2 
contradicts to b,j) > 6. This completes the proof. Qo 

12-2.7. Theorem Im(T) is closed in EF. 

Proof. Let y bea closure point of T(E) in E. There is a sequence {y,,} in T(E) 

convergent to y. Choose A > 0,2, € E such that Tr, = yn and ||rn|| < Allynll- 

Since yn — y, {yn} is a bounded sequence and hence so is {z,}. Because 

A is a compact operator, there is a subsequence {2,(;)} such that {Arn} 

converges. Hence tng) = Ttnj) + Atny) — x for some x € E. Then we have 

y = lim yng) = limT x,y) = Tx. Therefore y ¢ T(£). Consequently, Im(T) is 

closed in E. Oo 

12-2.8. Theorem Im(T) = (ker T‘)+ and Im(T"') = (ker T)+. 

Proof. It is because Im(T) is closed. oO



12-2 Riesz-Schauder Theory 251 

12-2.9. Fredholm Alternatives The following statements are equivalent: 

(a) T is bijective. 

(b) T is surjective. 

(c) T is injective. 

Proof. It is equivalent to the proposition: Im(T) = E iff ker(T) = {0}. 

(=) Suppose to the contrary that Im(T) = E and ker(T’) ¥ {0}. Then there 

is a non-zero a € & but Ta = 0. By Im(T) = EL, there is x, € FE such that 

a= Tx. Inductively, there is zr, € FE such that r,_; = Tz,. Now for 

each n, we have T’r, = T?—'(Tx,) = T’'2n_1 = ++ = Tr; = a #0, ie. 

In ¢ ker(T”). Next, T™!z, = T(T"zn) = Ta = 0, ie. ty € ker(T"*t!). This 

shows ker(T™) + ker(T™*!) for all n which is a contradiction. 

(<) Suppose ker(T) = {0}. Then Im(T") = E’, ie. T' = I — At is surjective. 

Since A! is a compact operator on E’, we can apply the first part to At. Hence 

T'® is injective, ie. ker(T*) = {0}. Consequently, we have 

Im(T) = (ker T*)+ = E. o 

12-2.10. Theorem Both ker(7’) and ker(T*) have the same finite dimension. 

Proof. We have prove that ker(T) is finite dimensional. Let @,,a2,-:-,a, be 

a basis of ker(T). There are uj,u2,--+,Un € E’ such that u,(a;) = 6; for all 

i,9=1,2,---,n. We claim 

dim ker(I*) < dim ker(T). #1 

Suppose this is false. There are n+ 1 independent vectors v1, v2,---,Un,Un+l 

in ker(T"). Choose 6,b2,---,bnv1 € E such that v,(b;) = 4;; for all 

i,j = 1,2,---,n+1. Define Br = Ar+ jel u,(x)bj,V z € E. Then B is 

a compact operator in &. We also claim 

ker(I — B) = {0}. #2 

Indeed, assume z € ker(f — B). Then Tx = (IJ — A)e = ye uj(x)b;. By 

v3 € ker(T"), we have 

0O= <T'u,2 >= <u,,Tz > 

= (v8, jet uy(a)b;) = a u,(x)u;(by) = yet uy (x) dg3 = ui(z). 

Hence T'x = ve uj(z)bj = 0, or « € ker(T). Since aj,a2,---,a, is a basis of 

ker(T), write x = ye aja; for some scalar a;. Now observe 

0= u(z) = et aejus(aj) = a5
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for all 7, ie. ce = 0. Consequently #2 is proved. As a result, Im(/—B)= EF. In 

particular, we get ba; € Im(U/ — B). There is x € E such that bp.; =(/ — B)z. 

Consider the calculation: 

1 = Ups (nat) = Vane — Bj 

= vos [UL — Ade — SO” uj(a)by] = < tae T= Ale > = 0 uy (e)vneilby) 
=< T'uny,2 > — ae u;(2)bna,j = <O0,2 > — en uj(z)-0=0. 

This contradiction establishes #1. For the reverse inequality, applying #1 to 

At, we have dim ker(T’) > dim ker(T'') > dim ker(T). This completes the 

proof. Oo 

12-2.11. Theorem Both Im(T) and Im(T‘) have the same codimension. Fur- 

thermore, codim Im(T) = dim ker(T") = dim ker(T) = codim Im(T") holds. 

Proof. Since (E/Im Ty! = (Im T)+ = (kerTt)+1 = ker(T"), the space 

(E/Im TY is finite dimensional and hence it has the same dimension as E'/Im T. 

From codim Im(T) = dim E/Im T = dim (E/Im TY = dim ker(T‘) 

and 

codim Im(T") = dim(£/Im T*) = dim(E'/Im Tty’ 

= dim(Im T*)! = dim(ker T)++ = dim ker(T), 

the proof is complete. 

12-2.12. Theorem Let k be the ascent of T. Then we have 

Im(T) 2 1m(T?) 2 wes 7im(T*) =Im(T"),V n> k. 

As a result, we also call k the descent of T. 

Proof. Clearly Im(f"~!) D> Im(T"). For all n < k, we have 

codim Im(T—') = dim ker(T"—') # dim ker(T”) = codim Im(T"). 

Hence Im(T"—!) 4 Im(T"). Next, for all n > k, we get 

codim Im(T”) = dim ker(T”) = dim ker(T*) = codim Im(T*). 

Therefore Im(T”) = Im(T"). Oo 

12-2.13. Exercise Let A be a compact operator on a Banach space & and 

T =I — A its displacement operator. Prove that if T is a topological isomor- 

phism, its inverse is also a displacement of some compact operator. Prove that 

composites of displacement operators are displacement operators. 

12-2.14. Exercise Prove that E = Im(7) @ ker(T") where k is the ascent 

of T.
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12-2.15. Exercise Prove that both Im(T*) and ker(T*) are closed invariant 

subspace of T, i.e. both are closed vector subspaces, T[Im(T*)] C Im(T"*) and 

T[ker(T*)] C ker(T*). 

12-2.16. Exercise Prove that the restriction T\im(T*) is an isomorphism. 

12-2.17. Exercise Prove that the restriction T| ker(T'*) is nilpotent, i.e. 

T|ker(T*)? = 0 for some integer p. 

12-2.18. Exercise Prove that there is a topological isomorphism J and a 

finite dimensional operator K on & such that T= J+ K. 

12-2.19. Exercise Let £,# be Banach spaces and A: & — F a compact 

linear map. Prove that for every topological isomorphism J: & — F’, the set 

(J — A)(E) is closed in F’. 

12-3 Spectrum of a Compact Operator 

12-3.1. In this section, we shall prove that the spectrum of a compact operator 

is a finite set or a null sequence. 

12-3.2. Theorem Let A be a compact operator on a Banach space F. Then 

every non-zero spectral value of A is an eigenvalue. 

Proof. Suppose that \ is not an eigenvalue of A. Then J — \~'!A is injective. 

By Fredholm Alternative, J—A7'A is invertible and hence AJ — A is invertible. 

Consequently, » is not a spectral value. Oo 

12-3.3.. Lemma For every € > 0, the set S = {A € o(A): |A| > ¢} is finite. 

Proof. Suppose to the contrary that S is an infinite set. There is a 

sequence {A,,} of distinct points in o(A) with all |A,| > ©. Since each i, 

is an eigenvalue of A, there is non-zero x, € FE such that Ar, = AnTy. Let 

H,, be the vector space spanned by x), 22,---,2, and let Hy = {0}. Then all 

i, are closed in F. Since 1, A2,---, An are distinct, 7),22,---, 2, are linearly 

independent. Hence Hn-1 9 An. Choose y, € H, such that |ly,|| = 1 and 

d(yn, Hn-1) = ;. Observe that 

lynl 
[An 

Yn 
An 

1 
<-. 

& 

Since A is a compact operator, the sequence {A ($)} must have a 
nh 

convergent subsequence. To show that no subsequence can be Cauchy, take 

any n> m. Write yn = a)r| +0272 +--+ + Onn. Then we get
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n—-l 
Yn \; 

m-A(%) =Soa; (1 _ *) Xj. 

Hence deduce that 

sem A()+a(¥) ete 

[4 (22) 4 (22) tm 212 dm thn 4 
This contradiction shows that S must be finite. oO 

Therefore 

12-3.4. Theorem The spectrum of A is a countable set of scalars. If the 

spectrum is an infinite set, its points converge to 0 € K. 

Proof. Let Dn = {A € o(A): || > +}. Then all Dy are finite. Since 

a(A) © {0} UU, D,, o(A) is countable. Next, if o(A) is an infinite set, 

clearly it converges to 0 € K because all except those in D,, belong to the ball 

B(, +). oO 

12-3.5. Theorem If £ is infinite dimensional, then we have 0 € o(A). 

Proof. Suppose to the contrary that zero is not a spectral value of A. Then 

= 0 is a resolvent value. Hence A = —(AJ — A) is invertible. Since A is 

compact, so is [ = A~!A. Let V be the closed unit ball of E. Then V = I(V) 

is a closed relatively compact set in E and hence it is compact. Consequently, 

V is finite dimensional. Oo 

12-4 Existence of Invariant Subspaces 

12-4.1. Normally we start with a nonlinear function y = f(x) and then 

approximate f by linear maps through derivatives or affine maps and hopefully 

we can get some information of f from its linear approximations. It was 

Lomonosov that applied nonlinear technique to solve linear problem. 

12-4.2. Let T be an operator on a complex Banach space &. For finite 

dimensional E, we can identify T as a square matrix from which all eigen- 

values are provided by its characteristic equations. Each eigenspace is an 

invariant subspace of T and consequently T can be expressed as direct sum of 

relatively simple submatrices. For example, it is well-known in linear algebra 

that every square matrix is similar to a Jordan form. For infinite dimensional
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case, it seems to be natural to ask whether what classes of operators has non- 

trivial invariant subspaces. One class including the compact operators will be 

presented in this section. 

12-4.3. Let E be a complex Banach normed space, L(£) the set of all operators 

on & and T € L(F). A vector subspace M of E& is called 

(a) an invariant subspace of T if T(M) c M, 

(b) a Ayperinvariant subspace if for every operator S € L(E) commuting with 

T, ie. ST =TS, we have S(M) Cc M and 

(c) an invariant subspace of a subalgebra A of L(E) if TUM) Cc M for every 

TEA. 

12-4.4. A subspace M of E is said to be trivial if either M = {0} or M = E. 

A subalgebra A of L(E) is said to be transitive if every invariant subspace of A 

is trivial. In this section, we assume that the dimension of EF is non-zero. 

12-4.5. Lemma Let A be a transitive algebra of operators on E. Then for 

every non-zero compact operator K, there is an operator T € A such that the 

compact operator KT has a non-zero fixed point. 

Proof. Let V denote the open unit ball of E. Since the closure K(V) is 

compact, it is bounded. There is A € R such that ||K(V)|| < A. By K #0, 

there is a € E satisfying ||K(a)|| > 4. Let X = K(a)+K(V). Then X is a 

non-empty compact convex set which does not contain the origin. Next, we 

claim that X C Ure, T~'(a+V). Suppose to the contrary that there is y € X 

but y ¢g T~!(a+V) for all T € A. Since A is an algebra, Ay = {T(y):T € A} 

forms a vector subspace of E and so does its closure M = Ay. Observe that 

for each S € A, we get S(M) c S(Ay) c S(Ay) = {STy:T EA} CAy=M 

because A is an algebra. Therefore M is an invariant subspace of A. By 

transitivity of A, we have either M = {0} or M = E. Suppose M = {0}. 

Then T(y) = 0 for all T € A. Since & ¥ {0}, take any y #O in &. Then 

Cy = {ay : a € C} is a non-trivial invariant subspace of A, contrary to the 

transitivity of A. Next, suppose M = E. Since T(y) g a+ V for all T € A, the 

set Ay is contained in the closed set E\(a+V), ie. MC E\(a+V), contrary 

to M = E. Therefore {T—'(a+ V) : T € A} is an open cover of the compact 

set X. We can select a finite number of T; € A such that X C Uj N; where 

Nj = T; (a +V). Let {a;} be a partition of unity on X subordinated to 

{Nj : 1 <7 <n}. Define f(x) = a(x) KT;(x) for every x € X. Then 
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f: X — E is a continuous map. Note that if aj(z) ¥ 0, then « € N,, 

or T(z) € at+V,ie. KTj(x) € K(a+V) Cc {K(a+V)} = X. Therefore 

f(X) c X. Now the continuous map f : X — X has a fixed point, say be X. 

Since 0 ¢ X, we have b #0. From f(b) = 6, we get Ve aj (b)KT;(b) = b, ie. 

KT(b) = b where T = vie a,(b)T; € A. im 

12-4.6. Lomenosov’s Theorem If a non-scalar operator A commutes with a 

non-zero compact operator K, then A has a non-trivial hyperinvariant 

subspace. 

Proof. Let A= {T € L(E): AT = TA}. Clearly, A is a subalgebra of L(E). 

Suppose to the contrary that every hyperinvariant subspace of A is trivial. 

Then A is transitive. There exist T € A and b € EF such that KT(b) =b 40 

and b € H =ker(KT — J). Since K is compact, so is KT and thus H is finite 

dimensional. For every x € H, we have KT(xr) = xz, or KTA(r) = AKT(x), 

i.e. A(z) € H. Therefore H is a finite dimensional invariant subspace of A. It 

follows that A has a non-zero eigenvector in H, i.e. there is A ec © such that 

M = ker(A — AI) ¥ {0}. Since A is non-scalar, we have M # FE. So, M is non- 

trivial closed vector subspace of E. Now take any x © M and T € A. Then 

AT(z) = TA(z) = TOs) = AT (2), ie. T(x) € M. Hence M is a non-trivial 

hyperinvariant subspace of A. This contradiction establishes the proof. oO 

12-5 Fredholm Operators 

12-5.1. Let BF be Banach spaces. A continuous linear map f: E — F is 

called a Fredholm map if ker(f) is of finite dimension and the image f(F) is of 

finite codimension. All Fredholm maps in this book are linear although they 

were initiated by the study of nonlinear maps whose derivatives are Fredholm. 

Readers may skip this section without any discontinuity. 

12-5.2. Let f be a Fredholm map from £& into F. Any topological 

complement E' 6 ker(f) of the finite dimensional subspace ker(f) in F is called 

a mirror of f. Any topological complement F © f(E) of the finite codimen- 

sional subspace f(F) is called a deficit of f. Define nullity(f) = dim ker(f), 

defect(f) = dim F'/ f(E) and index(f) = nullity({) — defect(f). Clearly, we have 

defect(f) = dim deficit(f). 

12-5.3. Lemma (a) f(£) is closed in F. 

(b) The restriction of f is a topological isomorphism mirror(f) ~ F(E).
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(c) If the index of f is zero, then ker(f) and deficit(f) are of the same finite 

dimension and consequently E = mirror(f) @ ker(f) is topologically isomorphic 

to F = f(£) @ deficit(f). 

(d) If A is a compact operator on E, then T = J — A is a Fredholm operator 

with index zero. 

(e) If & is finite dimensional, then all linear maps are Fredholm and they have 

the same index dim E —dim F’. Hence Fredholm maps are interesting only if 

& is infinite dimensional. 

Proof. (a) See §7-4.14. 

(b) By §7-4.6c, mirror(f) = EO ker(f) ~ E/ker(f). By §§7-2.5b, 6-9.3; 

E/ker(f) = f(B). 
(d) See §12-2.11. 

(e) index(f) = nullity(f) — defect(f) 

= [dim mirror(f)+dim ker(f)] — [dim f(£) + dim deficit(f)] 

=dim & — dim F. Oo 

12-5.4. Theorem Let E,F,G be Banach spaces and let f : E — PF, 

g : F — G be Fredholm maps. Then the composite gf is also a Fredholm 

map. Furthermore we have index(gf) = index(g) + index(f). 

Proof. Let A = f(F)Nker(g), B = f(E) OA and C = ker(g) 6 A. Then 

f(F) = A@B. Since f(E£) is closed and B is finite dimensional, f(£)+C 

is closed and of finite codimension. Let D = F 6 [f(£)+C], M = mirror(f), 

P= (f|M)~'(A) and Q = (f|M)—!(B). Since f|M is a topological isomorphism, 

we obtain M = P@Q and F=ker(f)®@ P@Q. Take any x =p+q+r where 

péP,q@e€Qandr € ker(f). Since f(p) € A C ker(g), we have gf(p) = 0 and 

also f(r) = 0. Observe that f|Q is an isomorphism. From BN ker(g) = {0}, 

g|B is an isomorphism. Thus gf(z) = gf(q) = 0 iff gq =0, ie. c=p+r. Hence 

ker(gf) = P @ ker(f) is finite dimensional. Next, since f(EZ)  D = {0} we have 

AP) = gl f(E)+ C+ D)] = gf(E) © g(D) = g(A) @ 9B) ® gD) 

= 9B) ® 9(D) = of (Q) ® gD). 
Therefore deficit(gf) = g(D)@deficit(g) is also finite dimensional. Consequently, 

gf is a Fredholm map. Furthermore we obtain 

index(gf) = nullity(gf) — defect(gf) 

= dim ker(gf) — dim deficit(g f) 

= [dim P+dim ker(f)] — [dim g(D) + dim deficit(g)} 

= [dim A + nullity(f)] — [dim(D) + defect(g)]
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= [dim A+dim C + nullity(/)] — [dim C+ dim D + defect(g)] 

= [dim ker(g) + nullity(f)] — [defect( f) + defect(g)] 

= index(g) + index(f). o 

12-5.5. A continuous linear map f : E — F is pseudo-invertible if there is a 

continuous linear map g: F — E such that fgf = f. In this case, g is called 

a pseudo-inverse of f. Clearly both fg,gf are idempotents. Also observe that 

ker(gf) = ker(f) and fg(F) = f(F). 

12-5.6. Theorem Let f : EF ~ F be a Fredholm map. Then there is a 

Fredholm map g: F — E which is also a pseudo-inverse of f such that both 

I— fg and I — gf are of finite rank. Furthermore, if index(f) = 0 then we may 

assume that g is invertible. 

Proof. Let M = mirror(f) and D = deficit(f). Define £: D — ker(f) as any 

isomorphism if index(f) = 0 and define ¢ = 0 otherwise. Next define 

g:F=f()@D> E=M @ker(f) 

by g|f(E) = (f|M)~! and g|D = €. Clearly g is a continuous linear map and 

it is a topological isomorphism if index(f) = 0. It is simple to verify fof = f 

on E. Since ker(g) C D and deficit(g) C ker(f), g is a Fredholm map. Next, 

fd - gf = Ff — fof)E =0 gives J — gf)E C ker(f). Finally, observe that 

d-faF =U-foIf(£)e@ D\=U — fg)D. Therefore both J— gf and I — fg 

are of finite rank. This completes the proof. oO 

12-5.7.. A Banach space L which is also an algebra. It is called a Banach 

algebra if for all A, B € L we have ||AB|| < |All ||B||. If L has a multiplicative 

identity J, we also demand ||J|| = 1. Most results of EZ) could have been 

developed in the general framework of Banach algebra. 

12-5.8. Exercise Prove that the set of all invertible elements in L is an open 

set. See §8-6.4. 

12-5.9. Exercise Prove that if K is a closed two-sided ideal of a Banach 

algebra L, then the quotient algebra L/K is also a Banach algebra. See §7-2.4. 

12-5.10. Let K(E) denote the set of all compact operators on &. It follows 

from §12-1.6,10 that K(E) is a closed two-sided ideal of the algebra L(E) of all 

operators on &. Let y denote the quotient map from L() onto the quotient 

Banach algebra L(/)/K(E) which is also called the Calkin algebra.
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12-5.11. Atkinson’s Theorem An operator f € L(£) is Fredholm iff ¢(f) is 

invertible in the quotient algebra L(E)/K(£). 

Proof. We shall denote the identity map on & and L(E)/K(£) by the same 

symbol J. Let f be a Fredholm operator on E. There is a Fredholm operator 

g on & such that J — fg and J — gf are of finite rank and hence they are 

compact operators. Now 0 = y(I — fg) = I — p(f)ye(g) gives y(f)y(g) = I. 

Similarly, y(g)p(f) = J. Therefore y(f) is invertible in L(E)/K(£) with inverse 

yp(g). Conversely, suppose that g € L(E) satisfies y(f)y(g) = v(g)y(f) = FT on 

L(£)/K(E). Then h = I — fg and k = I - gf are compact operators on EF. 

Therefore ker(f) C ker(gf) = ker(! — k) which is finite dimensional. Also from 

f(®) > (fgFE = dU — WE which is of finite codimension. Therefore ker(f) 

is finite dimensional and f(£) is finite codimensional. Consequently, f is a 

Fredholm map. gO 

12-5.12. Theorem The set $(£) of all Fredholm operators is open in L(E) 

and the map index : ¥(£) — Z is a continuous function. 

Proof. Let V denote the open set of all invertible elements in the quotient 

algebra L(Z)/K(E). By continuity of the quotient map y : L(Z) > L(E)/K(E), 

the set F(E) = p—'(V) is open in L(E). Now take any Fredholm operator f 

on £. Choose a pseudo-inverse g such that h = I — fg and k =I — gf are 

compact operators. Suppose that p € L(E) satisfies || f — pl| < ||g||-!. Then 

||f9—pgl| < 1. Hence g = I—(fg—pg) is invertible in L(E) and so index(q) = 0. 

From qf = f - fof +pgf =pg9f, we have 

index(qg) + index(f) = index(p) + index(g) + index(f) 

or, index(p) = —index(g). Therefore index(f) is locally constant. Consequently, 

index(f) is a continuous function of f. Oo 

12-5.13. Theorem For every Fredholm operator f and every compact 

operator k on £, f + k is a Fredholm operator. Furthermore we have 

index(f + k) = index(f). 

Proof. Let p: L(E) > L(E)/K(E) be the quotient map. Then y(f+k) = y(f) 

is invertible in L(E)/K(E). Hence f +k is a Fredholm map. Next, since the 

function €(¢) = index(f + tk) from [0,1] into 2 is continuous, it must be a 

constant, i.e. index(f) = €(0) = €(1) = index(f + &). oO 

12-5.14. Corollary An operator f is a sum of an invertible operator and a 

compact operator on £& iff index(f) = 0.



260 Compact Linear Operators 

Proof. Let f = g+k where g is an invertible operator and k is a compact 

operator. Then we have index(f) = index(g + k) = index(g) = 0. Conversely, 

suppose index(f} = 0. Let g be an invertible Fredholm pseudo-inverse of f. 

Then from f = fgf, we have y(f) = yp(fPy(g)y(f). Because y(f) is invertible 

in L(E)/K(E), we have y(f)y(g) = v(g)e(f) = I, or o(f) = (gy! = y(g7!). 
Hence k = f—g7! is compact, or f = g~!+k is the sum of an invertible operator 

and a compact operator. Oo 

12-99. References and Further Readings : Jorgens, Schechter, Ringrose, 

Collins, Vala, Dieudonne-85, Johnson-79, Szankowski, Kaneko, Konig-86, 

Ma-86, Sikorski, Simon-79, Corduneanu, Lomonosov, Simonivc, Sadovnichii, 

Olagunju, Pietsch, Schmitt, Caradus, Enflo, Wu and Han. 



Chapter 13 

Operators on Hilbert Spaces 

13-1 Complex Inner Product Spaces 

13-1.1. This chapter is a natural extension of linear algebra of matrices to 

infinite dimensional spaces and should be read concurrently with Chapter 3 

on Banach spaces. Most of the elementary properties hold for real Hilbert 

spaces even though we restrict ourselves to complex case in order to prepare 

the background so that you can start to work on C*-algebras and analytic 

functions of operators elsewhere as soon as possible. 

13-1.2. Let H be a vector space over the complex field ©. A function 

(x,y) ~ < x,y > from H x Z into C is called an inner product on H if 

for all x,y,z € H and for all A € C, we have 

a)<rt+y,z>=<2,2>+<y,z>, additive; 

b) <A, y > =A <2z,y >, homogeneous; 

d) < z,2 >> 0, positive; 

( 
( 
(c) <2,y>=<y,2>-, conjugate-symmetric; 

( 
(e) if < z,2 > =0, then x = 0; non-degenerate. 

13-1.3. A vector space equipped with a given inner product is called an inner 

product space. In an inner product space H, write ||z|| = /<2,2>,VaeH. 

We shall use the notation i? = —1 consistently in the subsequent context. 

13-1.4. Theorem Let H be an inner product space. For all x,y,z € H and 

for all complex numbers a, 3, we have 

(a) Conjugate linear: < z,ar+ By > =a7 <z,n4>4+8° <z,y>. 

(b) Parallelogram Law: ||xz + y||? + ||z — y||* = 2||x|]? + 2|ly|]?. 

(c) Polarization Formula: 3 

4< x,y > = {lx + yll? — fle — yl? + alla + eyl|? — ile — tyl|? = So fx + yl? 
n=0 

13-1.5. Cauchy-Schwartz Inequality For all z,y € H, we have 

|<2,y> |< [eh llyll- 
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Furthermore | < 2, y > | = ||x|{ ||y|| iff ¢ = Ay or y = Az for some A € C. 

Proof. If y =0, then both sides are zero and the result follows immediately. 
<a2,y> 

Assume y #0. Then < y,y >#0. Let A= . Then we have 
<yy> 

O< <x-dAy,2—rAy> 

=<2,2>-A7 <a,y>-A<y,r>+trAN <yy> 
<2,y><y,0> 

=<2,7>—-De es he #1 

<yy> 

Therefore we have | <2z,y > |?=<a2,y ><y,u ><<2,2><y,y >. Finally, 

#1 is zero iff | <z,y >| = |lx|] |lyl] iff ¢ -— Ay =0. oO 

13-1.6. Theorem Every inner product space H is a normed space under the 

norm ||z|| = /<a,a>,Vae H. 

Proof. We shall verify only the triangular inequality and leave the others as 

an exercise. Let «,y € H be given. Then we have 

ljzet+yl?=<c+y,ct+y>a<aur>+<zyrt<ye>t<yy> 

=<2,2>+2Re<ay>t+<yy><<2,0>42|<2,y>|+<y,y> 

< [|x|]? + 2K) llyll + Iryll? = dell + [lylp?, 

ie. ile + yl] < jlll + {fyi o 

13-1.7.. As a result, topological properties such as convergent sequences and 

continuity, are available in H. An inner product space which is also a complete 

normed space is called a Hilbert space. 

13-1.8. Exercise Prove that in a normed space, if the Parallelogram Law 

holds, then the polarization formula defines an inner product which induces 

the original norm. 

13-1.9. Theorem The inner product (z,y) ~ < x,y > from the product 

normed space H x H into C is continuous. 

Proof. Suppose x, — a and y, ~+ 6 in H. Then we have 

|<2n,Yn > -— <a,b>| 

=| <2, ~4,Yn —b>|+| <atn,—a,b>|+]<a,yn—b>] 

S [tn — all [lyn — bl] + [lan — al] [EH] + fell lyn — bl] >Oasn—oo, 0 

13-1.10. Example For all x,y € &, let < z,y > =a, y; +x2y, +--- where yy 

denotes the complex conjugate of y;. It is trivial to verify that & is an inner
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product space. Since we know that £ is complete, it is a Hilbert space. Note 

that the notation is different from normed spaces. Here we have to take the 

complex conjugate. 

13-1.11. Exercise A bisequence is a sequence in K indexed by all integers 

rather then by positive integers only. A bisequence can be represented by 

t= (- ++, @_3,£_2,%_1, 20, %1, 2, 13,°° -). 

Prove that the set 2 of all bisequences x satisfying 77°, |tn[* < co forms a 

Hilbert space under the coordinatewise operations and the inner product given 

by <2z,y>= je co THY; - 

13-1.12. Exercise Let P,[—7,7] denote the vector space of all continuous 

functions f on [~-7, 7] satisfying f(—-7) = f(r). With <z,y >= a(t)y(t) dé, 
as 

show that P,[—7,7] is an inner product apace but not a Hilbert space. 

13-1.13. Exercise Are €? and C2, inner product spaces? 

13-2 Orthogonality in Inner Product Spaces 

13-2.1. Let H be an inner product space. Two vectors x,y in H are said to 

be orthogonal if < x,y > =0. A vector z is said to be orthogonal to a subset B if 

zx is orthogonal to every vector in B. A subset B of H is said to be orthogonal 

if distinct vectors in B are orthogonal. A subset of H is said to be orthonormal 

if it is an orthogonal set consisting of unit vectors only. 

13-2.2, Pythagora’s Theorem If rly in H, then ||x + yl? = ||z||* + [ly||?- 

13-2.3. Exercise Let x,y € H. Prove that «Ly iff we have 

|x + yll? = lla? + lvl? = je + ayll?. 

13-2.4. Theorem Every orthogonal set B of non-zero vectors is linearly 

independent. 

Proof. Let b,,b2,:--,b, be distinct vectors in B. Assume jel Ajb; = 0 for 

some 4; € ©. Then for each k, we have 

O= Oo, jj, be) = ve dj < bj, be > = Au < di, be >. 

Since by #0, we have Ay #0. Therefore b,,b2,---,b, are linearly independent. 

Consequently, B is linearly independent. oO



264 Operators on Hilbert Spaces 

13-2.5. Theorem Let e€;,¢€2,---,e, be an orthonormal set and suppose a 

vector x € #7 is given. 

(a) For all complex numbers ,, A2,---,An, we have 

nm 2 nm nm 

jx ~ Va ye) = lel? + >, | <z,e; > —A;/? - at [<a,ej>f. 

(b) Sha | < 2,6; > |? < ||z||?; Bessel’s inequality. 

Proof. Part (a) follows from direct routine calculation. Part (b) follows from 

(a) by choosing A; = < z,e; >. oO 

13-2.6. Theorem Let B be an orthonormal set in an inner product space H. 

Suppose that a vector x € H is given. Then 

(a) the set {b € B:< x,b >= 0} is countable; and 

(b) Vaca | <2,6>/ < lini). 
Proof. (a) Let Dx = {bE B:|<2,b> |? > 4][z/|?}. Then D,, cannot have 

more than n elements. Therefore B = UP, D, is countable. 

(b) It follows immediately from Part (b) of last theorem. Oo 

13-2.7. Orthonormalization Process Let {x} be a sequence, finite or 

infinite, of linearly independent vectors in an inner product space H. 

Then there is an orthonormal sequence {e,} in H such that for each k, both 

{x1,#2,-++, 2} and {e1,e2,---, ex} generate the same vector subspace of H. 

Proof. Let G(21,22,---,z%) denote the vector subspace spanned by the 

vectors 2), 22,'°-, zk © H. Let e; = 2,/||z,||. Suppose e), e2,---,e, have been 

constructed by induction. Let agy) = teat — op-y < Tesi, €; > e;- Suppose 

to the contrary that a,4; =0. Then z,4, € Ge), e2,--+, ex) = Gly, 22,--+, ZR) 

gives the linear dependence of 21, 22,:-+,2%,2%41 Which is a contradiction. 

Hence a@x41 # 0. Define ex4: = @ert/||@eei||. Clearly, |[exs:|| = 1. Also for 

1<p<k, we have 
k 

< Chat) p > =< Lk, &p > a < @ks1,€) >< €5,€p > 
k 

= < Lk, ep > — iat < De, 05 > Sjp = < Lest, €p > — < Lert, €p > = 0. 

Thus e;,€2,:--,€k,€k4; are orthonormal. Now the following calculation 

completes the proof 

G(e1, €2,°°*, Ck, C41) = G[G(e, €2,°+ +, €k); Chai] 
k 

=G [Gtenex 0+) 0k), Tea — et < Geri, €j > €; 

= G[G(e1, €2,°++, €k), Te] = GIG(@1, 42, +++, Fk), Tea]
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= G(x1,£2,°++, Xe, Lest). Oo 

13-2.8. Theorem on Minimum Distance Let M be a complete convex subset 

of H. Then for every x € H, there is a unique y € M such that ||x — y|| is the 

distance from x to M. See §5-2.6. 

13-2.9. Theorem Let M be a complete vector subspace of H and let « € H, 

y € M. Then x —y is orthogonal to M iff ||x — y|| is the distance from x to M. 

Proof. (<=) Suppose ||z — y|| is the distance d from x to M. Let z= 2 —y. 

Then for all 04a € M, we have 

z-—— a 
-_ (vs Tar) lal? 

=|[2|? -|<z,a>P=@-|<za>|’, 

Re< <z,a> 

ie. <z,a >=0. Therefore x — y = z is orthogonal to M. 

(=) Suppose x— y is orthogonal to the complete convex set M. There is z ¢ M 

satisfying ||z — z|| =d. By part (a), we have (x — z) LM. Now observe 

lz —zIP =||@ —y) + & — 2)? = fle — yl? + hy — ZI), 

and I|z — yl? = I(@ — 2) + @ — yl? = [12 - 2]? + lle — gl. 
Adding them together, we have ||y— 2| =0,ie. y=z. Therefore the distance 

from « to M is fz — yll= lly — zl] =4. ' 
13-2.10. Theorem Let M,N be complete subsets of H. If M1N, then the 

set M +N is also complete. 

Proof. Let {z,} be a Cauchy sequence in M +N. Then there is a, € M and 

b, € N such that 2, =a,+6,. For any € > 0, there is an integer p such that for 

all m,n > p, we have ||z,—2n|| < ¢. Because am —a@, is orthogonal to bp — bn, 

we have €? > ||zr-—m—2pl|* = ||(@n —@n)+(bm —bn)||* = ||@m —@n||?+ [|b — On|. 

Thus both {a,,} and {b,} are Cauchy sequences. Since M, N are complete, let 

az=lima, € M andb=lim®d, € N. Then limz,, = lima,+limb,, =a+b € M+N. 

Therefore M+ N is also complete. oO 

13-3 Orthonormail Bases of Hilbert Spaces 

13-3.1. An orthonormal set B in an inner product space H is said to be 

maximal if for every orthonormal set S containing B, we have S = B. A 

maximal orthonormal set is also called an orthonormal basis. Let B be an
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orthonormal basis of H. For each x € H, the numbers {< x,b >: 6 € B} are 

called the Fourier coefficients and the sum }°,<-, < £,b > b the Fourier series. 

13-3.2. Theorem Every orthonormal set S in an inner product space H can 

be extended to an orthonormal basis. 

Proof. Let P be the family of all orthonormal subsets of H. Then P becomes a 

partially order set under inclusion. For every chain C in P, the union of all sets 

in Cis an upper bound of C' in IP. Hence by Zorn’s Lemma, every orthonormal 

set is contained in a maximal orthonormal set, i.e. an orthonormal basis. O 

13-3.3. Pythagora’s Theorem for Infinite Series Let {2,,} be an orthogonal 

sequence in a Hilbert space H. 

(a) If S772, |lzn||? < co, then the series 57>, x, converges in H. Furthermore 

the sum 5°°°, x, is independent of the order of enumeration. 

(b) If the series }7°2, , converges to z € H, then we have ||x||? = 7°, ||an||?. 

Proof. Since {z,,} is orthogonal, we obtain 

||_¢m-+1 + Emig ters + Eme+pl| = [|2mn+t \|7 + \|cm+2l|" tenet {cms ||? 
fo2) 2 < et |Znl|° — 0, as m — 00 

Hence the partial sums pe x; is a Cauchy sequence in the Hilbert space H. 

Therefore the series an x; converges. The second assertion is obvious since 

we can rearrange the order of >, ||zn||? < oo. Part (b) follows from simple 

calculation: 

al]? = lim lj) +22 + -+- + 2,I? 
nm-ooo 

oO 

= im (je? + [22|? +--+ all?) =o, Maal a 
13-3.4. Theorem Let B be an orthonormal set in a Hilbert space H. Then 

the following statements are equivalent. 

(a) B is an orthonormal basis, i.e. a maximal orthonormal set. 

(b) For each « € H, if 1B then x =0. 

(ec) =SVyep <b >bVae dH. 

(d) <a,y>=Deeg <2, >< by >, Vay eH. 

(e) |lzI? = Seep | <2, > |?,¥ 2 € H; Parseval’s identity. 

(f) The vector subspace spanned by B is dense in H. 

Proof. we shall prove (@ 6 b= c= d= e = b) and also (c= f = b). 

(a = 6) Suppose to the contrary that for some z #0 € H,21B. Let y=2/|z|| 

and M = BU {y}. Then M is an orthonormal set containing B but not equal 

to B. This shows that B is not maximal.
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(6 = a) Suppose to the contrary that B is not maximal. There is an 

orthonormal set M containing B but not equal to B. Then there is x € M\ B. 

Therefore we have #0 and xLB. 

(b > c) Let J = {b € B:< x,b > 0}. Then the set J is countable and the 

series )7,¢, < £,b > b converges to some limit y € H. For each a € B\ J, we 

have 

<B-ya>=<aa>-h) <a,b><ba>=0-)) <a,b>0=0, 

where < z,a > =0 because a ¢ J and < b,a > =0 because a Lb. On the other 

hand, for a € J, we also have 

<E-ya>s<a,a>-)  <2,b><ba> 

=<aa>-)0  <2)b>bap=<2,a>—-<2,a>=0. 

Therefore (« — y)LB, i.e. x — y=0. Consequently, we have 

t=y=) 0, <1,b>b=S) _, <2z,b>b. 

(c = d) Since the set {6 € B :< 2,b >¥ O}U{b € B :< y,b >¥ O} is 

countable. Let 6), 62,53,--- be an enumeration of this set. Then we have 

r= aaa <2,bpn > b, and y= am <y,b, > b,. The continuity of the inner 

product gives 
nm nm 

<2,y> = lim | Osan < 2,6; > bo <y,b, > bx ) 

+ n nm — . 

= lim > 4 > kel <2,b; >< y,bk >” < b;,bk > 5 complex conjugate 
no g= = 

n n n 
= limp—oo a an <2, b; >< bey > 5k = lim a < x,b; >< bs,y > 

=S~ b; b; = b><by> = op D> U>= og <h YY 

(d > e) Letting x = y, it follows immediately. 

(e => b) Suppose z1B. Then < x,6 > =0 for all 6 © B. Therefore we have 

E= Veg <2,b>b=0. 

(c => f) Since every vector in H is the limit of a sequence in the vector subspace 

spanned by B. Therefore B is dense in H. 

(f = b) Suppose LB. Define f(y) = < x,y > for all y € H. Let M be the 

vector subspace spanned by B. Then for every y € M, there are b; € B and 

8; € © such that y = en 8;6;. Hence f(y)=<2,y >= a By < 2,6; > 

= 0. Therefore f(A) = {0}. Now f(H) = f(M) c f(M) = {0} = {0}. In 

particular, f(z) = 0, ie. < 2,2 > = 0, or x = 0. This completes the whole 

proof. oO
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13-3.5. Exercise Let en, = (din, dan,---) be a sequence given by 4;, = 1 for 

j =n and 6;, = 0 otherwise. Show that the set {e, : n > 1} forms an 

orthonormal basis of é. 

13-3.6. Exercise Let e, = (---,d(—2)n, 5(—-1)ns O0n, Sn; 62m, * ++) be a bisequence 

given by 6;, = | for j = n and 6;, = 0 otherwise. Show that {e, : n € Z} 

forms an orthonormal basis of b; where Z denotes the set of all integers. 

13-3.7. Exercise Identify P,[—7,7] as continuous functions on the unit 

circle. Use Stone-Weierstrass Theorem to prove that every function in 

P,[—7,7] can be uniformly approximated by a trigonometric polynomial of 

the form )77__, ane""™* where ay, € C. Show that the set {e'"* : n € Z} forms 

an orthogonal basis of P;[—7,7]. A study of Fourier Analysis is beyond the 

scope of this book. 

13-4 Orthogonal Complements 

13-4.1. Let H denote a Hilbert space. The orthogonal complement of a subset 

M of H is defined by M+ = {x € H: t LM}. 

13-4.2. Theorem Let M,N be non-empty subsets of a Hilbert space H. 

(a) M+ is a closed vector subspace of H. 

(b} Mc Mt+, 

(c) If MCN, then Nt co M+, 
(d) Mitt = Mt. 

(e) MA M+ c {0}. 

Proof. (a) For each a € M, let f.(z) = < 2,a >,V x € H. By Cauchy- 

Schwartz inequality, each f, is a continuous linear form on H. Therefore the 

set Mt =rf{ker(f.) : a € M} is a closed vector subspace of H. 

(b,c) Both follow immediately from definition. 

(d) It is direct consequence of (b) and (c). 

(e) For each z € MO M+, we have x ¢ M and xe M+. Hence < z,z > =0, 

ie. x =0. ia 

13-4.3. Theorem Let M be a closed vector subspace of a Hilbert space H. 

(a) H=MeM!. 

(b) Mt+=M. 

Proof. Since Mm M+ = {0}, we need only to show H = M+ M+. Take any 

zx € H. Since M is a closed vector subspace, it is a complete convex set. There
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is a unique y € M such that ||z — y|| is the distance from x to M. Hence x —y 

is orthogonal to M, i.e. (2 ~ y) € M+. Therefore z=y+(x-—y)€ M+Mt. 

Consequently, H is the algebraic direct sum of M and M+. By the way, as a 

result of Closed Graph Theorem, it is also the topological direct sum. 

(b) It suffices to show M41 cM. Take any « € M11. There isa € M and 

b<€ M+ such that x =a+b. Since M14 is a subspace, we have 

b=az—a€Mtt++Me=M!!. 

Therefore b € M'n M11, ie. b= 0. Thus z = a € M. Consequently, 

M11 cM. This completes the proof. oO 

13-4.4. Theorem Let 4 be the algebraic direct sum of two vector subspaces 

M,N. If MLN, then M = N+ and N= M!. In particular, both M,N are 

closed. 

Proof. Since MLN, we have M c N+. Take any z € N+. Since H = M+N, 

write s=a+bwherea € M andbe N. Thenb=2-—a€N1-—M=N1, ic. 

be NON+, or b=0. Therefore + =a € M. Consequently, VN‘ c M. Oo 

13-4.5. Riesz Representation Theorem Let f be a continuous linear form 

on a Hilbert space H. Then there is a unique vector a € H such that 

f(z) = <2,a > for all c € H. Furthermore, we have ||f|| = |lall. 

Proof. If f =0, then a =0 satisfies all requirement. Assume f +0. Take any 

b © Af such that f(b) #0. Since f is continuous, M = ker(f) is a closed vector 

subspace of H. Write b=u+vu whereué Mandve¢ M+, Hence we obtain 

f(v) = f® — fw = f(b) 40 and in particular v 40. Define a = wre v. Now 

choose any x € H. Since f E - £2, - 0, we have + — , € ker(f) = 

Since v € M4, we have (2— #20, v) =0,ie. <2, v> <vu,v>=0, 

or f(z) = ae = <x,a >. This proves the existence. For uniqueness, 

let a,b € A satisfy f(z) = < z,a > and f(r) = < 2,6 >,V x € H. Then 

<z,a-b>=0,V2e H. Takex=a-—b. Then la — |? =O, ie. a= ob. 

Finally, since |f(z)|=|<z,@ > |< ||zl| lel], we have ||f|| < |e]. Ifa=90, 

then fi] =a = 0. Assume a ¥0. Then fall = (2a) = lr (so;)| Mt 
Oo Therefore we also have || f|| = ||a|| as required.
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13-4.6. Exercise Prove that every weakly Cauchy sequence in H is weakly 

convergent. See §7-8.4. 

13-5 Adjoints 

13-5.1. Let G,H be Hilbert spaces. A function y : Gx H — C is called 

a sesquilinear form on G x H if for all a,b € G;x,y € H and all A € € the 

following conditions hold: 

(a) y(a +6, x) = v(a, rz) + v(b, z), additive; 

(b) via, 2) = Av(a, x), homogeneous; 

(c) pla, x+y) = pla, r)+ y(a, y), additive; 

(d) pla, Ax) = A~ p(a, x), conjugate homogeneous. 

The norm of a sesquilinear form y on G x H is defined by 

Ilvl| = sup{|y(a, 2)| : |lal] < 1, ||2|| < 1}- 
When G = H, we simply say that ¢ is a sesquilinear form on A rather than a 

sesquilinear form on H x H. 

13-5.2. Theorem Let y be a sesquilinear form on G x H. Then the following 

statements are equivalent. 

(a) y is continuous on G x H. 

(b) y is continuous at (0,0) € G x H. 

(0) llgll < 0°. 
In this case, we have |y(a, z)| < [||| [lel |[zl|,V ee G, 2 e H. 

Proof. (a = 5) It is obvious. 

(b = ©) For « = 1, there is 6 > 0 such that for all ||b|| < 6 in G and all |lyl| < 6 
in H, we have |p(b,y)| < ¢ = 1. Take any |la|| < 1 in G and |[z|| < 1 in ZH. 

If either 2 = 0 or x = 0, then |p(a,z)| = 0 < 1/57. Assume that a 4 0 and 
da dba 

. Th —, —— 
+70 then fe (Tan) 

1 Ivll < gy <0. 

: 1 1 
<1, ie. |y(e,z)| < 52 llall|lell < 5 Therefore 

(c> a) Takea € Ganda € H. Fora =Oor2z =90, |y(a, z)| = 0 < ||y|| |e] Iz). 

Assume that a #0 and x #0. Then we have le (a i | 
al’ ||x 

|p(a,z)| < |p| lal] ||z||. Now fix b € G and y € H. Consider 

< |lyl| < 00, ie. 

lp(a, x) — yb, y)| < |y(a ~ b,x — y)| + |y(a — b, y)| + |v, x — y)| 

< [lyll(}@ — ]] [lz — yll + fle — S|] yl] + [eli — yl
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which is small whenever ||a — || and ||2 — y|! are both small. Therefore y is 

continuous at (6, y) € Gx H. Since b, y are arbitrary, y is continuous on G x H. 

This completes the proof. Oo 

13-5.3. Theorem Let B : G — 4H be a continuous linear map. Let 

p: Gx H — C be given by y(a,rz) = < Ba,x > for all a € G and all 

x € H. Then ¢ is a continuous sesquilinear form on G x H. Furthermore, we 

have |||] = ||B||. In this case, y is called the sesquilinear form associated with 

the continuous linear map B. 

Proof. It is routine to verify that y is a sesquilinear form. Now for each 

lal < 1 in G and |x|] < 1 in H, we have 

Ip(a,x)| =| < Ba,x >| < ||Ball |lz|| < 1B] lel lel < BI. 
Hence ¢ is continuous and ||y|| < ||Bl|. On the other hand, take any |la|| <1 

in G. If Ba =0, then clearly ||Bal| < ||y|]. Assume Ba #0. Consider 

|| Bal? = < Ba, Ba > = |p(a, Ba)| < |y|| lal || Ball, 
i.e. ||Bal| < {l¢ll |lal] < |v]. In all cases, we have ||Bal| < ||y]| for all lal] < 1 

in G. Therefore, ||B|| < ||]. o 

13-5.4. Theorem Let y be a continuous sesquilinear form on G x H. Then 

there is a unique continuous linear map B : G > H such that 

ylia,z)=< Ba,z>,VaEeGVared. 

Proof. For each a € G, let fa(x) = yla,x) for all ze € H. Since » 

is a continuous sesquilinear form, f, is a continuous linear form on H. There 

is a unique vector Ba € H such that f,(x) = < 2,Ba >,V x € H, i. 

y(a,z) = < Ba,xz >. We have defined a map B : G — H. To show its 

linearity, take any a,b € G and a, 8 € €. Then for each x € H, we have 

< Blaa + Bb), x > = plaa + Bb, x) = ay(a,xr) + By(b, x) 

=a< Ba,r>+8< Bbhe>=<aBat+PBb,zc>. 

Hence B(aa + 3b) = aBa+ Bb. Therefore B is linear. Now for all a € G, we 

get Ball? = < Ba, Ba > = |y(a, Ba)| < |\p| |lal| |Ball, ie. ||Ball < lvl lla 
Therefore B is a continuous linear map. Suppose A,B: G — 4 are linear 

maps satisfying y(a,x) = < Aa,z > = < Ba,x > for alla € Gandaze H. 

Then < Aa— Ba,x > =0,V 2 © H. Hence Aa — Ba =0, or Aa= Ba,VaeG, 

ie. A=B. Oo
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13-5.5. Adjoint Theorem For each continuous linear map B : G — H, there 

is a unique continuous linear map B* : H — G sothat < Ba,x >=< a, B*tr >, 

for all a € G,x € H. In this case, B* is called the adjoint of B. Furthermore, 

we have ||B*|| = ||Bll. 

Proof. Let g(z,a) = < 2,Ba >,V « € H,a € G. Then vy is a 

continuous sesquilinear form on H x G. There is a continuous linear map 

B* : H > G such that for all a € G,x € H, we have y(z,a) = < B*z,a >, 

ie. <2,Ba >= < Btz,a >, or < Ba,z > = < a, B*x >. Clearly we have 

Ill] = ||B*]]. Also 

Ily|| = sup{lyC, a)| : |lal] < 1, [zl] < 1} 

= sup{| < 2, Ba > |: |lal! < 1, ||z|| < 

= sup{ |< Ba,x >|: llal| <1, |Iz!| < 1} = {|B 
Therefore ||B*|| = ||B||. The uniqueness is left as an exercise. o 

13-5.6. Lemma _ For all continuous linear maps A,B: G— H, we have 

(a) (A+ B)* = A* + B*; 

(b) (AA)* =~ AS; 
(c) A** =A; 

(d) I* =I where I: H — H denotes the identity map. 

13-5.7. Theorem Let G,H,K be Hilbert spaces. Let A: G — H and 

B : H — K be continuous linear maps. Then we have (BA)* = A*B*. 

Furthermore, if A is bijective, then A7! is also a continuous linear map 

satisfying (A-!)* = (A*)~!. 

Proof. For alla €G and y € K, we have 

<a,(BA)*y > = < BAa,y > = < Aa, B*y > = < a, A*B*y >, 

ie. (BA)* = A*B*. Next, suppose A is bijective. By Open-Map Theorem, 

A7! is also a continuous linear map. Let Ig, Iq denote the identity maps on 

G, H respectively. Since AA~! = I, we have (A~!)*A* = (AA7!)* = If, = Ip. 

Similarly, A*(A7!)* = Ig. Therefore (A*)~! = (A7!)*. oO 

13-5.8. Theorem Let G,H be Hilbert spaces and B : G > H a continuous 

linear map. 

(a) ||B*B]| = ||B|? = |BB*|. 
(b) B*B=0 iff B=0. 

Proof. (a) For every |la|| < 1 in G, we have
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Bal? = < Ba, Ba > = <a, B*Ba>=|<a,B*Ba > | 

S |jal| |B* Ball < lla) |B" Bi] llall < ||B* BI, 
ie. [Ball < /||B*Bl|. Taking supremum over |lal| < 1, we obtain 

Bll < S| BBll, or |B? < ||B*Bl|. On the other hand, because of 

|B*Bl| < ||B*|| Bl = BI’, we get ||B*B| = ||B|)’. Replacing B by Br, 
we have || BB" = ||B* |? = ||BI. 
(b) ||B*B]| = 0 iff || B||? = 0 iff ||Bl| = 0 iff B =0. Oo 

13-5.9. Theorem Let B : G — H a continuous linear map and M,N be 

vector subspaces of G, H respectively. 

(a) If B(M) CN then B*(N‘) Cc Mt. 

(b) If both M, N are closed, then the converse is also true. 

Proof. Assume B(M) Cc N. Take any c © N‘. Then x € B(M)". For all 

a € M, we have < a, B*x > = < Ba,z > = 0. Hence B*x € M+. Therefore 

B*(N+) c M+. Conversely suppose B*(N+) Cc M+. Since M,N are closed, 

we get M++ = M and N++=N. By (a), B(M) = B(M++) Cc NI+EN. OO 

13-5.10. Theorem Let B: G — H bea continuous linear map. 

(a) ker(B) = (Im B*)+. 

(b) [ker(B)]+ =Im B*. 

Proof. (a) From B[ker(B)] C {0} by definition, it follows 

B*(H) = B*({0}*) C [ker(B)]*. 

Thus, ker(B) = ker(B)'+ c [B*(H)}t = dm B*)+. 

Conversely, by definition we get B*(H) c Im B*. Hence, 

B(dm B*)+] c H+ = {0}. 

Therefore we have, (Im B*)+ c ker(B). Consequently, ker(B) = (im B*)+. 

(b) [ker(B)]+ = dm B*)+ = Im B*. a) 

13-5.11. Exercise For £2, find the adjoints of left and right shifts. For be, 

define the left and right shifts and find their adjoints. 

13-5.12. Exercise The hermitian of a complex matrix @ is defined 

as Q* = Qt, the complex conjugate of the transpose. Let A be a contin- 

uous linear map from G — HA. Prove that for every orthonormal basis of G, H 

respectively, the matrix representations are related by [A*] = [A]*. See §7-5.8.
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13-6 Quadratic Forms 

13-6.1. Let H be a Hilbert space. A function ¢: H — C is called a quadratic 

form if there is a sesquilinear form y on H such that g(x) = p(#,2),V 2 € H. In 

this case, g is called the quadratic form associated with the sesquilinear form y. 

The norm of a quadratic form q on H is defined by ||q|| = sup{|g(x)| : ||z|| < 1}. 

In this section, the relationship among operators, sesquilinear forms and 

quadratic forms will be established. It will be used later to characterize certain 

properties such as being normal, self-adjoint, etc. 

13-6.2. Lemma _ |q(x)| < |l¢|| ||z]|?, for all x € H. 

Proof. If x =0, then |g(x)| =0 < |lg|| ||z||?. If z 40, then we have 

is xr 

|a(x)| = - Ga ig) 

13-6.3. Polarization Formula Let p,q be quadratic forms on H associated 

ilel|* < llall lel”. Oo 

with the sesquilinear forms £, yp respectively. 

(a) 4y(z, y) = g(a + y) — g(a — y) + igha + ty) — t9(@ — ty), V x,y € H. 

(b) p=qiffE=y. 
Proof. It is a routine exercise. Oo 

13-6.4. A sesquilinear form y on a Hilbert space H is said to be 

(a) real or hermitian if p(x, 2z) is real for all x € H; 

(b) positive if p(x, x) > 0, for all x € A; 

(c) non-degenerate if for each x € H, p(x, x) = 0 implies x = 0. 

13-6.5. Lemma A sesquilinear form ¢ on 4 is real iff p(x, y) = y(y, x), for 

alla,y eH. 

Proof. Suppose ¢ is real. Let (2, y) = y(y,x)~ for all z,y € H. Clearly € is 

also a sesquilinear form on H. Furthermore, £(2, x) = y(a,x),V « € H. Hence 

€=y. Therefore y(y,x)~ = v(x, y), V 2, y € H. The converse is obvious. O 

13-6.6. Theorem Let y be a sesquilinear form on a Hilbert space H. If y is 

positive, then we have |y(zx, y)|? < y(a,z)ply, y) for all x,y € H. 

Proof. If y(z,z) > 0 or yly, y) > 0, the proof is identical with the Cauchy- 

Schwartz inequality. Now assume y(z, xz) = p(y, y) = 0. Let A = (a, y). Then 

we have 

0 < v(x — Ay, z — Ay) = plz, z) — Avy, Z) — A“ (zy) + AA ly, Y) 

= —p(z, vply, 2) — v(a, yy) (2, y) = —2| pz, y)/’,
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ie. |p(a,y)|? = 0 < 9(a, x)ply, 9). ao 
13-6.7.. Theorem Let q be the quadratic form associated with a sesquilinear 

form y on a Hilbert space H. Then the following statements are equivalent. 

(a) q is continuous on H. 

(b) {lgl| < 00. 
(c) ~ is continuous on H. 

In this case, we have |lq|| < ||y|| < 2||q]]. 

Proof. Suppose q is continuous on H. For ¢ = 1, there is 6 > 0 such that 

ly|| < 6 in H implies |g(y)| < 1. Hence for all ||z|| < 1, we have 

la(z)| = |p(dx, 6x) /6?| = |q(dx)|/5? < 1/6°. 
Taking supremum over ||z|| < 1, we have ||q|| < 1/6? < oo. Next, assume 

lla|| < co. For ||z|| <1 and ||y|| < 1 in H, the polarization formula gives 

ly(z, y)| = gla@ + y) — q(@ — y) + ig(a + iy) — ig(x — ty)| 
< gllall(lla + yll? + lle — yl]? + lle + eyll? + Ile — ty])’) 

= gliqll2(lz|? + lly? + [lz |)? + [l¢yl|?), by parallelogram law 

gllail4cliz|l? + lyll) < lla] +) = 2IIall- 
Taking supremum over ||z|| < 1 and |lyl| < 1, we have |ly|| < 2Jlq|l- 

It follows that y is continuous on H. Finally, suppose y is continuous 

on H. Clearly q is also continuous. Moreover for all ||z|| < 1, we have 

lax) = |p(a, 2)| < |I¢ll llz||? < |lyll- Therefore |/q|| < lll. Oo 

13-6.8. Theorem Let qg be a quadratic form associated with a sesquilinear 

form y on a Hilbert space H. If ¢ is real, then |||] = |lq||- 

Proof. We have prove |{q|| < ||y]]. Take any ||z|| < 1 and |fy|| < 1 in H. Let 

r >O and @ > O satisfy y(z, y) = re, Then polarization formula gives 

4r = 4y(e" x, y) 

= ge x + y) — gle" x — y) + iq(e x + iy) — ig(e~ x — iy). 

Since y is real, g is real. Hence the imaginary terms vanish. Therefore 

—7i6 —ié -i0 

lo(z,y)| =r = ¢lale 2 + y) — qe" x - y)] 

< §4llalile “x + yll? + lea — yll?) = glall2diel? + Ilyll?) < lal). 
Taking supremum over |{z|| < 1 and ||y|| < 1, we have ||| = |lq||- oO 

13-6.9. Exercise Prove ker(A* A) = ker(A) for every operator on H.
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13-7 Normal Operators 

13-7.1. Let H be a Hilbert space. As in normed spaces, a continuous linear 

map from H into itself is also called an operator. The identity operator on H 

is denoted by J. An operator A on H is said to be 

(a) isometric or an isometry if A*A =I; 

(b) unitary if A*A = AA* = I, 

(c) normal if A* A= AA*; 

(d) self-adjoint if A* = A; 

(e) skew-adjoint if A* = —A. 

13-7.2. Lemma Let A, B be operators on H. If < Ar,x > = < Ba,x > for 

all « € H, then we have A= B. 

Proof. From given quadratic forms, we get < Ar,y >=< Br,y>Va,ye H. 

Hence A = B. o 

13-7.3. Theorem For every operator A on H, the following statements are 

equivalent: 

(a) A is an isometry, ic. A*A=T. 

(b) || Aa|| = ||zl], for all x € H. 

(c) < Az, Ay > =< 2,y >, for all z,y € H. 

Proof. (ac) < Az, Ay>=< A*Azr,y>=u<Izjy>=<a2r,y>. 

(c => b) Take x = y. 

(b= a) < A*Az,x > = < Az, Az > = ||Az|? = lz? = < 2,2 >. oO 

13-7.4. Lemma [If A is an isometry on H, then Im(A) is a closed subspace 

of H. 

Proof. It suffices to show that Im(A) is complete. Being an isometry, Cauchy 

and convergent sequences in H and Im(A) correspond. Oo 

13-7.5. Theorem For every operator A on H, the following statements are 

equivalent: 

(a) A is unitary, ie. ATA = AA* =I. 

(b) A* is unitary. 

(c) Both A and A®* are isometric. 

(d) A is isometric and A* is injective. 

(e) A is isometric and surjective. 

(f) A is bijective and A~! = A*.
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Proof. (a = b) It follows immediately from A** = A. 

(a => c) It follows from definitions. 

(c => d) Every isometry is injective. 

(d = e) Since A is an isometry, Im(A) is closed in H. Hence 

Im(A) = Im(A) = [ker(A*)]+ = {0}4 = H. 

Therefore A is surjective. 

(e > f) Since A is isometric, A is injective. By (e), A is bijective. Therefore 

A7' is also an operator on H. Since A is an isometry, we have A*A = I, ice. 

A* is a left inverse of A. Therefore A~! = A*. This proves (f). 

(f = a) A*A=A7'A=I and AA* = AAT! =I, a 

13-7.6. Theorem For every operator A on H, the following statements are 

equivalent: 

(a) A is normal, i.e. A*A = AA*. 

(b) A* is normal. 

(c) | A*az|| = ||Azl|, for all x € H. 

(d) < A*a, A*y > = < Az, Ay >, for allz,y € H. 

Proof. (a = b) It follows immediately from A** = A. 

(a > d) < A*z, A*y > = < AA*z,y > = < A*Az,y > = < Az, Ay >. 

(d > c) Take x= y. 

(c = a) For all x € H, we have 

< A*Az,x > = < Ax, Ax > = ||Axi|* = ||A*zl/? = < Atz, Atr > = < AA*z, 2 >. 

Hence A*A = AA*. Therefore A is normal. oO 

13-7.7. Corollary If A is a normal operator on H, then ||A?|{ = || All’. 

Proof. Replacing z by Az in (c) of last theorem, we have |} A*(Az)|! = || A(Az)]|, 

ie. |[(A*A)z|] = || A2zl], ¥ 2 © A. Taking supremum over ||2z/| < 1, we obtain 

|| A* A|| = {| A?||. Since || A* Al] = |LA]|? is always true, we have ||A?|| = ||All?. O 

13-7.8. Theorem Let A, B be normal operators on H. If AB* = B*A, then 

A+B, AB and BA are all normal. 

Proof. Taking the adjoint of AB* = B* A, we have BA* = A*B. Now observe 

that 

(A+ B)*(A+ B) = A*A+ B*A+A*B+ BB 

= AA* + AB* + BA*+ BB* =(A+ ByY(A+ B)*; 

and also that
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(AB)*(AB) = B* A* AB = B* AA*B = AB*A*B 

= AB* BA* = ABB* A* = (AB)(AB)*. 

Therefore A+ B and AB are normal. Similarly, BA is also normal. Oo 

13-7.9. Exercise Prove that scalar multiplications of normal operators are 

normal, 

13-7.10. Exercise Show that the product of two isometric operators is 

isometric. Show that the product of two unitary operators is unitary. 

13-7.11. Exercise Let {e, : » € J} be an orthonormal basis in H. Prove 

that an operator A on H is unitary iff {Ae, :n € J} is an orthonormal basis. 

13-7.12. Exercise Prove that the norm of an isometric operator is one. 

A*-A 13-7.13. Lemma For every normal operator A, e is unitary. 

Proof. By §8-8.15¢c, (e4”-4)* = e4-A" =e AA X (e4*-A) oO 

13-7.14. Fuglede’s Theorem Let A, B be normal operators. Then for every 

operator T, if AT =TB, then TA* = TB*. 

Proof. Following [Rosenblum], clearly AT = TB” by induction. Since 

elf =T+At+ ZA + 7A +++ converges in norm, we have e4T = Te?, or 

T =e 4Te®, Thus e4” Te-®" = PTQ where P = e4°-4 and Q = e? -®’. 

Since P,Q are unitary, we have ||e4”"Te~®" || < Pl] ITI [Ql < ITI. Next, 

for every \ € C, let f(A) =e*“" Te?" , Then f : C — L(H) is an entire map. 

Replacing A, B by A~ A,X” B respectively, we have |] f(A)|| < ||T'|| for all A. By 

Liouville’s Theorem, f is a constant map, that is 

fA)= OV ATeO® + 4" Te (— B*) = 0. 

The result follows by setting » = 0. oO 

13-8 Self-Adjoint Operators 

13-8.1. Theorem For every operator A on a Hilbert space H, the following 

statements are equivalent: 

(a) A is self-adjoint, ie. A* = A. 

(b) < At,y > = < Ay,z >-, V 2,y € H, ie. a hermitian form. 

(c) < Az,z > is real for all x € H, ie. a real-valued quadratic form. 

Proof. We have proved (b = c) already. Observe that
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<A®*r,¢>=<27,Ar>=<Ar,r>. 

Hence A* = A iff < Av,x > =< A*r,a>,Vaz,ie. <At,x>=< At,r>, 

or < Az,z > is real. We also proved (a © c) im 

13-8.2. Theorem Let A, B be self-adjoint operators on H. 

(a) A+ B is self-adjoint. 

(b) AA is self-adjoint for all real number 4. 

(c) AB is self-adjoint iff AB = BA. 

Proof. For (c), if AB is self-adjoint, then AB = (AB)* = B*A* = BA. 

Conversely if AB = BA, then (AB)* = (BA)* = A*B* = AB, ie. AB is 

self-adjoint. Both (a) and (b) are left as an exercise. oO 

13-8.3. Theorem Let A be an operator on H. Let B = 3(A + A*) and 

C= i(A- A*). 

(a) Both B,C are self-adjoint. Also A= B+iC. 

(b) If M,N are self-adjoint operators satisfying A = M+iN, then we have 

M=BandN=C. 

(c) Ais normal iff BC =CB. 

Proof. For (c), A*A = B?-iCB+iBC+C? and AA* = B*4+iCB-iBC+C*. 

Therefore A*A = AA* iff BC=CB. im 

13-8.4. Exercise Let A be a normal operator on H. Let B,C be the real 

and imaginary parts of A. Prove that ||Az||? = ||Bz||? + ||C2||? for all 2 < H. 

13-8.5. Exercise Prove that an operator is skew-adjoint iff A =72C' for some 

self-adjoint operator C. 

13-8.6. Theorem Let A be a self-adjoint operator on H. 

(a) ||All = sup{| < Ax, >|: Ilzi] < 3}. 
(b) ||A”|| = || Al|” for all integer n > 1. 

Proof. (a) Let y and g be the sesquilinear and quadratic forms associated 

with A. Then ||A]} = {lyll = {lall- 
(b) It suffices to show ||A||” < |A”]. Take any ||z|| < 1 in H. Then for every 

integer m > 1, we have 

|A™2||? = < A™2, A™2 > = < A*A™2, A 12 > 

=< A™! 7 A™ Ie >< A™ || A"! 2]. 

Suppose Ax 40. Letting m = 1,2,---, we have A*z 40 for all k > 1. Hence 

we get 
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[Ax] Wx Atal) Ara 
ill] ~ [Aa] ~ [Atal ~~ [LAr tarl” 

or (Laat) Maat esl Lat Baa Atal 
lel] J ~ Yall Avi Atal, Arte lel 

that is ||Az||" < ||A"z| ||zl/"~! < ||A?||. If Az = 0, then this is obvious. 

Taking supremum over ||z|| < 1, we have }|A||" < ||A”||. o 

13-8.7. Exercise Prove that the set of all self-adjoint operators on H is closed 

in L(A). Is it true for normal, skew-adjoint operators? 

13-9 Projectors and Closed Vector Subspaces 

13-9.1. Let H be a Hilbert space. An operator A on H is called a projector 

or an orthogonal projection if A* = A = A’. In this section, a bijection between 

the sets of projectors and closed vector subspaces will be established. 

13-9.2. Theorem Let M be a closed vector subspace of a Hilbert space H. 

(a) There is a unique projector P onto M. 

(b) M=P(A)={xe H: Prax}={xe A: ||Prll = |lz|}. 

Proof. Suppose P,Q are projectors such that M = P(H) = Q(H). Take 

any « € H. Then Px ¢ M = Q(A), ie. Px = Qy for some y € H. Hence 

QPx = Q?y = Qy = Px. Since x € H is arbitrary, we have QP = P. Similarly, 

PQ=Q. Now P= P* =(QP)* = P*Q* = PQ =Q gives the uniqueness of the 

required projector. Next, we want to construct a projector from H onto M. 

Since M is closed, H = M @Mt-. For every x € H, there is unique a € M and 

b € M+ such that « = a+b. Define Px =a. Then clearly, P is a linear map 

from H onto M satisfying P? = P and M = P(H)= {x ¢ H: Px =z}. Since 

ab, we obtain || Pzx||* = ||a||? < [lal]? + [[o||? = {lz |]?, i-e. ||Pz|| < ||z||. Hence P 

is continuous and therefore P is an operator on H. Now for each x € H, we 

get 

< P*z,2>=<2,Pr>=< atbha>=<a,a>=<a,athb>=< Pr,r>, 

ie. P* = P. Hence P is a projector. If Px = z, then obviously || Pz|| = |[z\f. 

Conversely, suppose that ||Pz|| = ||x|]| for some 2 € H. Then we obtain 

jail? = || Pall? = [lal]? = |lall? + |O|]?, ie. bj] =0, or b= 0. Therefore r=ac€ M. 

This completes the proof. Oo 

13-9.3. Theorem Let P be a projector in H, Q = I— P, M = P(H) and 

N=Q(A).
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(a) Q is also a projector. Furthermore, PQ = QP =0. 

(b) M = ker(Q) = N+; N=ker(P)= M+ and H=MON. 

(c) Both M,N are closed vector subspace of H. 

The operator Q is also denoted by P-. 

Proof. The calculations: Q? = (I — P =I1-P—P+P*=I-P=Q and 

Q* =U -— Py = I* — P* =I — P=Q show that @ is a projector. Furthermore, 

PQ = PU-P)=P-P?=P—P=0. Similarly, QP = 0. Next, suppose 

zéM. Thenz = Py for some y € H. Now Qz = QPy =0. Hence M c ker(Q). 

Next, suppose Qr = 0. Then # = Ir = (P+ Q)r = Pr,ie. x € P(A) =M. 

Hence ker(Q) c M. Therefore M = ker(Q). Consequently, M is a closed vector 

subspace. Finally, take any c € H. Then ¢ = Pr+Qrx € M+N. Hence 

H=M+N. Because of MON = ker(Q) Q(A) = {0}, we get Ha MON. 

Now « € M+ iff for all y € H, we have < 2,Py > =0,ie. < Px,y > =0, 

or Pz = 0. Therefore M+ = ker(P). Since P,Q are symmetric, the proof is 

complete. Oo 

13-9.4. Theorem Let P be an operator on H. Then P is a projector iff we 

have ||Px|f?? =< Pzr,x > for allz ¢ H. 

Proof. Suppose P is a projector. Let M = P(H) and N = ker(P). We have 

proved H = M@N. For each z € H, let x = a+b wherea € M andb € N. Since 

MLN, we get ||Pz||? = < Px,Pxr >= <a,a>=<a,at+b>=< Pa,r>. 

Conversely, suppose ||Pz||* = < Px,x > for all zs € H. Then we have 

< Pr,x > =||Pz\l? = < Pr,Pxr>=< P*Px,2>. 

Hence P = P*P. Thus P* = (P*P)* = P* P** = P* P = P and P = P*P = P’. 

Consequently, P is a projector. a 

13-9.5. Theorem For every projector P, we have either ||P|| = 1 or ||P] =0. 

Proof. It follows from || P|| = ||PP|| = ||P*P|| = |]PIl’. Qo 

13-9.6. Theorem Let P,Q be projectors in H. Then PQ is a projector iff 

PQ = QP. In this case, we have PQ(H) = P(X) Q(A). 

Proof. Suppose PQ is a projector. Then PQ = (PQ)* = Q*P* = QP. 

Conversely, suppose PQ = QP. Then we have (PQ)* = PQPQ = PPQQ = PQ 

and (PQ)* = Q* P* = QP = PQ. Therefore PQ is a projector. Finally, assume 

that PQ is a projector. Choose any « € PQ(H). Write x = PQy for some 

y € H. Then z = P(Qy) € P(A) and st = Q(Py) € Q(B), ie. « € P(H)NQ(A).
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On the other hand, take any + € P(H)N Q(H). Then z = Pz and x = Qz. 

Hence x = PQx € PQ(A). Consequently, we have PQ(H) = P(A)N Q(A). O 

13-9.7. Theorem Let P,Q be projectors in H, M = P(A) and N = Q(A). 

Then the following statements are equivalent. 

(a) P+ Q is a projector. 

(b) MLN. 

(c) P(N) = 0. 

(d) PQ =0. 

In this case, P+ Q is a projector onto M+ N. 

Proof. (a= b) Let r € M. Then Px = 2 and 

llz|? + ]Qz||? = || Px)? + |Qz|? = < Pr,2 > + <Qzr,2 > 

=<(P+Q)z,¢>< ||P +Q|j llz|? < llzl?. 
Hence ||Qz|| = 0, ie. x € ker(Q). Therefore M c ker(Q) = N+. Consequently, 

we have MLN. 

(b = ce) Since M_LN, we have N Cc M+ =ker(P), ie. P(N) =0. 

(c => d) Suppose P(N) =0. Then PQ(H) = P[Q(A)] = PUN) = 0, ie. PQ =0. 

(d = a) Suppose PQ = 0. Then QP = Q*P* = (PQ)* = 0 and thus we 

get (P+ Q) = P? + PQ+QP+Q = P+Q. Clearly P+ Q is self-adjoint. 

Therefore P + Q is also a projector. Finally, assume that P+ Q is also a 

projector. Take any x € P(H)+Q(A). Then x =a+b with a = Pa € P(H) and 

b=Qb € Q(A). Hence (P+ Q)r = Pat Ph+Qa+Qb=a+ PQb+QPat+b=z, 

ie. x = (P+Q)e € (P+Q)(A). Therefore PCH) + QUA) c (P+ Q)(A). The 

reversed inequality is obvious. Oo 

13-9.8. Theorem Let P,, P,,---,P, be projectors in a Hilbert space H and 

let P= P+ P,+---+P,. Then P is a projector iff PP, =Oforalll <j #k <n. 

Proof. Suppose P is a projector and 7 4k. Then for all « €¢ H, we have 

Yo, IP = Oo, < Pree >= (~ Pyx,2) 

= < Px,x >< ||P|| |2\)? < |l2|/’. 
Replacing x by Pyx, we get ye ||P Pet]? < || Pexll?, i.e. ik ||P; Pexil? <0. 

Hence P;P,x = 0. Since x € H is arbitrary, we have P;P, = 0. The converse 

follows from simple calculations. oO 

13-9.9. Exercise Prove that A is a projector iff A= A*A. 

13-9.10. Exercise Prove that every compact projector is finite dimensional. 
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13-9.11. Exercise Prove that if A is an isometry then AA* is a projector. 

13-9.12. Exercise Let A,B be projectors. Prove that A+ B— AB is a 

projector iff AB = BA. 

13-9.13. Let A be an operator on H and M a vector subspace of H. Recall 

that M is invariant under A if A(M) c M. Also M is said to reduce A if both 

M and M+ are invariant under A. 

13-9.14. Theorem Let A be an operator on H and P a projector in H onto 

a vector subspace M. Then the following statements are equivalent. 

(a) M is an invariant subspace of A. 

(b) AP = PAP. 

(c) M+ is an invariant subspace of A”. 

Proof. Suppose M is an invariant subspace of A. Take any x € H. Then 

Px € M. Since M is invariant under A, APx € M and hence PAPx = APr. 

Since z is arbitrary, we have PAP = AP. Conversely, if PAP = AP, then 

we get A(M) = AP(H) = PAP(H) c M and hence M is invariant under 

A. Therefore (a) and (b) are equivalent. Next, M+ is invariant under A* 

iff A*P+ = P+ A*P+ iff A*U — P) = UI — P)A*(I — P) iff PA* = PA*P iff 

AP = PAP. qo 

13-9.15. Theorem Let A be an operator on H and P a projector in H onto 

a vector subspace Mf. Then the following statements are equivalent. 

(a) M reduces A. 

(b) AP= PA. 

(c) M is invariant under both A and A*. 

(d) M+ reduces A. 

Proof. (a > b) Observe that P+ = I ~ P is the projector onto M+. Since M+ 

is invariant under A, we have AP+ = P! AP+ ie. AU —P)=(-—P)AU—P), 

or PA = PAP. Since M is also invariant under A, we get AP = PAP. 

Therefore we obtain AP = PA. 

(6 => ec) Since PAP = (PA)P = (AP)P = AP, M is invariant under A. 

Similarly, PAP = P(AP) = P(PA) = PA. Taking adjoint, PA*P = A*P, 

i.e. M is invariant under A*. 

(e > a) Because M is invariant under A*, M+ is also invariant under A** = A. 

Therefore M reduces A.
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(ec © d) Since M is closed, we have M!+ = M. The result follows immediately 

from definition. oO 

13-9.16. Corollary Let A be an operator on H and M a closed vector 

subspace of H. 

(a) Suppose A is self-adjoint. Then M reduces A iff A(M) c M. 

(b) Suppose A is unitary. Then M reduces A iff A(Mf) = M. 

Proof. (b) Assume that M reduces A. Then we have A*(M) Cc M, that. 

is M = AA*(M) c A(M). Since M reduces A, it is invariant under A. 

Consequently A(M) = M. Conversely, assume A(M) = M. Then we have 

A*(M) = A* A(M) = I(M) = M. Hence M is invariant under A*. Therefore Mf 

reduces A. oO 

13-9.17. Exercise Let M be the set of x € £, with zero as the first coordinate 

xz, =0. Show that M is invariant under the right-shift but it does not reduce 

the right-shift. 

13-9.18. Exercise Prove that if a closed vector subspace is invariant under 

a self-adjoint operator, it also reduces the operator. 

13-10 Partial Order of Operators 

13-10.1. Let A,B be self-adjoint operators on a Hilbert space H. Define 

A< Bif < Az,x > < < Ba,x > for all x € H. On the other hand, an 

operator C on H is said to be positive if C = D*D for some operator D. Note 

that the order is defined in terms of quadratic forms but positive operators are 

in line of §13-7.1. It is trivial to show that every positive operator C’ satisfies 

C > 0 but the proof of the converse is delayed until §14-6.9. 

13-10.2. Lemma Let A, B,C be self-adjoint operators on H. 

(a) ASA. 

(b) IfA< Band B<C, then A<C. 

(c) If A< Band B< A, then A=B. 

(d) If A< B, then A+C < B+C and —B< -A. 

(e) If A < B and \ > 0, then AA < AB. 

(f) Ifa < @ in R and if A > 0, then aA < BA. 

Proof. (c) For all x € H, we have < Az,z ><< Br,x ><< Ar,2 >, 

ie. < Az,z > = < Br,x > and hence A= B. The rest is left as exercise. 0
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13-10.3. Theorem If A > 0, then for all z,y € H we have 

(a) |< Az,y > |? << Aaya >< Ay, y >; 

(b) ||Az||? < ||Al] < Az,z >. 

Proof. (a) This is the Cauchy-Schwartz inequality for sesquilinear forms. 

(b) It is obvious if Az = 0. Assuming ||Az|| #0, it follows by dividing || Az||* 

from 

|Az|[4 =| < Az, Ar > |? << Az, z >< A(Az), Az > ; by (a) 

<< Az, x > ||A?2|| || Az|]| << Az,zx > |[Alj || Az]. im 

13-10.4. Theorem (a) If A < B, then T*AT < T* BT for every operator T. 

(b) 0 < A <B, then ||Al < BI. 
Proof. (a) It follows immediately from 

<T*ATz,2 > =< ATz,Tr ><< BTz,Tr>=<T*BTz,r>, Vaeed. 

(b) If A=0, it is obvious. Assume ||A|| #0. For each ||x|| < 1 in H, observe 

|| Az? < || Al] < Aa, 2 >< ||Al] < Bx, x >< |All || BI} [lz I? < |All IBIL- 
Taking supremum over ||z|| < 1, we have |All? < ||All||B]|. The result follows 

by dividing ||Al]. o 

13-10.5. Theorem Let A, < Ay. be an increasing sequence of self-adjoint 

operators on H. If it has an upper bound, ie. a self-adjoint operator 

B > An,V n; then there is a self-adjoint operator A such that A,r — Ax 

for each « € H and A=sup, A,. Similar result holds for decreasing sequence. 

Proof. Replacing A, and B by A, — A; and B — A, respectively, we may 

assume A, > 0. For each x € H, we have a bounded increasing sequence of 

real numbers < Ayz,r ><< Ansjr,x2 ><< Bar,x > and hence it converges. 

Take any m > n> 1. Since 0 < A, < B, we have ||Aq|| < ||BI|. Now observe 

|Amx — Anz||? < ||Am — An|| < (4m — An)z,2 > 

<2'Bl|(< Amz, 2 > — < Ayz,x >) > Oas m,n — co. 

Hence {A,z} is a Cauchy sequence. By Banach-Steinhaus Theorem, the 

limit Ar = lim;4.. Anz defines an operator A on H. Since for all x the 

number < Az,zr >= limps < Anz,x > is real, A is self-adjoint. For every 

m > n, we get < A,x,r ><< A,z,x >. Letting m -— oo, we have 

< Anzt,z ><< Arz,x >, ie. A, < A. Therefore A is an upper bound of 

the set {A,}. On the other hand, let U be any upper bound of {A,}. Then
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< Ant, zt ><< Uz,x >. Letting n > 0, we obtain < Ar, rt ><< Uz, x > for 

allxze H,ie ASU. o 

13-10.6. Let M,N be vector subspaces of H. Then NM M+ is called the 

orthogonal complement of M in N. It is also denoted by No M. 

13-10.7. Theorem Let P,Q be projectors in H. Let M = P(H) and 

N=Q(4). Then the following statements are equivalent. 

(a) MCN. 

(b) QP =P. 

(c) PQ = P. 

(d) Q — P is a projector. 

(e) <(Q — P)x,x >> 0, for allz € H. 

(f) ||Px|| < ||Qa]|, for all « € H. 

(g) P<Q 
In this case, Q — P is a projector onto NOM. 

Proof. (a = 6) Take any x € H. Then Pr € M CN. Hence QPx = Pr. 

Since z is arbitrary, QP = P. 

(6=>c) P= P* =(QP)* = P*Q* = PQ. 

(c = d) Assume PQ = P. Then P = P* = (PQ)* = Q* P* = QP and hence 

(Q— PP =Q?-PQ-QP+P?=Q-—-P—P+P=Q-P. Clearly, Q- Pis 

self-adjoint. Therefore Q — P is a projector. 

(d = e) Since Q—P is a projector, < (Q—P)z,zx > = ||(Q—P)z||? > 0, Vz € H. 

(e => f) For alle ¢ A, < (Q— P)x,r >> 0 gives < Qu, >>< Px,z >, ie. 

|Qz|? > ||Pxl?, or ||Qx|} > || Pz}. 
(f = a) For any x € M, we have |jz|| = || Pz|| < ||Qz|| < ||Q|} |lz|| < |lzl], ie. 

|Qz|| = |lzl], or  ¢ N. Hence M CN. 

(e & g) It follows from definition. 

Finally, suppose Q— P is a projector. Then QP+ = QU—P) =Q-QP=Q-P. 

Hence QP? is also a projector. Therefore we have 

(Q = PX) = QP AH) = QU) 0 PAH) 
= QA) (P(A) =NOM+=aNOM. o 

13-10.8. Exercise Is the left-shift on & an isometric, unitary, normal, 

self-adjoint, skew-adjoint, positive operator? Work on the same question for 

right-shift on £. Answer the same question for left and right shifts for b2. 

13-10.9. Exercise Prove that if A is a positive operator on H, then
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(a) < Az, zx > is positive for all x € H; 

(b) A is self-adjoint. 

13-10.10. Exercise Let A,B be positive operators. Prove that if A+ B=0 

then A= B=0. 

13-10.11. Let A,,B be operators on H. 

(a) A, — B uniformly or in norm if 

lim sup ||Apz — Be] = lim |/A, — Bl] =0 
mre al <1 

(b) A, — B strongly or B= s-lim A), if jim, ||Anz — Bz|| = 0 for each x € H. 

(c) A, — B weakly or B = w-lim A, if lim. < Anz — Bu,y >=0, Va,y EH. 

Write B = lim A, = u-lim A, for uniform ¢ convergence or convergence in norm. 

It is an exercise to show that uniform convergence implies strong convergence 

which in turn implies weak convergence but the converses are false. Simi- 

lar concept of Cauchy sequences is assumed. Note that weak convergence of 

vectors was defined in §7-7,8. 

13-10.12. Lemma If {A,} is weakly Cauchy, then sup,, || Aal| < 00. 

Proof. For all z,y € H; let Br(y) =< y, Anz >. Since {A,} is weakly 

Cauchy, B2(y) — B*(y) in C. Because BF are continuous linear maps, Banach- 

Steinhaus Theorem ensures M? = sup,, ||B2|} < oo. For Dny(x) =< Anz, y > 

where ||y|| < 1; we have |D,,(z)| =| < y, Anz > | = |BZ(y)| < M*. Uniform 

boundedness theorem gives M = sup, ||Dny|| < 00, that is |< Anz,y >| <M 

for all |lx|| <1, |ly|| < 1 and n > 1. Therefore for all n we have 

I|Anll = sup{] < Anz,y >|: Mle]] <1, Iyll <1} <M. 0 

13-10.13. Theorem Strongly Cauchy sequences of operators are strongly 

convergent. Weakly Cauchy sequences of operators are weakly convergent. 

Proof. The first statement is obvious because pointwise limits of continuous 

operators are continuous. Next, let {A,} be a weakly Cauchy sequence of 

operators. Then M = sup, ||An|| < oo. For all z,y € H; let y(z,y) be the 

limit of the Cauchy sequence {< Anz,y >}. Obviously y is sesquilinear. 

Also for |[z|| < 1, llyll < 1; we get |pCz,y)| = lim| < Ane,y > | <M. 
Thus ¢ is continuous. There is an operator A such that < Ar,y >= y(z,y) 

= lim < A,z, y > for all x,y © H. Consequently, A, — A weakly. im 

13-10.14. Example In @), let Q,2 = (0,---,0,2n41,2ni2,2n43,'':). Then Qn 

are projectors with ||Q,|| = 1. Hence Q, — 0 uniformly is false. However for
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each x € £2, ||Qnz|? = Cysn |Zel? 7 0 as 2 — ov, that is Q, — 0 strongly. 

There is counter example of weakly convergent sequence of operators which is 

not strongly convergent. 

13-10.15. Example Let Sx = (x2,23,:--) and A, = S". Then A, — 0 

strongly for ||Anz||? = );,,, [7/7 > 0. On the other hand, $*x = (0,21, 22, ---) 

and ||A*e;|| = 1. Hence A¥, — 0 strongly is false. 

13-10.16. Exercise Prove that if A, — 0 weakly, then A* — 0 weakly. 

13-10.17. Theorem If A, — A and B, — B strongly, then A,B, — AB 

strongly. This is false for weak convergence. 

Proof. For all c € H, we have A,x — Az and B,x — Bx. By uniform 

boundedness theorem, M = sup,, ||An|| < oo. The result follows from 

|AnBn2 — ABz|| < |[Ajl! ||Bat — Bal) + ||A,Be — ABel| 

< M||B,x — Ball +||A,(Bz) — A(B2)|| 0. 

13-10.18. Theorem Let P, be projectors onto the closed subspace M,,. 

(a) If {P,} is increasing, then P = s-lim P,, = sup,, P, exists and is a projector 

onto the closed subspace U,M,. 

(b) If {P,} is decreasing, then P =s-lim P,, = inf, P, exists and is a projector 

onto MM. 

Proof. We have prove the existence of P = slim P,. Letting n — co in 

P? = P, = P*, P is a projector. Let Q be the projector onto the closed subspace 

N =U,M,. Since M, C N, we have P, <Q. As the supremum, we obtain 

P,<P <Q. From M, < P(H) < N, it follows N = U,M, Cc P(H) < N, 

that is P(H) = N. Part (b) is left as an exercise. np 

13-10.19. Exercise Let P,Q be projectors onto M,N respectively. Prove 

that R =s-lim (PQP)" =s-lim (PQ)” is the projector onto MN N. 

13-11 Eigenvalues 

13-11.1. Let H be a Hilbert space. Suppose A is an operator on H. Recalled 

that a complex number A is called an eigenvalue of A if there is a non-zero vector 

x € H such that Av = Az. A vector x € H is called an eigenvector of A if there 

is A € © such that Az = Ax. In this case, x is called an eigenvector of A. The 

set of all eigenvectors of A is called the eigenspace of X. This section provides
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the motivation for corresponding properties of spectrum of an operator studied 

in next chapter. 

13-11.2. Theorem The eigenspace of every number is a closed subspace. The 

non-zero eigenvectors of distinct eigenvalues are linearly independent. 

13-11.3. Theorem Let A be a normal operator on H. 

(a) If Ax = Az for A € C and x € A, then A*r =A az. 

(b) The eigenvectors of distinct eigenvalues of A are orthogonal. 

Proof. (a) Since A is normal, so is A — AJ. The result follows from: 

||A*z — A~ all = [|(A — AD *2|| = ||(A — ADz|| = 0. 

(b) Let A + yz be eigenvalues of A and x,y eigenvectors of A, . respectively. 

Then A < a,y >=< Az,y >=< Az,y >=< 2, A*ty >=< 2, y P= < By >, 

Le. (A-—p) <2,y > =0, or <2,y > =0. Therefore rly. ia 

13-11.4. Theorem Let A be an operator on H. 

(a) If A is self-adjoint, then all eigenvalues are real. 

(b) If A is skew-adjoint, then all eigenvalues are purely imaginary. 

(c) If A is isometric, then the absolute value each eigenvalue is one. Note that 

every unitary operator is isometric. 

(d) If A is positive, then all eigenvalues are positive (> 0). 

Proof. Let » be an eigenvalue of A and z a non-zero eigenvector of A. 

(a) Observe that 

All|? = < Az,2 > =< Azz > 

=<2,A*r>=<2,Ar>=<2,Ar >=2"|l2|’, 

ie. A\=A7. Therefore X is real. 

(b) As above Allz|? = < 2, Ate > = < 2,-Ar > = < 2,-Az > = —A7 ||, 

i.e. A=—A~. Therefore X is purely imaginary. 

(c) Observe that ||x||? = || Aa||? = ||Ax||? = |A[?Ilz]]?, Le. [A] = 1. 

(d) Since 0 << Az,z > = < Az, 2 > = Xlfz||?, we have A > 0. a 

13-11.5. Lemma _ Let A,B be operators on H. If AB = BA, then every 

eigenspace of B is invariant under A. 

Proof. Let M = ker(B — XI) be an eigenspace of B where A € C. For every 

a2 € M, (B-ADAz = A(B- ADz = AD = 0, ie. Ax € ker(B — AI) = M. 

Therefore M is invariant under A. Oo 
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13-11.6. Theorem If A is a normal operator on H, then every eigenspace 

reduces A. 

Proof. Since A commute with both A and A*, every eigenspace of A is 

invariant under both A and A*. oO 

13-11.7. Exercise Let A,B be operators on H. Suppose that a vector 

orthogonal every eigenspace of B must be zero. Prove that if each eigenspace 

of B is invariant under A then we have AB = BA. 

13-11.8. Exercise Let A be an operator and x a non-zero vector. Prove that 

if |< Az,g >| =||Az|| ||z|| then x is an eigenvector of A. 

13-99. References and Further Readings : Fan-78,79,96, Ando, Young, 

Berberian-61, Rudin-80, Dineen-89, Arazy, Burbrea, Hwang and Isidro. 



Chapter 14 

Spectral Properties of Hilbert Spaces 

14-1 Spectrum of an Operator 

14-1.1. The properties of an operator reflected by its eigenvalue has been 

proved by algebraic method in last chapter. In this chapter, we shall show 

that similar result holds for spectrum. The following lemma is a crucial tool. 

14-1.2. Lemma Let A be an operator on a Hilbert space H. If both A and 

A* are bounded below, then A is invertible. 

Proof. Since A* is bounded below, A* is injective, i.e. ker(A*) = {0}. Hence 

(Im A)~ = [ker(A*)}! = {opt = H. Therefore Im(A) is dense in H. Since A is 

also bounded below, A is invertible. BD 

14-1.3. Theorem For every operator A on H, [+ A*A is invertible. 

Proof. The operator is bounded below because for every x € H, 

| + A* A)z|? = < 2+ AtAz, r+ At Az > 

= ||z|?+ < 2, A*Az > + < A* Az, x > +||A*Az||? > ||21l?. 

Since A* = A is also bounded below, A is invertible. oO 

14-1.4. Lemma o(A*) =[o(A)]~, the complex conjugate. 

Proof. The right hand side is interpreted as {A~ : \ € o(A)}. It follows from 

the fact that A — AJ is invertible iff A* — A~T is. oO 

14-1.5. Theorem If A is self-adjoint, then its spectrum consists of real 

numbers only. 

Proof. Suppose \ = a+i where a, @ are real and § +0. It suffices to show 

Xd ¢ o(A), ie. A—AXI is invertible. Now for each s € H, we have 

(A — al + BiNz|? = <(A-—al+ Bilz,(A—al + filz > 

= ||((A— al)zl/2+ < t6iz,(A—al)z > + <(A—al)jz,+fiz > +||Si2||? 

= |\(A- aDz||? + Bi < 2,(A—alz > $Bi < (A-ala,z > +6||2||? 
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= ||(A—a)al? + Bi < (A—alz,2 > $B < (A-alz,x > +6?||x||?; 

> 6 |[x\)?. 
Since 6 £0, A— AT = A—al — Pil and (A—AI)* = A—al+ Bil are bounded 

below. Consequently A — XJ is invertible, ie. A ¢ o(A). oO 

14-1.6. Theorem [If A is positive, then its spectrum contains positive (> 0) 

numbers only. 

Proof. Since A is self-adjoint, o(A) contains real numbers only. Let » < 0. 

Take any x € H. By A> 0, we obtain < Az,x >> 0. Since 

(A — Az? = || Axl? — 2 < Az, 2 > +2|[2||? > 2/21], 

A)! is bounded below. Because A—AI is self-adjoint, it is invertible. Therefore 

 ¢ o(A). As a result, o(A) contains positive (>) numbers only. 

14-1.7. Theorem If A is unitary, then its spectrum is a compact subset of 

the unit circle of the complex plane. 

Proof. Since A is an isometry, ||A|| = 1. Therefore for every 4 € o(A), we 

obtain |A| < || Al] = 1. Take any |A] < 1. Let B = A — XJ. Then we have 

1 1 
[aT 

Since A is invertible, so is B. Hence \ ¢ o(A). This completes the proof. 0 

||A — Bl] = ||AZI| = Al < 1 = 

14-1.8. Exercise Let y be a continuous sesquilinear form on H. Prove that 

if there is a constant \ > O such that y(z,x) > Allz|f?,V x © H then every 

continuous linear form f on H has a unique a € H such that f(x) = p(x, a) for 

allze dH. 

14-2 Approximate Spectrum 

14-2.1. Let A be an operator on a Hilbert space H. A complex number 

A is called an approximate eigenvalue of A if there is ||z,|| = 1 in H such that 

|AZn — AZn|| + 0. The set of all approximate eigenvalues is called the 

approximate point spectrum of A and denoted by a(A). It will be used to 

calculate the spectral radius of a self-adjoint operator. For convenience, the 

set of all eigenvalues is called the point spectrum of A and denoted by (A). 

14-2.2, Lemma A complex number 4 is not an approximate eigenvalue iff 

A— XI is bounded below.
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14-2.3. Theorem 7(A) C a(A) C o(A). 

Proof. Let A be an eigenvalue of A. There is a non-zero eigenvector y of 

A. Let fn = y/|ly||. Then ||zn|| = 1 and ||Ar, — Az,|| = 0. Hence A is an 

approximate eigenvalue. Therefore 7(A) C a(A). Next, take any 4 ¢ o(A). 

Then A — Al is invertible. Hence A — XI is bounded below. Therefore A is not 

an approximate eigenvalue, i.e. 4 ¢ a(A). Consequently, a(A) C o(A). Qo 

14-2.4. Theorem If A is normal, then a(A) = o(A). 

Proof. Let 4 ¢ a(A). Then A — AI is bounded below and hence its range 

is closed in H. Suppose to the contrary that Im(A — AJ) is not dense in H. 

Then Im(A — AJ) = Im(A—XAD + H. There is x #¥ O such that 

« € [Im(A — AD)]}+ = ker(A — AJ)*. Since A is normal, so is A — AJ. Hence 

||(A — ADza| = ||(A — AD)*z|| = 0. Since A — AI is bounded below, ||z|| = 0, ice. 

x =0. This contradiction shows that Im(A — AJ) is dense in H. So, A — XJ is 

invertible, i.e. A ¢ o(A). This proves o(A) C a(A). QO 

14-2.5. Theorem If A is a self-adjoint operator on H, then either ||A|| or 

—||Al| is in the spectrum. Furthermore, || A|] = sup{|A| : \ € o(A)}, the spectral 

radius. 

Proof. Let » = ||Alj. There are ||z,|| = 1 in H such that ||Az,|| — 4. Observe 

that 

|A2z2n - Mea,||? =< A’n, — Map, A°tn — tn > 

= || 42x, ||?— <2, A*tn > — < Aran, En > +Mzn|I? 

< ||A? |? ||zall? — 2A? < Arn, Atn > +A4||zall? ; since A is self-adjoint 

< ||All* — 24? | Aza]? + A4 = 242? — || Aza|l?) > 0. 

Therefore \? is an approximate eigenvalue of A?, i.e. o(A*) = [o(A)]*. There 

is p € o(A) such that \? =p’, i.e. = +|/Al|. Therefore either ||.A|| or —|| All is 

in the spectrum. Since sup{|A] : A € o(A)} < |All is always true, the proof is 

complete. oO 

14-2.6. Exercise Prove that if A has an approximate eigenvalue » such that 

|A| = ||Al], then |All = supy,yci | < Az, 2 > |. 

142.7. Exercise Prove that if \ is an approximate eigenvalue of a normal 

operator A then A~ is an approximate eigenvalue of A*. 

14-2.8. Exercise Show that the point spectrum of the right-shift on ¢) is 

empty but its spectrum is the closed unit ball at the origin.
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14-2.9. Exercise Show that the spectrum of the left shift on & is the closed 

unit ball at the origin. Show that if A is an eigenvalue, then [A] < 1. 

14-2.10. We shall work on a self-adjoint operator A on a Hilbert space H. 

Let M = sup{< Az,x >: |[z|| = 1} and m = inf{< Az, x >: ||z|| = 1}. 

14-2.11. Lemma (a) If A is self-adjoint, then —||Al|[I < A < |[Al|J. 

(b) M=inf{A ER: A< Al}. 

(c) m=sup{A ER: A < A}. 

(d) mI < A< MI. 

Proof. (a) < Az,z >< |< Ax,x > | < ||All |lz|? = < ||Al/7z,2 >,V 2 € H. 

Hence A < ||Al|Z. Replacing A by —A, —A < ||—Al|J = ||Al|/, ie. —||A||[I < A. 

(b,d) If A < AJ, then for all ||2|| = 1 we have < Azv,a ><< Ala,z > =A, 

ie. M < X. Therefore M < inf{A € IR: A < AT}. On the other hand, 

by definition of M we get (A Gu) ap <M for every « #0. Thus 
x 

< Az,z >< M||x||? = <M Iz,x > for all x € H. Hence A < MI. Therefore 

inf{fAcCR:A<AIS <M. 

(c,d) If A > AI, then for all |x|] = 1 we have < Az,a >>< AIz,x > = X, 

i.e. m > A. Therefore m > sup{A ¢ R: A > AI}. On the other hand, 

by definition of m we get (A (=) ap >m for every z 4 0. Thus 

< Az,z >> ml|z||? = < mIz,x > for all zx ¢ H. Hence A > mI. There- 

fore sup{A € RR: A> AI} > m. o 

14-2.12. Theorem Let o(A) be the spectrum of a self-adjoint operator A. 

(a) M =supo(A). 

(b) m = inf o(A). 

(c) [|All = max{|m|, |M]}. 
Proof. (a) For every \ > M and every x #0, we have 

JL = Aa Ife] >< OT — Aya, 2 >= let (ar OT Te a) 
= ||? ( - (az, a)) > x20 — M9, 

or ||(AI — A)z|| > (A—M)||z]|. Thus AJ —A is bounded below. Hence A ¢ aA), 

the approximate spectrum of A. Since A is normal, a(A) = o(A). So, we obtain 

» ¢ ofA). Therefore supo(A) < M. On the other hand, by definition of M
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there is ||z,,|| = 1 such that M —+ << Ax,,t, >. Suppose to the contrary 

that M ¢ o(A). Then MI — A is invertible. Hence 

1 = ||znl|? = ||(MI — A)“'(MI = A)an||? 

< ||(MT— ASP CMT — A)zall? 

(MI — Ay" |P ||CMT — A)|| < (MI = A)tn, tn > 

(MT — A)“ |? (MI — AIIM < Attn, tn >] 

< ||(MI — Ay“ |P |(MI — A)IIIM — (a — 4)] 

= ||(MI — A)“"|P (MI — A) +0. 
This is a contradiction. Hence M € o(A). Therefore M = supa(A). 

(b) It follows from the following calculation: 

IA
 

m =inf{< Az,z >: |z|| = 1} =—sup{< —Az, x >: ||z|| = 1} 

= — supo(—A) = — sup[—-o(A)] = info(A). 

(c) Since o(A) is compact, we have m,M € o(A). Hence |m|,|M| < |All, 

or max{|m|, ||} < || Al]. Next, for all 0 < ||z|| < 1 we have 

m< (45a) <M 
lel’ ell 

cf a2) 
( lll” leh 

| < Az,z > | < |[z||? max{|m],|M|} < max{|m],|M|}. Since A is self-adjoint, 

taking supremum over ||z|| < 1 we have 

|All = sup{| < Ax, x > |: ||z|| < 1} < max{|m|, |M|}. QO 

by definition of m,M. Hence we obtain < max{|m|,|M|}, or 

14-2.13. Corollary <A positive operator A is invertible iff there is 6 > 0 such 

that A > 6/. 

Proof. (=) Since A is invertible, 0 ¢ (A). Because A > 0, we have a(A) > 0. 

Thus m = info(A) > 0 and A> mil. 

(<) From 6||z|/* =< éIz,2 ><< Az,x >< ||Az|| ||z||, we have ||Az|] > 6|lz/]. 

Since A > 0, both A, A* are bounded below. Therefore A is invertible. oO 

14-3 Weak Convergence 

14-3.1. Weak convergence in Banach spaces are applicable in Hilbert spaces. 

We shall prove directly that the unit ball of a Hilbert space is weakly 

sequentially compact even though it is reducible to reflexive Banach spaces.
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14-3.2. Theorem Let H be a Hilbert space. If r, — a weakly in H and if 

|Znl| — |lal|, then x, — a strongly. 

Proof. It follows easily from the following calculation 

lzn —all* = < fn —-A,2n—-a> 

= |[en||"— <@,2n > — <2n,a>+<a,a> 

= |lal’- <a,a>-—<aa>+<aa>=0. o 

14-3.3. Theorem Every weakly Cauchy sequence {x,} in H is weakly 

convergent. In other words, every Hilbert space is weakly sequentially 

complete. 

Proof. Instead of quoting the corresponding result in reflexive Banach space, 

we give a direct proof here. Let z € H be given. Since {< x, z >} is Cauchy 

in C, it converges and so does its complex conjugate {< z,r, >}. Define 

f(z) = lim < z,2, >,V z € H. Then f is a linear form in z on H. Since 

{xn} is weakly Cauchy, it is bounded. There is A > 0 such that ||z,|| < A 

for all n. Because |f(z)| = lim| < z,2, >| < |lzI|A, f is a continuous linear 

form on H. There is a € H such that f(z) = < z,a >,V z © H. Therefore 

<2n,z >< a,z > for all z. Consequently x, — a weakly. im 

14-3.4. Lemma _ For all in integers m,n > 1, let @m, be complex numbers 

such that the sequence {a@mn :n > 1} is a bounded sequence for each given m. 

Then there is a sequence I < n(1) < n(2) < n(3) <--> of integers such that for 

each m, the sequence {@mng) : j > 1} converges. 

Proof. It is an exercise to apply the standard diagonal process. oO 

14-3.5. Theorem Every bounded sequence {z,} in H contains a weakly 

convergent subsequence. 

Proof. Let {a,} be a bounded sequence in H. Let M be the closed vector 

subspace spanned by {z, : n > l}. If M is finite dimensional, then {z,} 

has a strongly convergent subsequence which is also weakly convergent. Hence 

we need only to consider the case when M is infinite dimensional. Applying 

the orthonormalization process to {z,} and deleting some x, if it is linearly 

dependent on the preceding terms, we can construct an orthonormal basis 

{em : m > 1} for M. Since {z,,} is bounded, the sequence {< €m,2n >} is 

bounded for each given m. There are integers 1 < n(1) < n(2) <--> such that 

{< €m,2ng) >: j > 1} converges for each m. Now take any u € M, we claim 

that {< u,2ny) >: j > 1} is Cauchy. In fact, suppose € > 0 is given. There
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is a finite linear combination y = 5?_, a,€x such that ||u — y|| < e. Then the 

sequence given by < y,2ngq) > = 72.) Ok < €k,2ncj) > converges as 7 — 00. 

Hence {< y, tn) >: j = 1} is Cauchy. There is an integer jo such that for all 

i,7 > jo, we have | < y, tn) > — < Y,2nqj) > | < €. Since {x,,} is bounded, 

there is \ > 0 satisfying ||x,|| <A,V n. Now for all i,7 > jo, we have 

| <L4UInwy > -— < Uy En(y) > | = | < U, Ln) — ny) > | 

S| < UY, Pn — Png) >| +| <Y, Prt) — Fag > | 

< liu yf lene — tall + |< yeaa — Bay > | S eA +A) +E = (2A4 De. 

Therefore {< u,£ny) >: 7 > 1} is Cauchy and hence converges in ©. Now take 

any z © H. Write z=u+v where ue M and vc M+. Since za3) € M, the 

sequence < 2, %nqj) > = < U,Enyy) > + <U,Lm5) > = < U,2nGy > converges as 

j — co. Therefore its complex conjugate {< tyj),2z >: 7 > 1} also converges. 

Consequently, {%ng)} is weakly convergent. Oo 

14-3.6. Corollary Every sequence in the closed unit ball of H has a 

subsequence which is weakly convergent to some point of the closed unit ball. 

In other words, the closed unit ball of a Hilbert space is weakly sequentially 

compact. 

Proof. A sequence {z,} in the closed unit ball is bounded. It has a 

subsequence {y,} weakly convergent to some a € H. Hence for each z € H, 

we have < 2z,Y, >< z,a >. It follows from the Banach-Steinhaus Theorem 

that |laj] < liminf ||y,|| <1, ie. @ lies in the closed unit ball. o 

14-4 Diagonal Operators 

14-4.1. Let {un} and {e,} be orthonormal sequences in Hilbert spaces H,G 

respectively. Let {An : n > 1} be a bounded sequence of complex numbers. We 

allow 4, to be zero and the sequence may be finite or infinite. For each n, let 

Un @ €n(2) = < 2,Upn > €n, for every x € H. Clearly, each u, ® ep is a one 

dimensional continuous linear map from H into G. In this section, we shall 

study the following series: A = 5°.) Antn ® €n. Diagonal operators will be 

introduced as a special case. 7 

14.4.2, Lemma A is a continuous linear operator on H. Furthermore we 

have Attn = An€n, An = < AUn,€n > and ||Al] = sup |Aq|- 

Proof. Let t = sup|A,,|. By Bessel’s Inequality, we have
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nel [An <2, tm > €nl|? < 0? Ln>t | <2,tn >|? < t|lx|/. 

Hence the series Ax = Vari An <X,Un > en converges in norm and its sum is 

independent of the order of summation. Clearly, A is linear. Because 

|| Ax||? = Dine \|>An <2, Un > én||? < ?lla|l?, 

A is continuous and || Al] < ¢. On the other hand, for each j > 1, we obtain 

Au; = Val An < Uz, Un > En = Ajej. 

Clearly A; = < A;e;,e; > = < Au;,e; >. Furthermore we have 

Al] > |Augll = Ag] legit = Agi 
Since j is arbitrary, || Aj] > ¢. This completes the proof. ia 

14-4.3. Corollary Let B= >>) .) Untn @ en. If A= B, then An =p, Vn. 

Proof. Ay = < Atn,€n > = < Buin, en > = Un- oO 

14-4.4. Theorem A* = 57,4, AF €n @ Un- 

Proof. Since {A,} is bounded, B= 97,5) An€n @ Un is a continuous linear 

map from G into H. For all x € H and y € G, observe that 

<a2,Aty>= < Az,y >= (Sns1 An <Z,Un > ens) 

= Vnrt An <2Z,Un >< en, y >= (2, Yendt AR < Yen > Un ) =<a2,By>. 

Therefore A* = B. o 

14-4.5. Theorem BA=)°,., AnUntn @ Wn for B= wart Vn€n Q Wy, where 

{wn} be an orthonormal sequence in a Hilbert space K and {v,} a bounded 

sequence of complex numbers. 

Proof. BAzx= Yin>l Uy < AL, Cn > Wn 

= Dendt Uy, (Deo1 Ak <2, Uk > €k, en) Wa 

= Lenzi Yn Veet Ak <2, Uk >< Ck, en > Wn 

= n> Un Veet AE <2, UE > OnkWn = Verdi UprAn <L,Un > Wy. oO 

14-4.6. For the rest of this section, we shall study a special case when H =G 

and tn = €n for all n. A diagonal operator has the form A = >7,., An€n ® en 

where {e,} is an orthonormal sequence in H and {\,} a bounded sequence 

of complex numbers. The sequence can be finite or infinite. An operator is 

said to be diagonable if it can be represented as a diagonal operator. We shall 

study a diagonal operator given above.
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14-4.7. Theorem Every diagonal operator is normal. 

Proof. It follow from the following simple computation 

A* Ax = Vent AA An < Len > en = rer AnAq <2, €n > Cn = AA* Ee. oO 

14-4.8. Lemma Every non-zero eigenvalue of A is some Ap. 

Proof. Let ||x|| = 1 be an eigenvector corresponding to a non-zero eigenvalue 

a. Then Az = ax, ie. Dy Aj < 2,e; > e; = ax. Since ax #0, there is some 

n satisfying < r,e, >> 0. Hence we have 

A< Ley >= <0L,en > = < AT, en > = < DAG < Be; > 07, €n > 

= Ay < 2,0; >< €j,€n > =An <Z,€n >. 

Since < £,en > 0, we have a= Xj. ia 

14-4.9. Theorem A diagonable operator is self-adjoint ( respectively skew- 

adjoint ) iff all eigenvalues are real (respectively purely imaginary). 

Proof. A is self-adjoint iff A* = A iff A, = An for each n iff all A, are real. 

Similarly we can the case for skew-adjoint operators. Oo 

14-4.10. Theorem A diagonable operator is positive iff all eigenvalues are 

positive (> 0). 

Proof. Assume that all A, > 0. Then {/A,} is also a bounded sequence. 

Define an operator by B = 37,5, VAn€n @ en. Direct calculation gives 

A= B*B. Hence A is positive. The converse was proved in §13-11.4d. Oo 

14-4.11. Theorem For every diagonable operator A, the following statements 

are equivalent: 

(a) A is a projector. 

(b) A is an idempotent. 

(c) All eigenvalues are either zero or one. 

Proof. For (b = c) If A* = A, then \2 = An, ie. An = Or 1. The case: 

(b => c) follows by definition and (¢ > a) by direct calculation. o 

14-5 Compact Operators 

14-5.1. In this section, we shall prove that compact normal operators are 

diagonable and that every compact operator can be approximated in norm by 

finite dimensional operators. Let H,G be Hilbert spaces.
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14-5.2. Theorem A continuous linear map A: H — G is compact iff it takes 

every weakly convergent sequence into a strongly convergent sequence. 

Proof. (4) Let {z,} be any bounded sequence in H. It has a weakly 

convergent subsequence {y,}. Hence {Ay,} converges strongly. Therefore 

A is a compact operator. 

(=>) Let A be a compact operator on H and {2,} a sequence weakly convergent 

to some x € H. Suppose to the contrary that || Az, — Az|| 4 0. Then there is 

& > Oand a subsequence {yp} of {z,,} such that || Ay,,—Ac|| > ¢ for all n. Since 

{tn} is weakly convergent, it is bounded. By compactness of A, there is b € G 

and a subsequence {z,} of {yn} such that ||Azn — || + 0 as n > oo. Since 

In — x weakly, we have z, — 2 weakly and consequently Az, — Ax weakly. 

Hence b = Ar. Now the contradiction of ||Az, — Az|| > € and |{Az, — b|| + 0 

completes the proof. oO 

14-5.3. Lemma If x, — a weakly and y, — b strongly both in H, then we 

have < fn,Yn >< a,b>. 

Proof. Since {z,} is weakly convergent, it is bounded. There is \ > 0 such 

that {/z,|| <A for all n. Now 

|<2nsyn > — < a,b >| <|<an,yn—b>|4+|<an,b>-<a,b>| 

S |lznll lyn — bi] +] <n -a,b> | < Allyn — Bl] +|<tn—-a,b>|>0.0 

14-5.4. Theorem If A: H — Gisacompact operator, then so is A* :G — H. 

Proof. Let x, — 6 weakly in G. Since AA* is compact, AA*r, — AA*b 

strongly. Hence < AA*ty, ty >< AA*b,b >, ie. ||Ataall? — ||A*d\l?, 

or ||A*2,{| — {|A*d||. Since A*z, — A*b weakly, A*z, — A*b strongly. 

Consequently, A* is compact. oO 

14-5.5. Theorem Let {u,,} and f{e,} be orthonormal sequences in H,G 

respectively. Let {A, : 2 > 1} be a bounded sequence of complex numbers. 

Then the operator A = 57,5, AnUn © €n is compact iff A, — 0 as n — oo. 

Proof. (=) Assume that A is compact. Suppose to the contrary that A, # 0. 

Then for some ¢ > 0 there is a subsequence [Any] > €,V 7. Since uncjy > 0 

weakly, we have Aunyjy — AO = 0 in norm. Now a contradiction is obtained 

from || Auncyll = ||Angyengyil = Ancol 2 €- 
(<=) Assume 4,, > 0. Then for every ¢ > 0 there is an integer p such that for 

all n > p we have |A,| < «. Then Q = weet Aju; @ e; is a finite dimensional 

linear map from H into G. Now for all ||zj] < 1,



14-5 Compact Operators 301 

2 °° ; ; |? °° 12 sf. 12 A= Qa? = [SO As < aay > el <P uP <auy > Perl 
foe} 

< ee 2 le 2 . tot ity. <eé ype | <a@,u; >|<e*|[z|\"<e° — ; by Bessel’s inequality 

Taking supremum over ||| < 1, we have ||A — Q|| < ¢. Since Q is finite 

dimensional, A is compact. ia 

14-5.6. Theorem Let A be a compact normal operator on a Hilbert space 

H 4 {0}. Then there is an eigenvalue 2 of A such that |A| = |All. 

Proof. If A=0, then A = 0 is a required eigenvalue. Assume A #0. Due to 

|| Al] = sup{||Az|] : ||z|] = 1}, there is a sequence {z,} in H such that ||z,|| = 1 

and lim |}Az,,|| = ||A|]. Since A is compact, replacing by subsequence we may 

assume Az, — y strongly for some y € H. Let B = A*A and £ = ||B||. Then 

we have = || Bi] = ||A* Al] = ||Aj]? #0. Observe that 

|| Ban — Btn? =|Barp||? —2 < Ban, tn > +6? llrnll? 
< ||Bl|7]2n|? -2 < A*Atn, fn > +8? = GB? —2||Az,||? +8? > 0 as n — oo. 

Hence Bry — Brn — 0. Let z = A*y. Because of Az, — y, we obtain 

Br, = A*(Az,) — A*y =z. Therefore Bx, = (Sr, — Br,)+ Brz - 042 =2. 

Thus @ = lim ||@z,|| = ||z/|, ie. 2 #0. Also Bz = Bilim Gx,) = Blim Ba, = Bz. 

Therefore @ is an eigenvalue of B. Let N = ker(GI — B). Because z #0 isin N, 

we get N + {0}. Since B = A*A is compact and £ #0, we have dim N < oo. 

Now the normality of A gives AB = BA and thus ACN) c N. Considering 

the characteristic polynomial of A|N, there is u € N such that ||u|| = 1 and 

Au = Au for some » € C. Since u € N, we have Bu = Bu. On the other hand, 

Bus= A* Au= A*(Au) = AA*u = AAT U. 

Therefore Bu = AA~u, ie. JA/? = 8 = ||Bl| = |All’, or [A] = FAll. o 

14-5.7. Theorem Let {H,,} be a sequence, finite or infinite, of orthogonal 

closed subspaces of a Hilbert space H. Then the set endl H,, of all convergent 

series £ = )°,,>,;¢n for 2 € Hy, is the closed vector subspace spanned by 

U,>1, Hn. Furthermore, if Q, P, are the projectors onto 3>,., H, and H;, 

respectively, then for each z € H we have a convergent series Qz = 50,5, Pre. 

Proof. Allowing H,, = {0}, we may work with the infinite sequence. Take any 

B= > en and y= 7-2) yn where In, Yn € Hy. Since 

fo 2) foe} oO [Doe Hen + vol? <I Heal? + SO Hol? = H+ a < oo, 
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the series 377° (tn + Yn) converges and hence x+y € D>, Hn. Similarly 

Az € 37, Hn. Thus 7%, Hn is a vector subspace of H. Next we 
claim that 577°, H, is closed. In fact, take any closure point y of 7°, Hy. 

Write y = lima? where 27 = )°°°, 2), and x3, € H,. Since {x7} is a Cauchy 

sequence, for every € > 0 there is an integer p such that for all j,k > p we have 

jz? —2* || < e. By 78, fae, — wk]? = 0%, |x? — xl]? < €?, for each n the 

sequence {x}: 7 > 1} is Cauchy. Since H, is closed in the complete space 

H, we can write limjoo zi =a, € H,. Letting k — oo in the inequality 

yom, tae, — 2% ||? < 7, we have 3°”, ||27, -zn|]? < e?. Since m is arbitrary, we 

get >-°2, ||22, — tnll? < e*. Hence the series )77- (23, — zn) is convergent, and 

so does x = }7°, ty. Moreover, ||x7 — xi]? = 772, |], — tall? <6?,V 7 > p. In 

other words, y = limz? =a € 72, Hn. Therefore 77°, Hy is a closed vector 

subspace of H. Clearly, it is the smallest one containing U,, Hn. Finally take 

any « € H. Since Qx € S32, Hy, write Qz = 7, xn where ty € Hy. For 

each j, Pjz = PjQz = S072, Pjtn =2x;. Therefore Qx = 7°, Pas. oO 

14-5.8. Let A be a compact normal operator on a H. Let |A,| > |A2| > [As] > 

--+ be an enumeration of all non-zero eigenvalues of A repeated according to its 

multiplicity. It may be a null, or finite or infinite sequence. If it is null, then 

A must be the zero operator. Hence we assume A has at least one non-zero 

eigenvalue in the following context. For each n > 1, let H, = ker(A ~— Ant) 

denote the eigenspace of A, and let Hp = ker(A). For every n > 0, let P,, be 

the projector onto the closed vector subspace H,,. Note that for each n > 1, 

H, is finite dimensional but Hp may be infinite dimensional. The following 

theorem shows the existence of a spectral resolution of the identity. 

14-5.9. Theorem For each x € H, the series x = >>.) Pax converges and 

we also have P; P, = 0 for all 7 #k. It is called the spectral expansion of x with 

respect to the enumeration |A;| > |A2| > |A3| > --- of eigenvalues of A. 

Proof. Let M =3>,., Hn. Clearly for all n > 1, we have A(H,) C Hn and 

hence A(M) C M, or A*(M+) c M+. Next we claim that every eigenvalue 

of the restriction A*|M+ must be zero. Suppose to the contrary that \ #0 is 

an eigenvalue of A*|M+. Then there is z 40 in M+ satisfying A*z = Az, or 

Az =~ x. Since {A, :n > 1} is an enumeration of all non-zero eigenvalues of 

A, we have A~ = A, for some n. Then « € H, C M. This is a contradiction 

to Mn M+ = {0}. Therefore 4 = 0. Since A is compact normal, so is A*|M+. 

Thus ||A*{M+|| is maximum of all eigenvalues. It follows that A*|M]+ is a zero 
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operator. Hence M+ Cc ker(A*) = ker(A) by normality of A. Now take any 

zéH. Since H = M! @ M, we can write x = rp + Don>l Zn where x, € Hy. 

Therefore x = }°,,59 Paz. Because Hj1Hy for all j 4k, we have P)P, =0. 0 

14-5.10. Lemma If the enumeration {Aj| > |A2| > ---|Ax| > 0 of all non-zero 

eigenvalues of a compact normal operator A on H is finite, then A = yr AnPa- 

Consequently, A is finite dimensional. 

Proof. Take any x € H. Then there is z, € H, for each n > 0 such that 

a =o patn. Now Ar = S78) Atn = Ye, Antn = yt, AnPax. Therefore 

A= ean AnPn. Since all H, are finite dimensional, so is A. Oo 

14-5.11. Spectral Theorem If |A,| > |A2| > |A3| > --- is an enumeration of 

all non-zero eigenvalues of a compact normal operator A, then A = pam AnPn 

in the sense that ||A — ye AnPall = |Aksi| 3 0 as k > oo. 

Proof. Assume that |\;| > |A2| > |A3| > --- is an infinite sequence. Take any 

xeé€ H. Let r= pian P,x be the spectral expansion of x. By continuity of A, 

we have Ax = S775 Atn = 0+ 77) Anta = De, An Pe. Therefore 
2 

(4 ye rnPa) ol) =|0~ dePatl] = S07 PP? 

= Or Pal Pall? < Deal? 2, Pal? 
< Neal? > Pacll? = Aca Pllel?. 

| k 
Consequently, | A- a AnPra 

On the other hand, let |{x|| = 1 be in Hi4,;. Then 

(4 _ ae rnPa) x 

k 
Therefore lA — yo  AanPa 

l 

< |Axet|- 

Acai] = Aur] = < l4 _ er AnPn 

= [Anat]. 

The fact A; — 0 as k — oo has been proved in Normed Spaces. We leave the 

case when |A;| > |A2| > |As| > --- is a finite sequence as an exercise. o 

14-5.12. Diagonal Representation of Compact Normal Operators Let A be 

a compact normal operator on H. Then there is an orthonormal sequence 

{e, : n > 1} of eigenvectors with corresponding eigenvalues \,, such that. for 

each z € H, we have x = 29+ 30,5, <2,€n > €n where role, for all n > 1. 

It is called the coordinate expansion of x with respect to {e,}. Furthermore we 

have the following diagonal representation: A = 7.5) An€n ® €n-



304 Spectral Properties of Hilbert Spaces 

Proof. For each n > 1 let Q, be an orthonormal basis of H,. Let Q =U, Qn. 

Since H,, is finite dimensional for each n > 1, every Q,, is a finite set. Since 

A is normal, Q is a countable orthonormal set. Now take any « € H. Then 

P,x € Hy. For each n > 1, because Q, is an orthonormal basis of H,, 

we obtain P,x = ecQ, < z,e > e. Now the spectral representation becomes 

the coordinate representation: x = 29+ > > <az,e>e. By continuity 

of A, we get 21 e€Qn 

Ax = Azo + >> > <axz,e > Ae 

n21e€Qn 

=0+5> So <ae>rme=>. D> n<aere. oO 

n>le€Qn n>le€Qn 

14-5.13. Let H,G be Hilbert spaces and A: H — G a compact linear map. 

Clearly A*A is a compact positive operator on H. Let Ay > Az > A3 > --- be 

an enumeration of all non-zero eigenvalues of A*A repeated according to its 

multiplicity. Then s,(A) = Xp, is called the n-th singular number of A. 

14-5.14. _Finite Dimensional Approximation Theorem Let A: H — G be 

a compact linear map on and s, the n-th singular number of A. Then there 

are orthonormal sequences {u,,} and {e,} in H,G respectively such that the 

following conditions hold. 

(a) If A is of finite rank k, then A= ye SnUn @ Cn. 

(b) If A is infinite dimensional, then ||A — )7*_, sntn ® €n|| > 0 as k > ov. 

In symbol, we may write A = 5°...) SnUn © €n- Consequently, every compact. 

operator on a Hilbert space can be approximated in norm by finite dimensional 

operators. Note that in general this is false in Banach spaces. 

Proof. Write A*A = >°,.51 Antin @uUn where {u,,} is an orthonormal sequence 

of eigenvectors of A*A corresponding to eigenvalues A; > Az > A3--- > 0 

respectively. By definition, s, = V/A, > 0. Take any x € H. Let 

2 = 209+ Das) < t,Un > Un be the coordinate expansion corresponding to 

{un} where ro Ltn for all n > 1. Then A*Azp = 00,3; An <20,tn > Un = 0, 

that is ||Azo||? = | < A*Azo,29 > | = 0, or Aag ‘= 0. Hence we obtain 

Az = Dari <2,Un > Aun. Let en = Aun/Sp. Since 

< Atm, Attn > _< A*Aum,Un > 
<€m,€n > = 

yy < Um, Uj >< Uj, Un > 8? < Um, Un > 
= = = Smns 

Sm$n SmSn 
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{én} is an orthonormal sequence. Furthermore, we have 

Ax = ast <L,Un > Aun = aot Sn <2L,Un > En. 

If rank(A) = k < oo, then A = yt SnUn ® €n because {en} is a linearly 

independent set. Suppose A is infinite dimensional. Take any |{x|| < 1. Observe 

k 2 fone) 2 

A- > SnUn Ben |x| < S |Sn < Z,Un > €n| 
n=l n=k+1 

fos) fore) 

= 5 ackel [Sn{? | <2,tn > |? = y ackal An| <2,tn > |? 

< Ager |||? < Anet 2 0 

as k — co. This completes the proof. Oo 

14-5.15. Corollary s,,(A*) = s,(A) for every compact linear map A: H = G. 

Proof. Let A= Vn>i Sn(A)un ®@ €n be a spectral representation. Then we 

have A* = Dindt Sn(A)en @ Un. Therefore s,(A*) = s,(A) by §14-4.3. o 

14-5.16. Exercise Let A be a compact normal operator on a nontrivial Hilbert 

space H. Let B,C be the real and imaginary parts of A. Prove that A has an 

eigenvalue 2 satisfying max(||B\|, ||C/|) < 4. 

14-6 Functional Calculus of Self-Adjoint Operators 

14-6.1. Holomorphic maps of an operator was defined in terms of Cauchy 

integral formula. For a self-adjoint operator A, we shall define f(A) when f is 

a continuous function on the spectrum of A. As a result, we can take square 

roots of positive operators. We proved that if an operator A is positive, ie. 

A = B*B for some B, then A > 0, ie. < Az,x >> 0. In this section, the 

converse will be proved. 

14-6.2. Theorem For every normal operator A, ||Al| = sup{ {A| : A € o(A)}. 

Proof. Since A*A = AA*, it is easy to show (A”)*(A”) = (A")(A”)*.. Hence A” 

is also normal. Repeated application of ||A?|| = || Al|?, we have |" | = |All’. 

1/2* 
Therefore we have r(A) = lim ||A"||!/" = lim 4" || = |All. O 

n00 k-00 

14-6.3. Exercise Prove that a normal quasinilpotent operator must be zero. 

14-6.4. Theorem For every complex polynomial 

FQ) = ant” + y_yt? 1 +--+ at + a9,
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let f° MaazMm+az_ (Pl +---+apttag 

which is f— when t is real. Then for every normal operator A, we have 

(a) [FCA)]" = F(A"); 
(b) f(A) is normal; 

(ce) f(A) = sup{ifO)| : A € o(A)}. 
Proof. Both (a) and (b) follow by routine calculations: 

LfCA)}* = [ap A” + yp) AP! +--+ A + Ol ]* 

= a, (A")* + a (At )* eee +a, A* + ag I* 

=an(A*)" +a,_ (At)! +--+ +ay At tag T= f~(A*) 

and 

LAVA] = LAMAN = [SO oF AY] [SOL on *] 

- Deo ar aj an A") AS - pen aA pan af (A"y | 

= [f(OIS (A) = LAAIIA(CAT. 

For (c), the Spectral Polynomial Theorem gives 

|| fCAD|| = sup{|u] + € oLFCADT} = sup{]fO)| : A € o(A)D}. o 

14-6.5. Theorem Let A be a self-adjoint operator on H. Let C,,[c(A)] be 

the sup-norm algebra of continuous complex functions on o(A). Then there 

is a unique linear map f — f(A) form C,,[o(A)] into the algebra D(H) of 

operators on H such that the following conditions hold: 

(a) Isometry: || f(A)j] = sup{|fO)| : A € o(A)}. 
(b) Algebra Isomorphism: (f - g)(A) = f(A)g(A). 

(c) Polynomials: If f(x) = 1 then f(A) = J. If f(x) =a, then f(A) = A. 

Proof. Let P be the set of all complex polynomials on o(A). Since A is 

self-adjoint, o(A) consists of real numbers only and hence P is self-conjugate. 

By Stone-Weierstrass Theorem, P is a dense subspace of C,,[o(A)]. We have 

proved that f — f(A) is a linear isometry from P into L(H). Since L(A) is 

complete, there is a linear extension over C’,,.[0(A)] into L(H). The uniqueness 

is left as an exercise. go 

14-6.6. Corollary Let A be a self-adjoint operator on H and let fr, g be 

functions continuous on o(A). If fy — g uniformly on o(A), then f,(A) — g(A) 

in norm. 

Proof. |\(fn — 9(A)ll = Ifa — glleo > 9. o
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14-6.7. Corollary Let A be a self-adjoint operator on H, f a continuous 

function on o(A) and B any operator. 

(a) Commutativity: If AB = BA, then f(A)B = BF(A). 

(b) Eigenvalues: If Ax = Ax, then f(A)x = f(A)z. 

Proof. Let py be polynomials on o(A) such that ||f—pn|loo + 0. By AB = BA, 

we have pp(A)B = Bp, (A). Letting n — co, we obtain f(A)B = Bf(A). Since 

pn(A)z = pr(A)x, we have f(A)z = f(A)z. Oo 

14-6.8. Corollary Let A be a self-adjoint operator on H. Then for every 

continuous function f on o(A), we have 

(a) [f(A = f(A); 
(b) f(A) is normal; 

(c) if f is real-valued, then f(A) is self-adjoint. 

Proof. Since A is self-adjoint, o(A) is a subset of IR. Part (a) is true for 

the polynomials by direct verification. By passing limits, it is also valid for 

continuous functions on o(A). Part (b) follows from 

[F(A F(A) = F(A) F(A) = (F7 PAD 

=(F- f° MA) = FAFA) = AIPA. 

For (c), [f(A)]* = f(A) = f(A). q 

14-6.9. Theorem Let A be a self-adjoint operator on H. Then the following 

statements are equivalent. 

(a) o( A) > 0. 

(b) A = B? for some positive operator B. 

(c) A= B"B for some operator B. 

(d) A>0. 

Proof. (a = 6) Let f(A) = WX for every \ > 0. Then f is continuous 

on o({A) > 0. Since f is real-valued, f(A) is self-adjoint. Hence we obtain 

B = [f(A)P = f(A)*f(A) is positive. By f(A)* = A for all A > 0, we have 

A= (f(A) = B’. 
(b = c) Since B is positive, B* = B. 

(c > d) It was an exercise §13-10.9a. 

(d = a) Let h(A) = 0 if \ > 0 and A(A) = V—A if A < 0. Then A is continuous 

on R. Let B = h(A). Since h is real-valued, B is self-adjoint. Hence B? = B*B 

is positive. By (c > d), we have B? > 0. Since h(A)AR(A) = —[A(A)}4 for all A, 

we get BAB = —B*. By 0 < BAB = —B4 < 0, we obtain 0 = Bt = [h( A)‘.
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Because f — f(A) is injective, [h(A)}* = 0, ie. ACA) = O for all A € ofA). 

Therefore o(A) > 0. o 

14-6.10. Square Root Theorem Let A be a positive operator. Then there is 

a unique positive operator denoted by VA such that A = (VA)*. Furthermore 

if A is invertible, so is WA. 

Proof. The existence was proved by (c > 6) of last theorem. We give another 

more intuitive proof here. Let f(A) = V2 for all \ > 0. Then f is continuous on 

o(A) and [f(\)? = A. Hence f(A) is an operator satisfying [f(A)]* = A. Now 

suppose B is any positive operator satisfying B? = A. Let {p,} be a sequence 

of polynomials such that p, — f uniformly on o(A). Define gn(A) = pa(d”). 

Then gn(A) — 2 uniformly on o(B). Hence 

B = lim gn(B) = lim p,(B?) = lim p,p(A) = f(A). 

This proves the uniqueness. Finally if A is invertible, then 

0g o(A)= (7: A. € o(VAD}, 
ie. O€ a(VA). Therefore VA is invertible. o 

14-6.11. Theorem Let A be a self-adjoint operator and f a continuous 

function on o(A). Then we have o[f(A)] = f[o(A)]. 

Proof. Let \ € o(A). Suppose to the contrary that f(A) ¢ o[f(A)]. Then 

fOd)I — f(A) is invertible. There is a polynomial g such that 

supreeay lg — DWI <4 || FA - FAI. 
Hence we have 

IILFQMT = FAN = L9QQT = 9 ADI] < ||F(A) — 9 ADI] + FQ) — 9) 
2 _ 

<_ sup [K(f ~ dl] + LFA) — gO = 5 [ILFONT — FAI 
ptEa(A) 

<|Lfoor - fear. 
Hence g(A)I — g(A) is invertible. Hence g(A) ¢ ofg(A)]. This contradicts 

the Spectral Polynomial Theorem. Therefore f[a(A)] C o[f(A)]. Conversely, 

suppose to the contrary that there is u € o[f(A)] but p ¢ fla(A)). For each 

» € ofA), define g(A) = 1/[u — f(A)]. Then g is continuous on o(A). Hence 

g(A) is an operator on H. Since g(A)[u — f(A)] = 1, VA © ofA), we have 

g(A)[ut — f(A)] = I and [wl — f(A) g(A) = J. Therefore uJ — f(A) is invertible, 

ie. wp ¢ o[f(A)]. This contradiction establishes the proof. o



14-6 Functional Calculus of Self-Adjoint Operators 309 

14-6.12. Theorem Let A be a self-adjoint operator. Let f be a continuous 

function on o(A). 

(a) f(A) is self-adjoint iff f is real-valued. 

(b) f(A) is unitary iff |f| = 1. 

(c) f(A) is invertible iff f(A) #0,V A € ofA). 

(a) f(A) > 0 iff f[o(A)] > 0. 
Proof. (a) f(A) is self-adjoint iff || f(A)* — f(A)|| = 0 iff [67 — f)CA)]| = 0 iff 
f— —f =0 on o(A) iff f is real-valued. 

(b) f(A) is unitary iff (f(A)]* f(A) = J = f(A LFA) iff f—- f= laf fo iff 

|fl= 1. 
(c) f(A) is invertible iff 0 ¢ o(A) iff 0 ¢ f[o(A)] iff f(A) #0,V A © a(A). 

(d) Suppose f[o(A)] > 0. Then g = ,/f is a continuous real-valued function 

on o(A). Hence g(A) is self-adjoint and f(A) = [g(A)F is positive. Conversely, 

suppose f(A) > 0. Since f(A) is self-adjoint, f is real-valued by (a). 

Let v = max{—f,0} denote the negative part of f. By f(A) > 0, we obtain 

0 < [v(A)]* f(A)v(A). Because v3 > 0 and by what was just proved, v3(A) > 0. 

Since v- fu = ufv = —v3, we have 0 < [u(A)]*f(A)u(A) = —v°(A) < 0, ie. 

v3(A) = 0. By injectivity, v3 = 0, ie. v = 0 on o(A). Therefore we conclude 

that f > 0 on o(A). QO 

14-6.13. Exercise Prove that the product of two commuting positive 

operators A, B is a positive operator. Furthermore, prove that /AB = /AVB. 

Show that the matrices: A = E 2| and B = E 0 0 are positive but their 
1 

product is not. 

14-6.14. Exercise Prove that if A is self-adjoint and if A? is a projector then 

A is a projector. 

14-6.15. Exercise Prove that || A*Al| = \/||A* All for every operator A. 

14-6.16. Exercise Prove that the inverse of an invertible positive operator is 

positive. 

14-6.17. Let ¥ be a family of operators on H. An operator commutes with F if 

it commutes with every operator in ¥. The family ¥’ of operators commuting 

with F is called the commutant of ¥. Clearly F is a subalgebra of L(H). The 

family F is self-adjoint if A* © ¥ whenever A € F.
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14-6.18. Theorem Every operator A commuting with a self-adjoint family 

F of operators on H is a linear combination of unitary operators in F’. 

Proof. Firstly assume that A € X is self-adjoint with ||A|| < 1. Since 

fO= /1—#® > 0 is continuous on o(A), the operator B = f(A) > 0 is well- 

defined and commutes with ¥. Hence U = A+iBeé F'. From UU* =U*U = 

A?+ B? = I, both U,U* are unitary. Now A= LU+ U*) is a linear combination 

of unitary operators in ¥’. Next in general, let A € ¥’ be given. Then for every 

Q € F, we have Q* € F and hence A*Q = (Q*A)* = (AQ*)* = AQ*, that is 

A* € F'. Therefore both B = (A +iA*) and C = x(A — iA*) are self- 

adjoint operators in ¥’. By the first case, B/( 1+ ||B|| ) and hence B itself are 

linear combinations of unitary operators in ¥’. Similarly C and consequently 

A=8B+iC are also linear combinations of unitary operators in F’. o 

14-7 Polar Decomposition 

14-7.1. Every complex number can be written in polar form re where r is 

positive ( > 0 ) and e* is a one-by-one unitary matrix. In this section, an 

analogue for operators will be given. 

14-7.2. Let A be an operator on a Hilbert space H. Then A is called a 

partial isometry if A*A is a projector. The initial space of A is defined as 

init(A) = (ker A). 

14-7.3. Theorem Let A be an operator on H. Then the following statements 

are equivalent. 

(a) A is a partial isometry, ie. A*A is a projector. 

(b) For every x in the initial space of A, we have || Az|| = ||2||. 

(c) A= AA*A. 

(d) A® is a partial isometry. 

Proof. (a => b) Let P= A*A and M = P(A). Then P is a projector onto M. 

Now M = ker(P)t = ker(A*A)+ = ker(A)+ is the initial space of A. Take any 

xe M. We have Px =x. Hence 

|Az||? =< A*Ar,c > = < Prez >= <2,r>= |x|", 

ie, ||Ax|| = ||x|l- 

(b > a) Let M = init(A) = ker(A)+ and P the projector onto M. Then for 

any « € M, we have < A*Ag,ax > = ||Azl|* = |[z||? = < Px,a >. On the other 
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hand, for any sx € M+, we get x € ker(A)t+ = ker(A), ie. Ax = 0. Hence 

< A*Azr,c > =0=< Par,x >. By linearity, we obtain 

< A*Az,x > =0=< Pr,x> 

for all x € H. Hence A*A = Pisa projector. Therefore A is a partial isometry. 

(a = c) Let A*A be a projector onto a vector subspace M of H. Then for 

any « © M, A*Axv =< and hence AA* Az = Ax. On the other hand, for any 

ag € Mt, A* Ax = 0, or Ar = 0 and hence AA* Ar = 0 = Az. By linearity, we 

get AA*Ax = Az,V x € H. Therefore AA*A = A. 

(c => a) (A* A) = A*(AA*A) = A*A and (A*A)* = A*A™ = A*A. Therefore 

A*A is a projector. 

(c => d) From A* =(AA*A)* = A*A** A", A* is an isometry by (¢ > a). 

(d = c) Apply (c > d) to A*. Oo 

14-7.4. Corollary If A is a partial isometry, then we have 

init(A) = Im(A* A) = Im(A*) and Im(A) = Im(AA*) = init(A*). 

Proof. Since A*A is a projector, we have 

a init(A) = ker(A)+ = ker(A*A)* = Im(A*A). 

Next, Im(AA*) = AA*(H) C ACA) = Im(A), 

and A(H) = AA* A(H) = AA*(H) = Im(AA*) 

gives Im(A) = Im(AA*). By symmetry, we get 

Im(A*) = Im[A*(A*)*] = Im(A* A) = init(A) 

and init(A*) = Im[(A*)* A*] = Im(AA*) = Im(A). o 

14-7.5. Polar Decomposition Theorem Let A be an operator on H. Then 

there is a unique positive operator P and a unique partial isometry U such 

that A= UP and ker(U) = ker(P). Furthermore, we have 

(a) U*U is a projector onto the closure of Im(P); 

(b) ker(A) = ker(P); 

(c) P=U*A. 

Proof. The operator P = /A*A is positive. For all z € H, we have 

\|Px||? = < Pr, Px > =< P*Pr,r >= < P’2,4 > =< A*Az,z > = ||Az|l. 

Hence if Px = Py, then P(x — y) = 0, or A(z — y) = 0, ie. Ax = Ay. Now 

the map V : P(H) — H given by VPx = Az is well-defined. Clearly, V
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is linear. Since |[V(Pz)|| = ||Pz||, V is also continuous. There is a unique 

continuous linear extension over the closure of P(H). This extension is still 

denoted by V. Define Ux = Vax if « € P(H)~ and Ux = 0 if « € P(H)+. 

Then by linearity, U is defined on H. Since for all non-zero z € P(H)—, we 

get ||Ux|| = ||Vzl| = |[z|| 4 0, U is a partial isometry and A = UP by the 

construction of U. Next, ker(U) = P(H) = ker(P") = ker(P). This proves 

the existence. For uniqueness, suppose that P,Q are positive operators and 

U,V are partial isometries such that A = UP = VQ, ker(U) = ker(P) and 

ker(V) = ker(Q). Then P? = A*A = Q*V*VQ. Now V*V is a projector 

onto the subspace init(V) = ker(V)+ = ker(Q)+ = Im(Q*)~ = Im(Q)~. Hence 

V*VQ=Q. Thus P? = Q*V*VQ = Q*Q = Q?. By uniqueness of square roots, 

P=Q. Hence UP = VP. Observe Im(P)+ = ker(P*) = ker(P) = ker(U). For 

¢ € Im(P), we have Ur = Vz. On the other hand, for « € Im(P)+, we have 

Ux = 0 and similarly Vz = 0. By linearity, Ux = Vz for all  €¢ H. Therefore 

U =V. This proves the uniqueness. Finally, we have P= V*V P = V“A and 

ker(P) = ker(./A* A) = ker(A* A) = ker(A). Oo 

14-7.6. Theorem For every operator A, there is a unique positive operator 

Q and a unique partial isometry V such that A = QV and ker(Q) = Im(V)*. 

Furthermore we have 

(a) VV* is a projector onto Q(H)-. 

(b} ker(A*) = ker(Q). 

(c) Q = AV" = VAA*. 

Proof. Replace A by A* in last theorem and then take hermitian. o 

14-7.7. Exercise Show that the square root |A| = V.A*A obeys |AA| = |A| |A| 

but not the triangular inequality. 

14-7.8. Exercise Prove that if an operator A is invertible, then its absolute 

value |A| = VA*A is also invertible. Prove that if A is normal, then the 

converse is also true. 

14-99. References and Further Readings : Steen, Konig-75, Gohberg-00, 

Berezin and Rice. 



Chapter 15 

Tensor Products 

15-1 Algebraic Tensor Products of Vector Spaces 

15-1.1. The main idea of this chapter is to convert a multilinear map on a 

product space into a linear map on the tensor product of its factor spaces and 

to study the relationship between these two maps. Multilinear maps have been 

introduced in §10-1 when we worked with higher derivatives. Let E;, H2,:--, Ep 

and F be vector spaces. The vector space of all multilinear maps from IIf_, Ex 

into F is denoted by M(£), Ex,---, Ep; F). When F is the scalar field K, it is 

simply denoted by M(£), E2,---, Ep). 

15-1.2. A vector space G is called a tensor product or more precisely an 

algebraic tensor product of Ey, Fy,--:,E, under the tensor map g from the 

product space IIj_,£, into G if the following conditions hold 

(a) g is a multilinear map; 

(b) for every multilinear map h from T1?_, Ex into a vector space H, there is 

a unique linear map y from G into H such that h = yg. We say that h is 

factorized through G and ¢ is called the linear map associated with h. 

15-1.3. Existence Theorem Let £), £3,---, EH, be vector spaces. Let g be 

the linear form on the vector space M of all multilinear forms on IT?_, Ex given 

by [9(z)](u) = u(x) for each & = (1),22,-++, 2p) € TZ_, Lx. Then the vector 

subspace G of the algebraic dual M* of M spanned by g(TI?_, £x) is a tensor 

product under the tensor map g. 

Proof. It is easy to verify that [g(x)](u) = u(x) is linear in wu and hence 

g(x) € M*. Observe that for all a, 8 € K and all x, € Ex, 

[g(ax, + By, 22,+-+, Xp) Cu) = ular, + By, 22,++-, Lp) 

= AU(L1,£2,++-, Zp) + Puly,£2,--+, Lp) 

= [ag(z1,22,--+, Lp)(u) + Bayi, Z2,-++, Zp) I(u). 

Hence 9(z;,22,--+,p) is linear in x; and similarly it is linear in every zx. 

Thus g : Th_,B, — M* is a multilinear map. To show that G is a



314 Tensor Products 

tensor product under g, let h be a multilinear map from II?_, E;, into a vector 

space H. Take any z € G. There are vectors z!,x?,---,2™ © T?_,E, and 

scalars 0, 02,°-++,Q@m such that z= a ajg(x7). Define y(z) = in ayh(z4). 

To show that » is well-defined, let z = S72, Big(y') be another represen- 

tation where y’ € II?_,E, and 8; € K. Then for each u € M, we have 

yar gh? )(u) = O2, Bih(y'\u), ie. TO") agu(e?) = D2, Bruty’). Now let v 

be any linear form on H. Since A is multilinear, the composite vh is a multi- 

linear form on IIf_, Ey. Letting u = vh we have ve ajvh(z)) = 37", Bvhty’), 

or v [=e aj h(a’)| = uv (don, Bihly’)]. Since H* separates points of H, we 

have Aa ajh(z) = wa Bih(y*). Therefore y is well-defined on G into H. 

It is obvious that y is linear. When z = g(r), we have yo(xr) = h(x), ie. 

yg =h. It remains to prove the uniqueness of y. Suppose that w is another 

linear map from G into H such that ag = h. For any x € IIf_, Ex, we obtain 

vlg(z)] = h(x) = ylg(z)]. Hence w = y on g(IIf_, Ex) which spans G. Therefore 

w= on G. This completes the proof. Oo 

15-1.4. Uniqueness Theorem Let G, H be tensor products of vector spaces 

FE), Ey,-+-,E, under the tensor maps g,h respectively. Then there exists a 

unique isomorphism y : G — H such that h = yg. We shall identify G,H 

under y. 

Proof. Factorizing h,g through G, H, there are linear maps gy : G > H and 

w :H — G such that h = yg and g = ph respectively. Consequently ~y is 

a linear map from G into itself such that g = (wy)g. Let I,J be the identity 

maps on G, H respectively. Then I is also a linear map from G into itself such 

that g =Jg. By uniqueness of factorizing, we have wp =I. Similarly, py = J. 

Therefore y is a bijection from G onto H. Consequently, y is an isomorphism. 

Its uniqueness is part of the definition of tensor product. o 

15-1.5. The tensor product of E\, £2,---, Ep is denoted by £, ® E2.®---@E,, 

or by @j., Ex. Elements of @}_, Ex are called tensors. The tensor map ® 

from II?_,£ into the tensor product @?_, Ex will be denoted by 

© = (£1, 22,°++, Lp) 4 OL = 2] OT2 @ ++: @ Lp = QL Te. 

A tensor is said to be decomposable if it is of the form @z = 71 @ 42 ®-:- @ Ly 

for some © = (2),2,---, 2p) € T2_,E,. Since the tensor map is multilinear, 

the following results follow immediately.
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15-1.6. Corollary (a) 2; @ x22 @---@ zp is linear in each variable z,. 

(b} Every tensor is a sum of decomposable tensors. 

15-1.7. Exercise Let g,h be linear maps from the tensor product @}_, Ex 

into a vector space H. If g(@x) = h(@=) for all decomposable tensors @x, then 

g =/h on the tensor product @)_, Ex. 

15-1.8. Exercise For every linear map f : Qj, Ex — F, let T(f)(z) = f(@z) 
for every x € II?_,E;,. Prove that T is an isomorphism from the vector space 

LQ Ex, ) onto the vector space M(E), Ey,:--, Ep; F) of multilinear maps. 

15-1.9. Exercise Prove that the algebraic dual space of @?_, Ex is isomorphic 

to the vector space M(E1, £x,---, Ep) of multilinear forms on IIZ_, Ey. This 

justifies the way which we constructed tensor product @j_, Hx as a vector 

subspace of the algebraic dual space of M(E, Ey, ---, Ep). 

15-1.10. Exercise Let E be a vector space and let g: K x E — £ be given 

by g(A,x) = Ax. Prove that & is the tensor product of K and F under the 

tensor map g. In symbols, we have K@ E=E and \@a=da. 

15-1.11. Exercise State and prove a statement to identify FE @(F @ G) with 

(E ® F) @G for vector spaces EF, FG. Hence justify the notation 

LOYVW2z=(COyW Qz=T@y@z. 

15-2 Tensor Products of Linear Maps 

15-2.1. For k = 1,2,---,p, let Ey, F, be vector spaces and f, : BE, — Fy 

a linear map. Suppose L*(E%, F,) denote the vector space of all linear maps 

from E, into F,. According to last section, the tensor product @f_, fx is a 

vector in vector space @?_, L*(E,, F,). On the other hand, a separate definition 

for tensor product of linear maps is used. These two definitions are consistent 

under the identification of §15-5.10,11. The reader may modify the proofs from 

normed spaces to algebraic case. 

15-2.2. Theorem There is a unique linear map @_, fi from @}_, Ex into 

Qiu Pe such that (@F_, fe(@Ry Le) = Ob, fale) for all xy € Ey. It is called 

the tensor product of linear maps fx. 

Proof. Since the map g : TR, Bx > @P, Fe by 9(@1, 22,+++, Zp) = Oy SelZe) 

is multilinear, there is a linear map @2_,fk : @p. Ex 7 @l., Fi, such that
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(Qa fe M@peay Tk) = G(t1,02,--+, Lp), Le. (Olay feNOhate) = Sha fale). 
Finally suppose h : @?..E, — Q@i., Fe is any linear map such that 

AOL. Te) = OL fe(ee). Then we have h(@x_, cn) = (@h, fe M@p_) Lx). Since 

the decomposable tensors span @j.., Lx, it follows that h = @2_, fi. a 

15-2.3. Corollary Let f;, be a linear form on Fy for each k = 1,2,---,p. Then 

there is a unique linear form Qe, fe on Ore E, such that for all 2; € Ey, we 

have (@f_, fx Qh 24) = WR, fale). 

15-2.4. Corollary If @f_,2, =0, then x; =0 for some j. 

Proof. Suppose that x; #0 for every 1 <j <p. There is a linear form f;, on 

E;, such that f,(v,) = 1. Then @%_, fx, is a linear form on @_, Ex satisfying 

(QR Fe Oe Fe) = TR, fe(@e) = 1. Therefore @2_, xp #0. Oo 

15-2.5. Corollary If @[_,2% = @f.,yx 7% 0, then there are scalars a; such 

that 2, = any, for each k and also TT Ok =1. 

Proof. Since @R_,t, #0, we have x, #0 for each k. Choose a linear form f;, 

on Ey such that f,(z,) = 1. Define a; = Ty; fe(ye). Now for every linear form 

hon Ex, applying fi @-+-@ fj-1 QH® fji1 @--- @ fy to OL Te = OP ye, we 

have A(x lng felon) = ACyz Was flys) ie. h(xz) = agh(yj) = h(azy;). Since 
h is arbitrary, we have x; = a,;y;. Replacing h by fj, we get 1 = IIR_, fa(x). 

Therefore the proof is completed by 

TEx = TR, Teyy fe(ve) = (Why fe(e)) = L- o 

15-2.6. Theorem For each k, let Ey,fk,Gy be vector spaces. Let 

fe: Ex — Fy and 9, : Fy — Gy be linear maps. Then the composite maps 

satisfy the following relation (@3_,9%)(@¢., fe) = ®t, (ge fr) 

Proof. It suffices to verify the equality for decomposable tensors. Let z, € Ex. 

Then the proof is completed by the following calculation: 

(Qh Ge Opag Sepa Te) = (Oh MeN Mh Fee] 

= Oh Gel fe(te)] = Oh (Ge fe MCe) = (OR, Ge fe Bhuy La). 

15-2.7. Exercise If J, is the identity map on E,, then @2_, J, is the identity 

map on @j_, Ex. 

15-2.8. Exercise Prove that if every fy : Ey, — Fy is an isomorphism, then 

OLiife > Qe, Be + Wy. Fe is also an isomorphism. Furthermore deduce 
=1 - 

that (@ffk) = @hafy'
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15-2.9. The above results may be abbreviated by the following notations. For 

all linear maps f, : E, — Fy, define a map f = (fi, f2,--+, fp) from IIZ_, E, mto 

THF by f(x) = (f(a), fo(va), ++, fp(@p)) for © = (21, %2,°++, 2p) € WR En. 

Then we have some formulas such as (@f)(@zr) = @f(x), @(gf) = (@g)(@f) and 

(@f)"' = @(f7?). 

15-2.10. Example Not every tensor is decomposable. 

Proof. Let e1,€2,€3,e4 be the standard basis of IR‘. We claim that the 

tensor z = €, ® €2 + €3 @ e4 is not decomposable. Suppose to the contrary 

that z = 2 @y for some x = yw a;e; and y = via Bye; in R*. Let 

fi. fo, fs, f4 be the dual basis given by fi(e;) = é6i7. Applying fp © f, to 

en Qye; = €1 @ en + €3 @ €4, we have apy = fplei)gg(e2) + fp(es)gqlea). 
Letting (p,q) = (1,2), (3,4), (1,4) respectively, we obtain a; f) = 1, a384 = 1 

and a 34 = 0 which is a contradiction. oO 

15-3 Independent Sets in Tensor Products 

15-3.1. Theorem Let E, F be vector spaces and let z;,y; be vectors in k, F 

respectively. If y),y2,°--+,Ym are linearly independent and if an x; @y; =O, 

then all x; =0. 

Proof. Since y|,%2,'--,Ym are linearly independent, there are linear forms g; 

on F' such that g,;(y;) = 6;;. Now for every linear form f on E, we have 

0=(f 89) On, zr; @ 7) = a F(ej) gi) = in f(%5)0i3 = fw). 

Because f is arbitrary, we have x; = 0 for each ¢ = 1,2,---,m. Oo 

15-3.2. Theorem If {2),22,---,2m} and {y1,%,-:-,Yn} are linearly 

independent in £, F respectively, then the set {2; @y;:1<i<m,1<j<n} 

is independent in F @ F. 

Proof. Let aij be scalars satisfying S77") rt ait; @y; = 0. Then we have 

a ‘open O45 2%) @y; = 0. Since y,y,---, Yn are linearly independent, we 

obtain aan o,;£; = 0 for each 7. Now because 1), 22,:+-,2m are linearly inde- 

pendent, we get a,;; = 0 for all i,7. Therefore the set {x; ® y;} is independent 

inFeF., o 

15-3.3. Let z be a tensor in EF @ F. If z = 0, then the rank of z is defined to 

be zero. If z #0, then its rank is defined as the smallest integer m > 1 such 

that z= 0" 2; @ yj where x; € E andy; € F.
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15-3.4. Theorem Let z = 57%", 2; @ yj be a tensor in FE @ F where x; € E 

and y; € F. If m > 1 is the rank of z then both sets {x1,22,---,2%m} and 

{¥1, ¥2,°°°; Ym} are linearly independent. 

Proof. Suppose m = 1. Then z = 2, @y). Since rank(z) > 1, we have z #0, i.e. 

a2, #0 and y, #0. Therefore both sets {x,} and {y} are independent. Next 

assume m > 2. Suppose to the contrary that y1, ¥2,--+,Ym are linearly depen- 

dent. There is 7 > 2 such that y, is a linear combination of y1,y,---,y;-1. By 

rearranging the order, we may assume y,, = an jy; where a, are scalars. 

Then we have 
m—1 m—-l m m—-1 

jel jel jel jel 

This contradicts to the rank m of z. Therefore y,,y2,:--,Ym are linearly 

independent. Similarly, +), 22,---,2%m are also linearly independent. Oo 

15-3,5. The following results in this section are also true for normed spaces 

and continuous linear forms. 

15-3.6. Lemma Let z be a tensor in FE @ F. If (f ®@ g)(z) = 0 for all linear 

forms f,g on E, F respectively, then z = 0. 

Proof. Suppose to the contrary that z #0. Then we can write z = ea LjQy; 

where m > 1 is the rank of z and 2; € E, y; € F. Then both {2),2,---,2m} 

and {y1,¥2,-'-,Ym} are independent. There are linear forms f,g on E,F 

respectively such that f(z.) = g(yx) = 1 for all &. Now the following 

contradiction establishes the proof: 

0=(FON2)=(FO9(Y- Ou) =o" fe )oy=m. 9 
15-3.7. Theorem Let EF, F be vector spaces. Let a;,x2; be vectors in # and 

bi, y; in F. Then the following statements are equivalent. 

(a) oes Gi ©: = YO a; @ yy. 
(b) 32, fai); = Dye S(@s)y; for all linear forms f on E. 

(c) 3, gba; = ye 9(yj)%; for all linear forms g on F. 

(d) SO, flas)g(bi) = ea f(z;)g(y;) for all linear forms f,g on E,F 

respectively. 

Proof. (a => d) Applying f ® g to both sides of (a), we have 

Veaif @ Nai Ob) =) _ Ff @ Nj Oy) 
which gives (d) right away.
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(d => a) Let z= 02, a: @B; - a x; ®y,;. Then for all linear forms f,g on 

E, F respectively, we have 

(FONAD=P)_F@ Mai @b)—~Y (f @ ge; @ ys) 
= ns Faidgb) — D7, Fp a(ys) = 0. 

Therefore z = 0 which establishes (d). 

(d => b) Since g is linear, we get g pe faiybs| =g be favs . Because 

g is arbitrary, we obtain (b). 

(b = d) follows immediately by applying g to both sides. Similarly, (c) is 

equivalent to (d). Oo 

15-3.8. Corollary Let £,, ky,---,E, be vector spaces and for each k let 

ri, yj} € F,. Then the following statements are equivalent. 

(a) UE] OO Ot = Vy OUe-- Oy. 
(b) 32, f@p2} @ --- @ t = TL, fyDyZ @ --- @ yy for all linear forms f 

on Fj. 

(c) Son Wa fee) = TI?_, fe(yZ) for all linear forms f, on Ex. 

15-3.9. Theorem For each 1 < k < p, let Ey, Fy, be vector spaces and let 

Ay, By: Ey > F, be a linear map. If @2_,A, = @.,B, #0, then there are 

scalars A; such that By = A, Ax for each k and that TI?_,Ag = 1. 

Proof. For k > 2, since B, + 0 there exist x, € EF, and linear form f;, 

on F, such that f;,(B,2,) = 1. Now take any x, € &; and any linear form 

fi on Fi, we have (@}_, fe @puy Ak (Oyu Lk) = (@hay fe OK Ba M@P1 Lk), ie. 

Ai(Ara1) (Ra fe(Ante)) = fi(Biz) (Wh fe(Bere)), or fir Aix) = fi(Bizy) 
where A; = Tho fa( Ann): Since f, and x, are arbitrary, we have B, = 4, A). 

Similarly, there are scalars 4, such that B, = A,Ax for all k > 2. Finally 

BeAr = OL, Be = MR_Ak) Whe, Ak ZO gives Z_jAy = 1. o 

15-4 Matrix Representations 

15-4.1. Identify a column vector a = (a), @2,-++,@n)! as a function on the index 

set S = {1,2,---,n} and similarly 6 = (b),62,---, 6m)’ on T = {1,2,---,m}. 

Then KK”, K”™ are identified as the vector spaces F(S), F(T) of all functions on 

S,T respectively. Next lemma will show that 2@b is identified with the function 

con the product set S x T defined by e(4, 7) = a;b;. With reversed lexical order, 

we shall generalize matrix representations from linear to multilinear maps on
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finite dimensional vector spaces. The notation §7-5.8 of matrix representations 

will be used. 

15-4.2. Lemma Let F(S), F(T) be vector spaces of certain functions on 

non-empty sets S,T respectively. For every f € F(S) and g € F(T), let 

m(f,g): Sx T — K be defined by z(f,9)(s,t) = f(s)g(t). Then the vector 

space P spanned by {m(f,g) : f € F(S), E,g € F(T)} is a tensor product of 

F(S), F(T). As a result, it justifies the usual notation : (f @ g)(s,t) = f(s)g(t). 

Note that when S is metric space, we naturally restrict F(S) to the set of all 

continuous functions only. 

Proof. Clearly 7 is bilinear. Hence there is a linear map y : F(S)@F(T) -— P 

such that for all f ¢ F(S) and g € F(T) we have z(f, 9) = y(f ®g). Since P is 

spanned by the range of 7, the map y is surjective. Suppose to the contrary 

that the linear map y is not injective. Then there is z # 0 in F(S) @ F(L) 

but y(z) = 0 in P. Write z = 0°", f; @ gj where {f;} and {g;} are linearly 

independent in F(S), F(L) respectively. Then y(z) = ean (5,93) = 9, ie. 

for each (s,t) € S x T, ee f;(s)g;(t) = 0. Hence en f;(s)g; = 0. By 

independence of {g;}, we have f;(s) = 0 for all s € S, ie. f; = 0 and thus 

z= an f; © 9; =0 which is a contradiction. Therefore y is an isomorphism 

from F(S) @ F(T) onto P. Oo 

15-4.3. Both index sets S = {1,2,---,n} and T = {1,2,---,m} have their own 

natural orders 1 <2<3<.--. Their product set S x T is endowed with the 

reversed lexical order listed explicitly below: 

gdb< @) < < (nl) 

< (2) < 22) < < (n,2) 
< wae < nae < < se 

< (lm < @,m < +: < (n,m). 

With the notation of §15-4.1, the function c = a @ b is identified as the column 

vector : (a,b), a2b1, +--+, G01, @1b2, @2b2,---, Qndo, ++, @1bm,A2bm,-*-,Anbm)*. 

This motivates the following definition. We choose reversed lexical order so 

that §15-4.9 holds and that the notation of tensor products can be applied to 

higher derivatives even though it is beyond our scope. 

15-4.4. Let A= [a,j] and B = [b,;] be matrices of arbitrary sizes. Then their 

tensor product is defined as the matrix given by 

Abi, Abi2 tee | 

A@®B=| Aby Abs 
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The following i illustrati : e following is an illustrative example oa 3a 4a bb 4b Ab 

2 3 4 : ] 5a 6a Ta 5b 6b 7b 

5 6 7] te 4} | a6 3c 4c 2d 3d 4d 
Se 6c Te 5d 6d Td 

Row vectors and column vectors are considered as matrices and hence their 

tensor products are also defined. 

15-4.5. Theorem Let € = [e,,e2,---,e,] and F =[fi, fo,---, fm] be ordered 

bases of finite dimensional vector spaces FE, F' respectively. Then set 

E@SF={e.Ofp:1<icnl<j<m} 

forms a basis of EF @ F. Since the reversed lexical order on € ® F is always 

assumed, we have [x @ y] = [x] @[y] for alla € EF andye F. 

Proof. We have proved that € @ F is independent in E ® F. Next, the 

expression z@y = oy an xiyje; @ f; shows that € @ F also spans FE @ F 

and gives the required coordinate vector. Oo 

15-4.6. Theorem I[n addition to the conditions of last theorem, let G, H 

be finite dimensional vector spaces with bases G = [91,92,-°:,@q] and 

H = [hi,h2,---, hp] respectively. Let A: EF + F and B: G = H be 

linear maps. Then we have [A ® B] = [A] ®[B] if both E@ 5 and FQ@H 

are endowed with reversed lexical orders. 

Proof. It follows immediately from (A @ B)(z @ y) = (Az) @ (By). Oo 

15-4.7. Exercise Let dim(/) = dim(H) = 2 and dim(F’) = dim(G) = 3. Define 

A: EF by A(x) =(m+4n)f, + (2m + Sn) fo + 3m + 6n)f3 for x = me, + nez 

in # and also B: G > H by Bly) = (Ja + 88 + 9y)hy + (100 + 208 + 30y)h2 for 

y = ag, + Ggo+7g3 in F where m,n, a, 8,y € K. Then E@G has the following 

ordered basis : €; ® 91, €2 @ 91, €1 ® 92, €2 © go, €1 @ 93,62 ® g3 and F @ H has 

the ordered basis : f; @hy, fo @ hi, fg @ hy, fi @ ha, fo @ ho, fg @ hy. Show that 

the coordinate vectors are ma 

ne 
m ° me 

wel= |" |, = 6| and [z@y] = np =[z] @[y]. 
¥ my 

: . . ny 
Verify that the matrix representations are 

1 4 
7 8 9 

[A] = ; y » [B= Ho 20 20 
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7 28 8 32 9 36 

14 35 16 40 18 45 

21 42 24 48 27 «654 

and also [A @ B] = = [A] ® [B]. 
10 50 20 80 30 «120 

20 50 40 100 60 150 

30 60 60 120 90 180 

Finally calculate [Ar] @ [By] and [A ® B][z @ y] separately and check if they 

are equal. 

15-4.8. We shall generalize matrix representations from linear to bilinear and 

consequently multilinear maps. Let A: E x G— F be a bilinear map. Using 

the same notation as before, the expression A(e;, 9;) = a kel ak yk gives a col- 

ij ai, ; a, ay ‘in K™. The matrix representation of the 

bilinear map with respect to the ordered bases €, 5, F is defined as the m x ng- 

matrix given by [A] = [Ci,Ca1,---,Cni,Ci2, Cx, +++, Cra, Cig, Crgs +++ Crag]: 

Note that the subscripts are given the reversed lexical order. 

umn vector Cj; = (a! 

15-4.9. Theorem [A(z, y)] =[A]fx]fy]. 

Proof. Just like in linear case, it follows from the interpretation of 

A(x, y) = »~, yo Ale, 95) BiYs = er ee ve ak riys- Oo 

15-4.10. Exercise Let M(E,G;F) be the vector space of all bilinear maps 

from E x G — F,. Prove that the map A — [A] is an isomorphism from 

M(E,G; F) onto the vector space mat(m, nq) of all m x nq-matrices. 

15-4.11. Theorem Let A: ExG— F bea bilinear map and B: E@G—5F 

be the linear map associated to A, i.e. A(x, y) = B(x @y) for all (z,y) € EXxG. 

Then we have [A] = [B]. 

Proof. Clearly both [A],[B] are of the same size m x nq. Suppose [A] = [ak] 

and [B] = Ub ]. Observe that S77", ak, fe = Alei, 93) = Ble; @ 93) = Sey bE, fre- 

Therefore ak, = = bf, for all 2,7, &, ie. [A] = [B]. oO 

15-4.12. Corollary For every m x nq-matrix A, n-column vector x and 

q-column vector y, we have (Ax)y = A(z @ y). As a result, tensor product can 

be used as an alternative of §10-5.6 to handle the higher derivatives in finite 

dimensional vector spaces. 

Proof. Let E=K"”, F =K™ and G=K’°. Then (z,y) — Aczy is a bilinear 

map from E x G — F and its matrix representation with respect to the stan-
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dard bases is A itself. Let B: E @ G — F be the associated linear map of A. 

Then the proof is completed by the following computation 

Azy = [A}[z]ly] = [Ary] = [B@ @ y)) 

= [B][x ® y] = [A(z] ® [y]) = Ala @ y). o 

12 3 4 5 6 

10 20 30 40 50 60 

alS])\ lg; = [20 4 72] 15] _ [200+ 46b+ 72c 
7]] |? | > [200 460. 720 ~ | 200a + 4608 + 720c 

15-4.13. Example Let A= |: Then we have 

Cc 

and also 6a 

Ta 

a([SJe i) [i 23 4 °5 s) 6b -| 20m + 6b 720, | 
7 . 10 20 30 40 50 601 {75 200a + 460b + 720c | 

6c 

Te 

15-5 Projective Norms on Tensor Products 

15-5.1. Let E,F,G be normed spaces and y: & x F + E @ F the tensor 

map. Then every continuous bilinear map f : E x F — G factors through a 

linear map g: F@F 4G, ie. f = gy. The identification 

T:M(E,F;G)—- L(E ® F,G) 

defined by T(f) = g is an algebraic isomorphism. In this section, a norm is 

defined on E @ F so that T becomes an isometry. 

15-5.2._ A norm on the algebraic tensor product £ @ F is called a tensor norm 

or a cross norm if ||x @ y|| = ||z|| |ly|| for all decomposable tensors x ® y. It 

is easy to prove that if E, F contain non-zero vectors, then ||y|| = 1 for every 

tensor norm on E@ F. 

15-5.3. Exercise Prove that if E, F are separable, then so is EF @ F under 

every tensor norm. 

15-5.4. For every z € E@F, write z = a x;®y; where xz; € E andy; € F. 

Note that x;,y; may be zero vectors and hence z may be the zero tensor. Let 

llz|| = inf yt lz; {| Ily;l| where the infimum is taken over all representation of 

z as a sum of decomposable tensors. This is called the projective norm on the 

tensor product, or the z-norm. We shall assume that our results hold for finite 

tensor products of normed space without any further specification.
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15-5.5. Theorem The projective norm is the largest tensor norm on F @ F. 

Proof. Clearly the projective norm is positive and the projective norm of the 

zero tensor is zero. Let ¢ = ) (7a; @ b; and z = ve x; @ y; be 

tensors in E@F. Clearly we have ||c + z|| < ee lla || [Bel] + a lls |l [ly l- 

Taking infima over the representations of c,z, we obtain ||c¢+ z|| < [cll + {lztl. 

Similarly, it is easy to show {JAz|| < |A| ||z|| for every A ec K. If A 7 0, 

then |A} zl] = [Al []:AzI] < [A] [4] [X2I[ = [|Az|}, be. [AI [lzl] < [|Az|]. Therefore 
|A| |z|| = ||Az|| which can be verified directly when \ = 0. Next suppose z #0. 

Write z = S77, u;@v; where {u,} and {v;} are linearly independent sets. There 

are continuous linear forms f, g on E’, F respectively such that f(u,) = g(v,) = 1 

and f(u;) = g(v;) = 0 for all i > 2. Hence (f ® gz) = 7, f(udg(vi) = 1. Now 

for any representation z = ve 2X; ® y;, observe that 

1=(F@92)=(F 89) (YY 2 Bus) =D, feng 
= >, f(ergtup} <S7_, VF lol <I ilgll 97, Heat ysl 

Taking infimum over all representations of z, we have 1 < |{f|| ||g|] ||z||. There- 

fore ||z|| 0. This proves that the projective norm is a norm on E @ F. To 

show that the projective norm is a tensor norm, suppose z = u@v # 0 is 

a decomposable tensor. Then both u,v are non-zero. There are continuous 

linear forms f,g on E, F respectively such that ||f{| = |lgl| = 1, f() = lull and 

g(v) = |u|]. Thus (f @ 9)(z) = f(u)g(v) = |lul| {lv||. Now for any representation 
re . . 

z= je LX; ®y;, calculation as above gives 

ul lol = CF @ 902) < AFI Holl So, Heal Hlvall S22, Hel ly 
Taking infimum, we have ||u([ ||v|]| < ||z||. This together with the definition 

shows ||u|| ||v|] = ||z||. Therefore projective norm is a tensor norm on FE ® F. 

Finally, let |?| be any tensor norm on F @ F. Then for every z = Vel 25 @QY;, 

we have |z| < 07, |2; @ yl < Shy lleyll Ilys] Taking infimum over all 

representations of z, we have |z| < ||z||. Consequently, projective norm is the 

largest tensor norm. a 

15-5.6. Theorem For every continuous bilinear map f : EF x F — G, there 

is a unique continuous linear map g : EF @ F — G such that f = gg where 

yp: & x F > E® F is the tensor map. Furthermore, let 

T: M(B, F;G) > L(E @ F,G) 

be defined by Tf = g. Then T is an isometric isomorphism.
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Proof. Let z= $"j, £j @ y, be any tensor in F @ F. Observe that 

Ilo < ia I|gzy @ ysll = iat Fez, ¥s)I] S et FI Hleslillysll- 

Taking infimum over all representations of z, we have ||g(z)|| < ||f\l {|z||. Hence 

g is continuous under the projective norm on E @ F. Furthermore, ||g|| < || fll. 

Conversely, if g: £@F — G is continuous linear, then the composite f = gy is 

continuous bilinear. Since ||f(x, y) = [f(z ® yl < Ilgll lz @ ylt = Ilglt lel Uy, 

we obtain || f|| < {|g||. Therefore || f|| = |/gl|. It is obvious that Tf is linear in 

f. This proves that T is an isometric isomorphism. oO 

15-5.7. Exercise Identify the dual space of F @ F under projective tensor 

norm with the space of all continuous bilinear forms on & x F. 

15-5.8. Theorem There is a unique linear injection y: L(E, F) — (E£@ F’Y 

such that y(A)(z @ g) = gAz,V (2,9) € (E x F’). As a result, L(E, F) is 

identified as a subspace of (E ® F’)’ by A(x @ g) = gAz, V (2,9) € E@ F". 

Proof. It is trivial to verify that the map ¥(A) : Ex F — K given 

by #(A)(e, g) = gAx is continuous bilinear and hence there is a continuous 

linear map y(A): E @ F’ — K such that p(A)(c ® g) = gAr. Thus the map 

py: LE, F) > (E ® F’) is well-defined. It is obvious that y(A) is linear in 

A € L(E,F). To prove that is injective, if g(A) = 0, ie. gAx = 0 for all 

(x,g) € E x F"', then since F’ separates points we have Ar = 0 for all x € E, 

or A=0. Therefore y is a required linear injection. For uniqueness, suppose 

é: L(E,F) > (£ ® F’) is a linear map satisfying £(A)(x ® g) = gAz for 

all (2,g) € (2 x F). Then €(A)(x ® g) = Y(A)(tz, 9). Therefore we obtain 

£(A) = 9(A), be. = 9. oO 

15-5.9. Corollary Let A), A2,---, Am: E — F be continuous linear maps. 

If they are linearly independent, then there are points 21, 22,---,2%n € E and 

continuous linear forms g1,92,--:,gn on F such that viet mAiz; = 1 and 

Dyer 95 Ast; = 0 for all i > 2. 

Proof. Observe that (Aj), y(A2),:+:,y(Am) are linearly independent in 

(E @ F’' by injectivity of yy in the proof of last theorem. There is z ¢ BE @ F" 

such that y(A1)(z) = 1 and y(Aj)(z) = 0 for all i > 2. Write z = 30%) 2; @ gj 
where z; € E and g; € F’. Now y(A)(z) = et 9; Aix; completes the proof.0 

15-5.10. For each 1 < k < p, let Ey, F;, be normed spaces and L(E,, Fy) the 

vector space of all continuous linear maps from £, into Fy. Define
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F(A1, Aa, + ++, ApME1, F2y° ++ Lp) = QR AnLe 

where A, € L(F,, F,) and x, € Ey. Since 

f(At, A2,-++, Ap): WR Ek > Qh, Fi 

is a continuous multilinear map, there is a unique continuous linear map 

g(A1, Az, +++, Ap): Oper Ei, > @her Fi, 

such that g(Ay, Aa, Ap MOR Le) = OL Awe. 

Because 9: TR L(Ex, Fe) > L(Q?, Ex, Qh, Fe) 

is a continuous multilinear map, there is a unique continuous linear map 

h: Ok L(x, Fe) + L Qh Ex, Oh Fe) 

such that h(@p_ An) = g( Al, Ao, +++, Ap). 

Therefore [R(@R_, An @R rk) = OR Anwe. 

We shall prove in next theorem that h is injective. Hence the tensor product as 

vectors in L( Ey, F,) agrees with the tensor product as linear maps. Therefore 

the tensor products of linear maps A; @ Az @ --- @ Ap enjoy all properties of 

tensor products of vectors. 

15-5.11. Theorem The tensor product @y_, L(Ex, F,) can be identified as 

a vector subspace of L(@?_, Ex, Qe. Fr): 

Proof. It suffices to show that h defined above is injective. Suppose to the 

contrary that there is D € Qe L(Ex, Fy) such that h(D) = 0 but D + 0. 

Write D = 377, @f_,Aiz where r is the rank of the vector tensor D. Then 

{Ai : 1 <i <r} is an independent subset of L(E,, Fy). There are x5, € Ex 

and gj, € Fi such that 

ae Acro adh fia 
j(k)=1 Ii{kyk Mik Ti (k)k = 0, ifi>2. 

Now h(D) = 0 gives 
m(1) m2) m{p) 

= s- > . SS (ea Gide) h(D)( Bh Fj(4)k) 
g(D=1 IQ)=1 (p= 

m1) m2) mip) r - Pp Pp Pp = > jel y jet 5S pea Se=195008) (Y et MBE, Ain (@Rar2;4)) 

m(2) mip) Pp 
a ae Bhar (Giceyk Aik jk) xe 

"PTT anc 5(2)=1 IP=1
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r p mk} r Pp 
= bye AikZjikyk = l=r 
in IL... ont Tilkyk OAK H(k)k a I. 

which is a contradiction. Therefore h is injective. im 

15-5.12. Exercise Prove that under the projective norms, both g,h are 

continuous. Furthermore, show that ||g|| = ||A|| is either zero or one. 

15-6 Inductive Norms 

15-6.1. Let E, F be normed spaces. Write F.®, F to indicate that the projec- 

tive norm is used. Since every x € EF C E” is a continuous linear form on E’, 

x@y is a continuous linear form on E’ @, F’ defined by (u®@v)(x@y) = u(x)u(y) 

where u € E’, vu © F’ and y € F. Therefore we identify E @ F as a vector 

subspace of (E’ ®, F’)'. In this section, we shall study the norm on EF @ F 

induced by (E’ @, F’)’. With this norm, we can identify E’ @ F as a subspace 

of L(E, F). 

15-6.2. Lemma For every f € (E’ @, F’)’, we have ||f|| = A(f) where 

Af) = sup{| fu @ v)| :u € E%, |lul] < lu € FY jul] < 1. 

Proof. Since |f(w®v)| < [If lu ® ull = [LF [lull [loll < [Fl we have 
Mf) < ||f||. Conversely, take any w € E’ @, F’ with 0 < ||w|] < 1. Then for 

every € > 0, by definition of projective norm we have w = )07_, uj @ vj and 

yet x5 || llesl| < |lw|| + for some u; € E’ and v; € F’. Since w #0, we may 

assume that all u;,v; are non-zero. Hence we obtain 

r r Us Ds 

< ; Buz) < ah @ a) sons ey owls Oo Gey Ray jel 

< DO, ACAllusll losll = AGS, aslillosll < ANC +6). 
Taking supremum over |{w|| < 1, we have ||f{| < A(f)(1 +). Since € > 0 is 

arbitrary, we get: || f|| < AC). aq 

Iles Mesh 

15-6.3. The inductive norm or e-norm on E @ F is defined by 

A(z) = sup{|(u @ v)(z): u € EB’, |lul] < 1,u € F", |u|] < 1}. 
We shall write E @,. F to indicate that the inductive norm is used. Recall that 

the projective norm on EF ®, F is given by m(z) = inf Oy lz; | Ilys || where the 

infimum is taken over all representation of z as a sum of decomposable tensors. 

15-6.4. Theorem The inductive norm 4 is a tensor norm on £@, F’.. Further- 

more, we have |(u @ v)(z)| < |lul||/u|[A(z) for allue BE’, ve F’ and ze E@F.
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Proof. We have proved that \ is a norm on (E’ @, F’)’ and hence it is also 

norm on its subspace Ff @ F’. Since 

Ax @ y) = sup{|(u @ v)(x @ y)| = lull < 1, [lel] < 1} 

= sup{{u(z)| lo): [lull < 1, [lull < 1} = [lellllyll, 

X is a tensor norm on F' @ F. To show the inequality, we may assume that 

both u,v are non-zero. By definition of A, we have 

(ea) ° Ga) ls 
from which the result follows by multiplying ||u|| ||v|| to both sides. Oo 

Xz) 

15-6.5. Lemma For all z€ E ® F and all w € E’ @ F’, we have 

jw(z)| < w(w)A(z) and |w(z)| < A(w)a(z). 

Proof. Without loss of generality, assume that both w,z are non-zero 

otherwise the left hand side becomes zero and the result follows. Take any 

representation z = )7i", 2; @ yi. We may assume that all 2;, y; are non-zero 

otherwise just drop them. Observe that 

[m2] < D0" wees @ yo) 

= 7 | (Ge @ py) | ea deal s SOT, Awa lh: 
Taking the infimum over all representations of z, we obtain |w(z)| < A(w)x(z). 

Similarly, we can prove the other inequality. Oo 

15-6.6. Exercise Let E,, £, denote the same vector space E equipped with 

two norms p,q and E7, EF, their topological dual spaces respectively. The dual 

norm on Ef, is defined by p'(u) = sup{|u(x)| : x € E,||z|| < 1}. Prove that if 

p<qonE, then Ey C Ej and also q’ < p’ on Ej. 

15-6.7. Theorem If &, F are Banach spaces, then x’ =» on E’ @ F’. 

Proof. Since |w(z)| < A(w)z(z), we get m/(w) = sup{|w(z)| : m(z) < 1} < Aw). 

On the other hand, suppose w € E£’ @ F", ||f|| < 1 in E” and |{g|| < 1 in F” 

are given. Write w = 7” jai Uj @ Vj. Since E, F are Banach spaces, for every 

€ > O there are « € E and y € F such that |[z|| < ||fll +e, llyll < llgll+e, 

uj(x) = f(uy) and v;(y) = g(v;) for all 7. Since 

(F @.aw)= YO fluydgly) = YO, @y) = wle  v),
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we have 
zx 

® = |w(z @ y)| = |w ( — (F@ oyu] = he @ w= |w (<2 @ 2) eh lal 
< m'(w)(||Fl] + dlgl| + ©) < w/w) + €)?. 

Taking supremum over all f,g, we obtain \(w) < 7’(w)(1+6)?. Because ¢ > 0 

is arbitrary, we have \(w) < a'(w). Oo 

15-6.8. Let E, F be normed spaces. The map #: E’x F > L(E, F) defined by 

wf, yx) = f(z)y for f ¢ E’,y € F,x © E is a continuous bilinear map. Hence 

there is a unique linear map y : E’ @ F — L(E, F) so that v(f @y)(x) = f(xy. 

15-6.9. Exercise Prove that the image of FE’ ® F under ¢ consists of all finite 

dimensional continuous linear maps from F into F. 

15-6.10. Theorem The map ¢ is an isometric isomorphism when E’ ®, F is 

equipped with the inductive tensor norm. In particular, y is injective. Hence 

we can embed E’ ®, F as a vector subspace of the normed space L(E, F). 

Proof. Let z= a f; ®y;. The following calculation completes the proof: 

Holl = sur(lhe2re)| «2 € £, fell <1} = sup [SO Hea|| 

= sup sup {Io (, fils) | :9 € F’ |Igll < i} 
iniI<t 

= sup sup | atus)f) @)|= sup |W" ows 
llolI1 [xll< (he Si SP, ie AYA 

= sup sup je [do " ou)f;||she B" 

lig] (lRll<d ype 

= sup {/J7" ousdn(f5)| + Ilgll < 1 lial < 1b =A (SO ew) = rw 
15-6.11. The completions of F @ F under the projective and inductive norms 

are denoted by F @, F and E @, F respective. Their properties can be derived 

from the dense subspace EF @ F. The details are left to the readers. 

15-7 Tensor Product of Hilbert Spaces 

15-7.1. In linear algebra, it is well-known that if a tensor product of matrices 

is normal, then each factor is also normal. This will be generalized to operators 

on Hilbert spaces. We start with introduction of natural inner products on the 

tensor spaces.
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15-7.2. Lemma The completion K of a complex inner product space H is a 

Hilbert space. 

Proof. For each b € H, the map f : H — © given by f,(a) = < a,b > is 

continuous linear in a and hence it can be extended over K, i.e. < 2, b > is well- 

defined for all z € K and 6 € H. It is easy to show that | < 2,b > | < ||z|| |[6||- 

Therefore the map g, : H — € given by g,(b) = < z,b >~ is continuous linear 

in b and hence it can also be extended over K, i.e. < x,y > is well-defined for 

all z,y € K. It is easy to verify that < z,y > is an inner product on K.. Its 

norm is complete because K is the completion of H. The uniqueness follows 

from the fact that H x H is dense in K x K and that < z,y > is jointly 

continuous in (2, y). D 

15-7.3. Lemma Let H,K be complex inner Spaces. There is a unique inner 

product on the algebraic tensor product H ® K such that for all a,” € H and 

b,y € K we have <a®@b,z@y>=<a,r><by>. 

Proof. Define fry: H x K — © by fry(a,b) = < a,z >< b,y > for every 

(c,y) € Hx K. Clearly fry(a, 6) is bilinear in (a, 6). Hence there is a linear 

map gry: H@®K — C such that fry(a @ 6) = gry(a @ 5) for all (a,b) ¢ H x K. 

Next, for each c € H®K define p,: H x K > C by p(x, y) = gay(c). To show 

that it is linear in z, let c= ie a; @b; and x = au+ Bu where a, 8 € K and 

u,v © H. Observe that 

p-(au + Bu, y) = Hourpuyy(C) 

= Kourpoyy oe a; @ by) = int HKourpuyy(a; ® b;) 

= iat Fiecaspuyy(4j 03) = iat < aj, aut fv >< bj,y > 

= ie <aj,u >< bj,y> +a? <aj,u ><b;,y > 

= Wuy(C) + Bguy(c) = ape(u, y) + Bpelu, y). 
Therefore p,(x, y) is linear in x and similarly is also linear in y. There is a linear 

map q,: H @ K — C such that q¢,(z ® y) = p.(z,y). For every c,z EC H@K, 

write <c,z > =q.(z). Suppose z = 57", x; @ y;. Then it is easy to verify the 

identity: <ce.z>= D2, Dye <a;,2; >< bj,y; >. From this, it follows that 

<c¢,z > is the unique inner product on H @ K required by the theorem. O 

15-7.4. Exercise Prove that ||x @ y|| = [|x| |ly|| for all c €¢ H andy e K. 

15-7.5. Let H,K be complex Hilbert spaces. Let H ®, K denote the inner 

product space of algebraic tensor product of H, K. Then the completion H@K
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of H ®, K is called the Hilbert tensor product of H, K. It is a Hilbert space 

containing all decomposable tensor and its inner product satisfies 

<a@br@y>=a<ar><by> 

for all a,x € H and all b,y © K. Let A,B be continuous linear operators 

on H,K respectively. Then A @ B is a continuous linear operator on the 

inner product space H @, K satisfying (A ® B)(x ® y) = A(z) @ Bly) for all 

(x,y) € H x K. Its unique extension over the Hilbert tensor product H @ K 

is also denoted by the same symbol A ® B. 

15-7.6. Lemma Let P,Q be operators on the Hilbert tensor product H @ K 

of Hilbert spaces H, K. If < c, Pz > = < c,Qz > for all decomposable tensors 

c,z € H@®K, then we have P=Q. 

Proof. By linearity, < c,Pz > = < c,Qz > holds for all c, z in the algebraic 

tensor product H ®, K. By continuity, it holds also for all c, z in the Hilbert 

tensor product H ® K. Therefore P = Q. Oo 

15-7.7.. As a result of next theorem, it is trivial to show that the tensor 

products of normal operators are normal. The same is true for other classes 

such as unitary, self-adjoint, positive definite, etc. The interesting parts are 

their converses. Let A,B be operators on H,K respectively. 

15-7.8. Theorem (A® B)* = A* @ B*. 

Proof. For all u,v € H and 2,y € K we have 

<u@v,(A@B)(z@y) > = <(A@B\u®v), cz @y> 

=< Au® Bu,x@y >= < Au,z >< Buy >= <u, A*z >< v, Bry > 

<u@v,A*r@ Bry >= <u®v,(A* @B*\(z@y) >. 

The result follows from last lemma. o 

15-7.9. Lemma If A*A = AA* for some complex number 4, then A is 

normal. 

Proof. Without loss of generality, we may assume A #0. Choose z € H with 

Aa #0. Then we have < A*Az,z > = < AA*z,x >, ie. ||Azl|? = AlA*z||?. 

Hence A > 0. Taking norms of the given equation, we have 0 # ||A*Al| = 

A||AA*|| which gives \ = 1. Therefore A is normal. a 

15-7.10. Theorem If A ® B ¥0 is normal, then both A, B are normal.
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Proof. Simplifying (A ® B)*(A ® B) = (A @ B\A®@ B)* F 0, we obtain 

(A* A) @ (B* B) = (AA*) @ (BB*) #0. Hence A* A = XAA* for some number 4. 

Therefore A is normal. Similarly, B is also normal. ia 

15-7.11. Theorem If A4@B #0 is unitary, then there exist numbers a, § and 

unitary operators M,N such that A=aM, B=(N and af =1. 

Proof. Since A ® B is unitary, we have 

(A* A) @ (B*B) = (AA*) @ (BB*) =I QJ #1 

where I,J are identity operators on H,K respectively. There are non-zero 

numbers s,¢ such that 

A*Az=slI and AA* =H. #2 

Since both left and right inverses of A exist, A is invertible and s = ¢. In 

particular, A #0, i.e. Ax #0 for some x € H. Thus #2 gives < A*Azr,r >= 

s<a2,x >, or ||Az||? = s||z||*. Hence s > 0. Let a be the square root of s and 

define M = +A. Then it is easy to verify that M is unitary. Similarly, both 3 

and N are defined. Substituting these into #1, we have 

{(aM)*(aM)} & {(8N)*(BN)} =1@ J, 
ie. 0767{(M*M) @ (N*N)} = 1 @ J. Since M,N are unitary, we have 

oI ®J=18 J, that is, a®f? = 1. Because a, 8 > 0, we obtainaf=1. 0 

15-7.12. Theorem If A® B #0 is self-adjoint, then A=aM and B= BN 

where M,N are some self-adjoint operators and af = |a| = || = 1. 

Proof. Since A @ B is self-adjoint, we have A* @ B* = (A @B)* =AQB. 

Then A* = XA for some number \. Taking hermitians, we have A = A~ A*, 

or A= AAA. Since A ¥ 0, |A| = 1. Write A = exp(i@) where @ is real and 

? =—I. Define a = exp(—i0/2), 8 = exp(i0/2), M = ,A and N = ZB. Then 

all conditions of the theorem are satisfied. a 

15-7.13. Theorem If A@B #0 is positive definite, then A=aM and B= fN 

where M,N are some positive definite operators and af = |a| = |G| = 1. 

Proof. Since A ® B 70 is self-adjoint, we have A = sP and B =tQ where 

P,Q are self-adjoint and s,¢ are complex numbers such that st = |s| = |t] = 1. 

Clearly A® B= P@q. Since P = 1A is non-zero self-adjoint, there is 

a € H such that < Pa,a ># 0. Define 6 = 1 if < Pa,a > is positive and 

6 = -1 if < Pa,a > is negative. Let a = 6s, 8 = 6t, M =6P and N = 6Q. 

Then M,N are non-zero self-adjoint. Furthermore, af = |a| = |G| = 1 and
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0 < A@B = MON. Now for every y € K, we have < (M@N)(a@y), a@y >> 0, 

ie. < Ma,a >< Ny,y >> 0. Since < Ma,a > = 6 < Pa,a > is strictly 

positive, we have < Ny,y >> 0 for all y €¢ K. Therefore N is positive definite. 

Since N is non-zero, there is b € K such that < Nb,b > is strictly positive. By 

similar argument, we have < Ma,x >> 0 for all x € H and hence M is also 

positive definite. This completes the proof. a 

15-7.14. Theorem If A@ B #0 is a projector, then A= aM and B= fN 

where M,N are some projectors and af = 1. 

Proof. Since A® B #0 is self-adjoint, we have A = sP and B = tQ where 

P,Q are self-adjoint and s,t are complex numbers such that st = |s| = |t| = 1. 

Since A ® B = P @Q is an idempotent, we have P* @ Q? = P@Q 0. Hence 

there are numbers u,v such that P? = uP, Q? = vQ and uv = 1. Since P is 

non-zero self-adjoint, there is a non-zero real number k in the spectrum of P. 

Applying the spectral polynomial theorem to P?—uP = 0, we have k? —uk = 0. 

Hence u = k is a real number and so is v = 4, Define M=vP, N= uQ, a= su 

and $ = tv. Since v is real and P is self-adjoint, we have M* = M. Also 

M? = vP? = v*(uP) = vP = M. Therefore M is a projector. Similarly, the 

other requirements of the theorem can be verified. Oo 

15-7.15. Exercise Prove that if A® B #0 is an idempotent, then A = aM 

and B=£8N where M,N are some idempotents and af = 1. 

15-7.16. Theorem Let A, be an operator on a Hilbert space H; for each 

1<k < 2r41. If Qn A, #0 is skew-adjoint, then there are skew-adjoint 

operators M, and complex numbers A, such that T1204}, = —1 and for each 

k, we have Ax = AeMy, [Ak al. 

Proof. Since @j"\' Ax #0 is skew-adjoint, @Qi71'(iAx) = (—D"i Qi Ay FO 
is self-adjoint. There are numbers a,x and self-adjoint operators Dj, such that 

lox] = 1, tAy = aD, for each k and also THR oe, = 1. Define A; = —a, and 

M, =iD,. Then it is routine to complete the proof. a) 

15-7.17. Exercise If {u;} and {v,;} are orthonormal bases in H,K 

respectively, then {u; ® v;} is an orthonormal basis in H @ K. 

15-7.18. Theorem For all operators A, B on H, K respectively, we have 

|A@ Bll = |All BI.
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Proof. Let I,J be the identity maps on H,K and {u;}, {v;} be orthonor- 

mal bases in H,K respectively. We claim ||A @ J|| < ||Al|. Indeed, let 

z= yet Q43%; ® v;. Observe that 

(Ao Del = |O", O%ao(4 New oe 
nm 

2 n m 

~ I, Oa aj Aus) ® | < Diet ee, oj Aus 

<0" 27 lewsl* Awl? < S02 las? = U2IPLALP. 
Hence ||A @ J|| < ||A||. Therefore 

|A @ Bl] = ||(A® NT @ B)| < ]A® JI [7 @ Bi < |All BI. 

2 

2 2 Ilel| 

On the other hand, for every ¢ > 0, there are ||x|| = ||y|| = 1 in H, K respectively 

such that ||Az|| > ||Al| —¢ and ||By|| > ||B|| — «. Consequently we have 

|A & Bl > ||(A @ Bye ® y)|| = ||Az & By| 
= ||Az| |Byll > (All -— | Bll - ©). 

Since ¢ > 0 is arbitrary, we have ||A ® B|| > || All ||B|l. o 

15-99. References and Further Readings : Marcus, Defant-93, Freniche, 

Pelletier, Holub, Ichinose, John, Lewis, Ruston, Reed and Simon-79. 



Chapter 16 

Complex Vector Lattices 

16-1 Ordered Vector Spaces 

16-1.1. This chapter introduces complex vector lattices as a tool for 

subsequent development. The subject is elementary but sometime tricky. We 

shall restrict ourselves to the minimum algebraic aspects only. 

16-1.2. A map f — f~ from a complex vector space ¥ into itself is called a 

conjugation if (f +g)" =f7~ +97, f77 =f and (af)” =a f7 for all f,¢g € F, 

and a@ € € where a~ denotes the complex conjugate of a. For a real vector 

space, conjugation is defined as the identity map. In this case, we can unify 

real and complex vector spaces into one framework. A vector space with a 

given conjugation is called a conjugated vector space. For alternative approach 

through complexification, see for example [Schaefer-74; §11.1, p134]. 

16-1.3. Example The set F(X) of all complex functions on a set X is a 

complex conjugated vector space and the set IF”(X) of all real functions is a 

real conjugated vector space. However F(X) is also a real vector space but it 

is not a real conjugated vector space if the pointwise conjugate-operation is 

not the identity map. Therefore F(X) always means the complex vector space 

in this chapter. 

16-1.4. Let ¥ be a conjugated vector space over IK which can be the real or 

complex field. The real part of an element f € ¥ is defined by Re f = 5( f+f7) 

and the imaginary part by Im f = £(f — f—). Note that when K = R, we 

have f — f~ =0 and hence Im f = 0 even scalar multiplication by £ is not 

defined. Clearly, f = Re f+ilm f and once again we have iIm f = 0 for a 

real conjugated vector space even though the scalar multiplication by 7 is not 

defined. An element f in a conjugated vector space F is said to be real if 

f~ =f. Clearly, the set ¥” of all real elements of a conjugated vector space ¥ 

with restriction to real scalar multiplications is a real conjugated vector space. 

By a complex element, we mean that it is not necessarily real but. may be real
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or complex. Therefore it makes sense to talk about complex elements in a real 

conjugated vector space within the unified framework. 

16-1.5. Let ¥ be a conjugated vector space. A subset ¥* of F” is called a 

positive cone or simply a cone if the following conditions hold: 

(a) f+ ge Ftandafe Ft, Vf,geF*,Va>0; 

(b) if both f € ¥* and —f € F*, then f =0. 

A conjugated vector space with a positive cone is called an ordered vector space. 

Let F be an ordered vector space. Write f < g if both f,g are real elements 

in ¥ and g — f € F*. In this case, f is said to be majorized by g. Clearly, for 

every real element f, we have f > 0 iff f € F*. 

16-1.6. Exercise A function f on a set. X is positive if f(x) > O for alla e X. 

Show that the set of all positive functions forms a cone for the real vector space 

F(X) and the complex vector space F(X). 

16-1.7._ Exercise A function F : R — Ris increasing if F(x) < F'(y) whenever 

x < y and strictly increasing if F(z) < F(y) whenever x < y. Verify that the set 

of all increasing functions on R forms a cone for the vector space of functions 

on R. This cone will play an important role in measure theory on R. 

16-1.8. Theorem For all real elements f,g,h,k of an ordered vector 

space F¥, we have 

(a) f < f, reflexive; 

(b) if f <g and g < f, then f = g, anti-symmetric; 

(c) if f <g and g <h, then f < h, transitive; 

(d) if f <g and h <k, then f+h<g+k, addition; 

(e) ifO< f<g and0<a< @, then af < fg, scalar multiplication. 

Proof. Suppose f < gand0<a< #. Then g— f >Oand 8—a>0. Hence 

a(g — f) > Oand (8 —a)g > 0. Thus af < ag and ag < Bg. Consequently, 

af < Bq. This proves (e). The rest is left as an exercise. a 

16-2 Lattice Structure 

16-2.1. It is a matter of opinion on what is the correct definition of complex 

vector lattices. We use valuation instead of vee-wedge operations as in most 

existing textbooks and we do not require any expression of valuation of a 

complex element in terms of its real and complex parts. On the other hand, 

our version is powerful enough to provide service in the subsequent chapters of
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this book. For other existing versions, see [Schaefer-74; §1.8, p54; §11.1, p134; 

§11.2, p135], (Luxemburg; §91] and [Zaanen-97; ch 6]. 

16-2.2. Let F be an ordered vector space. For real elements, the concept 

of upper bounds, lower bounds, maxima, minima, suprema, infima and lattice 

notations f Vg and f Ag are defined on F in an obvious way. It is easy to prove 

that they are unique if they exist. Clearly, the operations V, A are commutative 

and associative. A map f — |f| from F into F* is called a valuation if for all 

f.g € F and all a € K, we have 

(a) [f +91 <Lf|+ lol, lef = lal [fl and |f-| = [fl 
(b) if |f| =0 then f =0. 

In this case, the element || is called the sotal variation, or variation, or absolute 

value of f. It is obvious that [Re f| < |f| and |Im f| < |f| for all complex 

element f € ¥. An ordered vector space together with a given valuation is 

called a vector lattice if |f| is the maximum of +f for each real element f € F”. 

16-2.3. Exercise Consider the vector spaces F(X), F(X) of functions on 

a non-empty set X. Show that the map f — |f| is a valuation. Verify that 

F(X), F’(X) are vector lattices under pointwise operations. Verify that a 

vector subspace forms a vector lattice if it is closed under formation of absolute 

values. See §3-8.3. 

16-2.4._ Exercise Show that the set of all real polynomials on R forms an 

ordered vector space but it is not a vector lattice under pointwise operations. 

16-2.5. Theorem Let f,g be real elements of a vector lattice F. 

(a) fVg= s(ftg+ |f —g|) is the maximum of f,g. 

(b) fAg= K(ftg- |f —gl|) is the minimum of f, g. 

(ce) ftg=fVg+fAgand |f-gl=fVga—fAg. 
Proof. Let h = f+g+ lf - gl). Since f —g < |f — gl, we have 

h> 3(f+9t+f—9) = f. Similarly since g— f < |f—g|, we have h > g. Suppose 

k is a real element majorizing both f,g. Then 2k—f—g>2f—f—g=f-—g 

and 2k — f—g > —(f —g). Since |f — g| is the least upper bound of +(f — g), 

we have 2k — f —~g > |f —g|, ie. k > h. Thus h is the least upper bound of 

f,g. Therefore h is the maximum f V g of f,g. This proves (a). We leave the 

rest as an exercise. D 

16-2.6. Theorem For all real elements f,g,h, k in a vector lattice ¥, we have 

(a)h+fVg=(h+f)V(h+g) andh+fAgza(h+fyA(h+g);
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(b) h~fvg=(h—fyA(h—g) and h— frga(h~fyVvih—-g); 
(c) aff V 9) = (af) V (ag) and a(f Ag) = (af) Alag), Vo20; 
(d) iff <gandh<k,then fVh<gVkand fAh<gAk; 

(e) f Va Ag=g and (fAg)Vg=9; 
(f) if f+g=h+k, then f+g=fVvht+gAk. 

Proof. Part (f) follows from the following calculation: 

Fro-fVh=Ftg-fAf+g-—hagh(h+k—hy=gk. 

The other parts follow from the definitions of maximum and minimum. oO 

16-2.7. Lemma Let f,; be real elements in an ordered vector space F. If one 

of the following exists, then we have sup fi; = sup sup fi; = sup sup fiz. 
G@IVEIXT ges JES i€ 

16-2.8. Theorem Let A, B be non-empty sets of real elements in ¥ such that 

both sup A, sup B exist. 

(a) sup(f + B) = f + sup B and sup(A + B) = sup A+ sup B;, 

(b) sup(@A)=asup A, Va>0; 

(c) inf(—A) = — sup A; 

(d) sup(f V B) = f V sup B and sup(A V B) = (sup A) V (sup B); 

(e) sup(f A B) = f Asup B and sup(A A B) = (sup A) A (sup B). 

Proof. We shall prove the distributive law (e) and leave the others as an 

exercise. Let h = sup B. Since f Ag < f Ah for all g € B, f Ah is an upper 

bound of the set fA B={fAg:g€ B}. For any upper bound k of f AB, we 

getk+fVh>fAg+tfVg=ft+g,ie g<k+fVh—f. Taking supremum 

over B, wehaveh=supB<k+fVh—f,orfVh+fAh=f+rask+fVa. 

Hence k > f Ah. Therefore f AA is the supremum of f A B. Finally, 

sup(A A B) = sup fAg= sup sup f Ag= sup(f A sup B) = (sup A) A (sup B) 
(fg) 

completes the proof. Oo 

16-2.9. Theorem For all real elements f,g in a vector lattice $, we have 

(a) |f tol VIF ~ of = IF + lal 
(b) f+ gl Alf - al =| Ifl—lal |; 
(c) {f+ 91+ lf - 9] =20F1 Viol 
(4) | |f +9l-If - 91 | = 20F1 A |g). 
Proof. (a) |f+glVif-9 =F4+9VCf-9VE-9VCS+9 
=F+9VF-9V(-f-DVC-f+9) 
= 3{(f+9)+(f—9)+(F+9)-f -ol}Va{(-f -9+(- f+9)+|\-f-9)—-(-f+ol}
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=(f+lo)v(-f+ lo) =fV-S)+ Io] = [fl + lal. 
(c) It follows from (a) by replacing f with f +g and g with f — g. Oo 

16-2.10. Two elements f,g in a vector lattice F are said to be mutually singular 

or disjoint if |f| A |g| =0. In this case, it is denoted by f L g. 

16-2.11. Theorem Two elements f,g € ¥ are mutually singular iff there is an 

equality among any two of the following terms: |f|+|g], |f|V|g| and | lf|—-|gl |. 

Proof. It follows from the following identities:|f|+|g| = |f] V lgl+If/ A lgl, 

If|Algl=3 (lfl+lgl—| l—lol |) and | fl lol [=f Vigl- IFA lgl. 2 

16-2.12._ Exercise Prove that two real elements f,g € $” are mutually 

singular iff there is an equality among any two of the following terms : |f +g], 

|f — gl and |f| v |g]. 

16-3 Decomposition Property 

16-3.1. Let ¥*,F" denote the positive and real elements of a vector lattice 

¥F respectively. For every real element f € ¥", the upper variation is defined 

by f, = f V0 and the lower variation by f_ = (—f) V0. As a simple result 

of the following theorem, every complex element A in a vector lattice has a 

decomposition into positive elements: 

h=(Re h), — (Re h)_ + i(Im h), — i(Im h)_. 

16-3.2. Theorem For every real element f € $7, we have 

(a) f=f4—f_,thatis F7=F*—-F*; 

(b) |fl=A+ fave; 

(c) fA Af- =9. 

Proof. (a) f=f+0=fV0+fA0=f,-f. 

(b) |fl=If -O|=fVvO-—faAd=fi+ fr 
and also [f| = f V(-f) VO=(fVOV(-fFYO=HAVE. 
(c) By (b), we have f, + f_ =f, V f_. Hence f, A f_ =0. oO 

16-3.3. Theorem If f=g—h, g > 0, h > Oand g Lh, then g = f, and 

h = f_. In other words, the decomposition of real element into difference of 

positive singular vectors is unique. 

Proof. Since g 1 h, we have |g] +h] =| |g| — |Al |. By g > 0, h > 0, we get 

lfl=|lg—Al =gth. Solving for g,h with f = g—h, we have g = SUFI +S) = fy. 

Similarly, we obtain h = f_. Bo 
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16-3.4. Lemma For positive vectors f,g,h € F*, we have 

(f+ QAh<fAh+gah. 

Proof. Clearly, (f+g)Ah < (f+g)ACft+h) = f+gAh and also (f+g)Ah < ht+gAh. 

Hence (f+ g)Ah<(f+gAh)A(h+gAh=afAh+gAk. in| 

16-3.5. Theorem For ali f,g,h EF, if f 1 h and g 1h, then (f+g) Lh. 

Proof. It follows from 0 < (|f[+|g|) AA] < [FA JA] + |g] A [A] = 0. oO 

16-3.6. Exercise Let f,g be real elements in $”. Prove that if f 1 g, then 

(a) fr +g, and f_+g_ are mutually singular, 

(b) (fF + 9)+ = fs + 9 and (f +9). = f-+g-. 

16-3.7. Theorem For ali real elements f,g,h € ¥”, we have 

(a) If-gl=|IF VA-gVhl+|fFAR—gAAl; 
(b) Fvh—-gV hl <|f—gl and |fAR—gAh| <|f—g]; 
(c) [fs — 9+ SIF — g| and |f- - 9-| < lf - 9]. 
Proof. Part (a) follows from the calculation below and the rest are easy 

consequences: 

|fVh—-gVhl|+|fAh-gAhl 

=|(fVhA-gVhA)+(fAR-gAhIVIfVh-gVA)-(fAhR-gAh)l 

=|(F+h)— (+h) [If — Al — |g — All 
=|lf -aI VU —h)+G@—- AI AIF —A)- (9 - ADI} 
=lf —gl Vv {lf +9—2h| Alf —gl} = If -a9l- Oo 

16-3.8. Theorem Let f,g,h be positive vectors in F*. If h < f+, then 

there are p,g € F* such that h=p+q,p<fandg<g. 

Proof. Let p=hAf andq=h—p. Thenh < (h+g)A(f+g)=hAf+g=prg, 

that is g=h—p<g. The other conditions are obvious. 0 

16-3.9. Exercise Let f,9,h be functions on R given by f(z) = |z|+1—|x—1|, 

g(x) = |x — 1)+1—|z| and h(x) = 1+sinz for each x € R. Find two continuous 

positive functions p,q on R such that h =p+q, p< f and q < g. Sketch all 

functions f,g,h, p,q. 

16-3.10. Theorem Let f,,g; be positive vectors in F*. If 1", fi = 2h 95 

then there are positive vectors ki; € F* such that f; = a kj; and 

95 = S22, ky for all i,j. It is easier to remember this theorem by writing 

fi, fo,-++ as the left column, gj, 92,--- as the top row and k,; as the (i, 7)-cell 

of a table.
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Proof. Assume m=n=2. Then f, + f2 = 9, +92. Now fi < gi +g2. There are 

positive vectors ki; < 91, ki2 < go such that fy = ki +12. Define ky) = 9; — ki 

and ky = g2 — kz. Since ky; < gj, we have ko, = g; — ki, > 0. Similarly, 

kag > 0. Finally, kai + ko = 91 + go — (hu + kya) = fit fo — fi = fh. This proves 
the case for m =n =2. The general proof follows by induction. ao 

16-3.11. A vector lattice ¥ is said to have decomposition property if for every 

h € § and for all f,g € F* satisfying |h| < f+, there are p,q € F such 

that |p| < f, lq] < g and h = p+q. It should not be confused with the 

earlier condition that every complex element can be decomposed into positive 

elements. For convenience, a real or complex vector lattice with decomposition 

property is abbreviated as a breakable vector lattice. 

16-3.12. Theorem Every real vector lattice ¥ is breakable. 

Proof. Let h € F and f,g € F* satisfy |h| < f+tg. Then hy +h_ < f+g. 

Write hy +h_=u+v where u,v € F* satisfy u < f and v < g. There are 

kyj € F* such that hy = ki + Kia, A = ko + hog, w= yy + kay and v = kyz + ky. 

Then p= ky, — ky and q = k)2 — kz satisfy |p| < ky +ho) =u < f, || < g and 

p+q=ky — kay + ky — ko = ky + ki2 — kay — kp = hy — = A. o 

16-4 Extension of Positive Linear Forms 

16-4.1. Let ¥ be a conjugated vector space. Then a linear form p : ¥ > K is 

said to be real if zf is a real number whenever f is real in ¥. Obviously a linear 

form yz on F is real iff it preserves the conjugation, ie. u(f~) = w(f)~. For 

any linear form pu on F, the function w~ : ¥ — K given by pu (f) = [wf] 

for f € F is also a linear form called the conjugate of yp. Clearly the algebraic 

dual space $* of all linear forms on F is a conjugated vector space under the 

conjugation 4 > w-. As a result, Re(y) and Im(jz) are well-defined. They are 

actually real linear forms. 

16-4.2, Lemma Let v: ¥” — K be a function such that for all f,g € ¥” and 

a €R, we have (f+ g)=vf+vg and vwaf) = avf. Then v can be extended 

uniquely to a linear form uw: F > K. 

Proof. For K = R, take » = v. For K = C, define pf = v(Re f)+ iv(Im f), 

for all f € ¥. It is routine to verify the result. Oo 

16-4.3. Lemma Let / be a complex element of a conjugated vector space F. 

If for every real linear form ys on F, wh is a real number then A is real.
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Proof. Let h= f +ig where f,g are real elements. Then for every real linear 

form pu, wh = wf + ipg is real, i.e. pg =0. Thus for every complex linear form 

v, we have vg = (Re v)(g)+i(Im v)(g) = 0. Therefore g = 0. Consequently h = f 

is real. oO 

16-4.4. Let ¥ be an ordered vector space. Then a linear form p on F is said 

to be positive if zf > 0 is a positive number for every f > 0 in F. Clearly every 

positive linear form is real and the set of all positive linear forms is a cone. 

Hence $* becomes an ordered vector space but in general it is not a vector 

lattice. To get good results, we assume that ¥ is a vector lattice. 

16-4.5. Theorem Let p < v be positive linear forms on F. 

(a) For every f < g © F” we have uf < pg. 

(b) If O<f<g in $F’, then pf <vg in R. 

(c) For every complex element h in F, |wh| < plAl- 

Proof. We shall prove (c) only. Write uh = e'8|uh| for some 0 < 6 € R. 

Express eh = f +ig where f,g € F™. Then f < [f| < je~h| = |h| and 

pf, zg are real numbers. The proof is completed by the following calculation: 

ph] =e uh = ue“) = wf + ig) = wf + ing = wf < lhl. fs) 

16-4.6. Lemma Let v : ¥* — K be a map such that v(f + g) = vf +vg and 

Waf)=avf for all f ¢ Ft and a > 0. Then v can be extended uniquely to a 

linear form on F. 

Proof. Since F is a vector lattice, for any f € F” there are p,g > 0 such 

that f =p—gq. Define pf = vp — vg. Suppose f = x — y where x,y > O in F. 

Then p+y=q+z. Hence vp+ vy =vq+vaz, or vp —-vq=vx —vy. Therefore 

yu: F” — K is a well-defined extension of v. Observe that 

uf + 9) = uf + 94 — f- - 9-) = UF + G4) — A F- + 9-) 
= (fs) + U(gs) — VF_) — V(g_) = wf + Bg. 

Next, for any a > 0, we have 

Maf) = ua, — af_) = v(af,) — vlaf-) = anf.) — o(f_) = apf 

and u(—f) = u(f_ — f,) = vf_)-—v(f,) = —uf. Thus uw: ° — K is real-linear. 

It can be extended to a linear form on ¥. The uniqueness is obvious. Oo 

16-4.7. Theorem Let F be a vector lattice and v : J+ — IR* be a map 

satisfying v(f+g9)=uf+vg for all f,g © $*. Then v can be extended uniquely 

to a positive linear form on J.
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Proof. For integers m,n > 1, we get v(ng) = V(gt-+++g) = Vgt---+Vg =nVg 

or vg = v(ng)/n. For g = f/n, we obtain vf /n) = v(f)/n. Combining together, 

v(mf /n) = mv(f /n) = (m/n)vf. Therefore v(af) = avf for all rational num- 

ber a > 0. Next, suppose 0 < f <g. Then g~—f >0. From g= f+ (g—f), 

we get vig — f) > O and vg = vf +v(g — f) > vf. Thus v is monotonic. 

In general, let a > 0 be any positive real number. Then there are rational 

numbers rp, Sp, with 0 < rp <a < S,, rn — a and 8s, — a. Since f > 0, we 

get mf <af <snf, ie. Urnf) < af) <Usnf), or ravf SUaf) < savf. 
Letting n — oo, we obtain v(af) = av f. The result follows from last lemma.O 

16-5 Order Bounded Linear Forms 

16-5.1. This section provides enough coverage on order bounded linear forms 

so as to study the characterization of charges with finite variation in next chap- 

ter. General treatment of linear maps between two vector lattices is beyond our 

scope. The dual characterization of lattice operations requires Hahn-Banach 

Theorem. 

16-5.2. Let ¥ be a vector lattice. A linear form ys: F —» K is said to be order 

bounded if for every f € F*, the set {|uh| : |A| < f, 4 € F} is bounded in 

K. Clearly, every positive linear form is order bounded. The set of all order 

bounded linear forms on F is denoted by ¥°. It is an ordered vector space 

under the cone ¥°* of all positive linear forms. 

16-5.3. Example Draw a short line segment from the origin of ry-plane to 

the right of y-axis and then extend it to a function from R into R. The set ¥ 

of all such functions form a real vector lattice. Taking the slope of the short 

line segment is a linear form but it is not order bounded. 

16-5.4. Theorem Let y be an order bounded linear form on a breakable 

vector lattice F. 

(a) For all f > 0 in F+ and p € $°, the expression 

lu|f = sup{|zh| : |h| < f,h € F} 
uniquely defines a positive linear form || on F. 

(b) For all h € F, we have |wh| < |p| JAI. 

(c) |u| =inf{é < Fe: |ph| <€ hl, VA EF}. 

(d) The map ps = |p| is a valuation on F°.
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Proof. Let f,g > Oin F*. For any ¢ > 0, there exist p,q € F such that |p| < f, 

lal <9, vf < |up| +e and vg < |g] +e. There are numbers |a| = [8] = 1 such 

that app > 0 and Bug > 0. Hence we obtain |ap + Sql < f +g and 

yftvg < |a| |up|+|B| |ugl+2e = ulap)+y(9q)+2¢ < |w(ap+Bq)|+2€ < U(f+g)+2e. 
Letting ¢ > 0, we have vf +vg < v(f +g). Next, let |h| < f+g in ¥”. There are 

p,q € F such that h = p+q, |p| < f and |g| < g. Now |wh| < |up/+|uq] < vftvg, 
ie. vif +g) <vf+vg. Therefore v can be extended uniquely to some positive 

linear form || on ¥. Replacing f by |h|, we have |wh| < vlh| = |p] Al. 

Suppose £ € F* satisfying |zh| < €|A| for all h € ¥. Then for |h| < f in F, 

[ph| < é|h| < €f, that is |ulf =vf <éf. Since f € F is arbitrary, |u| < é. 

This proves (c). It is routine to verify (d). 5 

16-5.5. Theorem Let ¥ be a breakable vector lattice. Then ¥° is also a 

vector lattice. Furthermore, the order interval for f,g € $” is defined by 

[f,gl= {he F”: f <A < g}. Then for all real bounded linear forms yu, v on 

F¥ and all f € F*, we have 

(a) |ul(f) = sup al—F, f) ; 
(b) (hv VIA) = sup{pf + u(f — h) sh € [0, fl} ; 

(c) BAYS) = inf{uh +f —h): f € 10, fl}; 
(d) wtf) = sup p10, f] ; 
(e) u-(/) = sup pl —f, 0]. 
Proof. Let vy: ¥ — K be defined by vf = sup{up: —f <p < f, pe F}. 

Suppose A is a complex element in ¥ satisfying |h| < f. Write uh = e|yh| 

and e~h = p+igq where p,q € ¥". Then we have +p < |p| < |A| < f, 

that is —f <p < f. Now, |yh| = pu(e7*’h) = pep +ipg. Since yp is real, we 

obtain |uh| = up < |up| < vf. Therefore |j:|f < vf. The reversed inequality 

follows immediately from definition. It is elementary to show || = pu V (—p). 

Consequently $? is a vector lattice. Part (b) follows from the calculation: 

(UV Uf) = sett |w—vf) 

= tluf +uf +sup{(u— vp): -f <p< f}] 

= sup ¢ ftp +V frp :~f<psf 
2 2 

= sup{ug+u(f —q):0<q< f}. 
The other of the proof is left as an exercise. Oo 

16-5.6. Theorem Let pu be a positive linear form on a breakable vector lattice 

F. Then for every h € ¥, we have plh| = sup{|v(A)| : |v| < pe}.
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Proof. Let o(g) = pig for all g € F. Since ys > 0, y is a seminorm on F. By 

Hahn-Banach theorem, there is a linear form € on ¥ such that €(h) = y(h) and 

l&(9)| < gg) for all g € F. If |g| < f in F, then |&(g)| < 9) = ulgl < Hf. 
Hence € is an order bounded linear form on ¥. Clearly, || < 4. Therefore 

plh| = y(h) = E(h) < sup{|v(A)| : |v| <p}. 
On the other hand, if |v| < 4, then we obtain [v(h)| < |v| |A| < pA, that is 

sup{|v(h)| : |v] < w} < IAI. Oo 

16-5.7. Theorem Let pz be a positive linear form on a breakable vector lattice 

¥. Then for all real elements f,5 in F7, we have 

(a) wf) = sup[0, uIP) ; 
(b) o(f_) = sup[—y, O1/) ; 
(c) wlf] = supl—e, HI) ; 
(d) wf V 9) = sup{v(f) + (w — vg): v € [0, uI} 

(e) CF A 9) = inf{v(f) + (u — v)(g) + v € [0, 4}. 
Proof. Let y(h) = u(h,) for h € F. Since pz > 0, we get p(h+k) < y(h) + vk) 

and y(ah) = ay(h) for all positive number a. By Hahn-Banach theorem, there 

is a real linear form € on $” such that €(f) = y(f) and €(h) < y(h) for all 

h © F". Then € can be in turn extended to a complex linear form on the 

conjugated vector space ¥. Now pick any h > 0, we have 

E(—h) < p(—F) = wl(—A),] = 40) = 0, 

that is £h > 0. Hence € > 0. Next, 6h < y(h) = u(h,) = wh gives € < yp. 

Therefore € € [0, 4] and uf.) = e(f) = €(f) < sup[0, nJ(f). On the other hand, 

for any v € [0, 44], we get v(f) < vfs) < uf), ie. supl0, uI(f) < uf). This 
proves (a). Part (b) follows from 

w(f-) = wl(—f)4] = sup[0, ])(—f) = sup{{(—f) : 0 < € < w} 

= sup{(—8)(f) : —u < —€ < 0} = supf—z, O}(f). 

The others are left as an exercise. oO 

16-5.98. Problem Prove or disprove that if ¥ is a breakable vector lattice 

then so is the space ¥° of bounded linear forms. 

16-99. References and Further Readings : Zaanen-97, Schaefer, Luxemburg, 

Aliprantis, Jacobs, Wong-76 and Filter. 



Chapter 17 

Vector Measures on Semirings 

17-1 Semirings 

17-1.1. Simple geometric objects such as semi-intervals and semi-rectangles 

are used as building blocks. Their essential properties are extracted to form the 

axioms on which a rich theory of integration is built to serve many areas of pure 

and applied mathematics. Semi-rectangles provide a graphical interpretation 

of the abstract theory. 

17-1.2. A family & of subsets of X is called a semiring over a set X, or a 

semiring of subsets of X in order to be precise, if 

(a) the empty set @ is in 8; 

(b) the intersection of any two sets in § is in 8; 

(c) for all A, B in 8; there are disjoint sets B,, By,---,B, in $ such that 

A\ B=U%, By. 

17-1.3. Example The family of ali singletons of a set X together with the 

empty set forms a semiring. It is called the semiring of singletons of X. 

17-1.4. Example Consider the real line R. A semi-interval is a set of the 

form (a, b] = {x € IR: a <a <b} where a < b. The family of all semi-intervals 

together with the empty set forms a semiring. It is called the semiring of 

semi-intervals of R. 

17-1.5. Exercise The sets of the form (a, }] x (c,d], where a < b and c < d, 

are called semi-rectangles of RR’. Sketch the semi-rectangles: A = (0,3] x (2, 4], 

B=(2,5]x (1, 3] and C =(1,4] x (1, 5]. Identify AN B and express A\ B, C\ A 

and C'\ (AU B) as unions of disjoint semi-rectangles. Show that the family of 

all semi-rectangles together with the empty set forms a semiring over R?. 

17-1.6. Lemma Let 8 be a semiring over a set X. Then for all A, B,, By, 

--, B, in 8, there are disjoint sets C,,C2,---,Cm in 8 such that 

A\ UE B; =UP, Cj.
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Proof. For n= 1 it follows immediately from the definition. Assume that it 

is true for n by induction. Observe A \ Ue B= Up: (C3 \ Baa). There are 

disjoint sets Dj,,Dj2,---, Djpqy in & such that Cj \ Brit = po) 1 Dyk» Then 

{Dye 1 <j <m,1<k < p(y)} is a finite family of disjoint sets. in § such that 

A\ Ut Bi = Uy Uke  D,,. This completes the proof. Oo 

17-1.7. Let A be a subset of X. The characteristic function of A is defined by 

pa(z)=1 if ¢ € Aand pa(x) =O if x € X \ A. The community uses y instead. 

17-1.8. Exercise For all subsets A, B of X, prove that pang = PANPB = PAPB 

and pauB = PAV PB = PAt+ PB —PAnB. Prove that if {A,} is a sequence, finite 

or infinite, of disjoint subsets of X and if B=, An, then pp = >>, pa,- 

17-1.9. Semiring Formula — For all A;, A2,---, A, in a semiring 8, there are 

disjoint sets B,, B2,---,Bm in 8 such that pa, = Del ape, foralll<isn 

where a; are either zero or one. 

Proof. Inductively assume it is true forn > 1, Write By\ Ana = U, Cp where 

(ne 2°} is a finite family of disjoint sets in $. Again write 

Angel \UR B; =U, Dx where {D,, D2,---} is also a finite family of disjoint sets 

in 8. Define Ej = Bj; Ana. Clearly the totality of C),, Dy, E; is a finite family 

of disjoint sets in $. Simple calculations gives pa, = 20, ij PE; +925 dcp %ij PCy 

for all 1 <j <n and pa,,, = 30, PB; +20, PD,- The induction is completed by ntl 

inserting zero coefficients. im 

17-1.10. Corollary Every finite union of sets in 8 can be written as a finite 

union of disjoint sets in 8. 

17-1.11. Exercise Let A = (0,3]x(2,4], B = (2,5]x(1, 3] and C = (1, 4] x(1, 5]. 

Express their characteristic functions explicitly as described in the Semiring 

Formula. Also write AU BUC as a finite union of disjoint semi-rectangles. 

17-2 Charges and Associated Integrals 

17-2.1. Let IK denote the set of scalars which is either the real field IR or the 

complex field C. Let FF, FE be vector spaces over K with a bilinear map 

y: FxE— FE. Note that we have used two letters FE to denote one Banach 

space for convenience. If F or F is the scalar field, we understand that ¢ is the 

scalar multiplication unless it is specified explicitly. Beginners should consider 

E, FFE to be the scalar field K and ¢y(u, v) the product of two numbers u, v.
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17-2.2. Let 8 be a semiring over X. An 8-step F-map g: X — F is of the 

form g = Ve aj;pa, where a; € F and A; € 8. For convenience, we may drop 

the prefixes $ and PF’. 

17-2.3. Step Mapping Theorem For each 1 <i < n, let f; be a step map on 

X into a vector space F;. Then there are disjoint sets B,, B),---, By, in $ and 

Biz in F; such that f; = ae Gijpp, for all 1 <i <n. Furthermore, 

(a) if f; is real then £,; is real for each 1 < 7 < m; 

(b) if f; > 0 then 2,; > 0 for each 1< 7 <m. 

Proof. Given the following finite sums f; = 37, aizPa,, where aj, € Fj and 

Ai, € 5, there are disjoint set B;, Bo,---, Bm in 8 such that p4,, = y; VijkPB, 

where all summations are finite and the numbers 7,;; are either zero or one. 

It follows by substitution that f; = an Bigop, Where Biz = So, in Yigk. Fur- 

thermore, assume f; > 0. If B; = @ then let 6,; = 0. If B; #@ then evaluation 

at any point « € B; gives 6; = fi(x) > 0. Similarly we can prove the case 

when f; is real. ia) 

17-2.4. Exercise Let A = (1,3), B = (2,5) and C = (4,6] be semi-intervals 

in IR. Sketch the functions f,g,h given by f(z) = 2,4 — pp, 9(2) =2pa — pB, 

g(2) = 498 — 3pc and h(x) = 3pc — 2p,. Write f,g,h as linear combinations 

of characteristic functions of the same finite family of disjoint semi-intervals as 

in Step Mapping Theorem. 

17-2.5. Exercise Show that the set ¥ of all step functions on X is a 

vector lattice under pointwise operations. Prove that the product of two step 

functions is a step function. 

17-2.6. A map yp: $8 — E is said to be additive, or is called an E-charge, or 

a finitely additive set map if for every finite disjoint union A = Ups B; where 

A, B;, B),---,B, are in 8, we have pA = we pB;. Since 0 = UG, we must 

have @ = 0. Furthermore y is said to be positive or real if for each A € 8, pA 

is a positive (> 0) or real number respectively. By a vector charge, we merely 

emphasize that E need not be the scalar field. By a scalar charge or simply a 

charge, we mean that & = KK. By a complex charge, we merely emphasize that 

u need not be but might be positive or real. 

17-2.7.. Example Let S be the semiring of singletons of X. Let £: X — K 

be a function. For each z in X, let u{x} = €(x) and uf =0. Then yp is a charge
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on 8. It is called the counting measure on X weighted by €. If {x} = 1 for all 

a € X, then it is simply called the counting measure. 

17-2.8. Example Let 8 be a semiring over X and let p € X be a point. For 

every Ain $ let prA=1 if p€ A and pA =0 otherwise. Then p is additive on 

8. It is called the point measure at p. 

17-2.9. Lemma Let y be an E-charge on 8. If S07", aipa; = ohn Bip, 

where a4, (3; € E and Aj, B, in 8, then S77", y(ai, wAd) = 07) (8), Bj). 

Proof. There are disjoint sets D,, D2,---, Dp in 8 such that p4, = 372_, Vik PD, 

and ps, = 77.1 OjkeD, Where yi4,5;— are either zero or one. It is crucial to 

observe that each A; is a finite disjoint union of some D; selected by the 

values of yx = 1. Hence we have pA; = 72; 7ielDx. Similarly, we have 

pB; = 1 5jek-De. Expressing the given condition in terms of Dy, we 

get 30,02 0, VikPD, = 32; Bj Don OjkPD,- If De # O then evaluation of last 

expression at any point « € Dy gives 7, aiyie = ar 2;4;x for Dy, Dz,--- are 

disjoint. Hence we obtain (0; o7vin, #De) = POL; Byje, uDe). If De = ) 

then uD, = 0 and last equation also holds. Because py: F x E — FE is 

bilinear, we have 

Y; pla, pAd = Yo, vlai, Vy, Ve De) = 0, POC; 4M, HD) 

=, POD; Bi Sje, MDe) = 7, 908}, Vy Spee De) =, (Bj, WB). =O 

17-2.10. For every step map f = 37}, aipa, : X — F, the integral of f with 

respect to the vector charge ps is defined by Ip(f) = 72, (ai, #A). It follows 

from last lemma that the integral is independent of the representation of f and 

hence it is well defined. The map I, : F(8, F) — FE is called the integration 

associated with p. where F(8, f°) denote the vector space of all 8-step F-maps. 

For convenience, we write y(u,v) = uv for all u € F, v € E and drop the 

symbol y unless precision is required. Therefore we have 

I On, apa.) = a; Aj. 

Because the integrands are on the left of the measure, we also call [(f) the left 

integral. The integral after lots of hard work in subsequent chapters should 

be denoted by SoC f,du). We assume that our theory works for bilinear map 

w: Ex F — EF producing right integrals f PAC f) without any further 

specification. We do not need this notational precision except only in §22-3.12 

on repeated integrals.
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17-2.11. Theorem (a) The integration J : ¥(8, F) — FE associated with ps 

on § is a linear map. 

(b) If yz is real, then for every real step function f the integral I(f) is real. 

(c) Suppose yz is positive. Then I(f) > 0 for every positive step function f > 0. 

Hence I is a positive linear form on the vector lattice ¥ of step functions. If 

f <gin J, then I(f) < I(g). 

17-2.12. Theorem Let p be a positive charge on a semiring S over X. 

(a) Let B,, Bo,---, be a sequence, finite or infinite, of disjoint sets in 8. If Ac 8 

satisfies |), B; C A, then 3°, u.Bi < pA. 

(b) Let A, By, By,---, By be sets in 8. If AC Ue, Bi, then pA < SOP, wBi. 

(c) If AC B in §, then pA < pB. 

Proof. (a) Since Bi,---,B,, are disjoint, we have 377, en, < pa. By p > 0, 

we obtain 72, uBi = 7, I(ep,) = JOT, ep) < Mea) = vA. The case for 

infinite sequence follows by letting n — oo. 

(b) Since pa < 2, pp,, we have wA = I(p4) < TOTL, pa.) = ey UB: oO 

17-3 Finite Variation 

17-3.1. In this section, we restrict ourselves to scalar charges in order to link 

up with positive linear forms. Vector charges of finite variation will be studied 

in next section. 

17-3.2. Let © be the set of all complex charges on a semiring 8 over a set X 

and $F the vector space of all step functions on X. For all p,v € Cia eC 

and A € 8, let (u+v)(A) = wAt+ vA, (ay)(A) = aA and p-(A) = pA). 

Now € becomes a conjugated vector space ordered by the cone of positive 

charges. The real and imaginary parts of p are defined by Re up = $(u+p-) and 

Im p= xu — p) respectively. Let I,, denote the integration associated with 

pu. Clearly the map p — I, : © > F* is a natural isomorphism preserving the 

order and conjugation. In fact, if J is a linear form on F, then p(A) = I(pa) 

defines a charge on § such that J is the integration associated with jx. For next 

lemma, the sign of a complex number a: is defined by sgn(a) = 0 if a = 0 and 

sgn(a) = a/|a| if a 40. Obviously if f is a step function, then so is sgn(f). 

17-3.3. Lemma JF is a breakable vector lattice. 

Proof. Clearly F is a complex vector lattice. Let |h| < f+g where f,g,h € F. 

Write |k| = u+v where u,v € Ft with u < f and v < g. Then p= wu sgn(h),
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q = v sgn(h) are step functions satisfying h = p+q, |p| < f and |g| < g. 

Therefore ¥ is breakable. Oo 

17-3.4. As a result of last lemma, the order dual J° of order bounded linear 

forms on F is also a vector lattice. We want to study the subspace of C 

corresponding to F° c F* ~ ©. Let ps be a charge on 8. The variation |p| of p, 

or the total variation in order to be precise, is defined by 

Ww(A)= sup SD wD, VAeS 
PA peP(A) 

where the supremum is taken over all finite partitions P(A) of A by sets in 8. 

We say that y is of finite variation if |u|(A) < co for every A € 8. 

17-3.5. Exercise Prove that every positive charge is of finite variation. 

17-3.6. Theorem Let pz be a charge on 8 and J its associated integration. 

Then y is of finite variation iff I is order bounded on ¥. In this case, || is 

also a charge. Furthermore, |J| is the integration associated with |p]. 

Proof. For every f € F*, we have |I\(f) = sup{|I(g)| : |g] < f,¢ € F}. Assume 

that p is of finite variation. Take any step functions 0 # |g| < p4 where A € 8. 

Write g= va 83pB; where B; are disjoint sets in § and all 6; #0. Then 

lg| = 7%, \Glea; < ea. It is easy to verify that all (6;| < 1 and B; C A. Let 

A\ UP, By = jens B; be a disjoint union of sets in 8. Thus 

ZCa)| < SO WBsllMBs] SSO" Ma Byl < SO" [Bil < [a |(A) < 00. 
Taking supremum over |g| < pa, we get |[I|\(p4) < |yl(A). In general, let 

lal < f = Via ajpa, Where A, are disjoint sets in $ and all a; > 0. 

Let y = max{a; : 1 < gj < n}. Then |(1/y)gpa;| < ea;. Hence 

we obtain |J[(1/y)gea;]| < |ul(A;), that is @pa,| < ylul(A;), or 
Fg) <7 77.1 |#\(A;). Therefore we have 

[FIGA) = sup {\C@)|: lal SP} SY DO, Mulls) <0. 
Conversely assume that J is of finite variation. Let A = Uj B; where A, B; 

are sets in § and B,, By,---, are disjoint. There are numbers |a,| = 1 such that 

a;nB; = |vB;|. Let g = ve a;pp,. Then |g] < pa. Hence 

De jar HB3| = 109) = [EQ] < | \(ea) < 00. 
Therefore we have |y|(A) < |J{(g4). Combining with the result of the first 

part, we get |j|(A) = |I/(e,) for all A € 8. Because |J| is a linear form on F, 

|u| is additive on S. Clearly, |J| is the integration associated with |p|. o
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17-3.7. Corollary If j is of finite variation, then || is the smallest positive 

charge on § satisfying |(A)| < |u|(A) for all A € 8. The set C? of all charges 

of finite variation forms a vector lattice. The natural isomorphism €? — $° 

preserves the valuation and hence all lattice operations. 

17-3.8. Theorem Let pv be real charges of finite variation. 

(a) uVv= 3(h+ yt+{p—v|) and pAve= 5 (us +v—|u—v|). Furthermore, 

(uVv\(A)= sup S> wW(D)VuD), VAES. 
PA) neP(a) 

(b) ps. = $v) +), we = 3 Cz —p). They are called upper and lower variations 

of pz respectively. Furthermore, we have p,(A) = sup uD),, VAES. 

A) DEP(A) 
(c)Both py, and py are unique positive charges such that p = pu, — u— and 

ja] = a + BE. 
Proof. Most results follow immediately from general treatment of vector 

lattice while the others can be obtained by simple calculation. The following 

is an example. For each A in 8, observe that 

1 1 1 
uA) = 5(u + |w|)(A) = S THA + |nI(A)] = 5 | A+ sup S> [nD 

PA) neP(A) 

1 1 
= 5 sup | HA+ > [xD = 5 sup d> uD+ SO |uD| 

DEP(A) A) \ peP(a) DEP(A) 

=sup >> 3D + wD) = sup > p(D),. o 
PA) Depa ~ PA) nea) 

17-3.9. Corollary Every complex charge y of finite variation can be 

decomposed into linear combination of positive ones as follows: 

y= (Re pi). — Re p)_ + i(Im ps). — i(lm p)_. 
17-3.10. Exercise Prove that the upper variation y, of a real charge yp of 

finite variation is the smallest positive charge such that pA < j,(A) for every 

A in 8. 

17-3.11. Exercise State and prove a formula for u Av and p_ respectively. 

17-4 Absolutely Convergent Charges 

17-4.1. Complex charges of finite variation were motivated by order bounded 

linear forms in §17-3.6 but the expression in §17-3.4 can be carried over to
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vector charges as follow. Let E be a Banach space and uw : 8 — E a vector 

charge. The variation of y is defined by 

|u|(A) = sup > uD || for all Ae 8 
) DEP(A) 

where the supremum is taken over all finite partitions P(A) of A by sets in 

8. We say that y is of finite variation if |u|(A) < oo for every A € 8. It is an 

exercise to prove ||(A) = sup > |D|| for all A € $ where the supremum 

) DEQ(A) 
is taken over all finite families Q(A) of disjoint subsets D € 8 of A. This can 

be used to shorten proofs slightly. Functions of finite variation are introduced 

at the end of this section. 

17-4.2. Let ys be an E-charge over 8. Then yp is said to be absolutely convergent 

or strongly additive if for UR B; C A where all A, B; are in $ and B,, By,--- 

are disjoint, the series >, ||uB;|| converges. We shall prove that absolute 

convergence is equivalent to being of finite variation. 

17-4.3. Lemma Let A € 8 be given. If there is a finite partition P(A) of A 

by sets in $ such that ||(B) < co for each B in P(A), then |u|(A) < co. 

Proof. Take any finite partition Q(A) of A by sets in 8. Then the family 

{DN B: Be P(A)} is a finite partition of any D € Q(A) by sets in 8. Since 

pis additive, uD = S°{n(DN B): B € P(A)}. Now observe that 

dS WePi< SS SS leone) 
DEQA) DEQ(A) BEP(A) 

= So SS pon Biy< S> [nl®. 
BEP(A) DEQ(A) BEP(A) 

Taking the supremum over all Q(A), we have |j:/(A) < > |w{(B) < oo. O 
BEP(A) 

17-4.4. Lemma If A € § satisfies |u|(A) = 00, then there exist a finite 

partition P(A) of A by set in 8 and also a set B in P(A) such that |p|(B) = 00 

and )7{j|zD]| : D € P(A) and D ¥ B} > 1. 

Proof. Since |u|(A) = oo, there is a finite partition P(A) of A by sets in $ 

such that }°{||uD|} : D © PCA)} > ||zAl[ +2. By last lemma, there is B in 

P(A) such that |u|(B) = co. Since p is additive, we have 

pA=pB+S {uD :D € P(A), DF B}. 

Hence, |HBI| < [MA + D7{l]¥D|| : D € P(A), D # B}.
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Now, |HAl] +2 < ||MBl + o{|jvDI| : D € P(A), D ¥ B} 

< wAl|+20{ [MDI] : D © PA), D 4 BY. 
Deleting ||Al] < oo and dividing by 2, we have the required inequality. qo 

17-4.5. Theorem A vector charge y on a semiring S over X is of finite 

variation iff it is absolutely convergent. 

Proof. Assume that yu is absolutely convergent. Suppose to the contrary that 

there is Ap in $ such that |j|(Ag) = co. By last lemma, there is a finite partition 

P(Ao) and a set A; in P(A) such that |y|(A1) = 00 and also 

{lle DI] : D € P(Ao), D # Ai} > 1. 
Repeating to A), there exist a finite partition P(A;) and a set Az in P(A) such 

that |u|(A2z) = oo and also S“{||uD]| : D € P(A1), D # A} > 1. By induction, 

suppose that sequences of set A, and partitions P(A,) have been constructed 

in similar way. Then LJ?) U{D : D € P(A,), D F Ans} is a countable disjoint 

union of subsets of Ag. Since pz it is absolutely convergent, the series 

oD flleDIl : D € P(An), DF Ans} < 00. 

converges. However for each n we have So{leDIl > De P(A,), D # Anis} > 1. 

This contradiction shows that |u| is finite valued on §. Conversely, 

assume that y is of finite variation. Suppose U7, B; C A where all A, B; 

are in 8 and B), B2,--- are disjoint. For each n, write A \ Ui, Bi = Ue D 

where D; are disjoint sets in 8. Then P(A) = {B,,---,Bn,Di,---,Dm} isa 

partition of A by sets in § and er |e Bill < > #2 || < |ul(A), that is 
EEP(A 

ye, eBill < |uICA) < co. Therefore 3735, uB; is absolutely convergent. O 

17-4.6. Theorem The variation |u| of a vector charge » : 8 — E of finite 

variation is the smallest positive charge satisfying ||uAj] < |u|A, V Ae S$. 

Proof. Let A = Up B; be a disjoint union where A,B; € 8S. For 

every € > 0, choose a partition Pj(B;) of B; by sets in & such that 

HIB; < Mpepyay HDi +e/n. Then P(A) = Uj, P;(B;) is a partition of 

A and we have 

DIB, <3> YD mByllee< SD aD ve < ulate. 
j=l DEP;(B;) DEP(A) 

Letting é | 0, we get ea |wiB; < |u|A. On the other hand, suppose that 

P(A) is a partition of A by sets in 8. Then P;(B;)={DNB,;: De P(A)} isa 

partition of B,; by sets in $8. Observe that
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> WeDi= SD Souda) < SS SY ileDnB,)| 
DEP(A) DEP(A) || j=1 DEP(A) j=l 

= -> > |B; = 3 >») lHQli < YB 
j=l DEP(A) g=1 QEP;(B;) 

Taking the supremum over P(A), we obtain |u|A = yet Bs. Hence |p| is a 

positive charge on 8. It is an exercise to prove ||WAj| <{v|A, VA eS. oO 

17-4.7. Exercise Prove that |u+v| < |y|+|v| and |ay| = |e |u{ on 8. 

17-4.8. Let E,F, FE be Banach spaces with a bilinear map F x E — FE 

which is admissible, that is ||uv|| < ||u|l ||v|| for all (u,v) € F x E. Clearly every 

admissible bilinear map is continuous. For every map f : X — F’, its modulus, 

or absolute value is the function |f| : X — IR defined by |f|(x) = ||f(x)|| for 

every EEX. 

17-4.9. Exercise Let E,G be Banach spaces. Show that the evaluation map 

y: L(E,G) x E = G defined by ¢(u, v) = u(v) is an admissible bilinear map. 

Specify the case when G = K. 

17-4.10. Theorem ||J,.(f)|| < Jj,j(/f|) for every step map f : X — F and 

every E-charge yp of finite variation. 

Proof. For f = Vie ,jPa; where “5 € F and A; € §, the result follows from 

ZCI = PO" asm sl] < 0 lean 
=" las! adsl < =, la [al Ay) < Ta LF a 

17-4.11. Observation Let y be a complex charge. If there is a positive 

charge vy such that |J,,(f)| < IL(f|) for every step function f, then p is of finite 

variation. This explains why our measures in this book are of finite variation. 

Proof. Let P(A) be a partition of A € § by sets in 8. For each D € P(A), 

choose jap| = 1 with apyD = |uD|. For the step function f = >, appp, we 

have Sp MDI = Dp app = Ip(f)i < LAlf) = Sp lapleD = SvD = vA. 
Therefore {y|A = supp, 4) op |UD] < vA < oo. o 

17-5 Countable Additivity on Rings 

17-5.1. A family R of subsets of a set X is called a ring over X, or a ring of 

subsets of X in order to be precise, if
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(a) the empty set is in 8; 

(b) for all A,B in 8, both AUB and A\ B are in R. 

Since ANB=AUB\{(A\ B)U(B\ A)], every ring of subsets is a semiring. 

Consequently previous results on charges are applicable to rings. 

17-5.2. Theorem Let 8 be a semiring over X. Then the family & of all finite 

unions of disjoint sets in $ forms the smallest ring containing 8. In this case, 

R is called the ring generated by 8. 

Proof. It is obvious that R contains the empty set. Let A), Az be in R. It 

follows from the Semiring Formula, we may write pa, = a 04j;0B, where 

B,, By, ++, Bm are disjoint sets in § and a;; are either zero or one. Since the 

coefficients of p4,UA, = Yea Voaj)pp, and pa,\ a, = di jlony — (ay; Ada) |pp, 

are either zero or one, ® is a ring. Clearly it is the smallest among all rings 

containing 8. Oo 

17-5.3. Let £, F, FE be vector spaces with a bilinear map F x EF > FE. Let 

R be the ring generated by a semiring 8 over a set X and uw: 8 > E a vector 

charge. Let F(8, F') denote the vector spaces of S-step F-maps and F(R, F) be 

similarly defined. 

17-5.4. Algebraic Extension Theorem Both S,R have the same step maps. 

A charge pu on $ induces uniquely a linear map J on F(8, F) = F(R, F) which 

gives a unique charge v on R. Clearly v is the unique extension of » from $ 

to ®. Explicitly, for every A = Up B; in & where By, Bo,--+, Bn are disjoint 

sets in 8, we have vA = ea pB;. We identify p,I,v and write u(f) = I(f), 

pAZ=VA for all f € F(R, F) and AER. 

17-5.5. Exercise Show that for all A C B in 8, we have u(B\ A) = wB- pA. 

Prove that for all A, B in 8, we have p(AU B)+ uw(AN B) = pA+ pB. 

17-5.6. Let 8 be a semiring over a set X, E' a Banach space and p: 8 > FE 

a vector charge. Then yz is said to be countably additive if for every countable 

disjoint union A = UR, B; where all A,B; are in $, we have pA = ean uB;. 

Let R be a ring. Write B, fT A in & if all A,B, are in R; B, C Bry and 

A=", Bn. Similarly B, | A in & is defined. 

17-5.7.. Theorem Let jz be a vector charge on a ring R over X. Then following 

statements are equivalent. 

(a) is countably additive on R. 

(b) If B, | Ain R then pB, > pA.
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(c) If B, | Ain R then uB, > pA. 

(d) If B, | @ in R then pB, > 0. 

Proof. (a => b) Let B, | Ain R. Define By = 9. Then A= OR (B; \ Bj-1) 

and B, = Up. B; \ Bj-1) are disjoint unions of sets in R. By (a), we have 
oo n 

pA= 7, MBs \ Bj) = tim $7, w(By\ By) = jim wBn. 

(b > c) Let B, | Ain R. Then (B, \ B,) T (Bi \ A) in R. By (b), we have 

H(B, \ Ba) — w(B, \ A) as n — oo. Hence we get »B, — up B, > pB, — pA, 

that is uB, — pA. 

(c > d) It is a special case when A = 0. 

(d > a) Let A= UR B; be a disjoint union where A,B; are in R. Define 

Dn = A\ Uj Bj. Then D, | 0 in R. By (d), we get wD, — 0. Since 

A= Us B;) U Dy is a finite disjoint union of sets in R, we have 

pA = wh pB; + wD,. Letting n — oo we obtain pA = wr pB;. The 

proof is complete. oO 

17-5.8. Theorem [If p is a positive countably additive charge on a semiring 

S, then it is countably subadditive. More precisely, let A, By, B2,--- be sets in 

8. If AC US, Bi, then pA < 7%, wBj. 

Proof. Observe A=(Ji2(AN B;) and ANB; € $8. Let Dy, = AN By and for 

each i > 1 let (AN By) \ Ur(A N By) = UD,; where {Dj,, Diz, ---} is a finite 

number of disjoint sets in 8. Then U; D,; Cc B,; and hence yy pDiy < pB; 

since j is positive. Now we have the countable union A = Us; Dy of disjoint 

sets in 8. By countable additivity, we get pA = 7) + pRD yg S Se eB. O 

17-5.9. Write f, 1 g if all f,,g are real functions, f,(z) < fnis(x) and 

lim f,(%) = g(x) as n — 00 at every point x € X. Likewise, f, | g is defined. 

The following characterizes countable additivity in terms of order continuity. 

17-5.10. Theorem Let y be a positive charge on a ring R over X and J the 

associated integral. Then yp is countably additive iff for step functions f, | 0, 

we have I(fn) | 0. 

Proof. Since f, is a step function, write 0 < f;, = a aj;pa, where A; are 

disjoint sets in R and a; > 0. Define 8 = max{aj,a2,---,Qm}. For any € > 0, 

let Dy; = {x € A; : f(x) > e}. Since every f, is a step function, Dn; is a 

finite union of sets in the ring ® and hence it is in R. Since f, | 0 we have 

Dry 1 9, ie. pDpj > 0 as n > oo. Observe that
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0 < fata; = fnPAS\Da, + PnP Das © EPA;\Daz + BPD.; S EPA, + BeDd,;- 

Integrating on both sides, we have 0 < I(fnpa;) < ¢4Aj + BuDyz. Summing 

over 1 <j <m, we have 

0< Ifa) =1 (fa, PAs) = Day 1 (Intas) SE), HAV + BY, MDa 
which can be made arbitrarily small. Therefore J(f,) — 0 as required. The 

converse is obvious. oO 

17-5.11. Exercise Let ys be a positive countably additive charge on a ring R 

and f,,f be step functions. Prove that if fn, T f, then J(f,) T I(f). 

17-5.12. Exercise Let E be the Banach space of bounded functions on R 

under the sup-norm. Let 4A = p, for every semi-interval A. Show that p is a 

vector charge but it is neither countably additive nor of finite variation. 

17-6 Vector Measures 

17-6.1. Let 8 be a semiring over a set X and FE a Banach space. A vector 

charge yp: § > E is a measure if it is countably additive and of finite variation. 

Since every positive charge is of finite variation, every positive countably 

additive charge is a measure. We also say measures and charges on the space 

X whenever S$ is well understood. 

17-6.2. Example Let h(x) = xe** for each x ¢ R. Then the counting measure 

weighted by h is a complex measure on the semiring of singletons of R. 

17-6.3._ Example The point measures are positive measures. 

17-6.4. Theorem If 4: 5 — FE is a vector measure, then so is the unique 

extension vy of 4 to a charge on the ring R generated by 8. 

Proof. Through the associated integration, v is additive on R. To prove 

the countable additivity, let A = UP B, be a disjoint union where A, B,, Bo,--- 

are sets in R. Since S generates R, write A = (J, A; and B; = U; Bij where 

{A1, Ag,---} and {B,, Bi,---} are finite sequences of disjoint sets in 8. By 

definition of v we have vA = >, pA, and vB; = > j pB,;. Observe that both 

Ag = Ap NA = Ag O(U; Bs) = U,(An 9 Bey) 

and B;; = ANB,; =U,(AxM Biz) are countable disjoint unions of sets A, N Bi; 

in 8. Since » is countably additive, we have uA, = 7, 7 WAR 9 Biz) and
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eB = 35, uA O Bi). The unconditional convergence allows us to change 

the order of summation in the following calculation: 

vA = 30, BAR = Dy Dr, BARN Bis) 

= oy oy HAR Bij) =O, eBay = oy Bi. 

Similar argument shows that v is of finite variation on R. The details are left 

as an exercise. og 

17-6.5. Theorem The variation |j| of a vector measure yp: 8 > E is a 

positive measure on 8. 

Proof. Let A =U 2, Bi be a disjoint union where A, B; belong to 8. Since 

|u| is positive additive, we have |y|(A) > S73) |u|(B,). To prove the reversed 

inequality, let P(A) = {D1,D2,---,D,} be a finite partition of A by sets 

D, in 8. Applying |p| to the disjoint union B; = 3772,(Bi 9 Dy), we have 

|el(Bs) = 3, |u|(B; 0 Dz). For the countable partition D, = we (Bin De), 

the countable additivity of yz gives wD, = 72, w(Bi OM Dy), ie. 

Dil < 0 |w(Bin Dy) < Yo |u(Bin D leDel < D0 Bir Ded S DO WulCBe 9 Dy). 
Summing over k, we obtain 

ae IHDul < we ~~ |#1(BiM Dx) 

= ~~ we |ul(B; 9 Dy) = en ||(B3)- 

Taking the supremum over all partitions P(A) we have ||(A) < 0%, |u|(Ba). 

Hence || is countably additive and therefore it is a measure. oO 

17-6.6. Corollary The set of all complex measures forms a vector sublattice 

induced by the vector lattice of all complex charges with finite variation. 

17-6.7. Exercise Show that the family 3 of all finite subsets of IR together 

with their complements forms a semiring over IR. For each finite subset A of 

R, let «A be the total number of elements in A and wR \ A) = —pA. Prove 

that ys is countably additive on 8 but not of finite variation. 

17-6.8. Exercise Let yz be a charge of finite variation on a ring R. Prove that 

the following statements are equivalent. 

(a) w is a measure on R. 

(b) Both Re yz and Im yz are measures. 

(c) All (Re p)+ and (Im y)+ are measures.
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17-7 Lebesgue-Stieltjes Measures 

17-7.1. For every map g: R — E let dg(a,b} = g(b) — g(a) for all a < B. 

It is easy to verify that dg is additive. It is called the charge induced by g. 

Conversely, for every vector charge v on the semi-intervals into EF, the map 

Mv:R- E given by Mv(z) = v(0, 2] for all ¢ > 0 and Mv(x) = —V(z, 0] for 

x <0 is called the map induced by v. It is simple to verify that dMv = v and 

Mdg(z) = g(x) — g(0) for al xe R. 

17-7.2.. Theorem Let IM denote the vector space of all maps g : IR — EF with 

g(0) = O and € the vector space of all charges on the semi-intervals of R into 

E. Then g — dg: IM — C is an algebraic isomorphism. Furthermore for the 

scalar case & = IK, g — dg preserves the complex conjugates; dg is real iff g is 

real-valued; and also dg is positive iff g is increasing. 

17-7.3. Let g : R — E be a map. Then the variation |dg| of the charge 

dg is given by |dg|(a, b] = sup a \|g(z;) — g(2j-1)|| for all a < b where the 

supremum is taken over all partitions a = 4% < 2, <---<z,=b. The map g is 

of finite variation if |\dg|(a, b] < oo for all a < b. In this case, |dg| is also a charge 

on the semi-intervals. The map induced by |dg| is called the total variation of 

g, denoted by Vg. Therefore we have the following explicit formula 

(a) Vg(0) = 0; 
(b) for z > 0, Vg(x) = sup wha lg(z3) — g(z;~1)|| where the supremum is taken 

over all partitions 0= 27 <2) <--+<@,=2; 

(c) for « < 0, Vg(x) = —sup ve lg(23) — g(2j~1)|| where the supremum is 

taken over all partitions 2 = 19 < 4) <--- <2, =0. 

17-7.4. Theorem Let g be of finite variation. Then the variation of the 

charge induced by g is the charge of the total variation of g, that is |dg| = dVg. 

Proof. For 0 < a < 6, |dg|(a,b] = |dg|(0,b] — |dg|(O,a] = Vg(b) — Vo(a). 

For a < 0 < 3B, |dg|(a,b] = |dg|(a, 0} + |dg|(0,b] = Vg(b) — Va(a). Finally 

for a < b < 0, |dg|(a,b] = |dg|(a, 0] — |dg|(b,0] = Vg(b) — Vg(a). Therefore 

|dg|(a, b] = Vg(b) — Vg(a) = dV g(a, Bb] for alla < b. Bo 

17-7.5. Exercise Prove that linear combinations of maps of finite variation 

are of finite variation. 

17-7.6. Exercise Prove that a complex function on R is of finite variation 

iff both its real and imaginary parts are of finite variation.
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17-7.7. Theorem Let g : R — E be a map of finite variation. Then g is 

right continuous, that is lim g(x) = g(a) as x | a for every a € R, iff its total 

variation Vg is right continuous. 

Proof. Let a < x be given. If Vg is right continuous at a, then |!9(2)— g(a)|| < 

jdg|(a, 2] = Vqg(x) — Vg(a) — 0 as x | a implies the right continuity of g at 

a. Conversely, suppose that g is right continuous at a. For every « > 0, 

there is 6 > 0 such that for all «2 —a < 4, we have ||g(x) — g(a)|| < €. Pick 

any b > a+4é. There is a partition a = % < 2) < --- < 2, = 5 such that 

|dg|(a,b) < am lf(e;) — f(zj;-1)\| + €. Insert x so that 9 < x < x, and 

x — Zp <6. Then we have 

Vg(b) — Vg(a) = |dg|(a,b) < 7%, | Fes) — flay) + € 
< || F(z) — F(xo)|| + Fed) — F@)I| + Xe Fs) — Fes] + 

< €+ |dg|(x, b] + « = Vg(b) — Vo(z) + 2, 

that is 0 < Vg(z) — Vg(a) < 2e for all0 < c—a < 6. Therefore Vg is right 

continuous at a. oO 

17-7.8. Theorem Let g:R— R be an increasing function and v the charge 

of g given by v(a, b] = g(b) — g(a) for all a < b. Then v is a positive measure 

on the semi-intervals if g is right continuous on R. In particular, the Lebesgue 

measure given by g(x) = x is a positive measure. 

Proof. Clearly v is a positive charge on the semiring of semi-intervals. Let 

A= Ui B; be a disjoint union where A,B; are semi-intervals. Since v is 

a positive charge, we have a vB; < vA. To show the reverse inequality, 

we may assume that all B; are non-empty. Let A = (a,b] and B; = (a,;, b;). 

Suppose € > 0 is given. Because g is right continuous, there is 0 < 6 < b—a 

such that g(a + 5) — g(a) < €. Similarly for each 7, there is 6; > 0 satisfying 

g(b; + 5;) — g(b3) < €/23. Then {(a;,6; + 6;) : 7 > 1} is an open cover of 

the compact set [a+ 6,b]. There is a finite subcover, i.e. for some n, we get 

[a+6,b]) c Uji (ay,b; +6;), or (a+6,6] C Ui (@;, b; + 6;]. Since v is a positive 

charge, we have v(a + 6, b] < we v(a;,b; + 4;], that is 

a(b) — (a+ 8) < S70 Lab; + 53) — 9(3)), 

or, g(b) — g(a) < 26+ J” L9(b;) ~ gas) 

equivalently, vA <2e+ s~ , vB; <2e+ ~~, vB;. 
j= JF
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Because € > 0 is arbitrary, we have vA < a vB;. Therefore v is countably 

additive and consequently it is a measure. oO 

17-7.9. Theorem Let g:R — E be a map with finite variation and v = dg 

the charge given by v(a,b] = g(b) — g(a) for all a < b. Then v is a vector 

measure on the semi-intervals iff g is right continuous on R. In this case, v is 

called the Stieltjes’ measures induced by g. 

Proof. (=>) Let x, | a. Then (a,2,] | @ and hence v(a,z,] — 0, that is 

G(@n) — g(a) — 0, or g(tn) > g(a). Since the sequence {z,,} is arbitrary, g is 

right continuous. 

(<) Since g is right continuous, so is its total variation Vg. Thus its induced 

charge |v| is a measure on the semiring of semi-intervals. It is also a measure 

on the ring ® generated by the semi-intervals. Let A, — @ in R as n > ov. 

Then ||vA,|| < |v|(An) > 0. Therefore v is countably additive. oO 

17-7.10. Example Let h: R — R bea real function and p = dh the charge 

induced by h. The upper variation of h on (a, 6] is defined as 

ys(a,6] = sup > [a(a;) ~ haya) 
where the supremum is taken over all partitions a = a < 4) <-+-- <2, =5. 

Similarly, the lower variation is defined. Suppose A is of finite variation. 

Let V,h,V_h be functions induced by the charges u, and p— respectively. 

Since both ps are positive, V zh are increasing functions. From 

u(a,b) = p4(a,b] — p_(a,b], we have h(x) = V,h(x) — V_h(x) + A(0) by 

setting a =0 and b=a > 0. The same formula holds for a= a2 < 0 and b=0. 

Therefore every complex function g of finite variation can be decomposed into 

increasing functions: g = V,(Re g) — V_(Re g)+iV,(Im g) — iV_(Im g) + g(0). 

17-7.11. Exercise Prove that every continuously differentiable map on R 

into £ is of finite variation. 

17-7.12. Exercise Show that the function g = p(-0o,0 is of finite variation 

but its induced charge is not countably additive. 

17-7.13. Exercise Show that the function g given by g(r) = zsin + for 

az #0 and g(0) = 0 is a bounded continuous function on R but is not of finite 

variation. Find a sequence of semi-intervals A, such that 0°, |dgAn| = co 

where dg is the charge induced by g. 

17-7.14. Exercise Let g : R — K be a function of finite variation. Prove 

that the following statements are equivalent.
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(a) g is right continuous. 

(b 

(c 

(d 

Ra
e]
 

The total variation Vg is right continuous. 

Both Re(g) and Im(g) are right continuous. 

All upper and lower variations V,(Re g) and Vi.(Im g) are right continuous. 

17-7.15. Exercise Show that maps of finite variation are bounded on bounded 

sets. 

17-7.16. Exercise Prove that if f : R — K and g: R > E are of finite 

variation, then so is the product fg. 

17-99. References and Further Readings : Zaanen-59, Garnir-72, Munster, 

Apostol, Hawkins, Fell, Chuaqui, Huggins, DeLucia, Haluska, Olejeck, Kelly, 

Forelli, Brooks, Argabright, Stewart, Holland, Zelichenok, Byers and Jurzak. 



Chapter 18 

Extensions of Positive Measures 

18-1 Uniqueness of Extension 

18-1.1. Let f : [a,b] — [a, 8] be a function. For Riemann integral, we chop 

up the domain [a, b] into subintervals by partitions a = 179 < 2, <-+- <2, =0; 

select points c; € [x;_1,2,;]; construct step function a S (C3) P(x; —,2,) and 

define the integral of f as the limit of the sum wr f(e;)(a@; — £;-1) inter- 

preted as the areas of histograms. It is simple and it can cope with most of the 

engineering problem but it cannot handle the convergence f, — f of functions 

required in harmonic and Fourier analysis. For Lebesgue integral, we chop up 

the range [a, 8] into subintervals by partitions a = yo < yy <-++ < Yn = B; 

select points y; € [yj-1, yj]; construct simple function s = a 7jPa; and 

define the integral of as the limit of the sum ye AA; but the Lebesgue 

measures AA, of the sets Aj; = f—'(yj-1, yj] are not yet available. It is more 

complicate but Monotonic Convergence Theorem, Fatou’s Lemma and Domi- 

nated Convergence Theorem developed in later chapters are some milestones 

providing service better than Riemann integrals. This motivates the need to 

extend measures from semi-intervals to larger classes of sets. In this section, 

we shall prove the uniqueness of such extension. 

18-1.2. A ring over a set X is called a é-ring if it is closed under formation 

of countable intersections. A 6-space or a measurable space modeled on 6-ring 

consists of a é-ring ID over a set X. Sets in D are called decent sets. 

18-1.3. Exercise Let A,B, be decent sets in a 6-space (X, ID). Prove that if 

all B,, ¢ A, then UP, Bn is also a decent set. 

18-1.4. Theorem Every countably additive complex charge p on a 6-ring 

D is of finite variation and hence is a measure. This may explain why finite 

variation does not play an important role in the scalar measure theory. 

Proof. Let A,B; be decent sets such that Ur B; C A and that By, Bo,--- 

are disjoint. Then B= Uz B; is a decent. set. By countable additivity, the 
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convergence wB = Ux #B; is unconditional in K, that. is invariant under 

permutation of indices. Hence the series )>7°, |#B;| converges. Therefore p is 

of finite variation. oO 

18-1.5. Note that the above result also holds for vector measures into 

Banach spaces in which unconditional convergence of series implies absolute 

convergence. Characterization of this class of Banach spaces in terms of 

subspace Cp is beyond our scope. 

18-1.6. Lemma Let X be a family of subsets of a set X. 

(a) The smallest 6-ring ID containing K is the intersection of all 6-rings 

containing K. It is called the 6-ring generated by K. 

(b) Every set in ID is contained in a finite union of sets in K. 

Proof. (b) The family F of all subsets of finite unions of sets in K forms a 

d-ring. Since K C F, we have Dc F. oO 

18-1.7. Exercise Decent sets of the real line R are sets in the é-ring generated 

by the semiring of semi-intervals. Show that every decent set is bounded. Prove 

that every bounded interval is a decent set. Conclude that the family of finite 

unions of semi-intervals forms a ring but not a d-ring. 

18-1.8. For the rest of this section, assume that 5 is a semiring over X, ® the 

ring generated by § and ID the 6-rings generated by 8. A monotone family F of 

ID is a subfamily of D such that 

(a) if A, € F and A, | A then ACF, 

(b) if A, € F and A, TAC De Dthen Ac F. 

18-1.9. Lemma _ For every M ¢€ D and for every monotone family F of D, 

the family F(M) = {N € D: all MUN,M\N,N\M € F} is also a monotone 

family of D. 

Proof. We shall verify the second condition of monotone family only. Assume 

A, € F(M)and A, f AC De D. Then A, € Dand MUA, € F by definition 

of F(M). Because the é-ring ID is monotone, we have A € D. Clearly, 

MUA, ?TMUACMUDED. 

Since F is monotone we have MUA € F. Similarly we obtain M\A,A\M ¢ F. 

Consequently A € F(M). It is an exercise to verify the first condition of 

monotone family and to complete the proof. ad
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18-1.10. Lemma Let F be a monotone family of D. If F contains ®, then 

we have F = D. 

Proof. Clearly the intersection of all monotone families of D containing R is 

a monotone family of D satisfying R Cc E Cc F c D. Because 8 is a ring, for 

all A,B © ® we have B € IEK(A) which was defined in last lemma. Hence R 

is contained in the monotone family IE(A). Since E is the smallest, we obtain 

IE c EA). For every M € E we have M © KK(A). The symmetry in the 

definition of E(A) gives A € E(M). Since E() is another monotone family 

containing ®, we have E Cc E(M). We conclude that for arbitrary M,N € E, 

the sets MUN, M\N, N\ M are all in E. In other words, E is a ring. Since 

E is monotone, it is a é-ring containing R. Because DD is the 6-ring generated 

by R we have D C E. Consequently E =F = ID. This completes the proof. 0 

18-1.11. Theorem A vector measure yu on a semiring 8 into a Banach space 

E has at most one extension to a measure on the d-ring ID generated by 8. 

Proof. Let y,a be two extensions of » from $ to measures on ID. Clearly 

yp =aon 8. Now F= {D € D: pD = xD} is a monotone family of ID 

containing R. Consequently F = D, ie. y= 7. Oo 

18-1.12, Exercise Let X = {a,b}, 8 = {@,{a}}. Show that p{a} = 1 and 

pO = 0 is a measure on the semiring $. Construct two different extensions of 

pt on the power set IP of X. Show that P is a é-ring containing $ but not 

generated by 8. 

18-2 Outer Measures 

18-2.1. To define the area of a disk which is obviously not a finite union of 

semi-rectangles, we cut the plane with horizontal and vertical lines and then 

count the total area of semi-rectangles which barely cover the disk. As we cut 

the plane finer and finer, we have better and better approximations to the area 

of the disk. This idea is formalized as the outer measure. 

18-2.2. Let {an} be a sequence in [0,00]. Define )7,, an = 00 if one of them 

is co. Clearly if all 0 < a, < 00, the series 3°, a, may also diverge to oo. 

18-2.3. Let K be an arbitrary family of subsets of a set X with @ €¢ K. Let 

pp: K — [0, 00) be a finite-valued function satisfying p@ = 0. Note that K need 

not be a semiring. In fact, for a locally compact space, K should be taken as
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the family of all compact sets. For every subset H of X, let C(H) denote the 

family of all sequential covers {A,} of H by sets in K. The outer measure of H 

is defined by 

tH = dint Dee wAn, if CH) #6; 

0, if CCH) = 0. 

18-2.4. Theorem The outer measure is a function on the power set of X into 

(0, co]. It satisfies the following conditions. 

(a) If H € K then p*H < pH. 

(b) If H C K then p*H < p*K, monotonic. 

(c) (UR, Hn) < 0%, vA, countably subadditive. 

Proof. (a) Let A, = H and A, = @ for alln > 2. Then p*H < ee An = WH. 

(b) It follows from the definition immediately. 

(c) If S772, w*H, = co then the inequality is obviously true. So we may 

assume ~~, u*H,, < co. Then all *H,, < oo and in particular, C(H,) 4 0. 

For every € > 0, there is a sequential cover {Anj : 7 > 1} in C(H,) such 

that Dol BPAnj < pH, + €/2”. Now {A,; : 7,7 > 1} is a sequential cover in 

Cc (UR, H,,). The result follows by letting ¢ | 0 in the inequality below: 

& (UE) <5, he 
<>" ut Hy + €/2") = oO, pH) +8, o 

18-2.5. A subset M of X is said to be p*-measurable if 

(HM) + p*(H\ M)= 

for every subset H of X. Geometrically, M cuts every set H nicely as the 

sum of inside and outside of M. It is important to note that 4*-measurable set 

depends on yz while the measurable sets introduced in next chapter has nothing 

to do with yu. The following lemma gives a nice criterion for u*-measurability. 

18-2.6. Lemma _ A subset M of X is *-measurable if for every A in K we 

have p*(ANM M)+ w*(A\ M) < pA. 

Proof. Let H be any subset of X. By countable subadditivity, we obtain 

w(H OM) + wt \ M) > we. 

If x*H = oo then the equality holds. Hence we may assume u*H < oo. Then 

for every < > 0, let {A,} be a sequence of sets in K such that H C UP, An 

and 377. wAn < uw" H +e. Observe that
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(Za)oufon (Ga) 
Uran an] + An \ M)] < SO uta 0M) + 37 y(An \ M) 
n=l n= n=l n=l 

oO 

= Sole"(An 1M) + p"(An \ M1 < So An < u"H te. 
n=l n=l 

Letting € | 0, we have p*(H MM) + u*(H \ M) < y*H. Therefore the set M is 

p*-measurable. Oo 

BCH M) + w"(H\ M) < pt 

=p 

18-2.7. Exercise Prove that if u*M =0, then M is p*-measurable. 

18-2.8. Exercise Consider the counting measure 4: on X. Find a formula for 

the outer measure y*M of any subset M of X. Prove that every subset of X 

is »*-measurable. State and prove similar result for point measures. 

18-2.9. A family A of subsets of X is called an algebra if 

(a) the empty set is in A; 

(b) for every A in A, the complement X \ A is in A; 

(c) if A,B € A, then AUB EA. 

An algebra is called a o-algebra if it is also closed under formation of countable 

unions. Clearly, every o-algebra is closed under countable intersections. 

18-2.10. Exercise Let A be an algebra of subsets of X. Prove that if the 

union U7, An is in A for all disjoint sequences {A,} of sets in A, then A is a 

o-algebra. 

18-2.11. Theorem The family A of all *-measurable sets forms a o-algebra. 

Furthermore p* is countably additive on y*-measurable sets. 

Proof. Simple verification shows that A contains the empty set and is closed 

under formation of complements. We shall prove that A is closed under 

formation of countable unions in several steps. Let M,N be y:*-measurable 

sets. We claim that MUN is u*-measurable. For simplicity, write M’ = X\M. 

Now observe that for every subset, H of X, 

pH < pH (MU N14 LH \ (MU NY) 
=PhlHA(MUN)OM]+ lH a(MUN)\ M)]4eLHa(MUN)] 

= (HOM)+ he (HANOM’)+4 we (HA MOAN’) 

=e (HOM) +e (AMON) +e (HOM) \ NY] 

= p(HOM)+ (HOM) = (HAM) 4+ (A \ M) = pA.
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Therefore we have p*H = p*[HA(MUN)]|+p"*[H \(MUN)] and hence MUN 

is z*-measurable. Suppose further that M, N are disjoint. Then we have 

MLA AMUN) = LE N(MUN)OM) +e [Hh A(MUN)\ MM] 

=p (HAM)+ wn N). 

By induction, it follows that finite unions of 4*-measurable sets are z*-measurable. 

Furthermore if M,,M2,---M, are disjoint *-measurable sets then for every 

subset H of X, we have 

ut (20U, M;) = a "(HO Mj). #1 

Tn particular when H = U%_, Mj, we get p:* ( an M;) = a1 B*(M;). Next, 

let {M,} be an infinite sequence of »*-measurable sets. Assume that the sets 

M; are disjoint. Let N, = Uf_, Mj and N = Uj<, Mj. Then for every subset 

H of X, since N, is y*-measurable we obtain by #1 

w= p*(H ON) + (A \ Np) 

> HCH ON,) + wT Ny = SO" e.My) + oe \ N). 
Letting p — oo and using countable subadditivity, we get 

fos] oO 

ph > Sw OMG) eH \ N) > a [UZ A M5)| + pX(H\N) 

=p(HON) +p (H\N) > wi. 
Therefore N = U52, Mj is u*-measurable. Letting H = N, we have 

ue (Uz, M;) = er u"M;j. 

Since A is a ring which is closed under formations of complements and 

countable disjoint unions, it follows that A is a o-algebra. oO 

18-2.12. Exercise Let B denote the family of *-measurable sets with finite 

measures. Show that B is a 6-ring and the restriction of u* to B is a measure. 

Furthermore prove that if A C B are p*-measurable with *A < oo, then 

w(B\ A) =p B— pA, 

18-2.13. Exercise Let X = {a,b,c}, A = {a}, B = {b}, C = {a,b}, 

K = {0, A,B,C}, wA = pB = pC = 1 and of course pO = 0. Find the outer 

measures of every subset of X. List all y*-measurable sets. Is A a 

non-measurable set? Show that p* 4p on K. 

18-2.14. Exercise Let 4 be the Lebesgue measure on the semi-intervals of the 

real line IR. Prove that every singleton is A*-measurable and its outer measure 

is zero. Then show that the outer measure of every countable set is zero. Prove 

that the set of irrational numbers in the interval [/2,3) is A*-measurable and
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find its outer measure. It can be proved that there exists a subset of IR which 

is not Lebesgue measurable but we do not need this result. 

18-3 Extension to Decent Sets 

18-3.1. Let pw be a finite-valued positive measure on a semiring 5 over a set 

X and D the 6-ring generated by 8. Sets in D are called decent sets. In 

order to avoid co taken by the outer measure ys*, we have to cut back from 

p*-measurable sets to decent sets. 

18-3.2. Theorem The outer measure p* is an extension of from § to a 

(finite-valued) measure on decent sets. For convenience, write 4H instead of 

p*H for every decent set H. 

Proof. Let M be a set in 8. Then for every A in 8, write A\ M = Ur, D; 

where D,;, D2,---, Dm are disjoint sets in 8. Because p is additive, we have 

u(AN M)+u"(A\ M) < p(ANM)+ 0 uD; < MANM)+ DO wD, = pA. 
j=l jel 

Thus M is u*-measurable. Next, let {A;} be a sequential cover of M. By 

countable subadditivity, we have pM < Sp pA;. Taking infimum over all 

{A;} in C(M) we obtain uM < p*M. Therefore u* agrees with pu on 8. 

Next, let N be a decent set. Choose Aj,::-,An € 8 such that N Cc Upet A;. 

Then p*N < ve WA; = he pA; < oo. Finally, since the family of all 

p*-measurable sets is a g-algebra, it is a é-ring containing 8 and therefore it 

also contains D. Oo 

18-3.3. Theorem For each decent set H and for each ¢ > O there is a 

sequence {A,} of disjoint sets in § such that HC UP, An, S772, wAn < pH te 

and LJ*2, An is a decent set. 

Proof. Let H be covered by a finite union of disjoint sets H;,H2,---,Hp in 

S. Since uA = u*H, for every « > 0 there is a sequence {B;} of sets in 8 such 

that H c Us, Bi and S73, wB; < pH +e. Define By = 0, Dy, = By, m1) =1 

and for each i > 1, write B; \ Bi. = Us’ Diy; where Diy, Din, ---, Dimi are 
disjoint sets in 8. Then 

00 oO mrt) 

sa c (UZ, B;) o (Ui, Hx) = U,., U., Un. Di; n Ak 

= ae a pLDi; 0 Hy] = ~~, a no Dig A (Ui, i) 

and 

gat
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oo OO 

< i i < i . <0, MBi\ Bint) SU uBi <u +e 
Therefore an enumeration of {D,;N Hy: 1<k <p,1<7 < m(@),i=1,2,---} 

is the required sequence. Their union is a decent set by §18-1.3. Oo 

18-3.4. Theorem For each decent set H and for each ¢ > 0 there are disjoint 

sets A,,A2,---,A, in 8 such that un(H A B) < « for B = Uy A; where 

HAB=(A\ B)U(B\ 4A) is called the symmetric difference of H and B. 

Proof. Let €¢ > 0 be given. Choose {A;} by last theorem. There is n > 1 

such that yen.) HA; <€. Define B= Uf_, Aj. Then H\ BC Ufzas1 Aj and 

B\ H CU}, A; \ H. Hence we obtain 

HH A B) = pl(A \ B)U(B\ AY] 

<7 mst [o(US, 4s) -mt] ses (Dod nt) <2. 
18-3.5. A decent set which is a countable union of sets in 8 is called a o-set. 

A countable intersection of o-sets is called a aé-set. Clearly every a-set is a 

countable union of disjoint sets in § and every o-set is a a6-set. 

18-3.6. Corollary Let H be a decent set. 

(a) For every € > 0, there is a o-set AD H with pA < pH +e. 

(b) There is a o6-set B containing H such that y(B \ H)=0. 

Proof. Part (a) follows from §18-3.3. To prove (b), for each n > 1, there is 

a g-set A, containing H such that pA, < pH +1/n. Let B=), An. Then 

B is a od-set. Clearly H C B. From pH < pB < pA, < pH + 1/n, we get 

pH = wB < oo. Hence p(B \ H) = pB - pH =0. Oo 

18-3.7.. Exercise Prove that finite intersections of o-sets are o-sets. Prove 

that every od-set is the intersection of a decreasing sequence of g-sets. Show 

that every o6-set is a decent set. 

18-3.8. Exercise Let j:,v be real measures on a semiring S over X and pe, Ve 

their extension over the d-ring D generated by 8. Prove that if wu < vy on 8, 

then we < vv, on D. 

18-99. References and Further Readings : Guainua, Fox, Uhl, Kluvanek, 

Ohba, Kuo, Niculescu-77, Christensen, Luo, Munroe, Kolmogorov, Rana, Wang, 

Dobrakov and Kandilakis. 



Chapter 19 

Measurable Objects 

19-1 Measurable Sets 

19-1.1. Let (X,ID) be a 6-space. Sets in D are called decent sets. A subset 

M of X is said to be measurable, or D-measurable to be precise, if for each 

decent set A, the intersection M1 A is a decent set. It is important to realize 

that measurable sets in this chapter are independent of any measure while 

y*-measurable sets in previous chapter rely heavily on a particular measure pL. 

In later chapters, vector measures of decent sets of X are always defined and 

form a vector space. Positive measures are defined on all measurable sets. 

19-1.2. Example Let X = {z,y,z}, A = {2,y}, B = {z}, C = {x} and 

D = {f, A}. Then D is a 5-ring. The measurable sets are 0, A,B and X. On 

the other hand, the function » : D — R given by u@ = nA = 0 is a measure on 

D. Since p*C = 0, the set C is z*-measurable but not ID-measurable. 

19-1.3. Lemma Let XK be a family of subsets of a set X and D the 6-ring 

generated by K. Then a subset M of X is measurable if for each A € XK, 

the intersection AM M is a decent set. Two important cases are when XK is a 

semiring or the family of all compact sets in a locally compact space. 

Proof. Let F be the family of all decent sets A such that AN M is a decent set. 

Since (A\B)NM = (ANM)\(BNM), we have A\B € F, V A,B € F. Similarly, 

it is easy to verify other conditions showing that F is a é-ring containing XK. 

Therefore F = ID which means M is measurable. Oo 

19-1.4.. Theorem The family JM of all measurable sets in a d-space X forms 

a o-algebra containing D. 

Proof. Since D is a ring, every decent set is measurable, i.e. ID Cc IM. In 

particular, @ € IM. Let M,M; be measurable sets and let A be any decent set. 

Because ID is a d-ring, we have (X \M)NA=A\M €D and 

(Uz, M;) NA=A\()"IA\(M, nA] € D.
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Therefore IM is a o-algebra. oO 

19-1.5. Exercise Show that a set is measurable iff its intersection with every 

decent set is measurable. 

19-1.6. The measurable sets of IR, without any é-ring explicitly indicated, 

are defined in terms of the 6-ring generated by the semi-intervals and have 

nothing to do with the Lebesgue measure. Similarly the measurable sets of IR? 

are obtained from the semi-rectangles. Since the complex plane C is identified 

with IR”, its measurable sets are also defined in terms of the semi-rectangles. 

19-1.7. Exercise Prove that every singleton in R is a countable intersection 

of semi-intervals. Hence show that every countable set in IR is measurable. 

19-1.8. For the rest of this section, we assume that S is a semiring over X, 

® the ring generated by S and ID the common 6-ring generated by 5 and R. 

Suppose A is a family of subsets of X. The intersection B of all c-algebra 

containing A is called the o-algebra generated by A. Clearly B is the smallest 

o-algebra containing A. 

19-1.9. Exercise Prove that the o-algebras generated by 8, 8, D are identical. 

19-1.10. Theorem If X is covered by a sequence of decent sets, then the 

family IM of all measurable sets is the a-algebra generated by the 6-ring D 

and hence by 8. Consequently the measurable sets of IR are generated by 

semi-intervals and of IR? by semi-rectangles. 

Proof. Let X =, An where A, € D and let IN be the o-algebra generated 

by ID. Since IN is the smallest, it follows that IN Cc IM. Conversely take 

any Q € M. Then QN A, € D CNN. Since WN is a o-algebra, we have 

Q=U,(QN4,) € IN. Thus M Cc IN. Therefore IM is generated by D. It 

follows that IM is also generated by 8. The last statement follows from the 

fact that IR can be covered by (—n,n] and R? by (—n,n/* for n= 1,2,3,---.0 

19-1.11. Theorem Consider the real line IR. The family IM of all measurable 

sets is the o-algebra generated by any one of the following families of sets: 

(a) the semi-intervals (a, 6] for a <b; 

(b) the open intervals (a, 6) for a <b; 

(c) the upper open rays (a, 00) fora ce R; 

(d} the lower closed rays (—co,a] fora eR; 

(e) the lower open rays (—oo,a) fora ER;



374 Measurable Objects 

(f) the upper closed rays [a, co) fora € R ; 

(g) the open sets of R. 

Proof. Let IM(a), M(b),--- be o-algebras generated by sets of (a), (),--- 

respectively. It follows from last theorem that IM = IM(a). For any a < 6b 

we have (a,b) = (J%\(a,6,] where a < b, 7 b. Hence M(a) is a o-algebra 

containing all (a,b). Since IM(b) is the smallest, we get IM(b) Cc IM(a). Simi- 

larly (a, 00) = UP, (a,a +n) gives M(c) C IM(b). Next, RR \ (a,00) = (—00, a] 

gives IM(d) ¢ M(c). Now it is easy to prove IM(f) C IM(e) c M(d). Next 

for all a < b, we have (a,b] = {UE few x) } n {R\US, E 00) } 

establishes IM(a) Cc IM(f). We have proved IM = IM(a) = M(0) = --- = IM(f). 

Since every open interval is an open set we have IM(b) Cc IM(g). Finally given 

any open set A, there is a sequence of bounded open intervals B; such that 

A=U, Bi. Hence M(g) c IM(6). This proves IM(b) = IM(g). g 

19-1.12. Exercise Prove that every semi-rectangle in IR? is a countable 

intersection of open sets. Show that every non-empty open set in R? is a 

countable union of semi-rectangles. Deduce that the family of all measurable 

sets in IR? are generated by the open sets. 

19-1.13. Subsets of IR” in the o-algebra generated by open sets are usually 

called Borel sets by the community. Our decent sets are bounded Borel sets. 

Clearly every Borel set in IR is Lebesgue measurable. Borel sets are 

independent of any measure but Lebesgue measurable sets depend on the 

Lebesgue measure. 

19-2 Measurable Functions 

19-2.1. Lemma Let X,Y be 6-spaces; f : X —+ Y a map and IM(X), IM(Y) 

the families of measurable subsets of X,Y respectively. Suppose that IM(Y) 

is generated by a subfamily K. If f-'(A) € IM(X) for each A € XK, then 

f—'(B) € IM(X) for each B € IM(Y) 

Proof. Suppose that F = {B c Y : f7'(B) € MC(X)}. It is given that 

K CF. Since taking inverse images preserves complements and unions, F is a 

g-algebra over Y. Because IM(KK) is generated by K we have IM(Y) c F. This 

completes the proof. Oo 

19-2.2. Let X be a é-space. A function f : X — K is said to be measurable 

if the inverse image of every measurable set is measurable. It is important to
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note that we use the Borel sets in K rather than the larger class of Lebesgue 

measurable sets. Observe that in this book the target spaces are restricted to 

K or Banach spaces only. 

19-2.3. Theorem Let f bea real function on a é-space X. Then the following 

statements are equivalent. 

(a) f is measurable. 

(b) f f7'(a,00) = {x € X : f(x) > a} is measurable for all a € R. 

(c) f f-\(—co, a] = {x € X : f(x) < a} is measurable for all a € R. 

(d) f-'(—00, a) = {x € X : f(z) < a} is measurable for all a € R. 

(e) f-'[a, 00) = {x € X : f(x) > a} is measurable for all a € R. 

(f) The inverse image f~ '(A) of every open set A in R is measurable. 

19-2.4. Corollary Let f,g be real functions on a d-space X. If both 

f,g are measurable then the following sets A = {x € X : f(z) < g(x) + a}, 

= {x €X: f(r) > g(x) +a}, C = {t € X : f(z) = g(x) + a} and 

D={x EX: f(x) # g(x) +a} are all measurable for every a € R. 

Proof. Let Q denote the countable set of all rational numbers. Since 

_ ly -17. A= (fon g(r —a,c0)} 
is a countable union of intersections of two measurable sets, it is measurable. 

Thus B = X \ A is also measurable. Next, the set 

C={xeX: f(z) > g(z)ta}n{z eX : g(x) > f(z) — a} 

is measurable. Finally D = X \ C is measurable. Oo 

19-2.5. Theorem A function f : X — K is measurable iff the inverse image 

f—'(A) of every open subset A of K is measurable. 

Proof. The measurable sets in IK are generated by open sets. Oo 

19-2.6. Theorem Let K; denote R or €. If f : X — K, is a measurable 

function and if y : K, -+ Kz is a continuous function, then the composite 

function yf is a measurable function on X. 

Proof. Let A be an open set in K. Since y is continuous, g~'(A) is open 

in K,. Since f is measurable, f—'y-!(A) is measurable. Hence (yf)~'(A) is 

measurable for every open subset A of Ky. Consequently yf is measurable. G 

19-2.7. Corollary If f : X — K is measurable then |f|? is measurable for 

every p > 0.
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Proof. The function y(t) = |é|? : IK — R is continuous. The result follows 

immediately from last theorem. a 

19-2.8. Theorem A complex function f : X — C is measurable iff both real 

and imaginary parts are measurable real functions. 

Proof. Since y(z) = Re z : C — R is a continuous function, Re f = yf 

is measurable. Similarly Im f is also measurable. Conversely assume both 

Re f and Im f are measurable real functions. Let A = (a,b] x (c,d] be a 

semi-rectangle of € where a < b and c < d. Then the set 

fo(A ={x@e X 2a <Re f(x) <b, ce < Im f(z) < d} 

= (Re f)1(a, 8] (Im f)“\(c, d] 

is a measurable subset of X. Since the measurable sets of © are generated by 

the semi-rectangles, f is a measurable complex function. q 

19-2.9. Theorem Linear combinations of measurable functions are 

measurable. 

Proof. Let f,g be real measurable functions on a 6-space X and let k bea 

real number. If k = 0 then the constant function kf is measurable. If k > 0 

then for all a € R, the set {c € X : kf(z) < a} = {x EX: f(x) < a/k} is 

measurable and if k < O then {z € X : kf(x) < a} = {x EX: f(x) > a/k} 

is again measurable. Therefore kf is measurable. Finally for each a € R, the 

set {c € X : f(z) + g(x) < a} = {2 © X : f(x) < —g(x) + a} is measurable. 

Consequently f + g is measurable. The complex case is reduced to the real 

case by last theorem and the use of an explicit formula to express the complex 

linear combination in terms of the real and imaginary parts. ia) 

19-2.10. Theorem The product f -g of two measurable functions 

f,g:X — K is measurable. 

Proof. For real case, f.g= df +9? —|f —g|*) is measurable. For complex 

case, f -g = (Re f)(Re g) — (Im f)(Im g) + (Re f)(Im g) + iim f)(Re g) is 
measurable by reduction to real case. Oo 

19-2.11. Exercise Prove that every continuous function on K is measurable. 

19-2.12. Exercise Prove that the function g : IR > R given by g(x) = sin 1 

for x #0 and g(0) = 0 is measurable.
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19-3 Limits of Measurable Functions 

19-3.1. Given a sequence of real functions f, : X — RR, their supremum 

sup fn may take oo as values. For this reason, we have to consider the extended 

real line [—oo, oo]. In this section, we shall prove that measurable functions 

are closed under limiting process. 

19-3.2. It is easy to prove that the family of all semi-intervals of R 

together with two singletons {co}, {—co} and the empty set forms a 

semiring over [00,00]. For convenience, we also call this the semiring of 

semi-intervals. It follows that the measurable sets of [—co,co] are members 

of the o-algebra generated by semi-intervals and two singletons {00}, {—oo}. 

Since {oo} = [JR,(n,c0], {-co} = [-00,00] \ UR, (—-n, co], and 

(a,b] = {[—co, co] \ (b,00]} M (a, 00], the measurable sets of [—00, oo] are 

generated by the sets (a,0o] for all a € R and similarly also by sets [oo, b) 

for all be R. Given a subset M of RR, it follows that Mf is measurable in R iff 

it is measurable in [—oo, oo]. 

19-3.3. Let X be a é-space and f : X -— [-o00,c0] be an extended 

function. Now f is measurable iff {x € X : f(x) > a} is measurable for every 

a € R. Consequently, §19-2.4 also holds for measurable extended functions. 

Measurable extended positive (> 0) functions are also called upper functions. 

By a measurable function, we always mean a real or complex function without 

taking -koo as its value. 

19-3.4. Exercise Prove that for any upper function f and a © R, the sets 

A={xEX: f(z) >a}, B={x eX: f(x) >a} and C={r eX : f(z) = 00} 

are measurable. 

19-3.5. Exercise Let f be the extended function on R given by f(x) = co if 

zx is irrational and f(z) = 2 if z is rational. Show that f is an upper function. 

19-3.6. Let {x,} be a sequence of extended real numbers in [—00, co]. Its 

lower limit is defined by liminfz, = sup inf x,. Similarly its upper limit is 
n-00 k>1 n>k 

defined by limsupz, = inf sup Zn. Clearly both upper and lower limits exist 
2! a>k n—00 

in [—00, 00]. Standard properties will be used without specification. See §2-3.3. 

19-3.7. For any sequence {f,} of real functions on X, define 

(Jiminf f,)(x) = liminf [f,(z)| and (lim sup f,,) (a) = lim sup [f,(x)}-
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19-3.8. Theorem Let /,,, f,g be measurable extended functions on a é-space 

X. Then the following functions are measurable. 

(a) sup f,, inf f, where n runs over a countable index set J. 

(b) lim inf f,, lim sup fr. 

(c) lim f,, if it exists. 

(d) fVg9, fAg, fe=fVOand f_ =(-f)v0. 
Proof. As a countable union of measurable sets, for every a € IR the set 

{zc €X : supf,(z) > a} = Ufc € X : f(z) > a} is measurable. Hence 

sup fn is measurable. Similarly, inf f, is measurable. Repeated application of 

these results to sup,s, infz>s f, shows that liminf f, is measurable. Similarly 

the function lim sup fre is measurable. If lim f, exists then lim f, = liminf fr 

is measurable. Both f Vg, f Ag are measurable when the index set J in (a) 

consists of two elements. The last result follows from the fact that the zero 

function is measurable. oO 

19-3.9. Exercise Prove that the derivative of a function f : R ~ R 

differentiable everywhere is measurable. 

19-3.10. Exercise Let f,, : IR — [—oo, co] be a sequence of extended functions 

and let M be the set of x € R at which lim f,(z) exists and is finite. Prove 

that M is measurable. 

19-4 Approximations by Simple Functions 

19-4.1. We started off with a semiring 8 over a set X. Then we constructed 

more semirings R,D,M. For convenience, a function of the form 

f = Uh, aipa,, where a; € K, is called a step function if all A; are in 8 or 

R, a decent function if all A; are in ID and a simple function if all A; are in IM. 

Clearly every simple function is measurable. For every function f on X, the 

sup-norm is defined by ||f|{ = sup{|f(z)] : 2 € X}. Other norms usually have a 

subscript such as |{ fi[p. 

19-4.2. Theorem Every positive bounded measurable function is a uniform 

limit of some increasing sequence of positive simple functions. 

Proof. Let f : X — [0,00) be a bounded measurable function. Firstly we 

claim there is a simple function 0 < g < f such that ||f — g/l < silFll- In fact, 

let 6 = AF and A={xéX: f(x) > 8}. Then g = Bpz is a simple function. 

Clearly O< 9 < f. If € A then |f(z) — 9(a)| = f(x) -8 < 28-B=8 andif 
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z ¢ A then | f(x) ~ g(z)| = f(z) < 8. Therefore {| f — gi] < 6 = 4I|f||. Now we 

apply this machine to prove the theorem. There is a simple function g, such 

that 0 < gi < f and ||f — gi/[ < $||f |]. By induction there is a simple function 

gn such that 0 < gn < f — (91+ 924+°+++ Gn—1) and 

Wf —( +92 +--+ +9n)|| S Allf — i+ g2t+++ Gn < ISI 
Then fr = 91+ 92 +°-:+9n is a simple function such that 0 < f, T f and 

lf - fall S willl. Oo 

19-4.3. Theorem Every upper function is a pointwise limit of some increasing 

sequence of positive simple function. 

Proof. Let f : X — [0,00] be a measurable function. For each n > 1, let 

In =f A n. Then g, is bounded measurable and 0 < g, 7 f. There is a simple 

function A, such that 0 < hn < gn and jlgn — hall < 1, Now for each x € X, if 

f(z) < co, then {h,(2) — f(2)| = |An (2) — gn(2)| < 4 for all n > f(x) otherwise 

Ap (2) > gn(x) — 1 >n-—1. Therefore h, — f pointwise and hy, < gn < f. 

Define f, = h, Vh2V---Vhy. Then f, are positive simple functions satisfying 

O< fal f. a 

19-4.4. Theorem For every measurable function f, there is a sequence of 

simple functions f, such that |fn} < |fasi| <{f| and f, + fon X asn > w. 

Furthermore if f is bounded then we may assume uniform convergence on X. 

Finally, if f is real, then all f, can be chosen as real. 

Proof. Assume f to be real. There are simple functions 0 < gp T fa, 

O<h, T f-. Then all fn = gn — hn are simple functions. Clearly f, — f 

on X. Now |fnif=gntha < f+ f- = |f|. Similarly |f,} < |fasf. Next, for 

complex function f, apply the above result to both Re f and Im f respectively 

and then assemble them together. The case of bounded function is left as an 

exercise. Oo 

19-4.5. Corollary For every extended real measurable function f, there is a 

sequence of real simple functions f, such that |fn| < |fnsl <[f| and fa > f 

pointwise on X as n — 00. 

19-4.6. Exercise Let f be areal function given by f(z) = x+i(2—|z|), Vz € R. 

Construct explicitly a sequence of simple functions f, on IR such that f, — f 

pointwise and |fn| < |fn+if < |f| for all n.
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19-5 Measurable Maps 

19-5.1. It is tempting to define a vector map to be measurable if it can be 

approximated by a sequence of simple maps as motivated by 19-4.4, 3.8. This 

is inappropriate because in general it excludes continuous maps on locally 

compact spaces. Let (X, ID) be a 6-space, M a measurable subset of X, F a 

Banach space and f: X — F amap. A map f : X — F is simply approximable 

on M if there is a sequence of simple maps convergent pointwise to f on M. 

The proofs in this section can be simplified slightly with the assumption M = X 

without loss of generality although M is normally a decent set in applications. 

19-5.2. Lemma If f is simply approximable on M, then f(M) is separable. 

Proof. Let f, :X — F be simple maps with f, — f on M. Since f,(M) isa 

finite set, the set K = U2, f,(M) is countable and its closure K is separable. 

Therefore the subset f(M) of K is separable. oO 

19-5.3. Example The Banach space F = @,, is not separable. With discrete 

metric, X = £,, is a locally compact space and the identity map f: X — F 

is continuous. No matter what. 6-ring ID is assigned to X, the set f(X) is not 

separable. Consequently, it cannot be approximated by sequences of simple 

maps but we want continuous maps to be measurable. See §27-1.4. 

19-5.4. Theorem Let f(M) be separable in F’. Then the following statements 

are equivalent. 

(a) f is simply approximable on M. 

(b) Mn f~!(B) is measurable for every open ball B in F. 

(c) Mn f7!(W) is measurable for every open set W in F. 

(d) Mn f7! (B) is measurable for every closed ball B in F. 

(e) Mn f7'(K) is measurable for every closed set K in F. 

Proof. We shall prove two loops: (c > b> a> c) and (e>d>e> 0c). 

(ce => b) It is trivial because open balls are open sets. 

(b = a) For the open ball By, = {a € F : |la — axl] < 1/n}, the set 

Ank = MA f—"(Bnk) is measurable. Let Day = Ani and Dag = Ank \Uja' Ani- 
Then all D,,; are measurable. Since f(M) is separable, there is a countable 

dense subset {a,} of f(M). The maps f, = ye ajpp,,; are simple with 

fr(X \ M) = 0. To show f, — f on M, take any x € M and e > 0. 

Choose m > 1/e and pick any n > m. Since {an} is dense in f(M), we 

have || f(x) — ax|| < 1/n for some k. Select the smallest index k so that
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| f(x) —a;|| > 1/n for all j < k. Thus x € Anke \U521' Ang = Dag, OF fr(&) = Gr. 

Therefore {| f(x) — fa(x)|| < 1/n < lfm <e. 

(a => c) The distance function y(e) = d(a, F \ W) is continuous in a € F. The 

set Vin = els, oo) is open in F’. Since F'\ W is closed, W =(J°"_, Vin. Also 

Vin © e's, 00) C Viney C W. Choose simple maps f, — f on M. Let 

Q= UR nat Nyon f7 (Vm). We claim Mn f-'(W) = Mn Q. In fact, take any 

ze Mn f-'W). Then z 6 UM, f-'Wn). Hence 3 m, f(x) € Vin. Since 

fj) > f(z), dn, Vj > n, f(a) € Vin; that is ¢ € Q. On the other hand, let 

c€MnQq. Then dm,n, V7 >n, f(z) € Vn; hence f(z) € Vm CW; that is 

x € f—'(W). This establishes what we claim. Since each f; is a simple map, 

all f7'Vm) are measurable. Consequently, the set 

M0 f'W) = UP net Vion 9 £7 Yn) 

is also measurable. 

(e > ©) It follows from Mn f-'(W) = M \ {M Nf\(P\W)]. 

(c > d) It follows from Mn f7! (B) =M\ [Mn f-! (F\ B)]. 

(d = e) Take any closed set K in F. Then the subset f(M)nK of the separable 

set f(M) is separable. Hence there is a countable set D which is dense in the 

closed set (UW) 9 K. From §1-5.15, it follows f7'(K) = f7! (FUD 0K) = 

ea Unep fc} f Ba, 1/n)]. Since inverses of closed balls are measurable, then 

the inverse f—!(K) is also measurable. im) 

19-5.5. A map f:X — F is measurable or strongly measurable if f is simply 

approximable on every decent set. Clearly the set of all measurable maps forms 

a vector space under the pointwise operations. 

19-5.6. Exercise Let EF, F, FE be Banach spaces with a continuous bilinear 

map F x & + FE. Prove that if f : X — F and g: X — E are measurable 

maps, then the product fg: X — FF is also measurable. 

19-5.7. Theorem Let f : X — F be a map such that f(A) is separable for 

every decent set A. Then the following statements are equivalent. 

(a) f is a measurable map. 

(b) f is simply approximable on X. 

(c) Inverse images of open sets (respectively open balls, closed sets, closed 

balls) are measurable. 

Since K is separable, the new definition of measurable maps by (a) agrees with 

the old definition of measurable functions by (b), (c).
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Proof. To prove (a = c), let W be an open subset of F and A a decent subset 

of X. Then the subset f(A) of the separable set f(X) is separable. Since f 

is a measurable map, it is simply approximable on A. Thus AM f7!(W) is 

measurable. Because A is arbitrary, f—!(W) is measurable. It is an exercise 

to prove (c > b=> a). Oo 

19-5.8. Corollary The variation |f|: < — IR of a measurable map f : X — F 

is measurable. 

19-5.9. Exercise Show that f is simply approximable on M iff fpa, is simply 

approximable on X. 

19-5.10. Exercise Let f : X — F be a map such that f(X) is relatively 

compact. Prove that if the inverses of open balls are measurable, then f is 

measurable. 

19-5.11. Exercise Let 8 be asemiring over a set X and D the 6-ring generated 

by 8. Show that if f is simply approximable on every set in 8, then f is 

measurable. 

19-6 More Properties 

19-6.1. In this section, we develop some properties of measurable maps such 

as monotone approximation required by integration and weak measurability to 

ensure Radon-Nikodym property for duality theory. Let (X,D) be a 6-space, 

M a measurable subset of X, F a Banach space and f : X — F a map. 

19-6.2._ Example For every measurable map f : X — F, the map given by 
. F(x) 

sgn[f(xz)] = 0 if f(z) =0, and sgn[f(z)] = enlf f(z) en[ f(x)] if@l 

Proof. For every decent set A, choose simple maps gn — fpa. Then 
g hy = 22 

(1/n) + |gn| 

19-6.3. Lemma [If f is simply approximable on a measurable set M, then 

otherwise, is measurable. 

are simple maps convergent to sgn(f)pa. O 

there are simple maps f, such that |f,| Tt |fea| and fr — fom pointwise. 

Proof. Choose simple functions 0 < sp, T |fpxy| and simple maps g, — fp. 

Select any a € F with |la|| = 1. Since the sets N = {x € X : f(x) #0} and 

Bn = {x € X : gn(z) # O} are measurable, hn = sgn(gn)PnnB, + OPN\B,, is 

simple with |hn| = pn. Thus f, = spf, are simple maps with jf,| T |foar|. If 

xz ¢ N, then 0 < s,(x) < |fpng|(z) = 0 and hence f,(z) — f(x)pm(z). Suppose
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x éN. There is k, for alln > 7 G2) #0, ie. c € NOB,. Therefore we 

have fn(2) = Sn(2)hn(£) = Sn(x) — f()pm(@). Oo 
| xc Dl 

19-6.4. Theorem Let g, : X — F be a sequence of simple maps. If g, — f 

uniformly on a measurable set M, then f(M) is relatively compact. 

Proof. For every € > 0, there is an integer n such that || f()—gn(z)|| < € for all 

xe M. Write g, = we ajpa, where a; € F and {Aj} are disjoint measurable 

sets in X. Let a9 = 0. Ife €e MM Aj, then || f(r) — a,|| = || f(@) — gn(2)]| < . 

If x € M\ A; for all j, then || f(x) — a9/] = 0 < e. Hence f(M) C Uk. B(aj,¢). 
Therefore f(M) is precompact in the Banach space Ff’. Consequently, f(M) is 

relatively compact. a 

19-6.5. Theorem Let f :X — F be a measurable map. If f(M) is relatively 

compact, then there is a sequence of simple maps g, such that |g,| 7 |f{ on M 

and gn, — f uniformly on M. 

Proof. Let g; = apy where a = 0 € F. Inductively, suppose that 

9n-1 = op PA, is a simple map so that || f(c) — gn—i(z)|| < t/2"7' for all 

x € M where Aj,:--, Am are disjoint measurable sets with M = Uj", Ax; all 

a, € F with |fa,|| < ‘inf I F(Aw)| and t = sup ||f(M)||. By compactness, write 

FAR) C UR, Bia;,t/2"*!). The sets By = A, 9 f~'[B(aj,t/2"*')] are 

measurable. Let D; = B; and D; = B; \U5 1 B,. Then D,,---+, Dp are disjoint 

measurable sets satisfying A; = eet B; = Use D;. If F(D;) nN Bia;,t/2™") is 

not empty, choose 8; in the compact set f(D;)M Bia;,t/2"*!) with minimum 

norm; otherwise let 8; = ax. Then ye(x) = 0%., BjpD; and Gn = Sopa Pk 

are simple maps. Take any + € Ay. We have x € D; C B; for some i. 

Thus f(z) € f(D) 9 Bia, t/2"!). Hence we obtain B; € Bra;,t/2"*!), or 

f(z) — ¢(x)|| = lf) — Bill < ¢/2". From |jox|{ < inf ||f(Az)|], we have 

lgn—1(@)l) = Herl} < [Bill = lheCo)|] = IlgnC@)l]. Clearly the sequence {gn} 
fulfils all the requirements. oO 

19-6.6. Next lemma links up strong measurability with weak and weak-star 

measurability respectively. It will be used again at the end of Chapter 25. 

19-6.7. Lemma A map f : X — F is measurable if the image of every decent 

set is separable and there is a subset W of the closed unit ball B of F’ such 

that |el| = sup, cy |u(e)| for all e € F and that the function uf : X — K is 

measurable for all uc W.
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Proof. Let g = f—a: X — H be the translate of f by any a € H. We 

claim that |g/ is a measurable function. Indeed, it suffices to show that for 

each decent set A, the function |g/p4 is measurable; or for every r € R, the set 

P= {x eA: |\g(@)j| <r} is measurable. Since g(A) = f(A) — @ is separable, 

the closed vector subspace H generated by g(A) is also separable. Let {a,} be 

a countable dense subset of H. For each n, the subset Wa, of K is separable. 

There is a countable subset V,, of W such that V,a, is dense in Wa,. Now 

V =U, Va is a countable subset of W. Since vn € B, clearly PC (\as; Qn 
where Qn = {x € A: |Ung(x)} <r}. Next, suppose x € [},5, Qn. For ‘every 

€ > 0, there is u € W such that j|g(z)|| < jug(x)| + €. Choose n such that 

||g(z) — ay|| < €. Select uv, € V, such that |u(an) — un(an)| < €. So we get 

[ug(2) — tng) Suge) — u(dn)| + ua) — dnCtn)| + [Un(@n) = Pag(2) 
S |! [lg@)— an |] +|UCan)— Yn (Gn)|+ [len] IgG) —@nll S 3e. 

Hence ||g9(z)|| < |vng(z)| + 4e < r+ 4e. Letting ¢ | 0, we have |/g(z)|| <r, that 

is z € P. Therefore P =(),,,., Qn. Because all functions ung = Unf — Una are 

measurable, all sets Qn are also measurable and so is P. This proves that |g|p4 

is measurable. For the closed ball IB = {e € H:: |le — al] < r} in H, the set 

Anf7! (B) = (lg|e4)7![0,r] is measurable. Therefore, f can be approximated 

by simple maps on A into H, and hence also into F. Consequently f is simply 

approximable on every decent set A, i.e. strongly measurable. Oo 

19-6.8. Theorem A map f : X — F is a measurable if the image of every 

decent set is separable and if f is weakly measurable i.e. for every v € F’, the 

function uf is measurable. 

Proof. Apply last lemma when W = B is the closed unit ball of F’. go 

19-6.9. Theorem A map f : X — F’ is a measurable if the image of every 

decent set is separable and if f is weak-star measurable i.e. for every e € F, the 

function z —> f(x)e is measurable. 

Proof. Let W = {J(z): «2 € F, |\z|| < 1} where J: F — F” is the natural 

embedding. The result follows immediately from last lemma. Oo 

19-6.10. Exercise Let f : X — F be a measurable map and 7 a continuous 

linear map from F into a Banach space G. Prove that the composite map 

Tf : X — G is measurable. 

19-6.11. Theorem A sequential limit f of measurable maps gn: X — F is 

measurable.
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Proof. Let A be any decent set. Then g,(A) is separable. Let D, be a 

countable dense subset of gn(A). Then the set D =U?2, Da is countable. Let 

k>OQand z € A. There is n such that || f(x) — ga(x)|| < 4g. There is az € Dn 

with ||gn(z)—ag|| < x Hence || f(x) —ax|| < t Thus a, € D and a, — f(z). 

Hence f(z) € D. Since x € A is arbitrary, f(A) C D. Therefore f(A) is 

separable. Since g,(z) — f(r) for every « € X, we have vgn(x) > vf (x) for 

every v € F’. Since vg, are measurable functions, so is uf. Therefore f is 

weakly measurable. Consequently f is strongly measurable. Oo 

19-99. References and Further Readings : Xia, Kuttler, Puglisi, Folland, 

Dudley-89, Diestel-83 and Tucker. 



Chapter 20 

Integrals of Upper Functions 

20-1 Upper Functions 

20-1.1. Throughout this chapter, let 4 be a positive measure on a é-space 

(X,D). Unless specified explicitly, let f, fn, 9, Gn be upper functions which are 

extended positive measurable functions on X into [0, co]. 

20-1.2. The vector space of all decent functions of the form f = ye Qj PA; 

for some a; € K and some A; € D is denoted by ¥ and their integrals has been 

defined by I(f) = ye a;.4A; where ID is considered as a semiring. If f < g 

are real in ¥, then J(f) < I(g). Furthermore if f, | Oin ¥, then I(f,) | 0. It is 

easy to show that if f, | f in ¥, then /(f,) f [(f). The following modification 

allows us to extend the integral to simple functions. 

20-1.3. Let f be a positive simple function given by f = Spa ajpy, where 

all a; are positive (> 0) and all H; are measurable. Hence for each A € D, 

the function fp, = re ajpanu; is a decent function. Define the integral of 

f by J(f)=sup{I(fpa): A € D}. 

20-1.4. Theorem Let f, f,,9 be positive simple functions. 

(a) If f is a positive decent function, then J(f) = I(f). 

(b) If f <g, then J(f) < J(g). 

(c) If fa Tf, then J(f,) T JCP). 
Proof. (a) Let f = vie ajpa,; Where a; > 0 and Aj € D. Then A= Ui A 

is in D. Hence I(f) = I(fpa) < J(f). Next taking any B € ID, we have 

fon < f and I(f) = sup{I(fpp): B € D} < I(f). 
(b) It follows by taking supremum of I(fp4) < I(gpa) when A runs over D. 

(c) For each A € I we have 0 < frpa T fpa in ¥ and hence I(fnpa) T If pa). 

The following calculation gives the result: 

J(f) = sup I(fpa)= sup lim I(fnpa) = sup sup I(fnpa) 
AeD AelD” AeD 72! 

= = se sup T(fnpa) = - SP up I (fn) = = iim Ifn)- Oo 

n21 4eD



20-1 Upper Functions 387 

20-1.5. Lemma Let f,g be upper functions. Suppose that 0 < f, T f and 

0 < gn T g where f,, 9, are simple functions. 

(a) If f < g, then lim J(f,) < lim J(gp). 

(b) If f =g, then lim J(f,) = lim J(g,). 

Proof. Since J(f,) is a monotonic sequence in [0,00], its limit is well 

defined by the supremum. Observe that f,, Ag, is a simple function. For 

n — oo in fm A Gn < gn we have fn Agn | fm Ag = fm. Hence we 

have J(fm) = lim Ifm A Qn) < lim J(gn,). Now part (a) follows by letting 

mM — OO. Part (b) is obtained by ‘symmetry. a 

20-1.6. Let f be an upper function. Choose simple functions f, with 

0 < fn Tt f. The integral f fdu = limJ(f,) as n — oo is well-defined 

because it is independent of the choice of the sequence {f,,}. An upper function 

f is integrable if [ fd < w. 

20-1.7. Theorem Let f,g be upper functions. 

(a) If f is simple, then f fdu = J(f). 

(b) If f <g, then f fdu < f gdp. 

(c) ff +9 dp =f fdu+ f gdp. 
(d) If f <g and if f fdu < oo, then f(g — f)du= f gdu— f fdp. 

(e) For every a > 0, foafdp = af fdp. 

(f) S fdu = sup zc f feadu. 
Proof. We only prove part (c) while the rest are left as exercises. Let fn, Gn 

be simple functions satisfying 0 < f, T f and 0 < g, Tf g. Then fp +n are 

simple functions satisfying 0 < (fn + gn) T (f +g). For every n, observe that 

Ifa + In) = sup T[(fn + 9n)pa} = sup (frp) + I(gnpPa)) 

w
e
 
T
w
 
a
 

AclID AE 

< sup I(fapa)+ sup I(npa) = Ifa) + Jn) < / fdy+ / ody. 
AeD AeD 

Letting n — 00, we have f(f+g)du < f fdu+ f gd. If the left hand side of 

this inequality is oo, then the equality holds. Assume f(f + g)djs < oo. Since 

sup sup I(fnpa) = [te < [tend <0, 
n 

for every e > 0, we have f fdu < I(fmpa) + € for some integer m and A € D. 

Similarly f gdu < I(gnpe)+e for some integer n and B € ID. Then D= AUB 

is in the ring ID. For fm < f, and gn < g, where k=m+n, we get 

J fdu+ f ode < I feo) + Igepp) + 2 = [fe + geo] +2 < f(f + gdp +2e. 
The result follows by letting ¢ | 0. oO
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20-1.8. Theorem Let f,, be upper functions. If f, 7 f, then f is also an 

upper function with f frdu t f fdu. Consequently if sup f f,du < oo, then 

f is integrable. 

Proof. Since f is measurable extended positive function, it is an upper func- 

tion. For each n, there are positive simple functions gm, [ fr as m — oo. 

Define hm = Gmi V m2 V ++: V Gmm. Then hm < Rms) and gmn < hm < fm 

for all n < m. For m — ov, we have f, < limhm < f. Next letting 

n — oo, we get h, | f. Hence f is an upper function approximated by the 

simple functions h,. For all n < m, we get f gmndp < fhmdu < f fmdp, 

or J(gmn) < J(hm) < f fmdp. Asm — oo, f frdu < f fdu < lim f fndp. 

Finally letting n — oo we obtain f fdu =lim f f,dp. D 

oo foe} 

20-1.9. Corollary [x a1 fadp= > - [tod for all upper functions f,,. 

Proof. All gn = a f; and g= et fj; are upper functions. Furthermore, 

oo + 

ies | In) du= f odu= lim [ond 
n= noo 

. nm n oo 

= Jim, | On fi) du = Jim, a [tie = iat [fie oO 

20-1.10. Exercise Let f : R — R be given by f(z) = 0 if c < 1 and 

f(z) = nea ifn <a <n+1 for each integer n > 1. Show that f is an upper 

function and find its Lebesgue integral f fdA. 

20) 11. Exercise Let f,g: IR > Rbe functions given by f(r) = n, g(x) = 4 
n+2 

ifo4<2K<q + for some integer n > 1 and f(x) = g(x) = 0 for all other x. Show 

that ‘s, g are upper functions. Find their Lebesgue integrals f fdA and f gdd. 

20-1.12. Exercise Let f : IR -— [0,co] be given by f(z) = 00 for rational 

xz and f(x) = 0 for irrational x. Show that f is an upper function. Find its 

integral. 

20-1.13. Fatou’sLemma For all upper functions f,, we have 

[iim inf frdu < timint f fad 

Proof. Clearly, g, = inf{f, : k > n} are upper functions satisfying 

Qn { liminf f,. Consequently, we have 

[imine fad = lim onde = im inf [ onde < timint f fad a) 
NF0O noo now noo
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20-1.14. Exercise Applying Fatou’s Lemma to the counting measure on a 

set of two elements, show that liminfa, + liminf £8, < liminf(a, + 8,) for all 

On, Bn = 0. Let an = 1+ (—1)" and @, = 14+(—1)"". Show that the equality 

of Fatou’s Lemma may fail. 

20-2 Almost Everywhere 

20-2.1. Let ps be a positive measure on a 6-space (X, ID). For every measurable 

set H, the integral wf = [ pydy of simple function py is well-defined although 

it may be oo. It provides an extension of jz from decent sets to all measurable 

sets. Properties of this extension follow immediately from integrals of upper 

functions. Note that positive measures are defined on measurable sets while 

real, complex and later vector measures are defined on decent sets. 

20-2.2. Theorem Let j: be a positive measure and H, K, H,, measurable sets. 

(a) #H =sup{A: H > A € D}, inner regularity. 

(b) If H CK, then pH < pK. 

(c) If H, 1 K, then pH, f pk. 

(d) wm, Bn) < 332, wn, countable subadditivity. 

(e) If {H,} are disjoint, then w(U7., Hn) = 002, uHn, countable additivity. 

(f) If wH, < oo for some n and if H, | K, then wH, | pK. 

20-2.3. Example For all measurable sets H, K we have 

BCA 9 K) = sup{u(An K): H > Ae D} 

=sup{u(ANB):HD>AED, KD BED}. 

Proof. Let s = sup{u(AN K): H > Ac D}. If HD A € D, then we have 

AN K Cc HK and hence (AN K) < «(4H K). Since A is arbitrary, we 

obtain s < w(H 1K). If s = oo, then s = u(H 1K). Suppose s < oo. For 

every € > 0, choose D € D such that DC HONK and wHNK) <vDe+e. 

Hence D C H and w(H OK) < wDNK)+e < ste. Letting « | 0, we get 

“CH 1K) < s. This proves the first formula. The second one is left as an 

exercise. o 

20-2.4. Exercise Let H, = (n,0o) and K = @ be subsets of the real line. Show 

that H, | K but AH, | AK is false where \ denotes the Lebesgue measure. 

20-2.5. Example Let X = {x,y,z}, A= {x,y}, B = {z}, § = {0,A} and 

uO = 0, pA = 1. Obviously pz is a measure on the semiring $8. The 6-ring ID
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generated by 8 is $ itself. The family of D-measurable sets is IM = {0, A, B, X}. 

It is also the family of all 4*-measurable. Clearly p*{z} = p*{y} = w*A = 1 

and u*B = oo but wB = 0 by regularity. The function f defined by f(z) = 1 

and f(y) = f(z) = —1 is not measurable but |f| is. The functions y,€ on IM 

defined by yf = &@ = 0, pA = £A = £B = YX = 1 but vB = 0, EX = 2 are 

different extensions of js to measures on IM. 

20-2.6. A measurable set N is said to be null if uN = 0. By countable 

subadditivity, countable unions of null sets are null. Clearly a measurable set 

N is null iff w(AM N)=0 for every A € D. 

20-2.7._ Exercise Prove that every singleton of the real line is a null set with 

respect to Lebesgue measure. Prove that every countable subset of the real 

line is a null set but the set of all rational numbers is not a decent set. 

20-2.8. Exercise Give an example to show that a subset of a null set need not 

be measurable and hence not a null set in this book. See §23-4.6 on completion. 

20-2.9. A proposition p(x) about each x in X said to be true p-almost 

everywhere (briefly j-ae) if there exists a null set N such that p(x) is true 

for each « € X \ N. Clearly if {p,(x)} is a countable family of propositions 

which are true p-ae, then there is a null set N such that all p,(z) are true 

for every x € X \ N. The following convention will be used: Ooo = o00 = 0, 

aoo = 00a = 00 if a > 0, and aco = coa = —oo if a < 0. However, oo — 00 is 

not defined. 

20-2.10. Exercise Construct two functions f,g on X such that f is 

measurable, g is not measurable but f = g almost everywhere. 

20-2.11. Theorem f fap = 0 iff f =0, u-ae for every upper function f. 

Proof. (=) For each n > 1, the set H, = {x € X : f(z) > 1/n} is measurable. 

Integrating px, < nf, we have 0 < pH, = fpy,du <nf fdu = 0. Hence 

each H,, is a null set. Consequently N =<, H, is also a null set. Since f =0 

on X \ N, we have f =0, p-ae. 

(<=) Assume f =0, p-ae. Then the set H = {x € X : f(z) > 0} is null. All 

Gn = NpH are simple functions satisfying 0 < gn | g = copy. Hence g is an 

upper function. Since 0 < f < g, we have 

0< [ta < foes =tim fondu = tim nyt =o. 

Consequently, f fdu = 0. a
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20-2.12. Exercise Prove that X \ UD is a null set. 

20-2.13. Exercise Prove the following statements for upper functions. 

(a) Let f <Q, p-ae. Then f fdu < f gd. If g is integrable, then so is f. 

(b) Let f =g, zeae. Then f fdu = f gdy. If f is integrable, then so is g. 

20-2.14. Since f = g, j-ae is an equivalence relation, for a specific measure we 

are dealing with equivalence classes. For example, suppose that N = f-'(0) 

is a null set and g = f+py. Then f = g and 1/g is defined everywhere. We 

interpret 1/f as the equivalence class containing 1/g. See §22-3.4. 

20-3 Seeds of the Theory 

20-3.1. This section contains the most primitive form of the important results 

of the whole theory. 

20-3.2. Positive Monotone Convergence Theorem Let fr,f be upper 

functions. If f, T f, p-ae; then f frdut f fdy. Moreover if sup f fad < oo, 

then f is integrable. 

Proof. Let N be a null set such that f, | fon M=X\N. Then frpu 1 fom 

everywhere. Also f = fpy and fn = frpm, p-ae. Hence f fadu= f frpmde T 

{feud = f fdp. Furthermore sup f frpadu = sup f frdu < oo. Hence fp 

is integrable. Consequently f is integrable. This type of proofs of reducing 

p-ae to everywhere will be skipped starting from next lemma. oO 

20-3.3. Lemma Let fr, 9n,f,g be upper functions. Suppose that for all n, 

tn <9n) fn > f and gn - g, prae. If f gndu > f gdp < co, then all f,,f are 

integrable and f fradp — f fdu. 

Proof. Without loss of generality, we may assume that all given conditions 

are true pointwise everywhere. Letting n — oo in f, < gn, we have f < g and 

hence f is integrable. Since each g, — f, is an upper function, Fatou’s lemma 

implies 

[ii inf(gn — fn)du < lim int [Gn — fr)dp < lim sup fondu + lim int —frdp, 
noo MOO noo noo 

Le. / (g—f)dp < / gd. — lim sup / Frdp. 

Since 0 < g — f <g, we have f(g — f)du < f gdje < 00. Hence we obtain 

timsup f fadu< f adn fog frau f tay.
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Fatou’s lemma applied to {f,} gives [te = fin inf f,dp < lim int f fad 

Therefore f tau=timine f fodu=timsup f fad. QO 

20-3.4. Positive Dominated Convergence Theorem Let f,, f, g be upper func- 

tions such that f, — f and fz < g, p-ae for all n. If g is integrable, then all 

fn, f are integrable, lim | tedn= [te and lim [itp — fl du=0. 
NCO 

Proof. Letting all g, = g, we have the first equality. From 0 < |f, — f| < 24, 

p-ae; we obtain f |f, — fldu > f Odu =0. Oo 

20-3.5. Let ys be a positive measure on a semiring $ over X. The extensions 

to decent sets and measurable sets successively are also denoted by p. A 

measurable set M is said to be integrable if 4M < co. Since every decent set 

is covered by a finite union of sets in S, all decent sets are integrable. 

20-3.6. Theorem Let M be an integrable set. For every € > 0, there is a 

finite disjoint union B of sets in § such that u(M AB) <e. 

Proof. By §20-2.2a, choose D € D such that D Cc N and p(M\ D) < de. By 

§18-3.4, there is a finite disjoint union B of sets in § such that wD AB) < he. 

Then we have u(M A B)= f lou — paldy < f lpm — polde+ f \ep — paldp < 
WM \ D)+ WDA B)<e. o 

20-3.7. Theorem Let ID be the 6-ring generated by a family K of subsets of 

X. Then a measurable set M is null if w(B MM) =0 for each Be XK. 

Proof. Let A € ID be a decent set. There are B,, Bs,---,By, € K such that 

Ac Uj, B;. Hence 0 < uA M) < S30, u(By 1M) = 0. Therefore M is a 

null set. q 

20-4 Sigma Finiteness 

20-4.1. Let us be a positive measure on a 6-space (X,ID). A subset M of X is 

said to be o-finite for 4, or -o-finite if there are measurable sets H,, such that 

M=U", Hn and pH, < oo for all n. A measure p is o-finite if X is o-finite. 

20-4.2. Example The Lebesgue measure on R is o-finite but the counting 

measure on R is not.
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20-4.3.. Theorem Let f be an integrable upper function. 

(a) The set A= {x € X:: f(x) = 00} is a null set. As a result, every integrable 

upper function is finite-valued almost everywhere. 

(b) The set B = {a € X : f(x) > 0} is o-finite. 

Proof. Since f is an upper function, pa is a simple function. For each n > 1, 

integrating pa < (1/n)f, we have 0 < pA < fpadu < (I/n) f fdp > 0 as 
n — oo because f is integrable. Therefore 4A = 0 as required. Next since 

the set B, = {x € X : f(x) > 1/n} is measurable, integrating pg, < nf gives 

uB, = f pp,du<nf fdu < oo. Consequently B= UP, B,, is o-finite. im] 

20-4.4.. Exercise Prove that for measurable sets M,, if am pM, < co, 

then the set. of points belonging to infinitely many M, is null. 

20-4.5. Lemma If M isa null set and f an upper function, then f fprrdu = 0. 

Proof. Let f, be simple functions satisfying 0 < f, T f. Then we have 

0 < fnpm | fem and all f, pay are simple functions. Write f, = 77, aipn, 

where a; > 0 and all H; are measurable. Thus 

O< [ toeredu = oe a / PH,AMap = et aip(H, OM) = 0. 

Therefore f[feudp = lim f fapmdp =0. 0 

20-4.6. Theorem For upper functions f, 9; if f = g, p-ae; then f fdu = f gdp. 

Proof. Let N be a null set such that f(z) = g(x) for each x € X \ N. Then 

fex\n = 9Px\n everywhere. Consequently, 

ffdus=f foex\ndut f fondu= f foxyndu 

= f gex\ndp = f gox\wdur f gondp= f gdp. Qo 

20-4.7. Corollary (a) If f <g, p-ae; then f fdy < f gdp. Furthermore if g 

is integrable, then so is f. 

(b) If fa Tg, wae; then f frdut f gdp. 

20-4.8. Lemma For every o-finite set H there exist decent sets 

Am C Ams: and a null set N such that H =U", Am UN. 

Proof. Firstly assume wH < oo. Since wH =sup{uA: H > A € D}, for each 

i there is A; € I such that A; C H and pH < pA, +1/i. Replacing A; by 

A, UA2U---U Aj, we may assume A; C Ais. Let M =U, Aj and N = H\M. 

Then H= MUN. Since A; | M we obtain pH —1/i < pA; T pM < wd. 

Letting i — 00, we have pM = pH. Hence from pH = pM + pN, we get
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uN =0. Therefore the lemma is true for a measurable set with finite measure. 

In general, write H = Us, HH, where H, is measurable satisfying ~H; < oo. 

There exist A;; € D and null set N, such that H; = Ur Ai; UN;. Clearly 

Am = Ura Ajj and N= Ue N; are the required sets. D 

20-4.9. Theorem For every o-finite measurable set Af, there are disjoint 

decent sets H,, H2,--- and a p-null set Hp such that M = ‘Onn Ay. 

Proof. Write M= Ur, Am UN where A,, C Am+ are decent sets and N a 

penull set. Let H, = A; and H,, = A,\An—1,V 7 > 1. Define Hp = N\UP2, An. 

It is easy to verify that these are the required sets. oO 

20-4.10. Lemma For every upper function f and every a-finite set H, there 

are decent functions f, such that 0 < fx < fan < fon; fn | fon, p-ae and 

Sf fad T S foudp. 

Proof. Let gn be simple functions satisfying 0 < g, | f. There are decent 

sets A, and a null set N such that H = Ur A, UN and A, C Any. Define 

fn = 9nPA,,- Then it is easy to verify all required conditions. go 

20-4.11. Theorem For every integrable upper function f, there are decent 

functions f, such that 0 < fa < faa <f; fn Tf, wae and f frduT f fdu. 

Proof. Apply last lemma to the o-finite set H = {x € X : f(x) > O}. oD 

20-4.12. Exercise Let u be the point measure on the semiring of singletons 

of IR. Show that R is o-finite but it is not a countable union of decent sets. 

Also show that the constant function f = 1 is an integrable upper function but 

there is no sequence of decent functions f,, such that 0 < f, T f pointwise. 

20-5 Comparison of Two Positive Measures 

20-5.1. This section prepares ground to deal with the sum of two measures 

in later chapters. Let z,v be positive measures on a 6-space (X, D). 

20-5.2. Theorem Suppose that p >v > 0. 

(a) For every upper function f, we have f fd > f fdv. 

(b) If f is a y-integrable upper function, then f is also v-integrable. 

(c) Every p-null set is v-null. 

(d) Every p-o-finite set is v-o-finite. 

Proof. Let fz, be simple functions such that 0 < f, { f. Write 

fn = Yo) Q1PH, Where a; > 0 and all H; are measurable. Then for each
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decent set A, we have u(H;9 A) > (H, 2 A), ie. IuCfnea) > Lfnpa), or 

Ju(fn) = J(fn). Letting n — 00, we have part (a). The others are trivial. O 

20-5.3. Theorem Let z,v be arbitrary positive measures. Then for every 

upper function f, we have f fd(u+v) = f fdu+ f fdv. Furthermore f is 

integrable for both yu and v iff f is integrable for p+v. 

Proof. Let f, be simple functions such that 0 < f, f f. Write 

fn = ae Q;pH, Where a; > 0 and all H; are measurable. Then for each 

decent set A, we have 

Infra) = 0, U+ MAN Hy) =)” ainlA Hi) + 2” aw(AN Mi) 

= I,(fapa) + faba) < / f+ | fdv. 
Taking supremum over n and A € D, we get f fd(utv) < f fdu+ f fdv. If 

the left hand side is 00, then equality holds and the result is proved. Assume 

f fd(u+v) < oo. Since 0 < p< p+v, we have f fd < oo. For every ¢ > 0, 

there exist an integer m and A € D such that f fdu < I,(fmpa)+€. Similarly 

there exist n and B € D such that [fav < L(fnpp) +e. Let k= m+n and 

D=AUB. Then De D and 

f fdu+ f fdv <I.Uimpa)+ ILnps) + 2€ < ICfeep) + ILfepp) + 2€ 

= Inaw(fepp) +2 < f fd(utv)+2¢. 
by the first part of this proof. Letting e | 0, we have the required equality. 

Clearly f fd(js+v) is finite iff both f fd and f fdy are finite. This completes 

the proof. oO 

20-5.4. Exercise Let ps, v be positive measures and H a measurable set. Prove 

that (u+v)(H) = pH +vH. Also show that ify <v, then pH < vd. 

20-5.5. Exercise Let S be a semiring over a set X and p,v positive 

measures on 8. Their extensions to decent sets are also denoted by p,v 

respectively. Prove that if 4A < vA for every A € 5S, then for every upper 

function f we have f fdu < f fdv. 

20-5.6. We conclude this chapter with another reason why we prefer to work 

with d-rings. Let y be a vector measure on a é-space (X, ID) into a Banach 

space EF. Then p is said to be bounded if sup 4-qp |uI(A) < 00. By §20-2.2a, 

it is equivalent to |u|(X) < oo. A ring ® over X is called a o-ring if it is closed 

under countable unions. Clearly, every o-ring is a 6-ring.
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20-5.7. Theorem Every vector measure pz: on a o-ring R is bounded. It is this 

result that we decided to abandon the framework of o-rings and o-algebras. 

Proof. Suppose to the contrary that for each integer n there is A, € R such 

that |u|(A,) > n. Because is a o-ring, B =U, An belongs to R. Since the 

variation |j:| is finite valued, we have [y/(A,) < |u|(B) < oo. Letting n — oo, 

we obtain a contradiction. Oo 

20-99. References and Further Readings : Chae, Yannelis, Rao-72, Albeverio, 

Antoine, Manoukain, Muldowney, Nelson and Lee. 



Chapter 21 

Vector Integrals 

21-1 Extension to Integrable Sets 

21-1.1. Let 5 be a semiring over a set X, EF a Banach space and uw: 8 — EF 

a vector measure, that is a countably additive charge of finite variation. Then 

its variation || : § — R is a positive measure which has an extension to the 

é-ring of decent sets generated by 8. The integral f fd|j:| is defined for every 

upper function f although not yet for any negative function. In particular 

the positive measure |p|(M) has been defined for every measurable set M. A 

measurable set M is said to be p-integrable if |j|(AZ) < co. At this moment, 

has been extended only to the ring R generated by 8 through simple algebraic 

method. In this section, we shall extend it to the é-ring K of y-integrable sets. 

21-1.2. We need the following trivial side track. Let H be a vector space. A 

function f — ||f|| from H into R is called a seminorm on H if for all f,g € E, 

we have [ifll > 0, [l0l] =0, [If + all < fll + ligll and [17] = |] |[fl| for every 
8 ¢€K. A seminorm with the non-degenerate condition is a norm. A vector 

space together with a given seminorm is called a seminormed space. 

21-1.3. Exercise Let H be a seminormed space. Prove that the set N of 

vectors h € H with ||A|| = 0 is a vector subspace. Let gq: H — H/N be the 

quotient map and ||q(A)|| = inf{||h + &l| : & €¢ N} the quotient norm. Prove 

that ||¢(A)|| = ||A|| is a norm on the quotient space. Topological properties of 

Hf is referred to the quotient space H/N without explicit specification. For 

example, a sequence {f,} in H is said to converge to f if q(fn) > g(f) in H/N. 

Prove that if f, - f and f, - h, then q(f) = q(h). 

21-1.4. Exercise Let G be a dense subspace of a seminorm space H and 

EF a Banach space. A linear map y from G into E is compatible with N if 

q(f) = q(h) implies y(f) = y(h). Prove that every compatible continuous linear 

map y: G — £ has a unique continuous linear extension € over H compatible 

with N. Furthermore we have |[é|| = ||y||.
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21-1.5. In measure and integration, the vector subspace N normally consists 

of measurable functions which are zero almost everywhere. Also g(f) = q(h) if 

f =h almost everywhere. 

21-1.6. Theorem Every vector measure p : 8 — E has an extension over 

the é-ring K of integrable sets. This new measure is also denoted by yu for 

convenience. In particular, 4D is defined for every decent set D. 

Proof. Note that yz has a unique extension to R which is our starting point. 

Let. ¥(K) denote the vector space of all integrable simple functions and K(R) all 

step functions. For every f € F(X), [fll = f || alu] is well-defined. It is easy 

to show that f — || ||: is a seminorm on F(K). We claim that F(R) is a dense 

subspace of F(K). Let f € F(K) and « > 0 be given. Write f = a a;PD; 

with a; € K and D; € K. Select 0 < 6 < e/(1+ Va la;|). Choose A; € 

such that |u|(D; A A;) < 6. Define g = yet ajpa, € F(R). Then 

Weal < O% lest f Wo, ~ p4,) aa 
< yet la5] |u|(D; A Aj) < ia lag |b <e. 

Therefore F(R) is dense in F(K). Now suppose f = a ajpa, with a; ¢ K 

and A; € 8 Then J,(f) = a a;jtA; is well-defined. It follows from 

Al < ZifD = SUF] dle = llfll that the map J, : F(R) = F(8) — E 
is continuous linear. It has a continuous linear extension f — f fd over 

F(K). Clearly DEK > f ppdy is a required extension. o 

21-1.7. Theorem The extension of variation is the variation of extension. 

Proof. Let 4 be an E-measure on semiring 8 and v its extension to the 6-ring 

D generated by 8. Suppose that |u| denotes the variation of « on 8 and |p| 

the variation of y on ID. Assume that 7 is the extension of |u| over ID. We 

want to prove that 7 = |y| on ID. By uniqueness of extension, it suffices to 

show that 7 =|v| on 8. Take any A € 8. Let 8(A), D(A) denote the families of 

partitions of A by sets in 8, ID respectively. Since 8(A) C D(A), it is obvious 

that |u|A < |v|A. Next, let ¢ > 0 be given. Choose D(A) = {B),---, Ba} in 

D(A) such that |v|A —e < pe \|v.B;||. Working with v, for each j there are 

disjoint C,; € § such that |v|(B; A C;) < e/n where C; = Uf2 C,;. From 

2: - >», VCs [ove — pe,)dv 

< / log, ~ pe,| dlp| = |v|(B; AC;) <e/n 

< 
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we have 
n n kG Yo leas >a VCi3|| +€ 

n kQ) 5 Gull +e < D geaua Bill te < lalate 
where S(A) = {Cj;:1<j <n, 1 <i < k;} is obviously a partition of A by 

sets in 8. Thus |y|A < |u|A+ 2e. Letting ¢ | 0, we obtain |v|A < |u| A. Hence 

|v| = |u| = 7 on 8. Therefore |v| = 7 on ID. As a result, we may identify |p|, 

|v| and 7. oO 

21-1.8. Exercise Show that integrable sets are o-finite. 

21-2 Integrals of Vector Maps 

21-2.1. We shall develop a theory of vector integration based on the 

expectation of Dominated Convergence Theorem. Let £,F,PE be Banach 

spaces with an admissible bilinear map F x FE — FE; 1 < p < oo and g its 

conjugate index given by 5 + 3 =1. 

21-2.2. Let ys be a vector measure on a é6-space (X,ID) into &. Then the 

variation |js| is a positive measure on ID. The vector measure y has also been 

extended to the 6-ring K of all y-integrable sets. A K-step F-map f:X — F 

is of the form f = }0%,a;p4, where aj € F and Aj € K. The integral 

ffdp = 7, a;uA; € FE has been defined in §17-2.10. Clearly we have 

| f fdull < fF] alu) as in §17-4.10. 

21-2.3. For every measurable map f : X — F, |f|? is an upper function. 

Hence the L,-norm ||f|lp = (f flea)” is well-defined. It is finite iff ||? 

is |u|-integrable. The F — L,-space for u is the set L,(X,D, E, yu, F) of all 

measurable maps f : X — F such that |f|? is |u|-integrable. Drop F if 

it is IK and also drop X,ID, £,y if there is no ambiguity. Write Lo() for 

F=R and [3(u) = {f € Lo): f > 0}. Members of Ly(y, F) are called 

p-integrable or simply integrable maps. Clearly, a measurable map f : X — E 

is integrable iff the upper function |f| is |u|-integrable. In this case, we have 

fll = f |f] dle] < oo. A measurable set M is said to be p-null if it is |y|-null, 

ie. |y|(44) =0. A property p(2z) is true p-almost-everywhere or j-ae if it is true 

|ul-ae. A set is p-o-finite if it is |y|-o-finite. Practically everything is defined 

in terms of the variation of a measure. 

21-2.4. Lemma A simple map f belongs to Lp(u, F) iff it is a K-step map.
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Proof. Let f = pe a;pa, © Lp(u, F) where a; are nonzero vectors in F and 

A; are disjoint measurable subsets of X. Then we have 

Nlorell”lel(An) Sf 254 log llPeasdlul = fF lPalul = IIFIE < 00. 
Thus A, € K. Therefore f is a K-step map. The converse is obvious. g 

21-2.5. Lemma For every f € L,(u, F), there are decent maps f, such that 

both |fn| T |f| and fn — f converge p-ae. 

Proof. Since the upper function |f|? is |u|-integrable, M = X \ f—'(0) is 

||-o-finite. There are disjoint decent sets A, and a |y|-null set N such that 

M=NU Ur A;. The measurable map f is simply approximable on each 

decent set A;. For each j, there are simple maps gj. — fpa, on Aj as k — 00 

and |gj%| Tk [fea,| on the decent set A,;. All simple maps gj, are decent maps 

with 9j,(X \ Aj) = 0. Hence fr = 7p, Gn are also decent maps. Take any 

x € A;. For all n > j, we have f,(2) = 9;x(x) > f(x) as k — oo. For a ¢ M, 

we have f,(x) = f(z) = 0. Hence f, — f on X \N, that is y-ae. It is an 

exercise to verify |f,| T |f|, u-ae. o 

21-2.6. Exercise Let X = IR be equipped with the counting measure. Show 

that the identity map f : X — IR is measurable but does not belong to any 

L(y) for 1 < p < co. Is it possible to find decent maps f, — f almost 

everywhere? 

21-2.7. Lemma Let f : X — F be an integrable map. If f,, are simple maps 

such that |f,| < |f| and f, — f, u-ae; then every f, is integrable; the limit 

lim / fndp exists in FE and it is independent of the choice of f,,. 

Proof. Since f is p-integrable, |f| is |u|-integrable. Thus every |f,| is 

|u|-integrable and hence every simple map f, is p-integrable and f f,du 

is well-defined. By |f, — f| < 2|f|, the Positive Dominated Convergence 

Theorem gives f |f, — f| dlu| > 0 as n — oo. Observe that 

| [nto facta = | frm — fore] < fm ~ Fal Al 

< fm =F! dal + ff = fol dln| +0 a8 m,n 0 
Therefore the Cauchy sequence {f frdu:n > 1} in the Banach space FE is 

convergent. Next suppose that g, are simple maps such that |g,| < |f| and 

Gn > f, wae. Let r =lim f frdu and s = lim f g,dyu. From |fp — gn| < 2|f], 

Positive Dominated Convergence Theorem ensures that
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raf fad + f fe ~ onl alas J gndu—s 
as n > oo, or r=s. This completes the proof. oO 

Ir — sll < +0 

21-2.8. For every integrable map f : X — F, there are simple maps f, — f 

with |f,| 1 |f|, w-ae. The new integral [te = lim [tod is well-defined 

in FF by last lemma and it is an extension of integrals of integrable simple 

maps. So, it also agrees with the integrals of upper functions. Obviously f fd 

is linear in f. Note that the integral of a negative integrable function on R is 

not defined until now. 

21-2.9. Theorem Let f,g be measurable maps such that f = g, u-ae. If f is 

integrable, then so is g. Furthermore we have f fdy = f gdp. 

Proof. Since |f| = |gl, |ul-ae; we have [|g| dlyz| = ff] dlu| < oo. Hence 

g is integrable. To prove the equality, we may assume g = 0 by considering 

JU —g)dp. Since |f| = 0, p-ae; we obtain f|f| d|u| =0. For any simple maps 

In > f satisfying [fal < |fl, we have || [ fadull < flfal aul < f Lf] lu = 0, 
that is f fdu=lim f f,du=0. oO 

21-2.10. Theorem For every f € Lp(u, F), there is an integrable map g = f, 

p-ae; and decent maps g, —* g with |g,| T |g| everywhere. 

Proof. Choose decent maps f, — f with |f,| 1 |f|, u-ae. There is a null set 

N such that f, > f with |f,| 1 |f| on M =X \N. Clearly g, = frem and 

g = fp are the required maps. Oo 

21-2.11. Theorem For every integrable map f, we have || f fdy|| < ff] aly. 

Proof. Choose simple maps f, — f with |f,| T |f|, u-ae. For all f, are 

integrable simple maps, we have || f frdu|| < f |fn| dlul. Since |f, —f| < 2 FI, 

the Positive Dominated Convergence Theorem implies that 

[igol aul — fir al < | ifn flalul +0, 

ot [fol atl — fit ala. 

[4 tin f todul| rim ft a= fi a b 
21-2.12, Exercise Let f,g be real j-integrable functions. Prove that if f < g, 

rae; then f fdlu| < f gdlul. 

Therefore 
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21-2.13. Exercise Let f be a measurable map and g a measurable function. 

Prove that if |f] <g, p-ae and if g € Lp(u), then f € Lp(u, F). 

21-2.14. Chebyshev’s Inequality If f € L,(u, F) where 1 < p < oo, then for 

every € > 0, we have |u|{z € X : || f(x)|| > e} < (lf llp/e?- 

Proof. For M = {x € X : ||f(z)|| > ¢}, the result follows from 

WPI = f iF lPdlul > fePoned|u| = e?|ul(M). o 

21-3 L,-Spaces for | < p< co 

21-3.1. Let &,F,FE be Banach spaces with an admissible bilinear map 

yg: Fx E— FE, F' the dual space of continuous linear forms on F’; and u 

a vector measure on a é-space (X,D) into FE. Similar to §§3-3.5,6; we develop 

the basic properties of L,(u, F). Only scalar version of Holder’s inequality is 

required to prove Minkowski’s inequality but the general version will be needed 

for duality theory in later chapter. 

21-3.2. Holder’s Inequality Let p,g > 1 be conjugate indices. If 

he L,(u, F’) and f € Ly(u, F), then hf € Ly() and || f hfdull < |lAllall fle. 
Proof. If ||f|lp = 0; then f = 0, p-ae; or hf = 0, p-ae; thus hf is integrable 

and || fhfdul| = ||Pllgllfllp = 0. Without loss of generality, we may assume 

that ||A||, #0 and ||f||p #0. From 

h f < h 1 ‘t) 

Welle Fle) ils P\lifllp 
hf is integrable. meee with respect to | Hh we > have 

Ue nsiull < ff dul < ff ane! [| f PP 
[lla PS \flle IlAllallfllp Illa ie 

from which the required inequality follows, 

21-3.3. Minkowski’s Inequality For 1 < p < o, if f,g are in Lp(u, F) then 

so is f + g. Furthermore, we have ||f + gllp < |lf\lp + Ilgllp- 

dlp = 1 

Proof. Clearly f +g and |f + g|? are measurable. Observe that 

If +l? < (Fl + la)? < @[F)? + Qlg)?. 
Since the right hand side is integrable, we have f+ g € Lp(u, F). For p=1, 

lf +9lh1 = [irra d|u| < Jatitap dlul= f Ufldu+ [ loldu = Fh + (gl 

Next assume 1 < p < oo. Suppose ||/f + gllp # 0, otherwise the required 

inequality holds already. Observe that
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lfsalb= fir+oral= f ital [f+ gly 

< [isiit+ ae aul + [lol e+ oP tea. 
Since f+g € Lp(u, F), |f + g|®- 4 = |f + gl? is integrable, i.e. |f + g|?-! € Lg. 

Furthermore, its L,-norm is given by 

1/q 1/q 

( / If + al*P*ala) = ( / if +alPau)) = [If + ol? = [IF +2. 
Hence the Holder’s Inequality gives 

If + all < Ufllolf + 918-1 + lolipllf +9187 = (lf lle+ loll + 91 
The result follows after dividing by ||f + | Pl q 

21-3.4. Exercise Prove that Li(u) is a vector lattice. Show that if 

f,g © Li(u), then so are f Vg, f Ag, f, and f_. 

21-3.5. Theorem For | < p < oo, Lp(js, F) is a Banach space when two maps 

f,g are identified by f = g, p-ae. Furthermore, the integration is a continuous 

linear map from L(y, F) into FE. 

Proof. Let f,g € Lp(u,F). By §21-2.10 without loss of generality, there 

are simple maps f,,g, such that f, > f, gn > 9; |fn| < |F| and |gnl < |g| 

everywhere. Since f, +9, 7 f +g in F, the sum f +g is measurable. From 

lf + gl? < Qf)? + (2[g))”, the upper function |f + g|? is |uJ|-integrable, that is 

f+g9€L,(u, F). In particular, for p = 1 we have 

fo +g)du= lim ik + 9n)du = lim | (/ fndu+ [atu = [ tau [oct 

Similarly, for every t € K we get tf € Lp(u,F) and for p = 1 we obtain 

ftfdu =tf fdu. Therefore L,(u,F) is a vector space. The continuity of 

integration on L,(1, F) follows from || f fdul| < f lf] dul = (Fils. 

To prove the completeness, it suffices to show the convergence of a 

special type of Cauchy sequences. Let {gn} be a sequence in Dp(y, F) such 

that |lgnsui — gallp < 27” for all n > 1. Define hy, = |gi|+ ~~ |@xx1 — 9% | and 

h=lgil+ a |9x+1 — gx]. Since Lp(u, F) is a normed space, we have 

nm 

[all> S lnllp + 9 0,_, gee — gellp S Iigille +1, 

that is, [atu = ||hall? < (laillp + D? < co.
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Since AP are positive measurable functions and since AP fT h?, Positive 

Monotone Convergence Theorem ensures that h? is |u|-integrable. Thus h? and 

consequently h itself are finite-valued p-ae. The set N = {x € X : h(a) = 00} 

is a null set. Let M =X \ N. Then the map f : X — F defined by the infinite 

series f(x) = g)(x)pys (x) + ye [gna1(£) — gx(2)]pa4(z) is absolutely convergent 

on M and is zero on N. Hence gnpm — f on X. Therefore f is 

measurable. The absolutely convergent series —gnpu = So, Geet — 9k)PM 
oo 

gives |gnpm| < ». l@x+1 — gk| <h, that is |gnpa|? < h?. Letting n — ov, 
=n 

we have |f|? < h?. Since h? is integrable, so is |f|P, ic. f € Lp(u, F). Because 

lgnpm — f\? 4 0 and |gnem — f|? < (2h)?, it follows from Positive Dominated 

Convergence Theorem that 

sim, [ign = APale|= tim, J \gnpae — s1Palas = fim, lawpae — fala = 0 
that is ||gn — f|lp ~ 0. This completes the proof. 0 

21-3.6. Corollary For E =F =K and yp > 0, L2 is a Hilbert space under the 

inner product given by the following expression: < f,g >= f f(x)g(@)du(z). 

21-3.7. Let X be a set equipped with the counting measure yp on the 

semiring of all singletons and let EH = F = K. Then £,(X) = JL, is a 

Banach space. Also £,(X) is a Hilbert space under the inner product given 

by < f,g >= Vwex f(g (&) where g(x) denotes the complex conjugate of 

g(x). It can be proved that every Hilbert space H is of the form £.(X) where 

X is any orthonormal basis of H. 

21-3.8. Example Let y be a scalar measure on a é-space (X,D), L(y) the 

Banach space of y-integrable functions and T : £,(4) — E a continuous linear 

map. For every decent set A, let vA = Tp,. Then vy: D — EF is a measure 

with |v] < ||T'll [l- 
Proof. Clearly v is finitely additive on ID. Next, assume that A, | @ in D. 

Then |uJAn | 0. Thus |[vAnl] = [Zeal] < IPI lleaalh = [ZI lel4n — 0. 
Hence v is countably additive. Finally suppose that A= Uj B; be a disjoint 

union where A,B; € ID. Then 3°, |lvByl] < 54 ITI \elBy = IIT [al A- 

Thus we obtain |v|(A) = suppyay pe pray ll¥P Il < IIT] |#|A < 00. Therefore v 

is of finite variation. Consequently, v is a measure on (X, ID). oO 

21-3.9. Exercise Let 4 be a positive measure on a d-space (X, ID). For every 

AED, let vA=p, € EF = L,(p). Prove that v is an E-measure with |v| = p.
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21-3.10. Exercise Let A be the Lebesgue measure on R, 1 < p < oo and 

E = £,(A). For every decent set of IR, let uA = pa € E. Show that p is 

countably additive but it is not of finite variation. 

21-4 Mean Convergence 

21-4.1. Convergence in the L,(y, F’)-space for 1 < p < co is also called the 

Lp-convergence or p-th mean convergence. It is the results in this section that 

Lebesgue integral distinguishes itself from Riemann integral. Let E, F, FE be 

Banach spaces with an admissible bilinear map F x E — FE and p a vector 

measure on a 6-space (X, D) into E. 

21-4.2. Dominated Convergence Theorem Let j,,, f : X — F be measurable 

maps. Suppose f, — f, y-ae. If there is g € LF(u) with | fal < g, p-ae for all 

n; then all fr, f © Lp(u, F) and ||fn — f\lp > 0 as n > 00. 

Proof. Letting n — oo in |fn| < g, we have |f| < g, p-ae. Since |f|? < g?, 

peae and g? is integrable, so is |f|P, ie. f € Lp(u,F). Similarly, all 

fa € Ly(u, F). Next observe that [f, — f\P < (fal t+ lf)? < Glg)?. It 

follows from Positive Dominated Convergence Theorem that 

dim, Wf — £18 = tim, fife — FP du= f tim fe FPdu=0. 
21-4.3. Exercise Show that the functions npoj/nj, Pansy and (1/n)pe,n) 

converge to zero but their integrals are equal to one. Explain why Dominated 

Convergence Theorem is not applicable. 

21-4.4. Monotone Convergence Theorem Let f,,, f : X — F be measurable 

maps. Suppose f, — f, p-ae and all frp € Dp(n,F). If [fal T (Fl, u-ae. and 

sup ||fnllp < 00, then f € Lp(u, F) and ||fn — filp 2 0 as n > 00. 

Proof. Clearly |fnl? t |f|?, u-ae and sup f |fnl?dlu| < sup|{fallB < oo. By 

Positive Monotone Convergence Theorem, we have 

[istrau = slim, f \falPan < sup || fall < co. 

Hence the upper function |f|? is integrable, ie. f € Lp(u, F). Now all |fal < |f| 

and f, > f, u-ae. Last theorem gives ||f, — f|lp > 0 as n — oo. a 

21-4.5. Theorem Let f,, f € Lp(u,F) where 1 <p < oo. If fn > Ff, p-ae; 

and if ||fnllp — l|fllp then |lfn — fllp — 0.
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Proof. Without loss of generality, we may assume f, — f on X. Let 

gn = (2\fa)? + 2|f|)? and g = 2?*'|f|?. Then the given condition ensures 

that fondu — f gdu. Since |fn—f|? < (fault |F))? < gn and f gd|p| < 00, by 

§20-3.3 we obtain f |f, — f|Pdu — f Ody =0 which gives ||f, —fll,p>0. O 

21-4.6. Density Theorem The set of all decent maps is dense in Lp(u, F) 

for | < p< ow. More precisely, for every f € p(y, F’) there are decent maps 

fa > f with |fal T |f|, w-ae and |lf, -— fllp — 0. Furthermore if f > 0, we 

may choose all f, > 0. 

Proof. By §21-2.10, there are f,, satisfying all except the last condition which 

also follows from last theorem. o 

21-4.7. Corollary If D is generated by a semiring 8, then the set of 8-step 

F-map is dense in L,(p, F) as a result of §20-3.6. 

21-4.8. Corollary If ID is generated by a countable family K of subsets of 

X and if F is separable, then L,(yu, F) is also separable. In particular, the 

function space L,(j) is separable. 

Proof. Let K, =K; K,, the family consisting of sets AU B and A \ B for all 

A,Be K,~, and R= UP, Kn. Clearly R is the ring generated by K and R 

is countable. Let H be a countable dense set in F. Then F, = {ya AjPA; : 

a, € H, A; € 8} is countable and so is F =", Fn. It is an exercise to prove 

from last corollary that F is dense in L,(u,F). The last statement follows 

because K is separable. oO 

21-4.9. Integration Term by Term Let {f,,} be a sequence of measurable 

maps. If the upper function °°, |fn| is integrable, then all f, and °°, fn 

are integrable and [xe fadp= ~ [tutu 

Proof. Let g= Ye lfjl, An = Ya f; and h= a f;. Since g is integrable, 

it is finite value almost everywhere. Without loss of generality, assume that 

g is finite value everywhere. Because g(r) = yp |f;(2)|| is convergent, h 

is well-defined. The limit h of measurable maps h, is measurable. Since g 

is integrable and |f,| < g, all f, is integrable. From |hn| < ve Ifjl <9 

Dominated Convergence Theorem implies f 377°, fjdy = fhdu = flim hadp = 

lim f hady = lim Vj J fidp= a J fidp. a 

21-4.10. Exercise Let f,,,g be integrable maps. Prove that f, — g, p-ae if 

Dore Ifa — gllr < 00. 
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21-4.11. Exercise Let f be a map from a metric space T' into a metric space 

and let a € T. Then lim f(t) = c as £ — a iff for every sequence t, — a in T 

with all t, 4a we have f(tn) - c. 

21-4.12. Continuously Dominated Convergence Theorem Let TJ be a metric 

space and » an &-measure on a é-space. Let f : X x T — F be a map such 

that for each t € T, f(z,t) is p-integrable in x. Suppose that a € T and 

for each x € X, we have lime. f(z,t) = f(x, a). If there is a p-integrable 

function g : X — R satisfying the dominating condition: |f(z,6)} < g(x) for 

all (x,t) € X x T, then we have lim [ fendu) = [ teeerduce 
—+a 

Proof. For any sequence t, — a in T, define h,,(x) = f(x, tn) for all n. Then 

we have lim / f(a, tr)du(az) = | f(x, a)dy(x) by applying the discrete version 

to {hn}. The result follows from last exercise. a 

21-4.13. Differentiation under Integral Sign Let f : X x (a,b) — R bea 

real function such that for each t € (a,b), f(x, t) is p-integrable in x. Suppose 

for each x € X, Of /Ot exists. If there is a y-integrable function g: X —- R 

satisfying the dominating condition: Zee] < g(x) for all (2, t) € X x (a,b), 

then we have 5 | fevpduce) = / PF cw, tate) on X x (a,b). 

Proof. Let g(t) = f f(a, t)du(z) and a < ty < 6. Take any ¢,, — to in (a,b) with 

all t, #to. Define h(x) = LQ tn) ~ FE to) Then each h,, is a measurable 
tn — to 

Q 
function on X and its pointwise limit Fo, to) = lim h,(x) is also measurable. 

now 

By Mean-Value Theorem, we have |h,(x)| = ope) < g(x), V « € X where 

@ is between t, and to. The Dominated Convergence Theorem ensures that 

(Of /Ot)(x, to) is integrable so that the right hand side of the required identity 

is well-defined. Furthermore, 

En) — pt : lim Plt) ~ Co) = lim / hn (dpa) = / OL (x, toda) 
now nm — bo mao 

Consequently, y is differentiable at t) and the required identity holds. Oo 

21-4.14. Exercise State and prove a continuous version of L,-Dominated 

Convergence Theorem.
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21-5 L..-Spaces 

21-5.1. Let K be a family of measurable sets in a 5-space (X,D). Assume 

that XK satisfies the following two conditions: 

(a) If A, € K, then UP, An € K. 

(b) If A is a measurable set with AC Be XK, then AEX. 

A proposition p(x) about x € X is true K-ae if there is N € K such that p(z) is 

true for alla € X \ N. The K-essential sup-norm of a measurable map f from 

X into a Banach space F is defined by ||f||o. = inf. sup ||f(z)||. Also f is 
NEK peX\N 

K-essentially bounded if ||f ||. is finite. The set of all K-essentially bounded 

measurable maps into F' is denoted by L..(K, F). The generality is interesting 

in itself and will be used later in spectral measures §26-4. If uw is a vector 

measure on X into a Banach space Ey, the family of all p-null sets is really 

what we want to study. The set of all essentially bounded measurable maps 

from X into F’ is denoted by L..(X,D, E, uz, F). Drop some symbols if there 

is no ambiguity. 

21-5.2. Lemma _ For every sequence of measurable maps f;,, there is N € K 

such that ||frlloo = sup || f,(z)\| for all k. As a result, if || fn — gllo 2 0 in 
cEX\N 

coo(K, F), then there is N € K such that f, — g uniformly on X \ N. 

Proof. Suppose that || filo < oo. Choose tj, | |fxlloo as J 00. Since 

Ilfelloo < tj, there is Nj, € K such that sup || f,(x)|| <t;,. On the other 
rEX\Nyk 

hand, if || fall = co, let Nj, = 0 and t;, = 0cosothat sup |lfx(x)|| < tyz 
rE X\Nix 

and tjzk — |lfrllo as j > oo. Clearly, N = UF et Nyr € K. Ih x € N, 

then x ¢ Njx, or || fi,(x)|| < tj, for all j, that is || fe(x)|| < ||felloo by letting 

j — co. Therefore, ||fxllo =inf sup ||fx(x)!] << sup | fe(x)\| < || Felloo- 
M yeX\M xzeX\N 

Consequently, ||frlloo = sup || f-(x)||. For the last statement, choose N € K 
zEX\N 

such that ||fn —gllo = sup ||fa(z) — g(x)|| for alln. Then f, — g uniformly 
X\N zEex\ 

on X\N. q 

21-5.3. Theorem Let f,g be measurable maps. 

(a) If |f| <t < 00, K-ae; then f € L.(K, F) and ||flloo < t. 

(b) If] < II flloo, K-ae; equivalently Q = {x € X : |f(z)| > || flo} € K. 
(c) ||flloo = inf{t € [0, oo]: |f| <t, K-ae}= sup [f(a]. 

rEX\Q
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(d) f= 9, K-se iff | — glloo = 0. 
Proof. (a) Choose K € K such that ||f(z)|| < ¢ < 00 for alla e X \ K. Thus 

I[flloo =inf sup ||f(@)| <_ sup ||f(@)|| < t < oo. 
zeX\N 2eX\K 

(b) Choose N € K with || flloo = SuPrex\n ll f@)]||. Then || f()]] < || flleo for all 

ze X\N. Thus |f| < ||fllo, K-ae. Since QC N, we have Q € K. Conversely 

if Q € K, then || f(x)|| < {flo for all e € X \ Q. Hence |f| < || flo, K-ae. 

(c) Let @ = inf{t € [0,00] : |f| < t, K-ae } and 8 = sup,exyg|f(a)|. Since 

|f(z)| < 6 for all € X \Q and Q € K, we have a < GB. Also B < |/flloo 

by definition of Q. If a = oo, then a = 6 = ||fI|... Assume that a < oo. 

For every n, there is t, > |f|, K-ae with t, <a+ 4. Choose M,, € K such 

that |f(x)| < ty for alle © X\ M,. Then M =U", M, © K. For every 

zé X\ M, we have |f(x)| < th < a+t for all n, ie. |f(x)| < a. Therefore 

lf lloo < SUPp ey |f(z)| < a. Consequently we also have a = 3 = ||f|loo- 

(d) is left as an exercise. Oo 

21-5.4. Theorem The space L,.(K,F) is a Banach space when two maps 

f,g are identified by f = g, K-ae. 

Proof. Let f,g € Lo(K,F). Then jf +g| < |f!+ lal < |flloo + |lglloo, K-ae. 

Hence ft+g € Loo(K, F) and || f+glloo < ||flloo+|Ilglloo. We leave it as an exercise 

to show that L..(K, F) is a normed space. To prove that L.(K, F) is complete, 

let {f,} be a Cauchy sequence in L..(K, F). Then for every ¢ > 0 there is k 

such that ||fm — fnlloo < € for all m,n > k. Since |fn — fal < lfm — frlloo 

and |fnl < ||fnlloo, K-ae; there is N € K such that for every r € M=X\N 

we have |[fn(z) — fr(@)ll < Wim — falleo and |[fz@!| < ||fnlloo. Hence for 

every « € X, {fr(x)pu(x) : n > 1} is a Cauchy sequence in F. Define 

f@e= jim Fn(2)pm (2). Then f is a measurable map. Because 

fn (@)om(2)I| < ||Fn(@ em (x) — fele)pu(2)|| + Il fe(@)em(@)|| < € + [filloo, 

setting m —» oo we have ||f(x)|| < €+ ||felleo for all ¢ € X. Therefore 

f € LoolK, F). Since || fr(2) 2m (x) _ fr(®)pm(2)|| < fm _- frlloo < é, 

letting m —> 00 we obtain || f(x) — fr()em(2)|| < € for all n > k. Thus, 

lf _ falloo < If _ fn |loo + fn _ FnM |loo <6, Vn = k. 

This proves f, — f in L..{K, F). Oo 

21-5.5. Before spectral measures §26-4, we work with Loo(X,D, E, pw, F) only. 

21-5.6. Exercise Show that in general, decent functions are nor dense in Lo.
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21-5.7. Exercise Let ¥(ID) denote the set of all decent functions on X. Then 

it is a vector subspace of L,,. Let cg(X) denote the closure of FID) in Leo. 

Then co(X) is a Banach space under the essential sup-norm and F(ID) is dense 

in ¢9(X). Prove that a measurable function f is in co(X) iff for every « > 0 

there is a decent set D such that ||fpcx\pylloo < €- 

21-5.8. Theorem Let F’ be the dual space of F and let 1 < p < oo. If 

h € Loo(u, F) and f € Ly(u, F), then hf € Ly and hf llp < |lAlloollfilp- 
Proof. Since (u,v) > uv: F’ x F — K is continuous bilinear, the function 

hf is measurable. Without loss of generality, we may assume |h| < ||Alloo 

everywhere. Thus [hf|? < |AlP\f|P < |AlIR1f/’ € Li(u). Therefore |hf|? 

is integrable, that is, hf € Lp(. From fhf|Pdlul < ||All® f lf Pdlul, we 

obtain [hf|lp < Whllollf lp a 
21-5.9. Exercise Let jy be a positive measure on a d-space X and ha 

measurable function on X such that hf € L2(u) for every f € L2(y). Clearly 

the multiplication operator T : Lo(p) — L2(u) given by T(f) = hf is linear. 

Prove that if T is continuous, then h € L... Show that T is a normal operator. 

Also T is self-adjoint iff f is real-valued, j:-ae. 

21-6 Convergence in Measure 

21-6.1. Let be an E-measure on a 6-space X and f,,f : X — F be 

measurable maps. Then {f,,} converges to f in measure if 

Jim |wl{z € X : || fa(z) — f(@)|| 2 €} = 0 
for every ¢ > 0. Also {f,} is Cauchy in measure if for every « > 0 we have 

lim |ul{x € X : || f(r) — fr(x)|| > e} = 0 as m,n — oo. Note that positive 

measures are defined on measurable sets by §20-2.1 with properties listed in 

§20-2.2, 5.2a,4 although a vector measure is defined only on its integrable sets. 

21-6.2. Theorem Let y,v be measures on X with |p| < |v|. If f, > f in 

v-measure, then f, — f in p-measure. The same result holds for being Cauchy 

in measure. 

21-6.3. Theorem If /,, + f in measure for both measures p,v, then f, > f 

in measure for ap+(v where a, 8 € K. The same result holds for being Cauchy 

in measure. 

Proof. It follows from jap+ Bv| < |a| |u| + |B |v. o
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21-6.4. Since only the total variation || is involved, we shall assume that ys 

is a positive measure throughout the rest of this section. It is easy to prove 

that if w{2 € X : ||fa(e) — f(x)|| > 1/s} — 0 for every integer s > 1, then 

fn — f in measure. Similarly, {f,} is Cauchy in measure if for each integers 

s > 1 we have limpu{z € X : |lfm(z) — fa(z)|| = 1/s} =0 as m,n > ow, 

21-6.5. Theorem Let 1 < p< oo. Then the following statements hold. 

(a) If fz - f in Ly(u, F), then f, — f in measure. 

(b) If {fn} is Cauchy in Lp(y, F), then it is Cauchy in measure. 

Proof. (a) By Chebyshev’s Inequality, we have 

tz : || fn(x) — F(@)|| 2 e} S Ufa — Fillp/e)? > 0. 
(b) It is left as an exercise. D 

21-6.6. Exercise Let f, = g, and f = g, p-ae. Prove that if f, - f in 

measure, then gn, — g in measure. 

21-6.7. Theorem If f,, — f and f, — g in measure, then f = g, p-ae. 

Proof. For each integer s > 1, let A, = {x € X : ||fn(x) — f(x)|| > 1/(25)}, 

By = {x © X : [lfale) — g(x] > 1/Os)} and Hy = {e € X = |f@) — 9(2)|| > 
1/s}. Since f, — f and f, — g in measure, we have A, — 0 and pB, > 0 

as n — oo. Now because H, C A, U By, we have pH, < wAn+pBy — 0. 

Letting n — oo, we get wH, =0. Therefore U™, H, = {x € X : f(x) # 9(2)} is 

a null set, i.e. f = 4g, ae. Oo 

21-6.8. Theorem If {#,,} is Cauchy in measure and if {f,} has a subsequence 

which is convergent to f in measure, then f, — f in measure. 

Proof. For each a > 0, let An(a) = {x € X : ||f(2) — fr(x)|| > a} and 

Amn(@) = {x € X : || f(x) -— fr(z)|| > a}. Since f, is Cauchy in measure for 

every € > 0, there is t > O such that for all m,n > t, we have pAmn(a/2) < €/2. 

Given that {f,,} has a subsequence which converges to f in measure, there are 

integers 1 < m(1) < mQ) < m(3) < --- such that V « > 0, 4 integer 7, 

Vi > j, we have pAmw(a/2) < ¢/2. Let k = mij +t). Take any n > k. 

Then pAg(a/2) = pAmgsy(a/2) < ¢/2. Next, since n > k > t, we have 

LApn(a/2) < €/2. Clearly A,(a@) C Ax(a@/2) U Agn(a/2). We get pA,(a) < €. 

Thus pA,(a) > 0 as n — oo. Therefore f, — f in measure. Oo 

21-6.9. Exercise Let f,, = gn, u-ae. Prove that if {f,,} is Cauchy in measure, 

then so is {g,}.
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21-6.10. Exercise Consider the Lebesgue measure on R. 

(a) Show that np¢,1/n) + 0 pointwise and in measure but not in Ly. 

(b) Show that po.n+1] 7 0 pointwise but not in measure. 

(c) Show that (1/7) ~(n,2n) > 0 uniformly but not in Ly. 

(d) For every integer m > 0, let gjm = 2 G—1)/2,3/2m | for all O < 7 < 2™. 

Fixed m, sketch gj for various 7. Let {f,} be an enumeration of {g;m}. Show 

that f, — 0 in measure and in L, but not pointwise. 

21-6.11. Exercise Let fn — f, gn — g in measure. Show that for all 

a, 8 € K, we have af, + Bg, — af + Bg in measure. Give a counter example 

of functions to show that fngn — fg in measure is false in general. 

21-7 Almost Uniform Convergence 

21-7.1. Let yz be an E-measure on a d-space X and f,,f : X — F be 

measurable maps. Then {f,,} converges to f almost uniformly if for every ¢ > 0 

there is a measurable set B such that |u|(B) < ¢ and f, — f uniformly on 

X\ B. Similarly, {f,,} is said to be Cauchy almost uniformly if for every e > 0 

there is a measurable set B such that |u|(B) < ¢ and {f,,} is Cauchy uniformly 

on X \ B. Clearly if f, — f uniformly, then f, — f almost uniformly. 

21-7.2. Theorem If /,, — f almost uniformly for measures ju,v, then f, - f 

almost uniformly for az + Gv where a, 6 € K. 

Proof. Choose measurable sets A, B such that |u|A < «, |p|B <eand f, > f 

uniformly on X \ A and X \ B. Then f, — f uniformly on X \ (AM B) and 

lan + Bv|(ANB) < jal |pl|A + |A| |v|B < (lal + |S)e. Oo 

21-7.3. Since only the total variation |,:| is involved, we shall assume that 

is a positive measure throughout the rest of this section unless it is otherwise 

specified. 

21-7.4. Theorem If f,, — f almost uniformly, then f, — f, p-ae. 

Proof. Let f, — f almost uniformly. For every integer s > 1, there is a 

measurable B, such that uB, < 1/s and f, — f uniformly on X \ B,. Then 

B= ()3, B. is measurable and pB < pB, < 1/s for all s, ie. pB = 0. 

Next choose any « € X \ B. Then x € X \ B, for some s. Since f, — f 

uniformly on X \ B,, we get f,(x) > f(x). Hence f, — f on X\ B. Therefore 

fn > fy prae. o
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21-7.5. Theorem If {f,,} is Cauchy almost uniformly, then {f,,} is convergent 

almost uniformly. 

Proof. For each s > 1, there is a measurable set B, such that pB, < 1/s and 

{fn} is Cauchy uniformly on X \ Bs. Then B = ()2, Bs is a null set. Now 

choose any « ¢ B. Then z € X \ B, for some s. Since { f,,(z)} is Cauchy in F, 

f(z) = lim, +00 fn(2) exists. For x € B, let f(x) = 0. Thus f is defined on X 

and f,es — f. Finally observe that for each s > 1, {f,} is uniformly Cauchy 

on X\ Bs. Hence Ve >0, 4k, Vmyn>k, Vee X\ Bs, ||fn(2) — fa(2)|| < ©. 

Letting m — oo we have || f(z)—f,(x)|| < «, Vn > k anda € X\B,. Therefore 

fa — f uniformly on X \ B, and pB, < 1/s, ie. f, — f almost uniformly. 

Since all f, are measurable, so are f,pg and their pointwise limit f. Oo 

21-7.6. Theorem If f, — f almost uniformly, then f, — f in measure. 

Proof. For every < > 0, let A, = {x € X : ||fn(2) — f(x)|| > e}. Since f, > f 

almost uniformly, there is a measurable set B such that uB < ¢ and f, > f 

uniformly on X\ B. Thusak, Vn >k, Vax € X\B, ||fr(z) — f(x)|| < «- 

Hence Vn > k, An C B, that is pA, < wB <e. Therefore limpoo An = 9, 

or f, —> f in measure. ia 

21-7.7. Theorem If {f,} is Cauchy in measure, then it has a subsequence 

which is convergent almost uniformly. 

Proof. For every a > 0, let Amn(a) = {@ : |[fn(z) — fr(x)|| > a}. Given 

that {f,} is Cauchy in measure, we have limpAmn(a) = 0 as m,n — oo. 

Inductively, there are integers 1 < n(1) < n(2),---, such that for all m,n > n(2), 

we have Amn(2~*) < 27*. Define g; = fag for each i > 1. We claim that the 

subsequence {g;} is Cauchy almost uniformly. In fact, let 

By = {x : |lgisi(e) — gi(a)|} = 27*}. 

Then pBy = bAngstynay(2~*) < 274. 

Hence LB (Uz, B;) < ~~, pBy < 2-6", 
= = 

On the other hand, take any « € X \ Us. B;, we have Vi > k,x ¢ B,, that is 

llgiai (2) — gi€x)|| < 27*. Hence for all j > i > k, we obtain 

{9;(2) — gi(a)|| < 27! < 2-1, 

Therefore {g; : i > 1} is Cauchy uniformly on X \ U3, B;. Consequently, {g,} 

is Cauchy almost uniformly and hence {g;} converges almost uniformly. a)
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21-7.8. Corollary If {f,} is Cauchy in measure then it is convergent in 

measure, 

21-7.9. Dominated Convergence Theorem in Measure Let /, fn € Lp(u, F) 

where | < p < oo. Suppose that f, — f in measure. If there is g € Lp(u) with 

\fn| <9, p-ae for all n; then f, > f in Lp(u, F). 

Proof. Suppose to the contrary that f, > f in Lp(u, F) is false. Then for some 

& > O, there is a subsequence {g,} of {fn} with |lgn — fllp > © for all n. Now 

{gn} has a subsequence {h,,} convergent almost uniformly to some measurable 

map h. Since {h,} converges in measure to both f,h; we have f = h, p-ae. 

From hy, — f and |hn| < g € L,(y), p-ae; Dominated Convergence Theorem 

ensures |/h, — f||p — 0 contrary to ||gn — f lp > €- OD 

21-7.10. Egorov’s Theorem Let u be an E-measure on a d-space X and 

fn, f : X — F be measurable maps. Suppose that either |,:{(X) < oo, or there 

is an integrable function g such that |fn| < g, p-ae for all n. If f,, — f, p-ae; 

then f, — f almost uniformly. 

Proof. Without loss of generality we may assume that up > 0, fr — f 

pointwise and in second case |f,| < g everywhere. To show f, -> f 

almost uniformly, for every ¢ > 0 we have to find a measurable set B such 

that pB < ¢ and f, — f uniformly on X \ B, ie. V6 > 0, we have to 

find & such that Vn > k, Vx © X\B, ||fa(x) — f(z)|| < 6. Now for all 

integers m,n > 1 define A,(m) = {2 € X\ B: ||fa(z) — f(a)|| = 1/m} and 

By(m) = UP2, An(m). We claim (2, B.(m) = 0. Suppose to the contrary 

that there is some x € ‘aren B,(m), that is z € B,(m) for every k. Choose 

some n > k satisfying x € An(m), ie. ||f,(z) — f(x)|| > i/m. Thus f, - f 

pointwise is false. This contradiction establishes what we claimed. Clearly 

Brai(m) C By(m). Therefore B,(m) | @ as k — 00. Suppose uX < oo. Then 

for every k we have 4.B,(m) < oo by monotone property of positive measures. 

Next, suppose || f,.(z)|| < g(x) for all x. Then 

fn) — f(@) < fa] + [|F@]| < 29@),V 2 € X 

or By(m) © U A,(m) Cc {2 € X : g(x) > 1/(2m)}. 

Since g is integrable, we have p{x € X : g(x) > so} < oo, Again we 

have uB,(m) < oo for all k. Thus we obtain uB,(m) | 0 when k — co. 

Hence for any ¢ > 0 and m, there is k(m) satisfying uBpony(m) < 6/2”. Let 

B=UP., Bicy(m). Then B is measurable. By countable subadditivity, we
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get wB< ~~ LBrom(m) < ~~, e/2” =e. For every 6 > 0, let m > 1/6. 

Now take any n > k(m), anda € X\B. Wehave ¢ ¢ Bym(m), ie. x ¢ Ap(m), 

or || fn(x) — f(@)|| < + <6. This proves f, > f uniformly on X \ B. Qo 

21-7.11. Corollary If f, — f, p-ae on a o-finite set M; then there are 

disjoint decent sets A; and a null set N such that M = Uj A; UN and that 

fa — f uniformly on each A;. 

Proof. Write M = Ur D; UD where D; are disjoint decent sets and D is 

null. Since f, — f, y-ae on D;; there is a measurable subset B} of D; such 

that |z|B! <1 and f, — f uniformly on Aj =D; \ Bi. Inductively there is a 

measurable subset BF of By such that |4|BE <1/kand f, > f uniformly on 

Af = Be \ BE. Because |y|Nj < |u| Bye < 1/k for all k, Ny =O, BE is null 

and N = UR N, U D is also null. Since A*, BF are measurable subset of the 

decent set D;, every Ak is a decent set. By construction, f, — f uniformly on 

each AF, From M = UP, DjUD=UP (UR) AFUN)UD =U, Urey AGUN, 

the result follows by an enumeration of {A* :9,k > I}. oO 

almost \# Egorov almost 
uniform general #\ everywhere 

SS subsequence Egorov 

dominated general 

dominated 
subsequence 

subsequence 

dominated 

mean 

convergence 
dominated convergence 

general »\_ in measure 

21-7.12. Exercise Show that as n — oo the functions pin...) + 0 converges 

pointwise but not almost uniformly on IR. Show that x” converges almost 

uniformly but not uniformly on [0,1]. Are these two sequences of functions 

convergent in measure ? 

21-7.13. Theorem Let [p|(X) < oF. If fp — f uniformly and if all 

fn € Lp(u, F), then f € Lp(u, F) and || f, — filp > 0. 

Proof. Since f, — f uniformly, {f,} is Cauchy uniformly. For « = 1, 4k, 

Vn>k, sup ll fa(z) — fe(x)l| < 1, ice. [fal < |fe{ +1. Because |u| < 00 we 
reX 
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have 1 € Lt. Consequently | f,| +1 € Lf. Now the result follows immediately 

from L,-Dominated Convergence Theorem. Oo 

21-7.14. Exercise Let f, = 9, and f = 4g, p-ae. Prove that if f, - f almost 

uniformly, then g, — g almost uniformly. 

21-7.15. Exercise Which of the functions in §23-6.10 converge almost 

uniformly? 

21-8 More Than One Measure 

21-8.1. Let y,v be vector measures on a 6-space (X, ID) into a Banach space 

£ where ID is generated by a semiring 8. If |u| < |v| on $ then by §20-5.2, we 

have |j4| < |v| on measurable sets; hence for every v-integrable map f : X > F, 

the upper function |f| is |v|-integrable; |u|-integrable and finally p-integrable. 

21-8.2. Theorem If f : X — F is integrable for both p and v, then f is 

integrable for z+ v and ap for every a € K. Furthermore we have 

[tawrr= f fans f tov and [ teow =o [ tay 

Proof. Since f is y-integrable, the upper function |f| is integrable for |j|. 

Similarly |f| is integrable for |v|. From 

fitiduevis [isl dduiswo= fisted [1 abt < 00, 
|f| is integrable for |u+v|. Therefore f is integrable for y+v. Next choose 

simple maps f, such that |f,| <|f| and f, — f. Then all f, are integrable 

simple maps for py, v, 4+ Vv. Hence 

[te +v)= tim f Faas v) = lim (/ frdpt [ 2”) 

tim f frau+tim f foav= f fau | fav. 

The second equality is left as an exercise. 

21-8.3. Theorem The set of all o-finite #-measures on a dé-space (X, ID) 

forms a vector space. 

Proof. Let u,v be two o-finite vector measures on X. There are disjoint 

decent sets A,, A2,--- and a p-null set M such that X = MUU A;. Since M 

is a measurable subset of the v-o-finite set X, M is itself v-o-finite. There are 

disjoint decent sets B;, B2,--- and a v-null set N such that M = NUUR B;).
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So we obtain X = (Ui, Ai) U (US, B;) UN. Since N is null for both py, v, we 

have |u|(N MD) = |vi(N MD) =0 and hence 

Jut+vl(N OD) < |ni(N D)+|v[(N nD) =0, VYDeD. 

Therefore N is null for u+v. Consequently u+v is o-finite. Similarly ay is 

o-finite for each a € K. This completes the proof. Oo 

21-9 Integration on Subspaces 

21-9.1. Let (X,ID) be a 6-space and IM(X) the family of all measurable sets 

of X. We shall study the induced structures on a measurable subset Q of X. 

Let F', E, FE be Banach spaces with an admissible bilinear map F x F — FE. 

21-9.2. Theorem (a) The family D(Q) = {ANQ: A € D} is a 6-ring over Q. 

Furthermore, we have D(Q) c D. It is natural to call Q together with D(Q), 

a measurable subspace of X. 

(b) The family M(Q) = { HnNQ: H € M(X) } consists of precisely all 

measurable sets of the measurable subspace Q. 

Proof. (a) Since the inverse images of the inclusion map f(x) = x from Q into 

X preserves unions, intersections and relative complements, D(Q) is a 6-ring. 

Because Q is measurable, we have ID(Q) Cc D. 

(b) Let IN(Q) denote the family of all measurable sets of the measurable 

subspace Q. Take any H € IM(X) and B € D(Q). Then B = AN Q for some 

Aé D(X). Thus HNA € D and (HNA)NG € DQ), ie. (ANQ)NB € DQ). 

Hence IM(Q) c IN(Q). Conversely, take any H € IN(Q) and A € D. Then we 

have ANQ € D(Q) and HN A=(HNQ)NA= AN(ANQ) € DQ) CD. 

Thus H € M(X), or H=HOQ € IM(Q). Therefore IN(Q) c M(Q). Oo 

21-9.3. Theorem The restriction of a decent map f: X > F toQisa 

decent map on the measurable subspace (Q, ID(Q)) which will be denoted by @ 

for simplicity. The same is true for simple maps, measurable maps and upper 

functions. 

Proof. Let g: X — F be a map of the form g = Del a ;pa, where aj ¢ F 

and A; C X. Then the restriction h : Q — F is given by h = a 05 PA,NQ: 

If all A; € D, then A; Q € D(Q). Hence if g is a decent map on X, then h 

is a decent map on Q. The same result holds for simple maps. Suppose that 

f is a measurable map on X. Take any decent subset A of X. Choose simple 

maps g, — f on A. Then all g,|Q are simple maps on Q and g,|Q — f|Q on
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ANQ. Therefore f|Q is measurable. We leave the case of upper functions as 

an exercise. Oo 

21-9.4. For every map g: Q — F, define gpg : X — F by (gpq)(x) = g(a) if 

x € Q and (gpg)(z) = 0, otherwise. It is easy to prove that g is measurable on 

Q iff ggg is measurable on X. Similar criterion holds for an extended function 

h: Q — [0, co] to be upper functions. 

21-9.5. Exercise Let Q =|), Qn be a countable union of measurable sets Qn 

of X. Prove that a map f : Q > F is measurable on @ iff f is measurable on 

each Q,,. Also prove the case for upper functions. 

21-9.6. Let yz be an E-measure on a 6-space (X,D) and Q a measurable set. 

Because of D(Q) c D, the restriction of y to ID(Q) is a well-defined measure. 

For simplicity, this restriction of 1 to D(Q) is again denoted by ». A map 

f : X — F is said to be integrable on Q if feg is integrable on X. In this 

case, write Jo fdp =f fegdp. A map 9: Q — F is said to be integrable on Q 

if gpg is integrable on X. The same convention for upper functions and their 

integrals on @ are defined. 

21-9.7. Exercise Prove that if Q is a null set of X, then every measurable 

map f on X is integrable on Q. Furthermore, So fdp =0. 

21-9.8. Exercise Let M C N be measurable sets. Prove that if f: N — F 

is integrable on N, then it is integrable on M. 

21-9.9. Theorem Let Q =|), Qn be a countable union of disjoint measurable 

sets of X. If f is integrable on each Q, such that >| [fl dlu| < oo, then 
n %Qn 

f is integrable on Q. Furthermore, we have [ fdp= > [ fdu. Similar 
Q n YQn 

statement holds for upper functions. 

Proof. The integral of the upper function |fpg| is given by 

[seal dnl =~, | Ltpan| alu} < 00. 
Therefore fpg is ||-integrable on X, or equivalently f is y-integrable on Q. 

Finally we shall prove the equality for infinite sequence {Q,,} while the finite 

case is left as an exercise. Since {Q,} are disjoint, [fog] = S772, \fpa,,| is 

integrable. Integration term by term gives
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[sane [ foam = [2 Fra.tu= I, | fro.du=S, [. fdy.0 

21-9.10. Exercise Let f be a map on [a,b] into F. Prove that if f is 

(Lebesgue) integrable on one of the following intervals (a, 6], [a, b], (a, 8], [a, 8), 

then it is integrable on all of them. Furthermore, we have 

f(a)dzx = f(x)dx = f(x)dz = f(x)dz. 
(a,5} [a,6] (a,b) fa,5) 

21-9.11. Exercise Let f be an integrable map on an interval [a,6]. Define 

f f(a)dz = Sia.b1 f(x)dz. Prove that if a <a < 6 < 5, then f is integrable 

on [a, 8]. In this case, write Se f(a)de = — fe f(z)dx. Prove that for all 

a, 3,7 € [a,b], we have fe f(@dz = gr f(x)dx + fe f(x)dz. 

21-9.12. Exercise Let f be an integrable map on [a,b] into F. Prove that if 

f is continuous at c € (a, 6), then the map g on [a, b] given by g(x) = f f@dt 

is differentiable at c. Furthermore, we have g’(c) = f(c). 

21-9.13. Exercise Let f,g be continuous maps on [a, 6} into F. Suppose that 

for every x € (a,8), g is differentiable at x and g'(z) = f(x). Prove that the 

Lebesgue integral can be evaluated by f f(x)dx = g(b) — g(a) as in elementary 

calculus. Evaluate the Lebesgue integral Io ax sinxdz. 

21-9.14. Exercise Note that if f is integrable on (0, 1], then fpeo1) is Lebesgue 

integrable but it has nothing to do with the improper integral. Let f be defined 

on (0, 1] by f(x) = n(—1)" whenever a <a2< — Show that the improper 

integral limeyo f f(z)dz exist but f is not integrable on (0, 1]. 

21-9.15. Exercise Note that if f is integrable on [1,00), then f/ji,c0) is 

Lebesgue integrable but it has nothing to do with the improper integral. Let f 

be defined on [1, 00) by f(x) = oe whenever n <x < n+ 1. Show that the 

b 
improper integral jim | f(z)dz exists but f is not integrable on [1, co). 

I OO 1 

21-9.16. Exercise Show that if f e L7(R), then so is sme f(x). 
xz 

21-99. References and Further Readings : Dinculeanu-67, Diestel-77, Duchon, 

Taylor-65, Okikiolu, Figiel, Mikusinski, Rao-91,93, Byers, Dorbrakov and Pallu. 



Chapter 22 

Finite Products of Measures 

22-1 Product Measurable Spaces 

22-1.1. Semirings, decent sets and Unique Extension Theorem provide the 

natural and elegant tools for the study of the product structures. In this 

section, we only deal with geometric aspects. In this chapter, integrands are 

restricted to scalar functions. Further investigation on vector integrands is 

required. Let 8, be semirings over sets X,Y respectively. 

22-1.2. Theorem The product family$ x T= {Ax B:AES, BEThisa 

semiring over the product set X x Y. 

Proof. Let Ax B, Sx T be in 8x J. Write A\ S = Ui, A; and 

B\T= it B,;. Then the definition of semirings can be verified easily by 

the identities (A x B)N(S x T) =(ANS) x (BOT) and 

(A x B)\ (S xT) =[(A\ $) x BJULANS) x (B\T)] 
= [UA x BU lURaas)xB]. 0 

22-1.3. Let R(S), R(T), R(S x J) be the rings generated by 8, J, 8x T 

respectively. Let A = D(S), B = DIT), A@B = DiS x J) denote the 

é-rings generated by 8, J, 8 x J respectively. Sets in A, B, A @ B are called 

decent sets of X, Y, X x Y respectively. The families of measurable sets of A, 

B, A@B are denoted by IM(A), IM(B), IM(A @ 8B) respectively. 

22-1.4. Exercise (a) Prove that R(S x J) = R[R(S) x RD]. 

(b} Prove that if f,g are step functions on X,Y respectively; then so is the 

function on X x Y defined by (f ® g)(z, y) = f(x)g(y). 

22-1.5. Theorem Products of decent sets are decent sets. 

Proof. To prove Ax BCA@B, take any B ET. Define 

E={PEA:PxBEASB}.
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Then the following identities 

(AUP)x B=(Ax B)U(P xB) 

(Nn An) x B=), (An x B) 

and (A\ P)x B=(Ax B)\ (ANP) x B] 

show that € is a d-ring. Since 8 x {B} c D(S x J) = A@B, we have § c E and 

consequently A = D(S) c €, ie. Ax {B} CA@B. Similarly take any Ac A 

and define F¥={T€B:AxTEA@B}. Then F is a &-ring containing T and 

hence B = D(J) c F which is equivalent to the required statement. Oo 

22-1.6. Exercise Prove that if f,g are decent functions; then so is f @ g. 

22-1.7. Corollary A @® is the 6-ring generated by the semiring A x B. 

Proof. It follows from last theorem that D(A x B) C A @ 8B. On the other 

hand, since 8x TC A x B we have A® B= D(S x T) Cc D(A x B). a 

22-1.8. Theorem Products of measurable sets are measurable. 

Proof. To prove IM(A) x IM(B) c M(A @ 8), let M € MA), N € M(B). 

Take any decent sets Ac A, Be B. Then 

(Mx NYN(Ax B)=(MNA)xX(NNBEAxB 

is a decent set of X x Y. Since A x B generates A @ B, it follows that M x N 

is a measurable set of X x Y. oO 

22-1.9. Exercise Prove that if f,g are simple functions; then so is f @ g. 

22-1.10. Exercise Prove that if f,g are measurable functions; then so is f@g. 

22-1.11. Let P be a subset of X x Y and (x,y) a point in X x Y. Then the 

x-sections and y-sections of P are defined by P, = {y € Y : (x,y) € P} and 

P, ={a € X : (x,y) € P} respectively. 

22-1.12. Theorem If P is a decent subset of X x Y, then all x-sections P, 

and all y-sections P, are decent subsets of Y,X respectively. 

Proof. Let x € X be given and let F={P€A@B: P, € B}. The identities 

(PU Q)e = Pr UQa3(P \ Q)2z = Py \ Qa. and (an Pade = Nn(Pa)= show that J 

is a 6-ring. Take any P= Ax BeAxB. Then P, = or B which are in B. 

Hence F is a d-ring containing A x B. Since A @ B is generated by A x B we 

have A @ 8B C ¥ which is equivalent to say that all P, are decent subsets of Y 

for P€ A@B. The other part follows by symmetry. oO 
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22-1.13. Theorem Let x be a point in a decent subset A of X. If Pisa 

measurable subset of X x Y, then P, is a measurable subset of Y. 

Proof. Let B be a decent subset of Y. Since P is measurable, (A x B)N P 

is a decent set in A@B. Hence BN P, = [(A x B)N Pl], is a decent set. 

Consequently, P, is measurable. DB 

22-1.14. Exercise Let 8 denote the semiring of semi-intervals of the z-axis 

and J the semiring of singletons of the y-axis. Sketch a few sets in R(S x J). 

Is the closed unit rectangle [0, 1]? a decent set in D(S x J)? Is the open unit 

disk a decent set in D(S x J)? Is it a o-set in the product space IR*? Answer 

the same questions for the closed unit disk. Is the closed unit disk a oé-set in 

IR°? Show that the line segment {(2,2):0< 2 < 1} is a measurable set. 

22-2 Product Measures 

22-2.1. In earlier chapters, we used semi-rectangles to interpret the abstract 

theory graphically but we have not proved whether taking areas is a measure. 

Now we have enough tools to prove this fact. It would be nice to have a 

simple direct and elementary proof for this particular case. Let E,, B2,E be 

Banach spaces with an admissible bilinear map y : E, x HE, — E denoted by 

y(u,v) = uv. Let (X,A), (Y,B) be é-spaces and wu: A > E,\,v:Y > Fy 

be vector measures. Strictly speaking, for every A € A and B € 8B define 

UX y= p(uA,vB) and the measure obtained in the following theorem should 

be written as u @, v. We drop y in order to simplify notations. 

22-2.2. Theorem ‘There is a unique measure © v on the product d-space 

(X @ Y,A x B) into & such that (4 @ v)(A x B) = (uA)vB) for all A € A, 

Beé8. Furthermore, we have |w@v| < |u| @ |v] on the product d-ring A @ B. 

Finally, if both 4, v are positive measures; then so is 1.@v. Note that u,v need 

not be o-finite. 

Proof. Define pxv:AxB—- K by (ux v)(A x B) = (uA) B) for all A € A, 

BeB. Let Ax B= VU", A, x B, be a disjoint union where A, A, € A and 

B,Bn € B. Then paxB = drret PAnx Bar 8 PA(2)PBY) = Dope PA, (2) BY) 
for all (2, y) € X x Y. For each fixed y, pa(z)pa(y) is a decent map of x and 

hence it is p-integrable in x. Integrate last equation term by term with respect 

to » and |p| as follow: 

Alp) = > UAn)en,.) #1
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and (lApa(y) =) (ulAn)pn, ()- 
Since the right hand side of 

oo oo 

oa WHAWea. CS > (ulAndop, (Y) = (ul Adon) 
is the decent map (|t:|A)ga(y) in y, integrate the vector map in #1 term by term 

with respect to v to get (wA)(VB) = rr (uAnKVB,), that is (ux v)(A x B)= 

ye (uu X V)(An x By). Therefore ps x v is countably additive on the semiring 

Ax. Replacing 2, v by |p|, |v| respectively; |4| x |v| is also countably additive 

on A x B. Since |v| x |u| > 0, it is a measure. To show that pu x v is of finite 

variation, let Ji (A; x Bi;) = Ax B be a finite partition where A, A; € A and 

B,B;¢ 8. Then, 

Soe He MAL x Boll = SO" dw Bd|| < SO All Bil 
< SO (ul Adel Bad = SO" ul x pp(Ai x Bid S (| x vA x B) < ov. 

Taking supremum, we have |p x v|(A x B) < (|u| x |[v|)(A @ B). Consequently 

px v is of finite variation and we have |u x v| < |u| x [yl on A x B. We 

conclude that yz x v is a measure on the semiring A x ‘B. By Unique Extension 

Theorem, pz x v can be extended uniquely to a measure on the 6-ring A @ B. 

This proves the first part. Since A ® B is the 6-ring generated by A x B, we 

also get |u@v| < jul @|v| on AQB. Finally if u,v > 0; then (ux v)(A x B)= 

(uA\vB) > 0 and consequently (u@v)(D) > 0 for every decent set Dof X xY, 

that is u@u > 0. a 

22-2.3. A bilinear map E, x E, — E is scalar if ||e,e2|| = |le1|| ||e2|| for all 

e; € EE, e2 € Fy. This is the case if E is the tensor product of FE, &; in 

particular, if #; or EH, is the scalar field IK and the bilinear map is the scalar 

multiplication. Clearly every scalar bilinear map is admissible. 

22-2.4. Theorem |p @v| = |u}@|v| on the product d-ring A@B if the bilinear 

map £, x E, — E is scalar. 

Proof. Let A= Ui, Ai and B =U, B; be disjoint unions where A, A; € A 

and B,B; € B. Then Ax B=U, Up A, x B; is a disjoint union. Observe 

(S22 WeAall) (Sle Bill) = S07 SO" dle Aull vB, 
= we in \(4A;) @ (VB;)|| by given condition 

= we ie l(a x vA; x B;)| < ae ve | x vi(A; x B;) 

= lux v{(A x B).
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Taking supremum over all finite partitions of A,B by A;, B; respectively; we 

have (|u| x |v|)(A x B) = |p|(A) |v|(B) < |v x v|(A x B). Therefore we have 

[He] x |v] <|u xv] on A x B. Consequently, |u@v|=|yl @|vlon ASB. Oo 

22-2.5. Exercise Let FE, = E, = EF = R and p,v the Lebesgue measure. 

Suppose that (u,v) + uv: E, x BE, — E is defined by uv = 0 for all u € FE 

and v € Ey. For A= B =(1,3], compare |u x v|(A x B) and (|p|A)(\yjB). 

22-2.6. Theorem Let M,N be measurable subsets of X,Y respectively. If 

either M or N is null, then M x N is null. 

Proof. Take any Ax BE Ax B. Then we have 

In @ v| (A x BY (M x NY) 
< |u| ® [>| (AN M) x (BON) = pA M) |B ON) =0. 

It follows from §20-3.7 that M x N is p ® v-null. Oo 

22-2.7. Theorem If both M,N are o-finite sets of X,Y respectively; then 

M x N is o-finite. 

Proof. Write M = U2, Mj and N = Um N; where Mo, No are null sets for 

p,yv and M;, N, for i > 1 are decent subsets of X,Y respectively. Then 

Mx N= [US Ux,(Mi x Nj] U(M x No) U (Mp x N). 

The first term is a countable union of decent sets in X x Y and the last two 

are null set by last theorem. Therefore M x N is o-finite. Oo 

22-2.8. Exercise Prove that u @ v is linear in yz, v separately. 

22-2.9. Exercise Let z,v be the counting measure on the set IN of natural 

numbers 1,2,3,:-- weighted by complex functions f,g respectively. Describe 

the product measure 4 @ v on the product space IN? in terms of f @ g. 

22-3 Repeated Integrals 

22-3.1. Let E,,£2,E be Banach spaces with an admissible bilinear map 

E, x Ey > E. Let (X, A), (Y,B) be 6-spaces and let p: A > Ei, v:Y > Ey 

be vector measures. For convenience, decent sets in X x Y which are countable 

unions of sets in A x B are called o-product sets. Countable intersections of 

o-product sets are called oé-product sets. For convenience, we shall restrict 

ourselves to scalar functions in this section.
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22-3.2. Lemma Let D be a decent subset of M x N € Ax B. Then the 

measure Dy, of y-section Dy is a v-integrable map of y € Y. Furthermore, 

(4 @ v)(D) = I pDydr(y). 

Proof. Case 1: Assume D = Ax Bwhere A€ Aand BEB. Ifye B 

then Dy = A and pa(y)= 1. If y ¢ B then D, = @ and pD, = 0 = pa(y). In 

both cases, we have pDy = (uA)pp(y) which is a decent map on Y. Hence it is 

v-integrable on Y and 

(4 @ v\(D) = (WA) B) = I (uA) pp(y)dv(y) = I pDydv(y). 

Case 2: Assume that D = (J",D, is a o-product set where each 

D, € Ax 8B. Since A x B is a semiring, we may assume {D,} to be 

disjoint. Then Dy = UJ, Day is a disjoint union of decent sets of Y. 

Applying the measures |u| and yz, we have 
co oo 

m|Dy= So lelDny = and = wDy= 0 Day: #1 
By Case 1, both |u|Dny and Dn, are integrable in y for |v| and v respectively. 

[ a [HDnyll dv) < I. ~~ |p| Drydlu|(y) 

= [il Dnadlel(w) = > al x eb Da = al x DD < 00. 
It follows that #1 is a v-integrable map in y and 

I vDydv(y) =o [ UDnydvy) = J) (H@V)Dn = (U@Y)D. 

Case 3: Assume that D is a o6-product set. Then there are o-product set 

D, | D. Clearly Qn = Dn (M x N) is again a o-product set and Q, | D. 

Since Q, C M x N, every Q,, is a decent subset of X x Y so that Case 2 is 

applicable to Qn. Hence, ||HQnyl] < |H#/Qny < |ul(M x N)y = (u| Mpn(y). By 
Dominated Convergence Theorem, pDy = limnsoo UQny is v-integrable in y. 

Observe 

Furthermore, we have 

(OvWD= lim (wp @v)Q, = lim | HOnydr(y) = / pDydv(y). 

Case 4: Assume |1@v|(D) = 0. Then for each n > 1 there is A? x BP C AxB 

such that DC Us (AP x BP) and Dp | @ v|(AP x BP) < +. Let 

y=) (Ap x BY (M x N) 

and H =(\2, Hn. Then DC HCH, CM x N. Observe that
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0 nom 
le @ oH) < |w@v(Hn) SY) |b @ vA} x BF) < ~, 

ie. [1 @v\(H) = 0. Since H is a od-product subset of M x N, applying 

Case 3 to |u| @ |v| we have 

[i Fealvlan = (ul @ pC = [a @ vid =o, 
ie. |ADyl < |n|(Dy) < |pl(Hy) = 0, v-2e, 
or 2D, = 0, v-ae. Consequently, | pD,dv(y) = 0 =(u @ v)(D). 

Y 
Case 5: In general, there is a od-product set H and a p@v-null set N such 

that DUN=HCMxN, DN N=@ and |u @v|\(N) =0. Then 

BD, = BCH \ N)y = wy \ Ny) = wily — wNy 

is v-integrable in y. Furthermore, 

| vDydvy) = | vHydvy) — / pN,dv(y) 
Y Y Y 

= (u @v)(H) — (wu @ v\N) = (n @ v)(D). Oo 

22-3.3. Lemma Let f: X x Y — K be a decent function. 

(a) For each y € Y, f(x,y) is p-integrable in x on X. 

(b) The map f(x, y)dp(x) is v-integrable in y on Y. 

(c) [rue vy= I ifs fan dv. 

Proof. Take any decent subset D of X x Y. There are disjoint sets 

H, = M, x N; € Ax B such that D c UL, Hi. Then D = UL(DN Mi) 

is a disjoint union of decent sets. By last lemma, oonH,,(£) = Ppnu,(2,y) is 

p-integrable in x on X and hence so is pp(z, y) = an pPpnH, (2, y). The map 

J poewduay= 2, | porn cesaduce) 

= ~~, I. PLD Hi y(t)du(x) = er uDO Hi)y 

is a v-integrable in y on Y. Furthermore 

du@v= > duQv= > du@v Ppap il PDOH, ep jel PDH, Gb 

= 2 wenDn i= >> [ u(D 1 H,)ydv(y) 

= [Sh montoyaven= [| [voce nduco] ano. 
ye Y Wx 

The proof is completed by linearity in f. QO 
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22-3.4. In order to express a double integrals in terms of repeated integrals, 

we have to deal with maps which are not defined everywhere but merely defined 

almost everywhere. Let , be a measure on a 6-space (X,A). Let f be a map 

defined only on a subset of X with values in F. A measurable set M is called 

a p-domain of f if X \ M is a p-null set and for each « € M, f(x) € F 

is well-defined. The map f is called a u-map, or equivalently f is said to 

be defined p-ae if f has at least one y-domain. For every p-domain M of a 

p-map, define fpa(x) = f(x) if ce € M and fpy(z) = 0, otherwise. Then a 

p-map f is said to be y-measurable if there is a y-domain M such that fpyjy is 

measurable and p-integrable if fpjxq is u-integrable. It can be proved that if f 

is p-integrable (respectively measurable), then so is fay for every py-domain 

N of f. Furthermore, f{ fpxdyu is independent of the choice of N and hence 

the integral f fdu = [ fpndy is well-defined. Properties of measurable and 

u-integrable maps can be trivially extended to y-maps. For example, f = 0, 

p-ae means fpy = 0, p-ae. Clearly, every sequence of y-maps has a common 

p-domain which facilitates the algebraic and limiting operations. 

22-3.5. Let f: X x Y — K be a function satisfying the following conditions. 

(a) For v-almost all y € Y, f(z,y) is an upper function of x € X if pw > 0; or 

a p-integrable function of x for arbitrary py. 

(b) The integral f f(x, y)du(x) is an upper function of y € Y ify > 0; ora 

v-integrable map of y for arbitrary v. In this case, the value of repeated integral 

in this order is denoted by f f f(x, y)du(x)dv(y), or f f fdudv. 

22-3.6. A function f on X xY is said to be p-o-finite on X if f is concentrated 

on some jt-o-finite subset M of X, ie. for every « © X \ M and for every 

y€Y, f(x,y) =0. Clearly if X is u-o-finite, then every function is pi-o-finite 

on X. Similarly v-o-finiteness on Y is also defined. 

22-3.7. Exercise In JR’, let. x-axis be equipped with the counting measure ps 

on the semiring A of singletons and y-axis with the Lebesgue measure v on the 

semiring B of semi-intervals. Sketch a few sets in A x B and find their product 

measure. Show that N = {(x,y) € R’:c=y,0<a< 1} is a measurable set. 

Verify that f pyd(u @v) =(2 @Y)N =0 but f f pydudy =1. Is py p-o-finite 

on the x-axis? What is the outer measure (y x v)*(N)? 

22-3.8. Lemma Let f be a measurable function on X x Y. If f is o-finite on 

X and Y, then there are null subsets H of X, K of Y and a sequence of decent



428 Finite Products of Measures 

functions f, on X x Y such that |fnl < {fau| < {f| on X x Y and f, > f 

outside the set (H x Y) U(X x K). 

Proof. Let g, :X x Y — F be simple functions such that |gn| < |gnui| < |f| 

and gn, — f on X x Y. For o-finiteness of f on X and Y, there are decent 

subsets A, C Ans of X, Bn C Bry, of Y and null subsets H of X, K of 

Y respectively such that f is concentrated on M = UJ, A, UH and N = 

Ure, Ba UK. Then fp = 9n04,xB, are decent functions on X x Y satisfying 

lfal < {frail < [fl] on X x Y. Clearly ifa ¢ X\ M or ify ¢ Y \ N then 

f(x,y) = 0 and thus f,(7,y) = 0. Also ifx« ¢ M\ H and y € N\ K then 

(x,y) € A; x B; for some j, hence f,(2, y) = gn(z, y) > f(z, y) as j <n > 0. 

Therefore f, — f outside (H x Y)U(X x K). Oo 

22-3.9. Fubini’s Theorem If f is a (|jz| © |v|)-integrable function on X x Y 

and if f is o-finite on X and Y, then the repeated integral exists. Furthermore 

we have f fatwarr= ff fdpav 

Proof. Let f,,H,K be constructed by last lemma. It follows from that both 

ony) = f fale, y)du(z) and ha(y) = f |fa(z,y)| dlu|(z) are v-integrable on Y. 
Since | fn] < |fnut|, 2 = sup, >; hn is an upper function on X. Observe 

[roatel= fates f ital alui= [fel aul @ lel < f il ala) @n4 < om. 
By Monotone Convergence Theorem, / is v-integrable. There is a null subset 

L of Y such that 0 < h(y) < oo for every y € Y\ L. Without loss of generality, 

assume K C L. Fix any y € Y \ E and let x vary. Then for each yc Y \ K, 

\fn(z, y)| T |f(z,y)| as n oo. Hence f |fr(z,y)| dlul(z) = An(y) < h(y) < oo. 
By Monotone Convergence Theorem, | f(z, y)| is |u|-integrable in x, ie. f(x,y) 

is p-integrable in x. Thus, g(y) = f f(z, y)du(x) exists for each y €C Y \ L. By 

Dominated Convergence Theorem, 

Gn(y) = / Fal2, y)du(x) > / f(z, y)du(z) = gy). 

Hence g is a y-function and g, — g, v-ae as n — oo. Since 

J totesanducer) < [fate a0 alal(a)= hat) < WO, 
Dominated Convergence Theorem ensures that g is y-integrable. Furthermore, 

lgn(y)| = 

because |fn| <{fl, fr > f and f is » @ v-integrable, we have 

/ / fdpdv = / gty)dv(y) = lim / gn(y)av(y)
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sim, fave [ faterdua) = tim, [ fale dtu @ X20) 
[teaduenew= f fauer, D 

22-3.10. Tonelli’s Theorem Let f be an upper function on X x Y and 

let ys, be positive measures. If f is a-finite on X and Y, then the repeated 

integral exists. Furthermore, we have [te Qvy= | [ teu 

Proof. After trivial modification of last theorem, there are null sets H of X, 

& of Y and a sequence of decent functions f, on X x Y such that 0 < f, < 

fasi < f and f, 7 f outside the null set (H x Y)U(X x K). The following is a 

simplified version of last theorem. Now g,(y) = f fn(z,y)du(z) is v-integrable 

on X and clearly 0 < gn < gnsi. Fix any y € Y \ K and let x vary. Then 

for each s € X \H, fr(x,y) T f(x,y) as n > oo. Hence gfy) = f f(x, ydu(x) 

exists in [0,00] and 0 < g, fT g. Finally, 

fdudv = | gdv= lim [onde 

= lim [oe | foau= lim [ trtvov= | faee QO 
noo 

22-3.11. Usually we work with o-finite measures u,v. In this case, all 

functions on X x Y are o-finite on both X,Y. 

22-3.12. Integration in Reversed Order With more precise notations of 

§$17-2.10, 22-2.1, the Fubini’s and Tonelli’s theorems, give the following 

identity 

cc Qy d= [ ( [ tmvav) = [ (am f sar). 

22-3.13. Exercise Show that the characteristic function f of ry-axes is an 

upper function on IR’. Find its repeated integrals. 

22-3.14. Exercise Evaluate the repeated integrals of f(z, y) = (2—y)/(z+y)° 

forO<a,y <1. 

1 co 

22-3.15. Exercise Prove that the repeated integral | [ e—* costadxdt 
0 Jo 

. ~~ _, sing 1 . . 
exists. Show that € —dz = 4" by changing the order of integral. 

0 x 

22-3.16. Exercise Let y,v be vector measures on X,Y respectively 

and f a measurable function on X x Y. Show that if I/ lf | dlp] @ |v] < co
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or fa fin d\v| < oo, then f is integrable on X x Y. 

22-3.17. Exercise Show that if 0°77) |amnl) < co where Qmn € ©, 

then both sums S7°°_,(Q0°2, @mn) and S7°°.(S0-"_) @mn) exist and they are 

equal. 

22-3.18. Theorem If jy, are vector measures on 6-spaces X,Y respectively 

and if f,g are integrable functions on X,Y into K respectively; then f @ g is 

integrable on X x Y. Furthermore we have f f @ gdu@v = (f fdu) (f gdv). 

Proof. Since f is u-integrable, there are decent functions f, on X such that 

lfal < {fasi| < [f| and fz > f, p-ae. There is a p-null set M Cc X satisfying 

faz) > f(a) for all g € X \ M. Similarly, there are decent functions g, on Y 

and a v-null set N C Y such that |gn| < |gnti| < |g} and gn(y) > g(y) for all 

ye Y\N. Then H=(X x NUM XY) is p@v-null. Clearly, fr @9n — f@g 

on X x Y \ H. Observe that 

ifn ® 9nz,y)| = |fn(@)on(y)! = |Fr(2) lon) < |F(@)| lg@| = [CF @ 9)(z, y)]. 
With trivial modification, we obtain [f, @ gnl < [fret ®@ Gnsil. Therefore 

|fn @ On| Tf @ gl, u@v-ae. Now calculate, 

[itr@anlawevts [fol ani aul lol f ( [Ul lanl dal) ae 

= ( fitot aut) (fant avs) < (fini atat) (fal aes) <x. 
Hence |f ® g| is |u ® v|-integrable, or f @ g is 4 @ v-integrable. Since f,g are 

o-finite on X,Y respectively; f @ g is o-finite on X and Y. Finally we have 

/ f@gdu Qua / / F(z)gy)dp(z)dv(y) 

= [ on f seerduaravry = ( / fat) ( / adv), a 
22-3.19. Theorem Let yz, be vector measures on 6-spaces X,Y respectively. 

Then for every 1 < p < ow, every function f in L,(X x Y,u @v,F) can be 

approximated by finite sums of functions of the form ap,ppg where a € K and 

A, B are decent subsets of X,Y respectively. Furthermore, if f and u,v are 

positive (or real); then all a can be chosen as positive (or real respectively). 

Proof. Consider a special case first. Let f = pp where D is a decent subset 

of X x Y. Then for every € > 0, there are finite number of decent sets A; C X 

and B; C Y such that {A; x B;} are disjoint and (|u| ® |v|).D A E) < € where
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EF =U}, A; x B;. Then 9; = pa, and hj = pg, are decent functions on X,Y 

respectively. The following calculation proves the special case: 
nr P n 

|/- wes [|r- Xion 

= / (cous, AjxB, + PL” xo) diy @ y| 

= f poardwr|< f pvaedt\u ® )= (ul @ PD AE) <e. 
The general case follows form Density Theorem. The special positive and real 

Pp 

dip @ v| 

cases are left as exercises. Oo 

22-3.20. Exercise Let jz,v be vector measures on 6-spaces X,Y respectively. 

Prove that if J, are dense subsets of L,(X), Lp(Y) respectively; then the set 

of all finite sums of functions of the form f @g where f € F, g € G, is dense in 

LAX x Y). 

22-3.21. Exercise Let u,v be vector measures on the d-rings Dx, Dy 

generated by semirings 8x,8y over X,Y respectively. Prove that the set of all 

finite sums of functions of the form ap4pp where a € K, A € 8x and BE 8y 

is dense in L,(X x Y, pv, F) for all 1 < p < oo. Furthermore, if f and ps, v are 

positive (or real); then all a can be chosen as positive (or real respectively). 

22-3.81. Exercise Investigate the case when f is a vector map but FE, or £2 

is the scalar field IK. Finally investigate the general case when all EF), E2, F 

are Banach spaces. 

22-3.82. Exercise Let FE), £,,E,G be Banach spaces; y: E, x E, — E an 

admissible bilinear map; £ : E — G a continuous linear map; pz, v measures on 

X,Y into E,, £, respectively. Investigate the integral of functions on X x Y 

with respect to the composite map ty. 

22-99. References and Further Readings : Bartle, Bledsoe, Dudley-71,72, 

Elliott, Fernandres, Godfrey, Masani, Swarts, Jefferies, Kawabe, Garcia and 

Fernandez.



Chapter 23 

Measures on Finite Dimensional Spaces 

23-1 Decent Sets of JR” 

23-1.1. The general measure theory will be applied to the space IR”. In this 

section, we shall study certain related topological properties of IR”. 

23-1.2. Points of IR" are n-tuples a = (a),@2,---,@n) where a; € R. Write 

a<bifa; <b, foreach 1 <j <n. Similarly a <b ifa, < 6; for all j. Define 

semi-intervals by (a, b]= {x ER”: a<ax <b} 

open-intervals by (a,b)={x eR" :a<a2 <b} 

and closed-intervals by {a,bJ={e ER" :a<a< bd}. 

Clearly (a, b] = Ter (a;,b;]. As a product of semirings, the family $ of all semi- 

intervals forms a semiring over IR”. Sets of the 6-ring ID generated by 5 are 

decent subsets of IR”. Since each decent set can be covered by a semi-interval, 

it must be a bounded set. The o-sets are countable unions of semi-intervals 

and the oé-sets are countable intersections of o-sets. Measurable sets of IR” 

were defined in terms of semi-intervals. It has been proved that the family of all 

measurable sets is the o-algebra generated by semi-intervals. Every measure 

on IR” can be initiated from semi-intervals and uniquely extended to all decent 

sets by Unique Extension Theorem. The topology of IR” is given by the norm 

{Jxl] = (v2 +. 23 +--+ 4+22)!/?. Let us recall the notations of: 

an open ball Boa,r) = {a ER”: ||z—al| <r} 

and a closed ball Bia,r) = {z € R”: |x — al] <r}. 

23-1.3.. Theorem Every non-empty open set is a o-set. 

Proof. Let F denote the set of all semi-intervals (a,b) C V_ such 

that all coordinates a;,6; are rational. Enumerate F by A,, A:,---. Then 

V =Uj>1 A; is a o-set. a 

23-1.4. Exercise Prove that open sets are measurable sets and continuous 

functions on IR” are measurable functions.
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23-1.5. Exercise Show that bounded measurable sets are decent sets. Prove 

that open sets and closed sets are measurable. Conclude that compact sets are 

decent sets. 

23-1.6. Theorem For every non-empty open set V, there is a sequence of 

open sets W,, such that all closures W,, are compact subsets of V, Wm | V 

and Win TV. 

Proof. Let By, B2,--- be an enumeration of all open balls B(a,r) such that 

all coordinates a; and the radii r are rational and that B(a,2r) C V. Then 

Wr = Uji, B; is a required sequence. a) 

23-1.7. Theorem For every compact set K, there is a sequence of bounded 

open sets V,, | K. 

Proof. For each m > 1, the compact set K is covered by the family of 

open balls {IB(z,1/m): 2 € K}. There is a finite subset J,, of K such that 

{B(z,1/m) : z € J,} covers K. Let W,, = U{B(z,1/m) : x € J} and 

Vin =e: We. Then {V,,} forms a required sequence of open sets. oO 

23-1.8. Lemma Let e=(1,1,---,1) € IR". Then for all a < } in R” we have 

(a,6+ Le) | (a6), (a@— 4e, bj | [a,b] and [a+ Le, d] T (a, B] as m — oo. 

23-1.9. Exercise Prove that every open interval of IR” is an open set and 

every closed interval is a compact set. 

23-1.10. Exercise Prove that the measurable sets are the o-algebra generated 

by open intervals, or closed intervals, or bounded open sets, or compact sets. 

23-2 Regularity 

23-2.1. Let E,F,FE be Banach spaces with an admissible bilinear map 

Fx E — FE and yp a vector measure on IR” into E. We shall show that 

pt is completely determined by its values on bounded open sets, or compact 

sets. We shall also study the role of continuous maps. This section motivates 

the development of measures on locally compact spaces. 

23-2.2. Outer Regularity Theorem For every decent set D in R”, there are 

bounded open sets V,, | D such that lim uV, = wD. 

Proof. Since D is bounded, it is covered by some bounded open set Vo. 

Inductively, suppose that V,,_; has been found. There is a sequence {A,;} of
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disjoint semi-intervals such that D C Uff, Aj and 373% |wlAy < |e/D + 1/m. 

There are open intervals B; such that A; C B; and |p|B; < |u| Aj + vee) 

Hence Vin = Vin-1 Uz , B; is a bounded open set with D C Vm C Vin~ 

Furthermore, 2, (lV < DF eB < OR (lel4y + aor) < ID + in 2. Finally, 

[Vin — DI = lle(Vin \ DI} < [eV \ D) = |t|Vin ~ ni < 2 + 0 completes 
the proof. oO 

23-2.3. For every bounded open set V, there are compact sets K,, TV. Asa 

result, we have the inner regularity property: limm—oo fhm = uV. Therefore 

a measure jt is completely determined by compact sets or by inner regularity. 

23-2.4. Theorem Every continuous map f : R” — F is locally p-integrable. 

Every continuous map g with compact support belongs to L,(u,F) for all 

l<p<oo. 

Proof. Since the image f(A) of a decent set A is contained in the compact 

set f(A), it is separable. For every open set B of F, the inverse f~1(B) is open 

in IR” and hence measurable. By §19-5.7, f is measurable. It is an exercise to 

complete the proof. See §27-1.6. Oo 

23-2.5. Continuous Approximation Theorem Tet 1 < p< wo. If 

f € L,(u, F), then for every ¢ > 0, there is a continuous map g : R” > F with 

compact support such that ||f — g||p < ¢. Furthermore, if f > 0, then we can 

choose g > 0. 

Proof. Consider pja,o) where a < b. Let m > 0. For each 1 < j <n, it is 

obvious by drawing pictures that there is a continuous function 

gj; : R — R such that 0 < g; < 1 and Pla,++,b3) < 99 S Poa;,bj+1)- Hence 

g(x) = g1(£))g2(£2) +--+ Gn(fn) is a continuous function of x = (21, 22,---, En) 

on IR”. It has compact support contained in [a,b+ te] where e = (1, 1,..., 1). 

Since Pray te,o) <9” SF Pra,bsLep We obtain 

0 < g” _ Parke, by) < Poa, b+ te] — ParLe,bl: 

It follows from Dominated Convergence Theorem that 

P 

jim 1, | io” — Pra,ei|P lye] < lim 1, | |Peoseser~ PrarLe,b] d|yt| — 0, 

ie. |lg" — prasi||p > 0. Hence the characteristic function of a semi-interval can 

be approximated by continuous functions with compact support. The general 

case follows from §21-4.7. Also see §27-1.11 below. Qo



23-3 Translation Invariance 435 

23-2.6. Corollary If u,v are vector measures on JR” into E& such that 

{gdp = f gdv for all continuous functions g with compact support, then we 

have p=v. 

Proof. From last proof, we have ||g™ —(a,8)||1 — 0, that is (a, b] = lim fondu = 

lim f g™dv = v(a, 6}. Therefore p =v. oO 

23-2.7. Exercise Consider the point measure 6, at + on the semiring 8 of 

a bn A 
semi-intervals of IR. Let pA = » mnt) 

measure on 8. Show that Q = {xt : nm = 1,2,3,---} is a decent set of R. 

Find an open set W such that uQ = wW. For the open set V = (0,1), find 

a compact subset A of V such that uV < pK + 3b. Show that the constant 

function f(x) = 1 is y-integrable. Find a continuous function g with compact 

,V A€8. Show that p is a positive 

support such that || f — gl|1 < ie 

23-3 Translation Invariance 

23-3.1. Translation invariance of measure and integrals will be studied in 

detail in this section. Semi-intervals clearly play a crucial role in this and 

the next sections. Hence it justifies the approach of starting with semirings. 

Only elementary techniques are used. It serves as a motivation for more general 

treatment such as change-variables of next section, or Harr measures on locally 

compact groups which is beyond the scope of this book. 

23-3.2. Theorem If Q is a decent set (respectively a measurable set), then 

so is the translate a+@Q by any a € IR”. 

Proof. Let ID denote the family of all decent sets of IR”. It is routine to 

verify that IF = {Q c IR”: a+Q € D} is a 6-ring containing all semi-intervals 

and hence we have ID c F which means translates of decent sets are decent 

sets. For measurable sets, apply similar argument to the o-algebra generated 

by semi-intervals. Oo 

23-3.3. Corollary If f is a decent map (respectively, simple, or upper, 

or measurable map) on JR” into a Banach space F’, then so is the translate 

Taf(x) = f(x+a) by any a € R”. 

Proof. For decent or simple maps, it follows from the identity Tapa = po-—a- 

For upper functions, consider the pointwise limit of sequences of simple 

functions on X and for measurable maps on decent sets only. oO
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23-3.4. For every semi-interval (a,b] = jars: bj] with a < 6, let 

X(a, 6) = Wa; — a,j). Obviously, define Af = 0. Being product measure, 

X is a positive measure on the semiring of all semi-intervals. It is called the 

Lebesgue measure on IR”. We do not deal with Lebesgue measurable sets. Our 

measurable sets are independent of any measure. 

23-3.5. A measure yz on IR” is said to be translation invariant if p(a+ Q) = pQ, 

for all decent sets Q and all a € IR”. If a measure » on R” is translation 

invariant on all semi-intervals, then it is also translation invariant on all decent 

sets because the family F = {Q € D: uQ = p(a+Q)} is a 6-ring containing all 

semi-intervals. In particular, the Lebesgue measure A is translation invariant. 

23-3.6. Uniqueness Theorem If yz is a translation invariant measure on R” 

into a Banach space F and if 4(0,1]” =t € E, then y = td on all decent sets. 

Therefore we work with Lebesgue measure 4 for the rest of this section. 

Proof. Consider n = 1! first. Let k,p > 0 be integers. Then by translation 

invariance u(0,k] = (0, 1] + w(1, 2] +--+ + wk — 1,k] = kue(O, 1] = kt and 

0, kI=1 (0, +n (22 sen (Z | = pi (0.4). 
p Pp’ p Pp p 

Hence ,(0, Ey = kt/p. Now for all a < b, let rj be rational numbers such that 

ry | (b— a) as j > ow. Then, 

u(a,b] = n(0,6 — a] = lim p(0,r;] = lim rjt = tX(a, b). 
jroo jroo 

Hence jz = tA on all semi-intervals on IR. Next, assume n > 1. For all a; < bj, 

define v(ay, b:] = w{(a1, 61] x (0, 1]"—'}. It is easy to verify that v is a translation 

invariant measure on the semi-intervals of IR. Hence by first case, we have 

(ay, by} = (0, 1JA(@y, by] = tA(ay, by]. Now, let a; < 6, be fixed. For all a; < b; 

where 2 < j <n, define ? TTju2(as, b;] = pa, b]. Since pis translation invariant, 

so is y on the semi-intervals of R"~'. Hence by induction, 

wa, b= 9] JF _C@;.51= {OU} TT 65 — a5) 
= {Carr x OU} TP; — a5) 
= (01,63 TT 6; — aj) = tbr — an) YT 6 — a5) = #XC0, 8). 

Therefore yz = tA on all semi-intervals of R”. By Unique Extension Theorem, 

y= tA on all decent sets of IR”. Oo 

23-3.7. Lemma _ For any measurable set M7, we have \(a + M) = A(M). In 

particular, translates of null sets are null.
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Proof. Ma+M)=sup{A(D): DED, DC M+a} 

=sup{A(B+a):B+aceD,B+ac Mra}, for D= Bra 

= sup{\(B): Be D, Bc M} = XM). o 

23-3.8. Theorem If f(x) is an integrable map into some Banach space F' or 

an upper function on IR”, then so is every translate f(a +2) where a € IR”. 

Furthermore, the integral is also translation invariant, that is 

f[ flat a)dXx) = f f@) A(z). 

Proof. Case 1: Suppose that f = wha aj;pq, is a decent map into F where 

aj; € F and Q; € D. Then 

/ fa+ 2)d\(x) = > oF / PQ; -a(a)dNx) 
k k 

= a a;MQ; — a) = ict ajAQj = / f@)dX(2). 

Case 2: For an upper function f on IR", choose simple functions 0 < f,, T f. 

Clearly Ti fm are simple functions and 0 < Tifm | Taf. Hence T,f is also an 

upper function. By last lemma, we have 

[fe +ax)dX(xz)= lim | foto x)dX(x) = lim J fotoancey = [toa 

Case 3: Let f : IR” — F bea 4-integrable map. Its translate is measurable. By 

Density Theorem, there are decent maps f,, such that |fm| < |f| on IR® and 

fm 7 f, Aae. Clearly |Tafm| < |Taf| on IR" and Taf, ~ Taf, A-ae. Since 

[\Tafldd = f |fldd < co, T,f is integrable. Finally Dominated Convergence 

Theorem completes the proof as in Case 2. Oo 

23-3.9. Theorem Let f € L,(A,F) and 1 < p < oo. Then for every € > 0, 

there is 6 > 0 such that for every |la|| < 6 in IR", we have ||Ti f — f|lp < e. 

Proof. Suppose € > 0 is given. Let g : IR” — F be a continuous map with 

compact support such that || f—g||p < ¢. There ist > 0 such that for all |a|| < 1 

in IR” we have a+supp(g) C Q = (-t,t]”. Since g is uniformly continuous, there 

is 0 < 6 < 1 such that for all ||x — yl] < 5, we have ||g(x) — g(y)|| < ¢/(2t)”/”. 

Take any |lal| < 6. Since both supp(f) and a+ supp(f) are subsets of Q, we 

obtain 
1/p é P 1/p 

Loe liatere—aoirare) <|f {are b ane] <0 
Therefore, Taf — fly < [Taf — Tagllp + Tag — gllp+llg- fle <3e 0 
23-3.10. Exercise Show that the function f(x) = is integrable on R. 

1 

L+2? 
Find a continuous function g with compact support such that || f — g||) < i: 
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23-3.11. Exercise Prove that the graph of a continuous function from R” 

into R is a null set in R™!. 

23-4 Relation to Outer Measures 

23-4.1. Occasionally we want to estimate the size of a subset of IR” but we do 

not know whether it is measurable. Outer measure is handy for this situation. 

Furthermore a set cannot have any interior point if its outer measure is zero. 

23-4.2, Let X be a finite-valued positive measure on a 6-space ID. The family 

of all ID-measurable sets is defined by localization §19-1.1 and 2 is extended 

to all D-measurable sets by inner regularity §20-2.2. This extension is also 

denoted by 4. On the other hand, suppose that ID is generated by a semi- 

ring 8 and the restriction of A to $ is denoted by yu. An outer measure y* is 

constructed by sequential covers §18-2.3 and the family of all *-measurable 

sets is defined by nice cuts §18-2.5. A A-null set N §20-2.5 is a ID-measurable 

set with AN = 0 and a p*-null set Q is any subset of X with u*Q = 0. Since 

both families of ID-measurable and p*-measurable sets are d-rings containing 

8, we have AA = p*A < of for all A € D by uniqueness of extension. Suppose 

that X = Ur X, for some disjoint decent sets X, € ID. 

23-4.3. Theorem Every ID-measurable set M is p*-measurable with 

AM = p*M. In particular, every -null set is a y*-null set. 

Proof. Since each MX, € D is p*-measurable, M =U", (M 9.X,) is also 

p*-measurable. Furthermore we have 

AM = 322, MM Xp) = 22%, w(MNX,) = eM. q 

23-4.4. Lemma Let p*H < oo. 

(a) There is a ID-measurable set M such that H C M and p*H =\M. 

(b) There exist a ID-measurable set A and a subset B of some 4-null set such 

that H=AUB, AN B=Q and \*H = dA. 

Proof. (a) For every k, there are Aj, € 8 such that H C UR Aj, and 

Yea HAs, < w*H+1/k. Then M=(), UP Ajx is ID-measurable. Clearly 

we have H Cc M. Observe that 

2M =A (UE, Ay) < 28) d= OG ade Sw Hh 
for all k. Hence AM < p*H < p*M = XM, that is AM = p*H. 

(b) Since u*(M \ H) = p*M — p*H = \* M —p*H =0, there is a D-measurable 

set N such that M\ H Cc N and XN = w*(M \ H) = 0. Hence N is a
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A-null set. Now A= M \ N is a D-measurable set and B = N/M H is a subset 

of the A-null set N. Since ANB C(M\N)ON = 9, we get ANB = 9. 

From M\ H CN, we have A= M\N CH. Also B C H by definition. 

Hence AUB CH. Using the notation Q’ = X \ Q for all Q c X. Then 

H\A=HO(MON’ =HO(M'UN) =(HOM)U(A NN) = B because 

HOM'=9 for H CM. Therefore H = AUB. 0 

23-4.5. Theorem (a) Every p*-null set is a subset of some A-null set. 

(b) Every *-measurable # is a disjoint union of a D-measurable set A and a 

subset B of a A-null set. Furthermore we have p*H = AA. 

Proof. (a) follows immediately from last lemma. To prove (b), since X,, € D, 

we have p*(HON Xn) < w*Xn = AXy < 00. Write HX, = A, U By where 

Ay is a D-measurable set with u*(H 1 X,)= A, and B,, is a subset of some 

A-null set N,. Now A= Ur A, is ID-measurable. Because X = Ur Xp isa 

disjoint union, we have u*H = 37°, w*(H OO X,) = S02, AAn = AA. Clearly 

N= Ur N,, is A-null and ACN. oO 

23-4.6. We are well motivated to construct completions of vector measures. 

Because we do not need the result in this book, proofs are left as exercises. 

23-4.7. Let yw be a vector measure on a 6-space (X, ID) into a Banach space. 

Note that a p-null set N is a D-measurable set with |u|N = 0. Let ID, be the 

family of all sets of the form AU B where A is a decent set in D and B isa 

subset of some p-null set. Define v(A U B) = pA. 

23-4.8. Exercise Prove that ID, is a d-ring generated by decent sets in D 

and subsets of y-null sets. 

23-4.9. Exercise Prove that v is the unique extension of 4 to a vector 

measure on ID, with vB = 0 for all subsets of y-null sets. Also show that 

\v|(AU B) = |u|(A). 
23-4.10. Exercise Prove that the family of ID,,-measurable sets is the 

o-algebra generated by ID-measurable sets and subsets of y-null sets. 

23-5 Change Variables 

23-5.1. In this section, we shall prove a transformation formula to change 

variables starting with linear transformations. The geometrical meaning 

of determinants is given by §23-5.5 below. Note that the diffeomorphism
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arctan : (—1,1) — Ri carries the decent set (—1,0] onto the unbounded set 

(—co, 0) which is not a decent set. Luckily, positive measures are defined on 

all measurable sets. 

23-5.2. A linear transformation on IR” is a square matrix T = [T;,] of order 

n. With the sup-norm ||«|| = max{|z;|: 1 <7 <n}, the matrix norm is given 

by ||Z|| = max {ri Ty): 1 <i< n} . Clearly for the identity transformation 

I, we have ||J|| = 1. Let e = (J,1,---,1) € R”. The following sets are called 

cubes with center a, radius r and edge-length 2r: 

a closed cube : {«: lc -—al| <r} =[a—re,a+ rel, 

an open cube : {x : |ljz-—al| <r} =(a—re,a+re), 

and a semi-cube : (a—re,at+re} = je; —T,aj +r). 

Let A denote the Lebesgue measure on IR”. Obviously, we have 

Ala — re,at re] = Xa — re,a+re) = Xa—re,atre) =(2r)". 

23-5.3. Lemma Every elementary row operation in Linear Algebra can be 

decomposed into the following two atomic operations: 

(a) multiplying one row by a non-zero number a ; 

(b) adding one row to another. 

Proof. The following steps give the idea of how it is done: 

add a multiple of row b to row a: (a, 6) > (a,ab) - (a+ ab, ab) > (a+ ab, b) 

and interchange two rows: (a,b) — (a+b, b) — (a+b, —a) > (6, —a) > (6, a).0 

23-5.4. Since every matrix is of the form T = T;727T; where J, T; are invertible 

and T, =|‘ ° 
0 0 

products of elementary matrices obtained from (a), (b) of last lemma and a 

where J, is the identity matrix of order r. Both T),T3 are 

projection x — (%,2%2,--+,Z,r,0,---,0). Therefore the following theorem is 

reduced to three cases only. 

23-5.5. Theorem Let T : IR” — R” be a linear transformation. Then the 

image TQ of a measurable set Q is measurable and we have (TQ) = |det T|AQ. 

Proof. Let Q = (a, 6] bea semi-interval. Firstly, assume T(x) = (@21, £2,-+-+,2n) 

where a 40. If a > 0 then TQ = (aay, aby] X (a2, b2] x +++ X (An, bp} is decent 

and (TQ) = (ab; — aa ,)(b2 — a2) +++ (bn — Qn) = ov FF (65 —a;) = |det TIAQ. If 

a<0Othen TQ = [ab,,a@a;) x (a2, bo] x +--+ X (Gn, bn] is decent and 

MQ) = (ray — 2b) )(bz — 43) ++ (bn — An) = (0) [T(05 — aj) = [det TAQ. 
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Consequently, A(TQ) = |det T|XQ for all linear transformation of the type 

§23-5.3a. Next assume T(x) = (x; + £2, £2,-++,2n). Now TQ is a decent set by 

drawing a picture on z)22-plane or applying next theorem below. It is easy to 

verify that det T = 1 and pre(£) = praj+ep,b)422)(£1) Ij Pra, b1(23). Hence, we 

have f pre(x)dx, = Ma, t+22,b)+22] Vx Pra;,b; (£5) = (1-21) a Pla; (25) 

It follows from Fubini’s Theorem that 

AQ) = | protayana)= [day f das f dea [ praterary 

= / a / [o - al], Plag,bj\(05 )dx2dzy +++ din 

= TT, @) 0) = AQ = |det TI. 
Therefore, A(TQ) = |det T|AQ for all linear transformation of the type 

§23-5.3b. Next, assume T(x) = (1, £2,:--,2,,0,---,0). If r =n, then T is 

the identity map with det T = 1 and hence A(TQ) = |det T|AQ. If r <n, then 

det T =0 and MTQ) = A[(a1, 51] x - ++ (ar, by] x {0} x --- x {O}] =0. Therefore, 

MTQ) = |det T|AQ for all projections T. Finally, write T = 7,T)---Tj, where 

each T; is one of above three types. Then we have 

MTQ) = AT\Tr--- T,Q = |det T;||det T2|---|det Ty|AQ 

= |(det T,)(det T,)--- (det T),)|AQ = |det T|AQ. 

Next, for fixed T it is obvious that both A(TQ) and |det T|AQ are measures 

in decent sets Q and they agree on semi-intervals. Therefore they agree on all 

decent sets by Unique Extension Theorem. Finally, since every measurable set 

is a countable disjoint union of decent sets in R”, the result follows. o 

23-5.6. Let X be a non-empty open subset of IR” and let f : X — f(X) c R” 

be a C!-diffeomorphism, i.e. f is a continuously differentiable bijection such 

that for every a € X, the derivative Df(a) is invertible. It follows from the 

Inverse Mapping Theorem that f(X) is open and f—! is also continuously 

differentiable. Decent and measurable subsets of X were defined by §21-9. For 

the diffeomorphism arctan : (—1, 1) — R, the image (—oo, 0] of the decent set 

(—1,0] is not bounded and hence cannot be a decent set. Therefore we have 

to work with measurable sets. 

23-5.7. Theorem The image f(M) of a measurable set M Cc X is measurable. 

Proof. Consider Q = (a, 6] with K =(a,b] C X and a < b. The compact sets 

f(K) and f(B;) are measurable where B; = [a,,5;] x --- x {a;} x [an, by] are 

faces of the interval K. Hence f(Q) = f(K)\ Ur B; is also measurable. Next 
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let F be the family of sets A C JR” such that f(A MQ) is measurable. Since 

f is bijective, F is a o-algebra containing all semi-intervals. Hence F contains 

all measurable sets of IR”. Therefore if M is a measurable subset of X, then 

f(QOM) is measurable. Finally decompose X = UR Q; into disjoint union 

of semi-intervals Q;. Then f(M]) = Ur f(Q; 1 M) is measurable. oO 

23-5.8. Lemma For every closed interval K = [a,b] contained in X, we have 

Mab < f det Dfce)dNe. 
(2,6) 

Proof. Clearly |det Df(x)| is a continuous function of « € X and it is 

integrable on (a,b). Since Df—' is continuous on the compact set f(K), 

there is ¢ > 0 such that for each y € f(K) we have ||Df—'(y)|| < t. By 

uniform continuity on the compact set K, for every ¢ > 0 there is 6 > 0 

such that whenever ||z — y|| < 6 in K we have ||Df(z) — Df(y)|| < ¢/t and 

|det Df(z) — det Df(y)| < €. Write (a,b) = Ue A; as a union of disjoint 

semi-cubes A; each of which has radius < 6. Take any A; = (c — re,c+ re] 

where 0 <r <6. For each x € X define h(x) = Df(c)~' f(x). Then h is a 

continuously differentiable map on X. Now for each x € Aj, 

|| Da(z) ~ I|| = || Df) Df(@) — Df(~' Df 
<|]DFO7 "| DF@) — Dill < te/t) = «, 

that is, || Da(z)|| < [Tl] +e=1t+e. 

By Mean-Value Theorem, for each x € A;, we have 

|h(x) — h(e}|| < ||z — el] sup || Dh(z)|| < r(1 + 2) 

where z runs over the line segment between x and c. Hence we obtain 

h(A,;) C [h(c) — r(1 + e)e, h(c) + r(1 + Jel], 

and, Ah(As) < T[peyl2rd + 2)] = (1 + 6)" AA4;. 

On the other hand, it follows from §23-5.5 that 

AA(A;) = MD F(o~! f(Ay)] = [det DEQ" AFD) 
Combining the last two expressions, we get 

AF(A;) < (+6) |det DF(O|AA; <aser | [|\det Df(a)| + e]dA(z). 
Ay 

Therefore, 

Afb =A[L* An] =O" FAD
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< d +e)” ye | [ |det Df (x) | +e]dA(x) 
asa, 

=(1+ xf [ |det Df (x)| + € ]dX(x) 
(a,b) 

=(I+e)" |det Df(a)|dX(x) + (1 +€)"eXa, 6]. 
(a,6] 

The result follows by letting ¢ | 0. oO 

23-5.9. Lemma For every measurable subset Q of X we have 

MQ) < ff det Dfteylarca. 
Q 

Proof. Firstly assume that Q is an open subset of X. We can write the 

following disjoint union Q = Ur A; where each A; is a semi-interval with 

closure contained in Q. By last lemma we have 

FQ =A(U, FAD) = >, FA) 
< ae I |det Df (x)|dd(x) = [ |det Df(a)\dd(2). 

Next, we assume that Q is a decent set. It follows from the Outer Regularity 

Theorem, there is a sequence of bounded open sets A; | Q such that AA; | AQ 

as j — oo. Replacing A; by A; 7X we may assume all A; C X. Hence, 

Af(Q) < AFA) < | pa,(a)|det Df(x)|dX(c). 
By Dominated Convergence Theorem, letting 7 — 00, 

M4(Q) < [ pola)|det Dfte)|arex) = [ ldet Df(a)|dX(2). 
Finally, let X = Ue B, be a disjoint union of semi-intervals B;. Then for 

every measurable subset @ of X, QB; is a decent set. Furthermore we have 

MQ)= SI MQNBIS ON, [Idee Di oarce 

< | |\det Df(x)|dX(z). oO 
Q 

23-5.10. Theorem Let g be an upper function or an integrable map on f(X) 

into a Banach space F’. Then for every measurable subset Q of X, we have 

| atydXy) = [ go f(a)|det Df(a)|dX(x). 
F(Q) Q 

Proof. Let g be an upper function on f(X). Replacing g by gpg, we may 

assume @ = X. There are simple functions g; on f(X) such that 0 < g; T g.
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Write g; = er aj;pH; where a; > 0 and H; are measurable subsets of f(X). 

Then K; = f—'(H;) are measurable subsets of X. Hence 

|, 020 = LI asl = OP aK, 
<I ay f |det Ds wlanay= f a.0 fadlaet DI@\ANe. 

jal Kj x 
By Monotone Convergence Theorem, letting 1 — 00, 

[swans [ 90 feidet Drwlarcy, 
FX) Xx 

Interchanging X and f(X), replacing g(y) by go f(x)|det Df(x)|, we have 

[9° Feoldet Dp@arez) 

< | go fof 'y)|det DFLF yl] |det Df-!()|dny) = | a(ydXy). 
£(X) F(X) 

Consequently, the equality holds for all upper functions g. By linearity, it is 

also true for every integrable function h = (Re h),—(Re h)_+i(Im h),—i(Im h)_. 

Next for an integral map g : f(X) — F, its variation |g| : f(X) —~ R 

is an integrable upper function. We leave it as an exercise to show that 

(g 0° f)(x)\det Df(x)| is a measurable map in ¢ € X. From 

| lg F(2)|| \det Df(a)|dNo) = | lla@nllaX(y) < 00, 
xX F(X) 

(g o f)(x)|det Df(x)| is integrable in « € X. Finally vg : f(X) > R is an 

integrable function for every v € F’. Hence we obtain 

| vg(y)dXy) = / vgo f(x)|det Df(a)|d(x), 
fQ) Q 

that is, vf g(ydXy) = vf go f(x)|\det Df(x)|dX(z). 
FQ) Q 

The result follows because F’ separates points of F’. Oo 

23-99. References and Further Readings : Cohn, Rao-87, Serrin, Borell and 

Yamasaki. 



Chapter 24 

Indefinite Integrals 

24-1 Derivatives 

24-1.1. Let #, F, FE be Banach spaces with a bilinear map py: F x BE = FE 

which is scalar, that is {|y(u,v)|| = lull lvl] for all (u,v) e FP x E. This is 

the case if EB or F is the scalar field IK and ¢ is the scalar multiplication. 

In general, this is also true if y is the tensor product and FE takes any 

tensor norm. Clearly every scalar bilinear map is admissible. For convenience, 

write p(u,v) = uv. 

24-1.2. Let u be an E-measure on a 6-space (X, ID). Suppose that h: X 3 F 

is a locally y-integrable map, that is y-integrable on every decent set. Since h 

is simply approximable on every decent set, it is measurable. Let vy: D — FE 

be given by (A) = f, hd for all A € ID. Then h is called the p-density 

of v, or the Radon-Nikodym derivative of v with respect to 4 (on X relative 

to y). Equivalently, v is called the indefinite integral of h with respect to p. 

Symbolically, write oe = h or dv = hd. In this section, we shall study the 

relationship between yu and v. 

24-1.3. Theorem (a) The function |h| is locally |y|-integrable. 

(b) v is a measure on (X,D). 

(c) {v{(A) - | |h| d\y| for all A € D, or |hdy| = {h| aly. 
A 

Proof. Since h is locally p-integrable, hp, is y-integrable for every decent 

set A. Hence |h|p, is ||-integrable, or [A is locally |u|-integrable. Clearly v 

is additive on D. Let A, | 9 in D. Then |hp,,| < |Rea,|, hoa, — 0 and 

|hpa,| is w-integrable on X. Hence Dominated Convergence Theorem implies 

vAn = fhpa,du — f Ody = 0. Therefore v is countably additive on D. Next, 

for any fixed decent set A, let {D,, D2,---,D,} be any finite partition of A by 

decent sets. Then 

k k k 

Dal, | [ aw] [ h\ dial = [ital ai 



446 Indefinite Integrals 

Taking supremum over all finite partitions of A by decent sets, we get 

|p\(A) < / {| d|| for all A € D. #1 
A 

In particular, v is of finite variation and consequently it is measure. Next, 

consider a decent map g = pan apB, where a; € F and B,, Bo,--- are disjoint 

nonempty decent sets. Let 7D = f,, gd for all D € D and let B= UP, By. 

Because g = 0 on Dc A\ B, we obtain 

| od =0. 
D 

|r(A\B)= sup So |irDi| = sup > 

Next, consider any partition P(AN B;) by decent sets. For any D € P(ANB,), 

PIA\B) ne P(a\ B) PB) pe P(A\B) 

we have 7D = | gdu = J sed = | sseodu = a,4D. Because the bilinear 
D 

map F x E > FE is scalar, we have ||7D\| = |la;|| ||D|| and hence 

|n|(A) = |r|(A\ B)+ S> |r (ANB) =0+5> sup S> |lnD| 
i=l i=l PANBD ne pcan.) 

m 

= > sup do lel eI = SO les ian B= [I dy. 
i=l iat PCANB,) ne P(AnB;) 

Therefore the required result holds for every decent map g. Now return to the 

consideration of locally y-integrable map h. By Density Theorem, for every 

€ > O there is a decent map g such that [, |g—h| diu| <¢. Define 1D = f,, gdu 

for all D € D. Then (a — v)(A) = J ,(g — h)du. By the inequality #1, we have 

|r —v|(A) < f, lg — A] dlul < &. Since |x| < a — v| + |v], we obtain 

I lol df = |r|CA) < fr — v|(A) + [v|(A) < e+ fv (A). 

Therefore, f |h alu) < f |&—a) alal+ f Jal dnl <2€+ [oA 
A A A 

The proof is completed by letting « | 0. Oo 

24-1.4. Exercise Prove |v|(M) - | |h| diy} for all measurable set M. In 
M 

particular if A is y-integrable, then we have |v|(X) = |All. 

24-1.5. Exercise Prove that every p-null set is a v-null set. For H=F=C, 

prove that the complex conjugate of v is given by v~(A) = [, h- du for all 

decent sets A. 

24-1.6. Theorem (a) If y=0, then h =0, p-ae. 

(b) If both yz, v are real; then h is real, pi-ae.
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(c) If both u,v > 0; then h > 0, wae. 

Proof. (a) Assume h # 0, wae. Then N = {x € X : ||A(x)]| > 0} is 

not p-null. There is a decent subset A of N such that |y|(A) > 0. Hence 

|\CA) = f, [A] dlu| > 0. Therefore |v| 40 and consequently v #0. 

(b) Since f,(h—h7)du =f, hdu— f[,h-du- =(—v \(A)=0, V AED, we 

have h — h~ =0, p-ae. Therefore h is real p-ae. 

(c) Replace h~ by |Aj in (b). Oo 

24-1.7. Corollary A measurable set M is v-null iff Mn {xz € X : h(x) 40} 

is p-null. 

Proof. It follows by applying the last theorem to the subspace M. ao 

24-1.8. To cope with the need of §24-4.8 later, assume that h is a scalar 

function and g: X — F a vector map so that the product gh is a map into F. 

24.1.9. Lemma For every decent map g, we have f gdv = f ghdp. 

Proof. Let g= 37, apa, where A; € D and a; € F. Then we have 

[oa = er ayy A; = > \ a | hdp = > \ os [ hoa.du = [oh Oo 
i= i= Ai i= 

24-1.10. Lemma f |g| dlv| = f |g| |h| dly| for every measurable map g. 

Proof. Choose simple functions 0 < gn fT |g|. Then 0 < gp|h| T |g| [A]. By last 

lemma, we have f 9,pad|v| = f gnpa|h| d|u| for every decent set A. It follows 

from §20-1.3 that 

fioiaies= tim, f andin| = tim sup f goad 

= im, sup f anpattl dul = tim. f anth| aul = fl [al dll. 
AeID 

24-1.11. Theorem A measurable map g is v-integrable iff gh is u-integrable. 

In this case, we have f[ gdv = f ghdy. 

Proof. The first statement follows immediately from last lemma because both 

sides are finite or infinite together. By Density Theorem, there are decent maps 

Qn such that |gn| < {gl on X and g, — g, v-ae. Then |g,h| < |gh| on X and 

9nh — gh, p-ae. It follows from Dominated Convergence Theorem that 

gdv = lim [ ontv = lim [ontdu= f ondp. Do 
nh 00 noo 

24-1.12. Exercise For 7A = {, gdv, interpret the last theorem as a chain 

dn dnxdv 
rule: — = —— almost everywhere for some measure. 

dp dv du
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24-1.13. Exercise Prove that a measurable map g is locally v-integrable iff 

gh. is locally p-integrable. 

24-1.14. Exercise Show that the above results also hold if g is a scalar 

function and h: X — F a vector map so that the product gh is a map into F. 

24-1.15. Exercise Let ID be the 6-ring generated by a semiring 8 over X. 

Prove that if a measurable map is integrable on every set in 8, then it is locally 

integrable. 

24-1.16. Exercise Show that every continuous map on R” is locally integrable 

with respect to the Lebesgue measure. 

24-1.17. Exercise Prove that for every vector measure p and every 

measurable set M, |u|M =0 iff uM A) =0 for every decent set A. 

24-1.18. Exercise Let F = F = FE =R; yp the Lebesgue measure and f = 1. 

Suppose that (u,v) — uu: F x E — FE is defined by uv = 0 for all u € F and 

v € EB. Compare the values of |y|(A) and fh dlp]. 

24-2 Absolute Continuity 

24-2.1. How do we know that one measure is an indefinite integral of another? 

It turns out that absolute continuity provides an elegant characterization given 

later in this chapter. We shall link up the classical concept of absolutely 

continuity of functions on the real line. 

24-2.2. Let u,v be vector measures on a 6-space (X, ID). Then v is said to be 

p-continuous or absolutely continuous with respect to p if every y-null set is a 

v-null set. It is denoted by v < p. 

24-2.3. Exercise Prove that if0 <v <pthenv < p. Consider the counting 

measure 7. Show that 27 < 7 is true but 27 < 7 is false. 

24-2.4. Exercise Prove that if» < y, then every p-o-finite set is also 

v-o-finite. 

24-2.5. Theorem Let p,v be vector measures. If vy < py, then for every 

v-integrable set D and every ¢ > 0 there is 6 > 0 such that |v|A < ¢ whenever 

A is a measurable subset of D with |p|(A) < 6. 

Proof. Without loss of generality, we may assume that p,v > 0. Let K be the 

family of all v-integrable sets and let D € K and € > 0 be given. Suppose to the
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contrary that for every n there is a measurable set A, C D with u(A,) < 1/2” 

and »(A,) > €. Then B, = Ure Ap and Q= aren By, are measurable subsets 

of D. Furthermore, 

HQ) < wBe) < S> pl An) < 1/2". 
Since k is arbitrary, we obtain u(Q) = 0. On the other hand, v(B;,) > v(Ax) > €. 

Note that v is a finite-valued measure on K so that §17-5.7d is applicable. Due 

to By, | Q, we have v(Q) = limv(B,) > € which is a contradiction tov < p. 0 

24-2.6. Corollary If f is an integrable map, then for every € > 0, there is 

6 > Osuch that f,, |f| dl] < © whenever M is a measurable set with |u|M < 6. 

Proof. The measure defined by vM = f,,|f| d|u| is finite-valued on all 

measurable sets. It follows from last theorem with D =X. ao 

24-2.7. Theorem Let yp, be vector measures. Suppose that the family D 

of decent sets is generated by a ring R. Theny < pifVDER, Ve>O, 

46>0,VAeERwith AC D and [y|(A) < 6, we have |v|(A) < «. 

Proof. Without loss of generality, we may assume that p,v > 0. Let N 

be a p-null set. Take any D € R and € > 0. Choose 6 > 0 according to 

given condition. Since u(D MN) = 0, there are disjoint sets A; € R such 

that DAN Cc U2, Aj and S92, (Aj) < 6. Then B = Uj_\(D 9 Aj) € R and 
pB <6. Hence yet v(DOA;) = vB <e. Because n is arbitrary , we have 

uUDAN)< ae v(D A;) < €. Letting ¢ | 0, we obtain v(DNN) = 0. Since 

D €R8 is arbitrary, N is a v-null set. im 

24-2.8. Corollary Let u,v be vector measures. Suppose that the family 

D of decent sets is generated by a semiring 8. Then vy < yp if the following 

condition holds: for every Q € 8 and < > 0, there is 6 > 0 such that whenever 

B,, Bz,--- By are disjoint subsets of Q in 8 with et |z|(B;) < 6, we have 

dojet HB,)I| < . 

Proof. Let ® be the ring generated by 8. Then D is also the 6-ring generated 

by ®. Take any € > 0 and D =U, Q; € R where Q; are disjoint sets in 8. 

Choose 6; > 0 such that for all disjoint sets B), B.,-.-B, €§, if all B; c Q; 

and if yet |u\(B;) < 6; then Dye |-(B;)|| < e/m. Let 6 = mindé;. Suppose 

AER satisfies A C D and |y|(A) < 6. Write A=(U?_, Ay as a disjoint union 

of sets in 8. Clearly A = U2, Uf. (Ak Qa) is a disjoint union of sets in 8. Let 

Ag NQi =U{ Bie © 8 1 <9 <n, k)} 
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be any partition. Then for all j,k, we get Bijx C Q;. Observe that 

P n(i,k) P 

per Doge MMBise) = SO) lal Ae 9 Qi) = [ul ANQd < |nl(A) < 6 < 6. 
iad) 

p (i,k) € 
Hence, an ia |-(Bagx)|| < a 

Since the partitions {B,;,} of Ay 9 Q; is arbitrary, we have 

VM(AN Qa) = Whey An 1 Qa < e/m. 

Therefore |v|(A) = |v] (ANU, Qi) = 2 u(ANQ:) < ©. It follows from 

last theorem that v < p. oO 

24-2.9. Consider the special case when 8 is the semiring of semi-intervals of 

the real line. A map F : IR — E is said to be absolutely continuous if for all 

a < bande > 0, there is 6 > O such that for alla < ay <b) <---< an <b, <b 

we have ye |F(b3) — F(a;)|| < © whenever ais —a;) <6. Clearly, 

every absolutely continuous function is uniformly continuous on bounded 

intervals. Furthermore, a right continuous increasing function is absolutely 

continuous iff its induced measure is absolutely continuous with respect to the 

Lebesgue measure. 

24-2.10. Exercise Prove by definition that absolutely continuous maps are 

of finite variation. Show that the converse is false for example by p—oo,0- 

24-2.11. A sequence f, € L,(u, F) is equicontinuous at 0 if for all measurable 

sets A; | 0, we have lim sup ||frpa;l[p =0. This is used to characterize mean 
IFC Nn 

convergence in terms of convergence in measure. 

24-2.12. Lemma _ If a sequence f, € L,p(u, F) is equicontinuous at 9, then 

lim > SUP ||fn4|lp = 0 for measurable subsets A. 
iA! nm 

Proof. Suppose to the contrary that there are ¢ > 0, measurable sets C; 

and a subset {g;} of {f,} such that |u|C; < 1/2/ and ||g;pc,|lp > €. All 

By = Ur. C; and N = ‘aren B, are measurable sets. From |u|N < [ui Be < 

jek |u|C; < 1/2*-! = 0, N is a null set. Clearly Aj = By \ N C Cj; are 

measurable sets with A; | @. There is jo such that for all j > jo and all n, we 

have ||fnea,llp < 4€. Now the contradiction 0 < € < |lgjpc,|lp < IlgeB; [lp = 

19504, llp S 4€ completes the proof. oO 

24-2.13. Theorem Let 1 < p< oo and fy, fo € Lp(u,F). Then fr > fo in 

L,(u, F) iff fa — fo in measure and the sequence {f,,} is equicontinuous at 9.
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Proof. Since D= UP y{z € X : fr(z) #0} is o-finite, let D = (U3, Di where 

Do is a null set and all D, C Dz C -:- are decent sets. Assume fy, — fo in 

L,(u, F). We have proved f, — fo in measure. For every € > 0, there is 

mp such that ||fn — foll < € for all n > no. By §24-2.6, there is 6 > 0 such 

that for all n with 0 < n < ng and for all measurable set A with |y|A < 6 

we have ta |fnl?dlu| < €?, ie. ||frpallp < €. Now let A; be measurable sets 

with A; | @ as j > oo. For each i > 1, A; MD; are the decent sets. There 

is k such that for all 7 > & we have |p|(A; 1 Dj) < 6. Forn > m, 7 > k 

and i > 1, we get [ifupanbilp < llfn — folly + Ifoeajnpullp < 2€. On the 
other hand for 1 <n < no, we have ||fneajnvillp < € < 2€ by the choice of 6. 

Since |frpajnp,| S< |fnl € Lp, we obtain || frpa,|lp = Jim |[fapaynp, |lp <2. 

Consequently, we conclude lim sup || frpa,|lp = 9- 
jrw n 

Conversely, by last lemma, for each i and € > 0 there is 6 > 0 such that for 

every measurable set A with |u|A < 6 and for every n we have |lfnpallp < €. 

On the other hand, since B; = D\ (Do U D,) | @, there is ¢ such that for all n 

we have ||f,98,||p < €- Observe that for all m,n we have 

fm — fallp < [Gin — Fede Dud. lle + || — Fad eB; llp 
S [lfm — faded: lp + fmee, lle + Wfneei lp S fm — fre, ||p + 2. 

If |u|D; = 0, then we have ||f,, — frllp < 2¢e. Next assume |u|D; > 0. Let 

Hyp = {2 € X : f(x) — fx(z)|| > ¢ (u|Dd7'/? }. Since f, > f in measure, 

{fn} is Cauchy in measure. There is no such that for all j,k > ng we have 

\#| Hye < 6. Hence || freH;,||p < € for all n. Thus for all m,n > no we obtain 

fm _ frei llp < lfm _ fn)OD:\ Halle + | fmPHmallp + lfaP Hn llp 

p 1/p 
< / {e (IDI? oD,\ Hn } ay +eE+e <3e. 

Therefore for all m,n > no, ||fm — fn|| < 5e independent of D;. The sequence 

{fn} is Cauchy in Lp(u, F). Suppose fr, - ¢g € Lp(u, F). Then {fn} converges 

in measure to both f,g. Hence f = g, p-ae. Consequently, we have f, — f in 

L(y, F) as required. Oo 

24-3 Positive and Negative Sets 

24-3.1. Let ys be a real measure on a 6-space (X,ID). A measurable set Q is 

said to be positive if (QM A) > 0 for each decent set A € ID and negative if 

u(QM A) < 0. Note that null sets have been introduced. In symbols, we write 

Q > 0, Q < 0 and Q = 0 respectively.
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24-3.2. Exercise Prove that if Q Cc P >0 then Q > 0. Furthermore we have 

0 < w(QM A) < p(POA), VAeED. 

24-3.3. Exercise Prove that countable unions of positive sets are positive. 

24-3.4. Lemma Let y: ID — R be a real measure and let A be a decent set. 

For every € > 0 there is a decent subset B of A such that uB > uA and for 

every decent subset Q of B we have pQ > —e. 

Proof. Suppose to the contrary that there is ¢ > 0 such that for every decent 

subset B of A, if wB > wA then wQ < —e for some decent subset Q of B. 

Firstly for B = A, there is a decent subset Q, of A satisfying wQ, < —e. 

Hence p(A\Q1) = pA—pQ, > pAt+e. Assume inductively that Q1, Q2,:--, Qn 

are disjoint decent subsets of A such that py (4 \ U.., Qs) > pAt+ne. For 

B=A\ Uj Qj, there is a decent subset Qn4, of B satisfying uQni < —e. 

Hence pA \ Us Q;) = WB \ Qnut) = UB — uQnu > A+ (n+ Le. Therefore 

an infinite sequence {Q,,} has been constructed. Let Q = UR Q;. Since 

all Q; C A, Q is a decent subset of A. Finally the countable disjoint union 

A=(A\Q)U (UR, Q;) gives 

—90 < HA = wA\Q)+ " uQ; < WA\Q+ 37" He) 
which is a contradiction. This completes the proof. a 

24-3.5. Theorem Let »: ID — R be a real measure. Then every decent set 

A contains a positive set B such that wB > pA. 

Proof. It follows from last lemma that there is a sequence of decent sets 

Brit C By, C A such that wBpyy > wBy > pA and pQ > -i for all decent 

subsets Q of B,. Then B = (|, By is a decent subset of A. Furthermore 

for each decent set Q, QB is a decent subset of every B,. Hence we have 

uQNB) > -i for all n, that is u(Q. B) > 0. Therefore B is a positive set. 

Finally since B, | B, pB=limn so pBn > pA. o 

24-4 Existence of Derivatives 

24-4.1. In this section, we prove that if vy < y are complex measures, then 

the p-density of v exists on p-o-finite sets. 

24-4.2. Lemma Let y,v be positive measures on a 6-space (X,D). If v is 

absolutely continuous with respect to yz, then for each decent set M there is a
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finite-valued upper function f on X such that f(X \M)=0 and vA= f, fdu 

for every decent subset A of M. 

Proof. Let ID(M) denote the family of all decent subsets of M and F the 

family of upper functions A on X such that f, hd < vA for all A € D(M). 

Note that since both h, js are positive objects, the integral [, hd always exists. 

Clearly IF is non-empty because h = 0 belongs to F. Next, suppose f,g € F, 

Then D = {x € X : f(x) < g(x)} is a measurable set. Now for each A ¢ D(M), 

[avod-=[ vadus f FV gdp 
A AND A\D 

-/ ain [ fdp < vw AND)+v(A\ Dy =v. 
AND A\D 

Hence the measurable function f V g is in F. Next, since M is a decent set, 

we have a = sup {[ hdp:he F} <vuM < oo. There is a sequence h, € F 
M 

such that lim | hy»dp = a. It follows that g, =h, VhgV---Vh, € F. Since 
moo M 

u is positive, we have fy,hndu < fi, gndu < a. Now 0 < gy T converges 

to an upper function, say g = limg,. It follows from Monotone Convergence 

Theorem that Pe = jim, Gnd = a < oo. Hence g is p-integrable on M. 

The set N = jn eM: ) = = oo} is a p-null set. The function f = gem\n 

is a finite-valued upper function satisfying f(X \ M) = 0 and f = g, p-ae 

on M. Hence f,, fdu = fy, gdu = a. Take any A € D(M). Since g, € F 

we have [,9ndu < vA. Since gnpa t fea, u-ae, the conclusion of f ¢ F 

follows from the calculation: [teu i lim nf gnpady = it lim nf onde < < vA. 

Next, we claim vA = ta fdp for each A € D(M). Suppose to the contrary 

that there is Q € ID(M) such that Jo fdp <vQ. Define £A=vA— f, fdy for 

every A € D(M). Then € is a positive measure on the measurable subspace 

(M, ID(M)). Since €Q > 0, there is ¢ > 0 such that £Q > cepQ. Now 7 =€-—ep 

is a real measure on the measurable subspace Af. There is a a-positive subset 

P of Q such that 7P > «Q. Thus h = f+epp is an upper function on X. For 

any decent subset A of M, PNA is a decent subset of P and hence x(PMA) > 0, 

that is e4(P A) < (PN A). Observe that 

[orau= [i taure f oedu= f fanseuP na) 
A A A A 

sf tiurepoay= | fau+uPn ay fay 
A A PNA
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= fdp+u(PN A) <vu(A\ P)+u(PN A) =v(A). 
A\P 

Hence h € F. Consequently, we have 

a> | hap = [ (Feeprydu= | fay+e | pedu=aveuP 
M M M 

which gives uP =0. Since vy < pt, we have vP =0, or 

0<1Q <mP=(— eh) =P - | fdp —euP <0. 
P 

This contradiction establishes the proof. Oo 

24-4.3. Lemma _ Let pz be a positive measure on a 6-space (X,ID) and v a 

complex measure. If y is absolutely continuous with respect to yu, then for 

each y-o-finite set M there is a locally p-integrable function f on X such that 

f(X \ M)=0 and vA= f, fdu for every decent subset A of M. Furthermore, 

if v is positive, then we may choose f > 0. If v is real, then we may choose f 

to be real. 

Proof. Firstly assume v > 0. There is a sequence of disjoint measurable 

sets Ho, H,,H2,--- such that Ho is a p-null set; all H; are decent sets for 

i> 1and M= Oro H,. For each n > 1 there is a positive measurable 

function f, on X such that f,(X \ Hn) =O and vA= Sy fndp for every decent 

subset A of H,. Clearly f = >7™, f, is a positive measurable function on X 

satisfying f(X \ M) =0. Now every decent set A can be written as a disjoint 

union: A =(A\ M)U [Up (A nN H,)]. From v < p, w(ANM Ho) = 0 implies 

v(ANM Ho) = 0. Since 

[t= [tous [tau ™, f te 
A A\M ANHo n=" JANA, 

=040+ >” (AN Hn) = (AN Ho) + > (AN Hn) = (AN M) < 00, 
f is w-integrable on every decent set A. In particular, f is locally 

p-integrable. This proves the case when y > 0. Next, suppose v is a real 

measure. Then 0 < v4 < |v| and hence vy, < p. Applying the above result 

to v, and v_ respectively, there are locally p-integrable functions g,h > 0 on 

X vanishing outside M and satisfying v,(A) = f, gdp, v_(A) = f 4 hp for all 

A € D(M). Then f = g —/A is the required function. The case for complex 

measure v is left as an exercise. QO 

244.4. Polar Form of Complex Measures Let pz be a complex measure on a 

6-space (X, ID). Then for every p-o-finite set M, there is a locally p-integrable 

function f on X such that f(X \ M) = 0, |f|=1 on M, pA = f, fdlu| and 
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[p|(A) = ta f~dp for every decent subset A of M. Furthermore if p is real, 

then we may choose f to be real. This is handy to reduce complex measures 

to positive measures. 

Proof. Since p,|u| have the same null sets, we have wp < |u|. There is a 

locally p-integrable function g on X such that g(X \M)=0; uA= J, gdlu| for 

every decent subset, A of M. Then we have f,, 1d|y| = |u|(A) = f, |g] dlu| for 

all A € D(M). Hence |g| = 1, p-ae on M. Now N={xe M: |g\(x) # l} isa 

p-null set. For f = pw + gpm\n, we have |f| = 1 on M, f(X \ M) =0 and for 

all A € D(M), pA = J, odlul = f, gem\ndlul = ff — en)dlul = f, fdlu| and 
Saf du= ff fdlul = fy lf Plu) = f, ldip| = |u|(A). Finally, suppose that 
jis real. From pA = f, fdly| for all Ae D(M), f is real-valued p-ae on M. 

Since f(X \ M)=0, f is real-valued p-ae on X. It is an exercise to construct 

a real function to replace f. a 

24-4.5. Radon-Nikodym Theorem Let yy complex measures. If vy is 

absolutely continuous with respect to yu, then for each p-o-finite measurable 

set M there is a locally p-integrable function f on X such that fLX \M)=0 

and vA = f, fdy for every decent subset A of M. Furthermore, if both p,v 

are positive; then we may choose f > 0. The same is true for real case. 

Proof. It is a refinement of last two lemmas. oO 

24-4.6. Corollary Let 0 < v < yp be positive measures. Then for 

every jt-o-finite set M, there is a locally u-integrable function f on X such 

that f(X \M)=0,0< f < lon M and vA= ff, fd for every decent subset 

Aof M. 

Proof. Suppose that g is a locally p-integrable positive function satisfying 

g(X \ M)=0 and vA= f, gdy for every decent subset A of M. Then 

fo — gdp = (A) — (A) > 0, VAE DM). 
A 

Hence 1 — g > 0, p-ae on M. Since g(X \ M) =0, we have 0 < g < 1, p-ae on 

X. For N= {x € X :0< g(x) < 1}, f = gpn is a required function. Qa 

24-4.7. Theorem Let jy be a complex measure on a 6-space (X,D) and 

f :X — E a measurable map. If f is integrable on a measurable set M, then 

we have tu fdp € |u\|UM) toba f(M) where Coba f(M) is the closed convex 

balanced hull of f(M). 

Proof. Since fpy is integrable on X, the set S = {4 € M : f(x) # 0} is 

o-finite. There is a locally integrable function y on X such that p(X \ S) =0,
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lp| = lon S and pA = f, yd|u| for every decent subset A of S. Hence we 

have fi, fdu = f, fed|u| and |u|(S) tba f(S) C |u|(M) coba f(M). Therefore 

we may assume that y is a positive measure. Suppose to the contrary that 

Sue fap € w(M) coba f(M). In particular, we have uM > 0. There is a real 

linear form v on F and a real number ¢ such that vty fdu <t < v(z) for all 

z € u(M) ba f(M). Integrating fy (uf)du <t < v[u(M)f(2)] over M, we 

obtain a contradiction: (uM) Jyh du <tuM < pM) tu uf dp. a 

24-4.8. Corollary Let p be a complex measure on a é-space (X,D); f an 

integrable function on X and g: X — E an essentially bounded map. Then 

we have f fgdy € ||f||) Coba g(M) where M = {x € X : f(x) #0}. 

Proof. Since f is integrable, the set M is o-finite. Now vA = f addp defines 

a complex measure on (X,ID). Since fg is p-integrable; by §24-1.11, the map 

g is v-integrable and f fgdu = f gdv € |v|(M)coba g(M) = ||f ||) Coba g(M). O 

24-5 Hahn and Lebesgue Decompositions 

24-5.1. Let 4 be a real measure on a 6-space (X, D) and let M bea measurable 

set. A partition of M into a positive set and a negative set is called a Hahn 

Decomposition of M for p. 

24.5.2. Hahn Decomposition Theorem Every p-o-finite set Mf has a Hahn 

decomposition. 

Proof. Let f be a locally p-integrable real function on X such that 

pA = J, fdlu| for every decent subset A of M. Define P = M1 f~'[0, 00) 

and Q=M\P. Clearly M = PUQ and PN Q=9. Take any decent subset A 

of P. Then f > 0 on A. Since |p| > 0, we have pA = f[, fd|u| > 0. Therefore 

P is a p-positive set. Similarly Q is a p-negative set. Oo 

24-5.3. Exercise Prove that if (P,Q) and (5,7) are Hahn decompositions of 

a p-o-finite set M then both PA S,QAT are p-null sets and for every decent 

set A we have u(AN P) = p(ANS) and pANQ)= WANT). 

24-5.4. Two vector measures j2, v on a 6-space (X, ID) are said to be singular, 

in symbol y» 1 v, if there are measurable sets S,T such that X = SUT, 

SOT =9, Sis p-null and T is v-null. Note that the definition involves positive 

measures |;2|, |v] only.
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24-5.5. Theorem Let jz,v be vector measures on a 6-space (X, ID). Suppose 

X is o-finite for both » and v. Then yp is singular to v iff |u| A |v| = 0. This 

justifies the notation 4 L v for measures and for vector lattices. 

Proof. Since everything is in terms of ||, |v]; we may assume both p, v > 0. 

Suppose wAv=0. Let 7 =u+v. Then X is a-o-finite. There are locally 

a-integrable functions f,g > 0 satisfying wA = f, fda and vA = J, gdm for 

every decent set A. Observe that 

O=(wAV\(A) = Mutu —|p—vA)= fh +9 —lf — abd = fy f Agar, 
or f Ag =0, m-ae. Now define P = f—'(0,00) and Q = X \ P. Since f,g = 0, 

m-ae on Q, P respectively, we infer u,v = 0 on Q, P respectively. Therefore ps 

is singular to v. The converse is left as an exercise. Oo 

24-5.6. A Banach space F is said to have Radon-Nikodym Property if for every 

scalar measure ys on a 6-space (X,ID), every j-o-finite subset M of X, 

every p-continuous vector measure v : ID — F, there is a locally p-integrable 

function f on X such that f(X \ M) = 0 and vA = ta fdp for every decent 

subset A of M. We have proved that the scalar field IK has Radon-Nikodym 

Property. In last section of this chapter, it will be shown that separable dual 

spaces and reflexive spaces have Radon-Nikodym Property. 

24-5.7. Lebesgue Decomposition Theorem Let p,v be vector measures on 

a 6-space (X,D) into Banach spaces E, F respectively. Suppose that X is 

o-finite for both » and v. If F has Radon-Nikodym Property, then there 

are measures jtg and ys such that v = wat ps, Pa is p-continuous and ps, 

is singular to uw. Furthermore the decomposition is unique. The pair pig, fs 

is called the Lebesgue decomposition of v with respect to yw. Finally, if v is 

real (respectively positive) then we may assume that both y, and yp, are real 

(respectively positive). 

Proof. Consider the special case when both p,v are positive. The positive 

measure 7 = j4+v is o-finite on X. Clearly u < a and v < xm. There are 

locally a-integrable positive functions f,g on X such that wA = f, fda and 

vA= [, 9dx for all A€ D. Define P = f7(0, 00) and Q = f—!(0). Then both 

P,Q are measurable sets satisfying X = PUQ and PQQ = 9. For every decent 

set B define a(B) = v(BN P) and p(B) = v(BNQ). Then clearly both pa, jis 

are positive measures on (X, ID) satisfying v = _+ ps. Next, take any p-null 

set N. Then for every decent set B, Sean fdx = pn(BON)=0. Hence f = 0, 

nm-ae on BON, or (BONN P)=0. Consequently,
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0 < p.(BAN)=WUBNNOAP)<BONNP)=0, 

that is uo(BM N) =0. Since B is any decent set, N is a-null. This proves 

ba <p. Finally because f = 0 on Q, we have u(B MQ) = Sang fdr = 0 and 

pes(BO P) = U(BNPOQ)=v(9) =0. Therefore 4 1 js. We have proved the 

existence for a special case when y,v > 0. In general, suppose that py, are 

vector measures on X into Banach spaces F, F' respectively. There are positive 

measures V,,/; such that |y| = vats, Va < |u| and |v,| L |u|. Since F has 

Radon-Nikodym Property, there is a locally v-integrable map h: X — F such 

that v(A) = f, hdlv|, V A € D. Furthermore if v is real, we may choose h 

to be real. Define (A) = f, hdv, and u.(A) = f,hdv., VA € D. Then 

clearly v = jig + fs. Since every v,-null set is je-null, we have pa < p. In the 

same manner, we get yx, L yw. For uniqueness, assume v = fa + Us = Va t Vs 

be two Lebesgue decompositions. Then € = tug — Va = Vs — fs iS a Measure 

on X. Because ps,v, 1 py, there are measurable sets P,Q, M,N such that 

X=PUQ=MUN, PNQ=6, MON =, P is p,-null, M is v,-null 

and Q, N are p-null. Take any decent set A. Since QU N is p-null we have 

pL[AN(QUN)] =0. Due to ua < p and wm < p, we get 

ELAN (QUN)) = walAN(QUN)] — [AN (QU N)] = 0. 

Since P is jz,-null and M is v,-null, we obtain 

g[AN(PNM)] =v,((AN P)N M] — py [(ANM)N P]=0. 

Consequently, £A = E[AN(QUN)]+E[AN(PNM)] =0. Because A is arbitrary 

we have € =0, that is ug =v, and V, = ps. Oo 

24-6 Duality of Classical Spaces 

24-6.1. Let ys be a complex measure on a 5-space (X,D); 1 < p < 00; g the 

conjugate index defined by > + 7 = 1 and F a Banach space. In this section, 

we prove that under certain condition the dual of L,(u, F) is isomorphic to 

L,(u, F'). For functions in particular, we have Li, = Lg. We restrict ourselves 

to a framework which is natural rather than of maximum generality. 

24-6.2. Theorem Let 1 < p< oo. For each h € L(y, F’) and f € Lp(u, F), 

let Th(f) = fhfdp. Then 7}, is a continuous linear form on Lp(y, F) with 

[Fall = Plo. 
Proof. For hf € L,, T,(f) is well-defined. Clearly it is linear in f. Since 

Taf) = |f hfdul < f [rl [f| dlu| < |\Pllgllfllp, the linear form T), is continuous 
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on L,(y, F) and ||Th|| < |lAllg. If ||Al[g = 0 then ||Tp|| = ||A||- = 0. It remains to 

show |[hlly < |[Zall for |lhlla > 0. 
Case 1: Assume that 1 < q < 00 and h = 0%, a;pa, where a; #0 € F’ 

and A, are disjoint nonempty decent sets. For every ¢ > 0 and each j, choose 

B; € F satisfying (1 — 2)|la;|| < |a;8;| and ||8;|| = 1. Replacing 8; with 836; 

for some number |9;| = 1, we may assume a,8; > 0. Since M = Ua A; is 

a decent set, there is a locally integrable function y on X such that |p| = 1 

on M, o(X \ M) = 0 and |u|B = fy" dy for all decent subsets B of M. 

Then f = ve B;pa,{laj e+ X — F is a measurable map. Since 

If] = Soh Iles lI?" 4,, we have f € Lp(u, F) and also 

I FIB = fj les ll Pp, dll = f X51 lle (I%e.4, dll = []AllZ > 0. 
From 

[Tall Illy = Lf Afdn| = |S, fagBie, llegll?' edu 
= he J 4580 a, lag |[ dln] = OL, [U — Ollesllea, les? "dla 
=(1—e|AllZ = -2)ilfllp Illa, 

we have ||T)|| > (1 — )|[Al|g. Letting e | 0, we obtain |[Al], < ||Th.|]. 

Case 2: Assume 1 < g < 00 and h € Lg(y, F’) with |[Al|, > 0. For every 

€ > 0, choose a decent map k: X — F’ with ||h—kl|g <. It follows from last 

case, there is f € L(t, F’) such that ||f||p < 1 and |[kl|,-—e < | fkfdu|. From 

ITrll > | fhfdul > | fkfdui — | fh — k)fdu| 
2 (Fle — 2) — fh — kl [FI dle} 
2 (Allg — 1 — Allg) —€ — A — Fllallfllp = Wella — 3¢, 

letting ¢ | 0, we have |[Allg < ||Thl. 

Case 3: Assume g = o¢0 and h € Loo(u, F’) with |All. > 0. For each 

0<t< |All, the set B= {x € X : ||h(x)|| > t} is not null. There is a decent 

subset D of B with |u|D > 0. Since A is measurable, there are simple maps 

h, : X — F' such that hy, — h on X. By Egorov’s theorem, hy, > h, p-almost 

uniformly on D. There is a measurable subset N of D such that |u|N < 4|y|D 

and h, — h uniformly on the decent set P= D\ N. For anyO <€ < ht, 

choose 7 such that |[h,(x) — A(x)|| < € for all c € P. Write hy = ea O5PA, 

where a; € F’ and A; are disjoint measurable sets. For all x € P Cc B, 

[hn(x)|| > ||A(x)|| -e > t-e > e implies z € A; for some j, that is P C Us Aj, 

or P= Uj_\(PNA;). It follows that 0 < |p|D—|p|N = |u|P = 5 |Ml(POA)), 
ie. [y|(PMA;) > 0 for some index 7. Taking any z € A= PNA; C B, we obtain 

|x| = [An (2)|| > t. Also for all x € A, we get |[h(x)—a,|| = ||h(z)—An(z)|| < e.
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Pick 6 € F such that |a;8} > (1 — )|la;|| and ||| < 1. Choose a number 6 

such that |6| = 1 and a;86 = |a,4|. Select an integrable function y on X such 

that |y| = 1 on Aj, p(X \ A;) = 0 and |p|S = J, py” dy for all decent subset S of 

A,. Now f = 889 p4/|ul(A) is a decent map with [fll = [If] aly = [Ill <1. 
From h80e0~ 

ira > | f nganl =| [MEP a, 
>| fener aBOP" pa | au| - [cea PA ay 

HA pJA 
aBOpa pi f Sst Welles au! [16 8llea > d [ia ia 
d— at EPA - d > [| te atu — [BS al 
(1—s)tpa 

dju| —e > (1—s)t-e = [a el 
letting « {| 0, we have |/7,|} > t. Fimally letting ¢ T ||h\lo., we have 

IZall 2 [Plloo- oO 

24-6.3. Exercise For F = K, 1 < ¢ < oo and p > 0, the above proof can 

be dramatically simplified. Let f = |h|?~'sgn(h-). Prove that fh = |f|? = |h|? 

and f fhdy = |iFilp = lhl3 = If llellll- 
24-6.4. Corollary |!T,||, = sup{ f [2] fdlu| :0< f € Lp, ||fllp < 1}. 

Proof. For every € > 0, choose g € Ly such that ||Tj,)|| < | f [Algal | | +e. 

Then we have 0 < f =|9| € Lp, ||fllp = Ilgllp < 1 and 

Tall < |S talodlul [+e < 1A laldlul +e = flalfdlul +e < Trill +e. 
From |Thllg = |lAlle = \ | ll, = ||Tjrjllq, the proof is completed. o 

24-6.5. We have proved that the map a : Lg(p, fF’) > Lp(u,F)' given by 

mh) = T;, is an isometry. Naturally we want to know if 7 is an isomorphism. 

We have proved that the scalar field IK has Radon-Nikodym Property. In next 

section of this chapter, it will be shown that separable dual spaces and reflexive 

spaces have Radon-Nikodym Property. 

24-6.6. Lemma Let 1 < p < oo. Then for every continuous linear form T 

on L,(u, F), there is a o-finite set M such that for each f ¢ Lp(u, F), we have 

T(fpx\m) = 0. In other words, T is concentrated on a o-finite set M. 

Proof. By Density Theorem, we have ||T'| = sup{(T(f)| : |[fllp = 1} where f 

runs over the decent maps. For each n, there is a decent map f, such that
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lfallp = 1 and |TCf,)| > TI — 4). Replacing f, by 9 fn for some number 

|@,| = 1, we may assume T(f,) > 0. Now each M, = {x € X : |fn(x)| > 0} is 

o-finite. Hence M = Ure M,, is also o-finite. Now take any decent subset A 

of X \ M and any a € F. Choose @ € K such that |6| = 1 and @T(apa) > 0. 

Then for each r > 0, 9 = fn + réap, is also a decent map. Observe that 

lal = | \tn+rbexpalPdln|= f IfalPdln|+ f ella ad\n|=1+ al? ula 
that is, {lgllp = (1 +7? llal|?|u}A)!/?. Hence 

IDI rlalP|a|Ay"/? = [TI [al = ILO) = Pa + rBapa) 
=T(fr)+r6T(apa) > ||T | — 4) + r6T (apa), 

1] 1 
or, 0 < 6T (apa) < ||T|| la +7? llal|P |e). Ay!/? — 14 A =. 

nir 

Letting n — 00, we have 

1 0 < 6T(apa) < ||TI| [a +7? lal? || Ay? — 1 =, Vr>0. 
r 

Letting r | 0, it follows from 1 < p < oo and the L’Hopital’s rule that 

OT(ap,a) = 0, that is T(ap,) = 0 for every a € F. Next, take any 

decent map g = via aj;pp, where a; € F and B,,B2,--- are disjoint 

decent sets. Then gpx\ a = Dr aj;p4, where A; = B,\ M are decent subsets of 

X\ M. Hence T(gpx\m) = DF T(a;pa,) = 0. Finally, take any f € Lp(u, F). 

There are decent maps g, such that |g,| < |f| on X and g, — f, p-ae. 

Then |gnpx\ml < |f| on X and gnex\m — fex\m, p-ae. The Lp-Dominated 

Convergence Theorem ensures gnpx\m — fex\m in Lp(u,F). Since T is 

continuous, we have T(fpx\aj) = lim T(gnex\m) = 9. oO 

24-6.7. L,-Duality Theorem Assume that 1 < p < oo or that X is 

o-finite for p = 1. If F’ has the Radon-Nikodym Property, then the map 

a: Lou, F’) > Lp(u, FY’ is an isomorphism. 

Proof. To prove that a is surjective, let T € L,(u,F)’. We have to find 

h € L,(u, F’) such that Tf = fhfdy for all f € Lyp(u,F). Now for every 

AED, BEF andzxe X; let (p4B)(2) = pa(z)G and (vA)$ = T(p48). Clearly 

vA is a linear form on F. Since 

sup |(vA)S| = sup |T(pa9)| S sup ITI loaBllp < IT MUHl A)”, 
(ells Welist (elt<t 

we have vA € F" and ||vAl| < |[T||(\u|A)!/?. In particular, if A, | 9 in D, then 

|vAnll < IT \u|An)'/? — 0. Hence v is countably additive. Next, to show 

that v is of finite variation, suppose that A = Up B; is a disjoint union where
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A, B; € D. For each j, let 8; € E with ||6,|| < 1. Choose a number 6; such 

that |6;| = 1 and @;T (pz, 8;) = |T (ep, G;)|. Then we have 

Yo, BB = SO", eee, 8) = 7, T8859) 
n n Pp \/p 

< ITH [SO 98,454] <1 { | do; 22,856, a\ui} 
n \/p 

<1T1(f 2% bow, F Halles Pall) <r”. 
Hence we get > ; lv B;|| < ||T Iu LA)? by taking suprema over all ||@;|| <1 je 
in FE independently. Consequently, v is of finite variation. Therefore v is a 

vector measure on X. From ||vAll < |[T||(\u|A)!/?, we have v < p. 

Next, for 1 < p < oo, there is a o-finite set M such that T(fpx\.) = 0 for 

all f € Lp(u, F). For p= 1, let M = X. Since F’ has Radon-Nikodym Property, 

there is a locally p-integrable map h : X — F”’ such that h(X \ M) =0 and 

vA= f, hdp for all decent subsets A of M. Observe that if F = IK, 6 =1 and 

u,T > 0; Radon-Nikodym Theorem ensures that hk > 0. Now for each decent 

set A € D and @ € E, we have 

T(paB) = T(panm®) + T(paymB) = WAN M)B +0 

- (= hau fe hi) B= [ Hesbrde 

By linearity, for each decent map f : X — F, we get T(f) = fhfdp. It 

remains to show Ah € L,. In this case, the proof is completed because T and 

f — f hfdy are continuous linear forms which agree on the dense set of decent 

maps must agree on L(y, F). 

Consider the case 1 < p < oo first. Write M = Uy He as a disjoint 

union where Hp is a p-null set and H), H2,--- are decent sets. Because each 

Mi = (Ua Hj) {x € X : ||h(a)|| < &} is a decent set and |hpu,|? < 

kP om, © L1, we have hpyy, € L(y, F’). The linear form T;, on Lp(y, F) given 

by T..(f) = [(hea,)fdp is continuous. Observe that 

[ontella = Tell = sup{| {Orona )Fdul + f € Lys, P), lIfllp <0 
= sup{| f h(fpm, dul: f ¢ Lp(u,F), |Ifllp < 
= sup{iTUfom |: f € Lp, F), Wifllp <0} 
< sup{lIZ'l lFoucllp : f € Lys P), Iiflly <0} < ITIL 

Since |hoy,| 1 |A|, p-ae; it follows from L,-Monotone Convergence Theorem 

that h € Lg. 

Finally for p = 1 and q = o«, define M;, as in last case. Clearly we get
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hom, © Leo(u, F’). Repeat the last case, we have |hpu,| < ||hem|loo < ITI], 

peae. Hence |A| = limgoo |hpns,| < [TI], w-ae. Consequently [Allo < ||Tl]- 

This completes the proof. in| 

24-6.8. For the scalar case when F = K, we can derive additional information 

about A from T by decomposition into positive linear forms. 

24-6.9. Lemma For | < p < 00, the space L, is a breakable vector lattice. 

Furthermore, every continuous linear form T on Ly is order bounded and can 

be written as a linear combination of continuous positive linear forms. 

Proof. It is obvious that Lp is a vector lattice under pointwise operations. The 

following equalities and inequalities are considered to be almost everywhere. 

Let [f| < g+h where f,9,h € Ly with g,h > 0. Write [f| = gi + hi where 

O<9 <g,and0<h; <hare in L,. Since sgn(f) is bounded measurable, 

92 = gisgn(f) and hz = hisgn(f) belong to Ly. Clearly |g| < gi < g, |hal < 
hy < hand f = 92+h2. Therefore L, is breakable. Next, let T be a continuous 

linear form on Ly. Then for all |g| < f in Ly, we have 

ITS IIT llgll> < ITI I Fllp < 09. 
Therefore every continuous linear form on the vector lattice Ly is order bounded. 

Furthermore, the variation |T| exists and is also continuous. In particular, 

every continuous linear form T on Ly can be written in the form T = Theo PT, 

where each T;, is a continuous positive linear form. Oo 

24-6.10. Theorem Assume that 1 < p < co or that X is o-finite for p = 1. For 

each continuous linear form T on Ly, there is h € Lg such that T(f) = fhfdu 

for every f € Lp. Furthermore if T > 0 and yp > 0, then we may choose h > 0. 

If both T and p are real, then we may choose fh to be real. 

Proof. The proof of the case when both T, y are positive is built into the 

last theorem. Next, assume that T is positive but yz is a complex measure. 

Then there is 0 < g € Lg such that T(f) = fgfd|u| for all f € Lp. Let T 

be concentrated on some |y|-o-finite set Mf. There is a locally p-integrable 

function y on X such that y(X \ M)=0, |p| = 1 on M and |p|(A) = f, > dp 

for every decent subset A of Mf. Then T(f) = f gfdlul =f ofp dp, V f € Lp. 

Let h = gp~. Since [h| < g we have h € Ly. Obviously, h is a required function. 

Finally, take any arbitrary T. Write T = ar i*T, where T; > 0. There are 

0 < hy € Lg such that T,(f)= fhefdu,V f € Lp. Define h = 7)_4i*hy. Then 
he L, and T(f)= ico OT. f = 0.1% fhefdp = fhfdu. We leave it as an
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exercise to show that if both T and j are real, then we may choose h to be 

real. oO 

24-6.11. Exercise Let X be j-o-finite and let 1 < p < 00. Suppose that 

h € Lg is fixed and T is a continuous linear form on Ly given by T(f) = f hfdu 

for all f € Ly. Prove that the valuation |T' as a linear form defined in §16-5.4a 

is determined by |T|(f) = f f|h| d|u| for all f € Lp. 

24-6.12. Theorem Let h: X — F"’ be a measurable map and 1 < p< ow. If 

for every f € Lp(u, F) we have hf € Ly, then h € L(y, F’). 

Proof. (a) We claim that if M is a o-finite subset of X, then |hlpyé € Ly 

for every 0 < € € Ly. In fact, firstly suppose q = 00. Then 0 < € € Ly. 

Hence pygé € L) = Ly. Thus hpyé € Ly, that is |hlpwé = |hewé| € Li. Next 

suppose 1 < gq < co. Since A is measurable, there are simple maps hy, : X — F’ 

such that [hal < |h| and kh, — kh. By §21-7.11, write M = Ue A; UN where 

N is a null set and h, — hk uniformly on each of the disjoint decent sets 

Ai, Aa,-*+. Let e; = (27|p]A;)71/9 if |u[A; > 0; and e; = 2-9/9 if [plA; = 0 

so that y = ea é;pa, € Ly. For each j, there is n such that for all x € A, 

we obtain [|h(z) — ha(x)|| < 3. Write h, = a a;pp, Where B; are disjoint 

measurable sets and a; € F’. For each i, choose 6; € F such that |[2;{| < 1 

and |la,|| < ja,0;|+¢;. Then gj; = a Bipp, is a simple map with [g;| < 1. 

Observe that h,(2)9;(x) = ar a,8:pp,. For each x € A; we have 

[/Aa)I] < rn(o)l| + &; = Des lleullon, +e; < Dies laeBilpw, + 2¢; 
= |hp(2)gj(x)| + 2e; < |A(x)g5(2)| + |[hn(x) — h(x)|| ||9;(x)|] + 22; 

< |A(x)g;(a)| + 3e;. 

Therefore we get |hloa, < |hgj;ea;|+3€j;ea,- Now 9 = an 9;PA, is pointwise 

convergent because A, are disjoint. Clearly |g| < 1. As a limit of simple maps, 

g is measurable. Since M \ N C US, Aj, we have |hipm\w < |hg| + 3¢. Now 

take any 0 < € € Ly. Since y € Lg, we have y€ € Ly. From |gé| < €, p-ae; 

we get f = gf € Lp(u, F) and thus hf = hgé € L, by given condition. Since 

|hlpar€ < |hg€| + 3p, p-ae; the function |h|py€ is integrable as claimed. 

(b) We claim that if M is a o-finite subset of X, then 

t= sup{ fay [RIE die] <0 < € € Lp, |IEllp < 1} < 20. 

In fact, suppose to the contrary that for every n, there isO < yp € L, such that 
+e: co | co 1 

llvnlly < Land fry |hlgnd|u| 2 n°. Since 7 —sllpnlle <0, oz <
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. a . 
the series an pa on converges to some 0 < € € Ly. Now |hlpyé is 

. 1 
integrable by part (a). For every n, we have |hlom€ > —|hlomYn, p-ae, that 

nr 

1 
is CO > |hlgd|y| > =/ |h|~nd|u| > n for all n which is a contradiction. 

nm” IM 
Therefore we must have t < co. 

(c) We claim that if M is a o-finite subset of X, then |h|py € Lg. In fact, 

by §20-4.10 for the upper function |h|, choose decent functions 0 < h, fT |hlpar, 

peae. Then all hy, € Lg and ||Aallg = sup f hn€dlu| < sup f,, |hl€d|u| = t < 00 

where the suprema are taken over 0 < € € L, with |/é||) < 1. Therefore we 

obtain sup, ||hnllg <¢ < co. For 1 < g < o, |hlpaz € Ly by L,-Monotone 

Convergence Theorem. For g = 00, || |Aleag|loo = lim f[hnllao < t < co implies 

lhlpm € Ly. 

(d) Assume 1 < g < oo. We claim that there is o-finite set Mf C X such 

that h = hoy, prae. In fact, for every decent set A we have ho, € Lg, that 

is |h\!p4 € Ly. Let t = sup f, |h|%d|u| for all decent sets A. There are decent 

sets A, C Ans; such that sup, Ja, |h|@d|z| = t. Then the set M = UP, An 

is o-finite. Thus |h|?pay is integrable and [hlpa, < |hlpar for every n. Hence 

t = sup,, Sa, |Al%dlu| < fy, |Rl?diu| < co. Next, for every decent set B disjoint 

from M with ||h(x)|| > O for all 2 € B, then 

t+ fp [hl?diul = sup fry 1h|%dlul + fy [Al?al el = sup fayug lhiTalual < t, 
that is f, |h/"d|u| = 0. Hence B is null. Therefore we have h = hpyy, prae. 

Consequently, |h| = |hlea¢ € Lg, that is h € Lg(u, F’). 

(e) Finally let ¢ = 00. We claim that h € L.o(s, F’). In fact, suppose to the 

contrary that ||A||o. = 00. Then for every n, the set B, = {a € X : ||h(z)|| > n} 

is not null. There is a decent set A, C B, with |p|A, > 0. Then M = Ur An 

is o-finite. By (c), |hloar € Loo. On the other hand, ||hpa|loo > |hpa,|lo > 7 

for every n. Thus ||Rpaz||o0 = 00. This contradiction completes the proof. O 

24-6.13. Corollary Let f: X — F be a measurable map and | < p < oo. If 

for every h € Lg(u, F’) we have hf € Ly, then f € L(y, F). 

Proof. Replacing F by £’ and interchange h, f and p,g in last theorem; we 

have f € Lp(u, F”), that is |f| € LZ) and hence f € L,(p, F). oO 

24-6.99. Exercise Let F be a Banach space and let 4: be a vector measure 

on a é-space (X,D) into the dual space F’. For convenience, write 

Ba = B(a) = off) = af for every a € F’. Note that the map (a, 3) > af :
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F’ x F = K is an admissible bilinear map so that the integral [ fd is well- 

defined for y-integrable maps f : X > F in L,(u, F's F). Take any h: X > F' 

in Lou, F’) and f : X — F in L,(u,F). Then hf is measurable because it 

is the limit of certain simple functions derived from h, f. From h € L(y, F’), 

we have [h| € Lg(|y|) and similarly |f| € Dp(|y|). Since |Af| < [A] |f|, we 

obtain hf € Ly(|u}) and hence S,(f) = f hfd|js| is well-defined. Study the map 

h — S}, from L(t, F’) into the dual space of Lp(, F). 

24-7 Spaces with Radon-Nikodym Property 

24-7.1. We assume that the dual space has Radon-Nikodym Property in order 

to prove L,-Duality Theorem and Lebesgue Decomposition Theorem. Note 

that co does not have Radon-Nikodym Property, e.g. [Diestel-77, p60]. We 

shall give sufficient conditions for a Banach space to have Radon-Nikodym 

Property by improving their work from bounded positive measures on 

g-algebras into our context. Let u be a scalar measure on a 6-space (X, ID) 

and v a vector measure on X into a Banach space EL. 

24-7.2. Lemma Let Q=(J™, Hn be a disjoint union of measurable subsets 

A, of X. If for each n, the map g, : X — E is a locally p-integrable map 

such that »(B) = f, pgndp for all decent subsets B of H,, then the series 

h= 7 nen, : X > Eis a locally p-integrable map such that h(X \Q) =0 

and v(A) = f, hdu for all decent subsets A of Q. 

Proof. Clearly h is a measurable map such that h(X \ Q) = 0. Take any 

decent set A. From 1(B) = f 3 9ndp for all decent subsets B of H,, we have 

WAP Ha) = fara, ltnl dla! = fy lanpns,| alps). Observe that 
Yoreo Sg lonpHt, | Alel = S06 VAD An) = |v] (ANU p25 An) < [u|(A) < 00. 

Integration term by term gives 

Sa hdp= fy oo nPH. de = no Sig InP H, 
= ey MAN Ay) =v (ANUS An) = (AN Q). 

Since h is y-integrable on every decent set, it is locally y-integrable. oO 

24-7.3. Theorem If every vector measure into & has a density on every 

decent set with respect to its variation, then F has Radon-Nikodym property. 

Proof. Let p be a scalar measure on (X,ID) and v a y-continuous vector 

measure into &. Every p-o-finite set can be written as a disjoint union
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M = Uy Hn where Ho is a p-null set and all H,,H),--- are decent sets. 

By v < p, Hp is also v-null. Let go = 0 so that f, god = 0 = v(B) for all 

decent subsets B of Ho. Since |v| < y there is a locally p-integrable function 

g on X such that |v|(A) = f, edu for every decent subset A of M. By given 

condition, for each n > 1 there is a locally v-integrable map f,: X — E such 

that vB = f, pdnd|v| for all decent subsets B of Hy. Thus gn = favpu,, is 

printegrable and satisfies vB = fp gndy for all decent subsets B of H,. Now 

the result follows from last lemma. Oo 

24-7.4. Theorem Let F be a Banach space. Ifthe dual space F” is separable, 

then F’ has the Radon-Nikodym Property. 

Proof. Let v be a vector measure on a é-space (X,ID) into F’ and M be 

a decent set. We have to find a v-integrable map g : X — F” such that 

vB = f, 3 94|v| for every decent subset B of M. In fact, for every 8 € F and 

AED, let 7g4=u(ANM)Z~. Clearly mg : D — K is finitely additive. Also mg 

is countably additive because if A, | @ in DD, then |wgAn| = |X(An NM M)B| < 

||VCAn 1 M)I| ||B|| — 0 as n > co. Next, zg is of finite variation because if 

A= Ue B; is a disjoint union with A,B; € D, then 

djer 7-5] = D5 [By VM)A| 

<p YB; 9 M)|| [5] < |v |(A 1 M)I|5|| < 00 
implies |7g|(A) < |v|(ANM)||6||. Clearly if |y|A = 0, then 7gA = L(ANM)6 = 0. 

Hence 7g < |v|. By Radon-Nikodym theorem, there is a locally integrable 

function fg on X such that fg(X \M)=0 and mgA= f, fad|v| for all Ac D 

because 7g(A \ M) =0= Saya fed|v|. Let P= {x € X : Re fg(x) > 0}. From 

| [Re fgldlv| - | (Re fardiel+ [ —(Re fa)d|v| 
A ANP A\P 

< |Re L(LAN PN M)p| + [Re vI(A \ P)N M] BI 

< |MAN MN Pl [Bll + AN M)\ P)Il Al 

<|v(ANM) I5I| < f, Bll dle, 
we have [Re fa| < ||Gl|, v-ae. Similarly, we get [Im fg| < ||G|], v-ae. Hence 

lfa| < 2||Bl|, v-ae. Next, 

[fondle = WAN MyB +7) = HAN MB + ADM y 

= I fodlv| + I fyd|o| = I (fa + fy)dlu|
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implies fg,, = fa+fy, v-ae. Similarly we also have fig =tfg, v-ae for allt € K. 

Since F’ is separable, so is F. Let H, be a countable dense set in # and Ko 

a countable dense subset of the scalar field IK. Then the set H of all linear 

combinations ie t;8; with 8; € Hy andt; € Ko is countable. There is a null 

set N such that |fa(x)| < 2|/Bl|, fay(2) = fa(x) + f(x) and fig(x) = t f(x) for 

alc € M\ N; 8,7 € H; and t € Ko. The same is true for c € X \ M because 

all fg(z) = 0. For every 6 € F, we have 8; — ( for some sequence f, € H. 

Define hg = lim; 0 px\nfp,;. If yy € AH with y; > 8 and ifr € X; we get 

lex\n(2)fa,(2) — pxyn@)Fy,(2)| < lex\w@) fa;-4;(2)| < 2118; — y5|| + 0 

as j — oo. Thus the definition of hg is independent of the choice of {8;} in 

H. Hence hg is well-defined. Because H is dense in F’, we have |hg| < 2]|4|| 

and hg.y = hg +/h,, hug = the for all 8,y € F and t € K. Thus the map 

g(t) : F — K defined by g(x)(@) = hg(x) is a continuous linear form. As 

the limit of measurable functions px\y fs, for 8; € H, the function hg is 

measurable for each 8 € F. Hence x — hg(x) = g(x)(B) is measurable for all 

68 ¢ F. Therefore x — g(x) is weak-star measurable. Because F” is separable, 

the map g : X — F" is strongly measurable. Next, let 6; — 6 in F with 

B; © H. For every c © X \ M, g(z)B = ha(x) = limj oo px. nw fa,(x) = 0. Hence 

9X \ M) =0. Next, since {8;} is bounded, i.e. ||6;|| < ¢ for some ¢ > 0 and 

for all 7; we have |px\nfa,|e4 < 2tpa and 2tp, is integrable. It follows from 

Dominated Convergence Theorem that 

| reaie= [tim exvwfa,alel= tim | pxw foal 
A AIres Gro fa 

= lim / fa,dly| = lim (AN M)g8; = (AN MB. 
joo fia jroo 

Since ||9(x)|| < supygy<i l9(eF)| < supyay<i [ha < 2||6|| < 2, the map g is 
bounded on X and hence it is integrable on every decent set A, that is locally 

integrable. Finally, from (4M M)G = f, ha(z)d|v|(x) = ta g(z)(B)dlv|(x) = 

[fy g@)d|v|(a)] (8), we obtain (AN M) = f, gd|v|. Therefore for every decent. 

subset B of M, we have vB = f,, gd|v|. This completes the proof. QO 

24-7.5. Let yz be a positive measure on a 6-space (X, ID) and = a finite partition 

of a decent set M by sets in ID. Let h: X — E be a measurable map which is 

p-integrable on M. The a-average of h on M is the map V,h: X — EF defined 
hd hd 

by V,h= ee Ja va pa. We understand that Ja is replaced by zero 
7 

if ~A = 0. Next, let P(M) denote the set of all finite partitions of M by sets 
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in ID. For all o,7 € P(M), write x > o if z is finer than o, that is, every set: 

in o is a union of sets in 7. 

24-7.6. Lemma (a) If his a simple map, then lim; V,;,h =hpy. It means 

that there is 0 € P(M) such that for all 7 > 0 we have V;zh=hpm. 

(b) Vi: Loo(u, FE) > Loo(u, E) is a continuous linear map with ||V,|| < 1. 

(c) If A(X) is relatively compact where h € Lo(,F), then we have 

limz oo ||Vek — Reat|loo = 0, that is for every ¢ > 0, there is o € P(M) 

such that for all 7 > o we have ||Vzh — hpu|loo <E. 

Proof. (a) Let h a aj;pp, Where D;’s are disjoint measurable sets and 

a; € EB. Let a = 0 € E; Dy = X\ Uj, D; and By = MOD;. Then 
h= Yio ajpp, anda ={B;:0<j7 <k} € P(M). Take any 7 > o in P(M). 

Write B; =|); Ai; where Ajj, A2;,+++ are i sets in 7. Then we have 

Vih= eps So Ans “Dees ‘ 
AGn 

= y, a; Sy PA = yr, ajpB, =hpm. 

(b) Observe that h is p-integrable on every A € x by |hpa| < ||hlloopm, prae. 

Clearly V,, is linear. Finally for each x € A, we have 

Sa hdul| — Sf, lhl du [Pll ood I|(Veh)(2)| = “TA | < “a < Sa aA 

that is ||[Vahlloo < [Alloo, or ||Val| < 1. 

(c) Since A has relatively compact range, for every ¢ > 0 there is a simple map 

g:X — E such that ||g(z) ~ A(x)|| < ¢ for all e € X. There is o € P(M) such 

that for all a > 0 we have V,g = g. Consequently, 

Vik ~ Rlloo S Vell |] ~ glloo + [Vag — glloo + Ilg ~ Allo S 2¢. Oo 

< [lAlloo, 

24-7.7. Let yz: be a scalar measure on a 6-space (X, ID) and B the closed unit 

ball of £,(2). A continuous linear map T: L,(2) — E is weakly compact if 

every sequence in T (IB) has a weakly convergent subsequence. 

24-7.8. Theorem Let 1 is a o-finite scalar measure on X. If 7: Li(u) > Eis 

a weakly compact linear map with separable range, then there is h € Loo(p, E) 

such that for all f € Ly, () we have T(f) = f fhdu and that h(X) is contained 

in the closure of T (B). 

Proof. By Polar Form of Complex Measures, we may assume that p > 0. 

Since X is o-finite, write X = Ure My, as a disjoint union of a null set Mp and
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decent sets M,, M>,---. Let FE, be the closure of the range of T. Then FE; is sep- 

arable and contains the weak limit of every sequence in range of T. Hence we 

may assume F = EF. Choose a sequence wy, € E’ by §7-6.14 such that ||w,|| = 1 

and ||Z'\| = sup,.5, |wn8| for every @ € E. Now each function w,T : Ly(u) + K 

is a continuous linear form with o-finite measure p. There is g® € Loo(u) 

such that ||¢*|loo = |[wnT'|| and waT(f) = f fetdp for all f € Li(u). For each 

k > 1, M = My is a decent set. Now yn = peom € Lo), Gn(X \ M) = 0 

and waT(fpm) = f fendp for all f € L,(u). Without loss of generality, we 

may assume |~n| < ||Ynl|oo everywhere on X. Next define g, : X — E by 
T Wnt nd 

Gn = > Pa From wnrgn = > TT PAH > [paint 5, = VaPn, We 

ACT AGT Aer 

obtain lim |lwage — Yrlloo = lim ||Vavr — Ynllo =O because y, has 
TOO TOO 

relatively compact range in IK. Hence we can choose a sequence 7, € P(M) 

satisfying Jim |l@nGnm — Pniloo =O. There is a p-null set N,, such that 

lim WnGtm =n uniformly on X \ Ny. The set N = U2, Ny, is p-null 

and for each n, lim wnrgz,, = Yn uniformly on X \ N. Take any x © M. 

Then we have ted for some A € a. If pA > 0, then ||p4/pAl|, = 1 and 

Gx (Z) = T (pa/pA) € T (B). If wA = 0, then gn(z1) =O € T (B). Since T is 

weakly compact, there is a weakly convergent subsequence gz,,.,() > Ag(x) 

as j > 00. Hence Wrgaay)(£) 4 Wrhg() and also WrGay)(2) > Yn(Z), 

that is wyzhy(r) = ¢n(z). Since the closure Q of the convex set T (B) con- 

tains all gr,,(,(2) € T (B), Q also contains the weak limit h;,(z). Now define 

hy(X \ M) = 0. Then we have hy(X) C Q and wahz = Yn is measurable for 

each n. Now hy, is strongly measurable for hy(X) C FE is separable. Thus 

h = )722, Re is a measurable map from X into EF satisfying h(X) C Q, ie. 

h € Loo(u,). Finally take any f € L,(u). From wpT(fpm,) = f fondu = 

f funhedp =n f fredp, we have T(fom,) = f fhedp for all k > 1. By Dom- 

inated Convergence Theorem, we have f = 772, fom, in L\(u). Therefore we 

obtain Tf = DP, Tfom,) = Dei S fhadu= f OR fhadu= ffhdp. 
24-7.9. Theorem Let p is a o-finite scalar measure on X. If T : Ly(u) > EB 

is a compact linear map, then there is h € L.o(u, E) such that for all f © L(y) 

we have T(f)= [ fhdy and that A(X) is relatively compact in E. 

Proof. Since every compact linear map is weakly compact and with separable 

range, let h € L.o(, £) be obtained by last theorem. Since the closure Q of 

T (B) is compact, h(X) C Q is relatively compact. oO 
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24-7.10. Theorem Let yp is a scalar measure on a é-space X. If a 

measurable map h : X — E has relatively compact range, then the linear 

map T : L,(4) > E given by Tf = f fhdp is compact. 

Proof. Note that Tf = f fhdp is well-defined because h € Lo(u, £). The 

closed convex balanced hull Q of the relatively compact set h(X) is compact. 

Thus Tf = f fhdu € ||f\]1Q C Q for all || f |], < 1 in Ly(u). Therefore T is a 

compact linear map. QO 

24-7.11. Exercise Prove the last theorem by uniform approximation of h 

with simple maps which provide finite dimensional approximations of T. 

24-7.12. Lemma Let yp be a bounded positive measure on a 6-space (X, ID). 

For every h € Leo(p, &), the set {fa hdu: A € D} is precompact in EB. 

Proof. Let ¢ > 0 be given. Since h is measurable, let 9, — h for some simple 

maps g, : X — E. By Egorov’s Theorem, there is a measurable set P such that 

uP < ¢/(1+ ||hl|o0) and gn — A uniformly on Q = X \ P. By §19-6.4, the set 

(hpg)(X) is relatively compact in EF. By §11-6.6, its closed convex balanced 

hull K is compact. For every € > 0, write u(X)K C Ups B(a,;,<) where 

a; € E. Now take any A € D. Thus we have [, hpgdp € |[palliK C uX)K, 

that is, || [, hpqdu — a;|| < € for some j. Hence we obtain 

Il fa, hd — asl] <li fy hepdull + ll fy heqdy — 25] < [[AlloomP + € < 2e. 
Therefore the given set can be covered by a finite number of (2¢)-balls. 

Consequently it is precompact. Oo 

24-7.13. Theorem Every reflexive space EF has Radon-Nikodym property. 

Proof. Let v be a vector measure on a 6-space (X,D) into FE, p = |v| and 

M a decent subset of X. It suffices to find a p-integrable map h: M — E 

such that vA = f ‘4 hd for all decent subset A of M because h can be extended 

over X by defining h(X \ M) = 0. Therefore without loss of generality, we may 

assume that X = M and that yp is a bounded positive measure. For each decent 

function f = ar ajpp, where a; € KK and D,’s are disjoint decent sets, let 

TF = hy evD;. From ||T fl} < Dh lead lDy < Dhan leglHDs = [fll the 
map T' is continuous linear on the decent functions into E. By Density Theo- 

rem, it has a continuous linear extension over L (jz) which is also denoted by T 

for convenience. We claim that the set H = {Tp, : A € ID} is precompact in 

E, that is, every sequence has a Cauchy subsequence. Let {A, € D: n> 1} 

be given and $ the d-ring generated by {A, : n > 1}. Clearly the restriction of



472 Indefinite Integrals 

pon F C D is a measure. By §21-4.7, the set L,(F, ) of integrable functions 

on (X,4F) is a separable subset of £)(ID, 4) and hence T[L,(F, t)] is separable 

in E. Let B be the closed unit ball of L,(F, p). Since T (B) is bounded in the 

reflexive space E', the map T is weakly compact linear. There is g € L..(F, p) 

such that T(f) = f fod for all f € L\(F,pu). By last lemma, the image 

{Tpa, : 2 > 1} is precompact in E. Thus it has a Cauchy subsequence. 

Therefore H is precompact and hence also separable in B&. Let Ko be a 

countable dense subset of the scalar field IK. Then the set of all finite sums of 

{koa : & © Ko, A € D} is dense in L,(u, #). Thus the range of T is separable 

because the set of all finite sums of {kTp4 : k € Ko, A € D} is countable 

dense. There is h € L.o(u, E) such that T(f) = f fhdy for all f € Ly(u,£). In 

particular for f = p4 with A € D, we have vA = f, hdu. This completes the 

proof. Q 

24-7.14. Corollary Let yz: be a scalar measure on a 6-space (X, ID) and let 

1<p<_oo. If E is a reflexive Banach space, then L(y, E) is also reflexive. 

24-99. References and Further Readings : Ricker, Ballve, Huff, Gilliam, 

Croitoru, Zhao, Fernandez, Sambucini and Doss. 



Chapter 25 

Differentiation of Measures 

25-1 Geometrical Expression of Radon-Nikodym Derivatives 

25-1.1. In this section, we shall prove that except a null set, every complex 

measure on IR” has a derivative in terms of the limit of difference quotient. 

Furthermore, it coincides with its density. We shall adopt appropriate rather 

than maximum generality. 

25-1.2. Let A denote the Lebesgue measure and y a positive measure on R”. 

We shall use the max-norm on Rf, and the notation of cubes defined in 

chapter 23. The radius of a cube A will be denoted by AA. Take any 

xz € R”. The families of all semi-cubes, open and closed semi-cubes containing 

x in their interiors and with radii <r are denoted by S(x,7r), S°(x,r), S7(a,r) 

respectively. The upper and lower derivatives of js at x are defined by 

* —~dj uA =li i uA Peace) = tay SRP 3A ON Powe) = BCE NA 
respectively. Clearly, 0 < Dy u(r) < D* p(x) < oo. A complex measure v on 

R” is said to be differentiable at x if there is a number Dv(xz) such that 

vA 
uA Du(x) 

In this case, Dv(x) is called the derivative of p at x. 

lim sup =0. 
r0 AES(z,r) 

25-1.3. Exercise Prove that a positive measure 4: on IR” is differentiable at 

x iff D* p(x) = Dp) < oo. In this case, we have D* u(r) = Dy u(r) = Dy(z). 

25-1.4. Example Let »:IR— RB be given by y(z) =2 if x > 0 and y(z) =0 

otherwise. Let u(a, b] = y(b) — y(a) for all a < b. Then pz is a positive measure 

on R. Considering the intervals (—t, t?7] and (—t*, t] for t | 0, it is easy to show 

that D* p(x) 4 Di ula). 

25-1.5. Exercise Let js be the measure on R induced by g(x) = 2”. Find 

both D*y(1) and D, (1).
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25-1.6. Lemma The following formulas allow us to work with open or closed 

. . pC, pB 
semi-cubes: D* (2) = lim su —=lim su — 

Mo) ro Ces-te.r) AG 90 Beste.) AB 

B 
and Dy, plz) = lim inf ue =lim_ inf © 

r0CESs-(a,r) AC r30 BES%a,r) AB 

Proof. Let A,B,C be semi-cube, open and closed cubes of the same center 

and radius respectively. Note that AA =AB = AC. Since yp is positive, we have 
pB pA _ pe HD BAL Be : . 
XB 4 eG from which we obtain 

. pB . BC 
lim su — < D* p(x) < lim © su — 
ro Besete.n AB B r—0 ces ten AC. 

On the other hand, for any 6 > 0 take any closed cube C' containing x in its 

interior C° and with radius AC < 6. For each m > 1, let B,, be an open cube 

of the same center of C but with radius AB,, = AC + 6/m. Then B,, | C. 
Bin Cc . 

Hence NB = a as m — oo. For every € > 0, there is m such that 

uC uBn uB 
sa SHES sup > +68, 
AC ~ ABm Bese(n,25) AB 

B 
hence, sup BY be. =< su 

CES~(z,r) AC BES? (2,28) AB 

Letting 6 — 0 first and then e — 0, we have 

: uC i. m 
lim sup = <lim sup — 
r>0 CES-(2,r) AC r—0 BES%(z,r) AB. 

This proves the first formula. The second is left as an exercise. oO 

25-1.7. Lemma Both D*y and D,p are measurable. 

Proof. We want to show that M = {x € X : D*p(x) > t} is measurable 

for every t € R. Now let Qmx be the family of open cubes PB satisfying 
B 1 . B . 

P’ >t —< and with radius AB <1/m. Obviously lim — sup a > t iff 
AB k r0 Be S°(z,r) 

rE Mr. kz} UQmx. As a countable intersection of open sets, M is measurable. 

Therefore D*z is measurable. Likewise, D,j is also measurable. ia 

25-1.8. In order to show that Dy(x) exists almost everywhere, we need the 

following tool. A family ¥ of cubes is called a Vitali’s cover of a set M if for 

every x € M and any 6 > 0 there is A € F such that x € A and AA <6. 

25-1.9. Vitali’s Covering Theorem For every Vitali’s cover ¥ of a bounded 

set M CR”, there is a sequence of disjoint cubes C; ¢ ¥ such that 
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(a) MM \ UsC5) =O and 

(b) Mc Ure A; UU;,, Bj where A; is the closure of Cj and B; is the closed 

cube of the same center of A; with radius AB; =5 A Aj. 

Note that the sequence may be finite or infinite. 

Proof. Let V be a bounded open set containing M. Let S be the family of 

closures of cubes C € ¥ contained in V. Suppose that there is a sequence 

A,, A2,-+> of disjoint sets in § such that M Cc Use A,;. Then (b) is satisfied 

and (a) follows from AM \U,;C;) < A(M \ U;A;5) + Dj QAy — AC;) = 0. Hence 

assume that M cannot be covered by any finite sequence of disjoint sets in 5. 

Clearly § is a Vitali’s cover of M and also 0 < r; = sup{AD: D €G} < oo. 

There is A, € § such that AA; > 7, /2. Suppose that r;,A; are constructed 

inductively for all 7 < k. Since M ¢ Use Aj, there is some « € M \ Usa A 

Since Ur; A; is closed and G is a Vitali’s cover, there is C € § with z € C 

and CN Uj A,; =@. Hence we get 

0<rea = sup { AD: De Gand DNUj., 4; =0} < @. 

There is Agi € G such that AAgs > rev /2 and Any Uj 4; = 0 
Now two infinite sequences r,,.A, have been constructed. For each j, 

let B; be the closed cube with the same center as A; and with radius 

AB; = 5A A;. Since {A;} are disjoint subsets of the bounded open set 

V, we have 79°, AA; < AV < 00, or 0 < ry < 2A A; = (AA;)/" > O as 

j — oc. We claim M \ Uh Aj Cc eet B; for all k > 1. In fact, for each 

zeMe¢ Usa Aj, choose C' as above. Since r; — 0, there is p such that 

Tp < AC. Then by the choice of rpi1, we have CN US A; #0. Let p be the 

minimum one. Then we get C/N Uta! A; =@. Hence there is some b € C'N Ap. 

Clearly, AC <r, < 2A A,. Let a,c be the centers of Ap,C respectively. 

Then, ||z—al| < Iz —ell + lle— b|| + [|b-al| < AC+AC+ AA, < SAA, = _ 

ie. z € By. Because COUR A; = 0, we have p > k. Therefore x € UF?,4, B 

Consequently (b) follows. The proof is completed by the observation 

»(m\U", Cs) < a(M\U;, A,) #704, — Cy) 

<A (Ce B;) +08 een ABy <5” eet AA; — 0. Qo 

25-1.10. Lemma Let M be a decent set in IR” and let t > 0. 

(a) If D*y(x) > t for all z © M, then t\M <uM. 
(b) Suppose p < A. If Dy p(x) < t for all « € M, then tAM > pM.
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Proof. Without loss of generality, we may assume M 7#@. Take any bounded 

open set V containing M. 

(a) For any 0 < « < t, let F be the family of those cubes C' C V satisfying 

(t—e)AC < pC. Since D*y(x) > t for all x € M, F is a Vitali’s cover of M. 

There is a sequence {C;} of disjoint cubes in ¥ with A(M \U;C;) = 0. Observe 

(t-—E)AM < ( — ©)AWM 1, C;) + (t — 2)ACM \ UZ C5) 

= VCE — e)AC; +0 < 30, wh S WCU; Cy) < eV. 

Since every positive measure is regular, taking infimum over all open covers V 

of M we have (t— 6)AM < uM. Since € > 0 is arbitrary, we prove (a). 

(b) As in (a), for any ¢ > 0, let be the family of those cubes C' c V satisfying 

(E+ e)AC > pC. Since Dy p(x) < t for all x € M, F is a Vitali’s cover of M. 

There is a sequence {C;} of disjoint cubes in ¥ with A(M \U;C;) = 0. Since 

pu < A, we obtain u(M \U;C;) =0. Therefore 

(t+ e)AM = (t+ 2)\(M NUjC;) + b+ 2)A(M \ U;C;) 

= Doyle + E)AC; +0> uM al U;C5) + uM \ U;C5) = BM. 

Letting ¢ | 0, the proof is completed. Oo 

25-1.11. Exercise Prove that if two measures 1,12 are differentiable at x, 

then for all ¢;,t2 € IK, the measure t,1) + t21% is differentiable at x and its 

derivative is given by D(t,1 + t212)(x) = t, Dry, (x) + t2 Di2(z). 

25-1.12. Theorem (a) Every complex measure y on R” is differentiable A-ae. 

(b) Ify L A then Dv = 0, A-ae. 

(c) Ify <A then Dv = dv /da, d-ae, the j-density of v. 

Proof. As a result of last exercise, it suffice to prove the theorem for a 

positive measure pz which is one of (Re v)4, (Im v)4. Choose any semi-interval 

A. Consider the case p 1 ». Then p is null on some measurable set M while 

A is null on its complement. Observe that. 

A{z € ANM : D* p(x) > 1/3} 

<ju{z € ANM : D*p(x) > 1/9} <7p(AN M)=0 
and \(A \ M) =0; hence A{x € A: D* p(x) > 1/7} = 0. Since j is arbitrary, 

Maz € A: D*p(r) > 0} = 0. Therefore we have 0 < Dyp < D*p = 0, d-ae. 

Consequently, yz is differentiable A-ae and Dy = 0,A-ae. Next, consider the 

case p < ». Let f = du/d\ : R — [0,00) be the A-density of yu. For all 

rationals t < s, let My, = {x € R”: f(x) <t <5 < D*p(x)}. Then 

sMAN Mgt) < AN My) = | fa< / td\ =tMAN Ma) 
Ms ANMs: A
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gives (AM M,+) =0. Since A is arbitrary, M,: is \-null. Hence the countable 

union M = UsMs = {x € R® : f(x) < D*p(x)} is also A-null, that is 

D*u < f, A-ae. Similarly, f < D,p, A-ae. Consequently, y is differentiable 

A-ae and moreover, Du = f, -ae. Finally, since every measure is a sum of its 

absolutely continuous and singular parts, it is differentiable. Oo 

25-1.13. Corollary For every locally integrable function f on IR”, we have 

1 1 
ax) = lim — t)dt and lim = sy u/ t) — f(2)|dt = 0 for almost fle) = lim 5 [fat and tim sup 55 f Lee — FO 

all x where A are cubes with center x and radius r. 

Proof. For the measure vA = f[ ad(@)dt for all decent sets A, we obtain 

lim u/ f@®dt = Dv = dv/dr = f, r-ae. Next, let K be a dense subset of C. 
Tr A 

For each j € K, let v;A = Sa |f(t) — j|dé for every decent set A. There is a A- 

null set N; such that [f(x) — 3| = Dv;(a) for all x ¢ Nj. The set N =UjeK Nj 

is A-null. Let « > 0 be given. For every x € © \ N, choose j € K with 

|f(x) — j| < €. There is 6 > 0 such that af | f(t) — jldt — Dv, (x)| < for 
A 

all AA < 6. Therefore u/ [f@) — gldt < |Dv;(x)| + ¢ = |f() — jl +e < 2. 
A 

This completes the proof. Oo 

25-1.14. Exercise Investigate the possible extension to vector measures and 

maps from JR” into Banach spaces with suitable assumptions. 

25-2 Jumps of Increasing Functions 

25-2.1. In this section, we shall prove that every function of finite variation 

can be expressed as a sum of its continuous and discrete parts. Because every 

function G of finite variation can be decomposed into increasing functions: 

G = V,(Re G) — V_(Re G) + iV,(Im G) — iV_(Im G), it suffices to work with 

increasing functions only. 

25-2.2.. Throughout this and next sections, let F : IR — R be an increasing 

function. Let U(a) = inf{F(z) : « > a} be the upper bound at a € R and 

E(a) = sup{ F(z) : x < a} the lower bound at a € R. 

25-2.3. Exercise Prove that if a < b, then L(a) < F(a) < U(a) < Lib). 

25-2.4. Lemma (a) L is left continuous and U is right continuous.
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(b) F(a) = U(a) iff F is right continuous at a. 

(c) F(a) = L(a) iff F is left continuous at a. 

(d) L(a) < U(a) iff F is discontinuous at a. 

Proof. (a) Let ¢ > 0 be given. There is b > a such that F(b) < U(a)+¢. For 

every z with a < x < b, we have U(x) < F(b) < U(a)+e. Hence U is right 

continuous at a. 

(b) For every € > 0, there is 6 > 0 by (a) such that for alla < x < a+6, 

we have U(r) < U(a)+e. Hence if F(a) = U(a), then F(a) = U(a) < F(z) < 

U(2) < U(a) +e = F(a) +e implies the right continuity of F' at a. Conversely 

if F is right continuous at a, for every ¢ > 0, there is 6 > O such that for all 

a<«x<at+d, we have F(x) < F(a)+e, that is F(a) < U(a) < F(z) < Fla)t+e. 

Letting ¢ | 0, we obtain F(a) = U(a). It is an exercise to complete the proof. 

25-2.5. Theorem Functions of finite variation are measurable. 

Proof. It suffice to work with an increasing function F on R. Ifa € F~'(t, 00), 

then for every z > a we have t < F(a) < F(a), ie. x € FU (t,00). Since 

F7'(t, 00) is an open interval for every t € IR, F is measurable. im 

25-2.6. Theorem Let F be a function of finite variation. Then the set € of 

points where F is right discontinuous, is countable. Similar result holds for 

left and two-sided continuity. Therefore F' is continuous almost everywhere. 

Proof. It suffice to work with an increasing function F on R. For each a € €, 

let tg be a rational number in the open interval (/'(a), U(a)). Then the map 

f(a) = ta for every a € E is an injection from € into the set of all rationals. 

Consequently € is countable. oO 

25-2.7. A function f : IR — K is called a pulse function if for every 

semi-interval (a,b], the set {x € (a,b] : f(z) # O} is countable and 

uzi(a, 6] = So{|f(2)| : x € (a,b]} < oo. Let f be a pulse function and for 

all a < b, let vs(a,b] = “{ f(z) : x € (a, d]}. 

25-2.8. Exercise Prove that vy is a measure with |vs| = |. The set of all 

pulse functions forms a conjugated vector space. The map f — vy preserves 

linear combinations and complex conjugates. 

25-2.9. Exercise Let {t,} be any enumeration of rational numbers on R. 

Show that the function f : R — R given by f(t,) = (¢/2)" and f(z) = 0 for 

irrational x, is a pulse function where i? = —1.
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25-2.10. Lemma The jump function J = U — LF of an increasing function 

Ff :R — Ris a pulse function. Furthermore for every a < 6, we have 

S{J(a) : x € (a, b]} < Ub) — F@). 
Proof. The set € = {x € (a,6] : J(z) #0} is countable. Take any finite subset 

ar, <2. <-+++ << 4y < bof E. Then we have 

YM = ey) — LD 
= U@n) — SI tay) ~ Vey) = Meni) $ U@) = Fa), . 

25-2.11. A function g: IR — K is discrete if there is a pulse function f such 

that for every a € IR we have 

S{f(@):0<2 <a}, ifa > 0; 
g(a) = 0, ifa=0,; 

—-S{f@):a<ax<0}, ife<0. 

Since g is the function induced by the measure vy, it is right continuous. 

25-2.12. Theorem Every increasing function F is the difference of a right 

continuous increasing function and a positive pulse function. Hence every 

function of finite variation is the sum of a right continuous function of finite 

variation and a pulse function. Furthermore, this decomposition is unique. 

Proof. SinceeO0 < U-F <U-L=J, F =U—(U—F) can be decomposed into a 

right continuous increasing function U and a positive pulse function U—F'. The 

second statement follows from decomposition of function of finite variation into 

increasing functions. Finally, suppose F = R — P where R is right continuous 

and P is a pulse function. Then G= R—U = P—(U —F) is a right continuous 

pulse function. For all a < 6, the set {x € (a,b ] : G(x) # 0} is countable. 

For every c € (a,6), there is a sequence {x;} in (a,b) such that 2; | e and 

G(x;) = 0 for every j. Since G is right continuous, G(c) = lim G(z;) = 0. Since 

c € (a,}) is arbitrary, G=0 on R,ie. R=U and P=U — F. Consequently, 

the decomposition is unique. oO 

25-2.13. Theorem Every right continuous increasing function F is the sum 

of a continuous increasing function and an increasing discrete function. Hence 

every right continuous function of finite variation is the sum of a continuous 

function and a discrete function. Furthermore, this decomposition is unique. 

Proof. Let pa, b] = F(b)— F(a) and v(a, b] = 7 {J (x) : x € (a, b]} for alla < b. 

From v(a, b] < U(b) — F(a) = p(a, b] by right continuity, € = ps — v is a positive 

measure. The functions C, D induced by the positive measures €, v respectively
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are increasing and right continuous. Clearly, F(x) = F(0)+ C(x) + D(a) for all 

zeéR. For alla < b, we have C(b) — C(a) = F(b) — F(a) — v(a,b). Since 

La) < F(a) < L(b) and L is left continuous, letting a 7 b we obtain 

C(b) — C(a) = F(b) — F(a) — {J (2): & € (a, 5} — U(b) — Lb) — J(b) = 0. 

Thus C is also left continuous. Therefore F(0)+C is a continuous function. 

This proves the existence. To prove the uniqueness, it suffices to show that 

every continuous discrete function G is zero. Let g be a pulse function on JR 

such that G(b) — G(a) = S“{g(z) : x € (a, b]} for all a < 6. Letting a T b, we 

have 0 = g(b) for all b. Therefore G = 0 by definition §25-2.11. Oo 

25-2.14. Exercise Let {r,} be an enumeration of rationals on IR. Let 

go(2) = ho(x) = 0 for all x € R. Inductively, define for each x € R, 

(x) = Gn—1(2), ife <r, ; 

InhF) = aay + 9n—1(2), if > Tn; 

d : 
an h. ) hn—1(2), if x < Tr 3 

n( ~ aoe + hn—\(2), ifa> Th. 

Prove that gn,hn converge pointwise to strictly increasing bounded 

discontinuous functions g, h respectively. Investigate their left, right continuity. 

Can you write explicit formulas for the decomposition of last theorem? 

25-3 Fundamental Theorems of Real Analysis 

25-3.1. Application of general measure theory to classical analysis provides 

simplification to old material, justification of our approach, and possible 

stimulation to further research and development especially in vector measures 

and integration on infinite dimensional vector spaces. Topics such as absolute 

continuity, density, singular measures, Lebesgue decompositions will be covered 

in this section. 

25-3.2. Every measure can be decomposed into absolutely continuous and 

singular parts with respect to the Lebesgue measure 1. We have proved that 

absolutely continuous measures induce absolutely continuous functions. A 

function g is said to be singular if its derivative exists and vanishes \-ae. The 

following lemma shows that singular measures induce singular functions. 

25-3.3. Lemma Let Ff’: R > R be a right continuous increasing function 

and v its induced measure on semi-intervals. Then F is differentiable at c € R 

iff v is differentiable at c. In this case, we have F"(c) = Dv(c).
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Proof. Let F be differentiable at c. For every € > 0, there is 6 > 0 such that 

pe Fo Piel < 
n-c 

for all 0 < | —e| < 6. Now for all a <c < b with b—a < 6, we have 

v(a, b] 7 _ FO)- F@ _ t Het - Fro] =|FO=FO _ me] 
< aa (SSP - Fo (b—c)+ POWFO) _ pre (0) <e. 

b-a b-c c-—a 

Therefore the measure v is differentiable at c and Dv(c) = F’(c). Conversely, 

suppose that v is differentiable at c. For any € > 0, there is 6 > 0 such that 

F(b) — F(a) u(a, b] 
SEE EEEAOEeeeediiioee? = _ < boa Duv(c) Nab] Du(c)} <e 

for alla<c<b withb-—a< 6. By right continuity of F, let b | c to get 

FO-F@ — Du(o)| < «. 
c—a 

Hence fF’ is left differentiable and consequently /eft continuous at c. By 

symmetry of left and right sides, F' is differentiable and F’(c) = Dv(c). ia) 

25-3.4. Theorem Every function F of finite variation is differentiable 

almost everywhere and its derivative is locally integrable. Furthermore, if 

F is increasing, then for all a < b we have F'(x)dx < L(b) — U(a). 
(a,6] 

Proof. Without loss of generality, we may assume that F is increasing. Since 

the measure induced by the right continuous function U is differentiable .-ae, 

U is differentiable A-ae. Next, suppose that U is differentiable at c. Then U 

is continuous at c and hence U(c) = F(c). For every € > 0, there is 6 > 0 such 

that Y@) — UO _ U'(c)} < € for all 0 < |x —e| < 6. Fix any such x. Since F 
r-—c 

is continuous A-ae, there is a sequence x; | x such that 0 < |x; —c| <6 and F 

is continuous at each xj. From U(x;) = L(x;), we get 

U(2;) — U(c) _ L(z;) — F() 
Ljp—-e Lj—e 

Ue)—e< 

Since ZL is left continuous, we have as 7 — oo 

L(x) — F(e) < F(x) — F(c) < U(x) — U(e) 

Z-e Z-c z-—c 

by considering x > c and x < ¢ separately. Therefore F' is differentiable at c 

and F’(c) = U'(c). It follows that F is differentiable \-ae and F’ = U’, A-ae. 

Define gn(x) = n[ F(x + 1/n) — F(a)] for all z € BR and all integers n > 0. 

Uo -—e< <U(e)+e 
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Since F is increasing, gy, is an upper function and so is liminfg, = PF’, -ae. 

By Fatou’s lemma, we have F'(a)dz < lim inf gndz for every a < b. 
(a,b) ° J(a,d] 

After simple change of variables, we obtain 

/ Qn dz -n [ F(x)dx — nf F(axjdx 
(a,b) (6,644) (a,a+t] 

<n | u(o+2) dx—n f U(a)dxr 
(b,b+2] n (a,att} 

1 
=U (o+ *) — U(a) = U(b) — U(a) 

n 
as n — oo. Thus we have 

F'(2)dx < U(b) — U(a) < 00. 
(a,b} 

Therefore F’ is integrable on (a, 6]. Since a < 6 is arbitrary, it is locally 

integrable on R. Finally take any @ € (a,b). Note that the integral over the 

null set {b} is zero. Letting 6 fT b, we have 

/ F'(x)dz = F'(x2)dz = sup F'(x)dx 
(a,6} {a,6) 8 Jap) 

< supg[U (8) — Ula)] < Lb) — U(@). a 

25-3.5. Theorem If F : R — K is an absolutely continuous function, then 

for all a < b we have F(b) — F(a) = [ F'(x)dz. 
(a,6] 

Proof. Since the measure ps induced by F is A-continuous, for all a < b we 

d, 
have F(b) — F(a) = pa, 6] = | Hav= [ F'd.. oO 

(a,b 4A (a,b) 
25-3.6. Theorem If an absolutely continuous function F : R — K is also 

singular, then it is a constant function. 

Proof. Since F is singular, F’(x) = 0, A-ae. Last theorem ensures that for all 

a<b, F(b) — F(a) =0. Therefore F is a constant function. Oo 

25-3.7. Theorem Every continuous increasing function F is the sum of an 

absolutely continuous increasing function and a singular increasing continuous 

function. Furthermore, this decomposition is unique up to a constant. 

Proof. Let pu be the positive measure induced by F’. Lebesgue Decomposition 

Theorem ensures = fo + fs Where jig, ts are positive measures which are 

absolutely continuous and singular to » respectively. Let A,S be functions 

induced by fa, respectively, Then F = A+ 5S + F(0). Since both F,A are
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continuous, so is S. Finally, A,S are increasing because pa, Us, are positive. 

The uniqueness follows immediately from last theorem. oO 

25-3.8. Theorem Every function G of finite variation can be decomposed 

uniquely into the form: G = G(0)+ P+D+A+S where P is a pulse function, 

D a discrete function, A an absolutely continuous function and S a singular 

continuous function satisfying P(O) = D(O) = A(O0) = S(0) = 0. Furthermore, 

if G is real, then so are all P,D,A,S; and if G is an increasing real function, 

then so are all D, A, S. 

25-3.9. Theorem Let f be a locally integrable function on R and for all 

zéRilet Fia)= / f(Hdt. Then F is absolutely continuous and F” = f, d-ae. 
a 

Proof. Without loss of generality, we may assume that f > 0. Now 

pA) = f a/4a, for every decent set A, is an absolutely continuous positive 

measure on R. It induces an absolutely continuous function G on IR. Then 

for all a < x, we have 

Fee) Fla)= | fdd= wa,z]= Gt) Ga= [ar 

that is | (f — G‘)d\ = 0. Since a < 2 are arbitrary, we have f=G"’, »-ae. 
(a,2] 

It follows from F(z) — F(a) = G(x) — Gta), F is absolutely continuous and 

Fl'=G'=f, A-ae. ia 

25-3.10. Exercise Last theorem is a global version. The following is a locally 

version of which the proof is practically identical with those in elementary 

calculus. Let f be a locally integrable function on R and let F(x) = fe f@®dt 

for all x € R. Prove that if f is continuous at b € IR, then F is differentiable 

at b and F’(b) = f(b). This provides an important method to evaluate integrals 

in terms of anti-derivatives. 

25-3.11. Exercise Prove the following integration by parts: If f,g are 

absolutely continuous, then for all a < b we have 
b b 

/ f(a)g!(a)de + / H(a)g(a)dz = f(b)9(b) — flag(a). 

25-3.12. Theorem Let F: R— R bea right continuous increasing function 

and yp its induced measure on the semi-intervals. Then F is a singular function 

iff uw is a singular measure.
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Proof. Let F be asingular function. Write u = wat, where fa, fs are positive 

measures which are absolutely continuous and singular to 4 respectively. Let 

F,, F, be functions induced by pa, ts respectively. Then 

F(@) = F(O) + Fy(x) + F(x) 

for all x € IR. Hence F, = F — F, — F(0) is absolutely continuous and singular. 

Consequently it is a constant, say a. Then F = FP, +a+ F(0) is singular. The 

converse is left as an exercise. Oo 

25-3.13. All our functions were defined on the whole line. Suppose that G is 

a real function defined on [a,b] only. Let H : R — K be given by 

G(x), if x € [a,b], 

A(a2)= Gta), ife <a, 

Gib), ifg>b. 

Applying results to H, we get information about G. 

25-3.14. Exercise Show that linear combinations and products of absolutely 

continuous functions are absolutely continuous. Show that every continuously 

differentiable function is absolutely continuous. 

25-3.15. Exercise Show that the function f : IR — R given by f(0) =0 and 

f(x) = x* sin(1/z?) for x # 0 is differentiable but the derivative is not integrable. 

Show that it is continuous but not absolutely continuous. 

25-4 Cantor Set and Function 

25-4.1. Cantor set is an uncountable compact null set without any interior 

point. Cantor function is a continuous increasing function with zero-derivative 

almost everywhere. Explicit. construction is given in this section. 

25-4.2. Recall that every real number x € [0,1] as a unique infinite decimal 

representation 0.212223 --- where the j-digit z; is an integer between 0 and 9 

inclusively. For example, 0.3 is rejected but 0.299... is accepted. We prove in 

this section that the Cantor set in decimal form contains all numbers zx € [0, 1] 

with every 2; = 0 or 9 only. 

25-4,3. Consider the diagram in IR? below. Let B = [a,b] x [c,d] be a box. 

Define h = 10%(b — a), k = (c+ d)/2, the head Hg = [a,a + hl, the tail 

Tg = [b —h,b] and the middle Mg = [a,b] \ (Hg UTg). The diagonal of 

the box B defines a function A : [a,b] — [c,d]. Also the diagonal of the
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lower box Lg = Hg x [c,k]; the upper box Ug = Tg x [k,d] together with 

the horizontal line from P = (a+ h,k) to Q = (b — h,k) defines a function 

fp: [a,b] — [e,d]. Clearly, fg is continuous increasing. Furthermore we have 

|fa(z) — A(e)| < 3d —c) for all x € [a,b] and fp(x) = O for all e © Mg. 

If we apply the same procedure to the lower and upper boxes, we get a new 

continuous increasing function g which is identical to fg on the middle Mg by 

sharing PQ. Obviously, |fa(x) — g(z)| < i(d —c) for all x € [a,b]. The family 

of lower and upper boxes is denoted by ¥g = {Lg, Ug} and the family of head 

and tail by K = {Hz, Tp}. 

Diagonal 

P=(a+h,k) 

function 
box 

function f 

function f 

functior 
Lower unction g 

Middle 

Q=(b-hk) 

Tail 
t 

a ath TF
 
at
e 

i 

~- k=(c+dy/2 

25-4.4._ Apply the above procedure to the box A = [0,1] x [0,1]. Then the 

head Ky = Ha = [0.00,0.099---] contains all numbers x with z; = 0 and 

Ky = T,4 = [0.9,0.99---] all numbers x with x, = 9. Hence Fi = Ky U Ko is a 

compact set containing all numbers z with z; = 0 or 9 only and has measure 

AF, = 2 * 10% = 1/5. The excluded middle G; = M, = [0,1] \ Fi; has measure 

1—1/5. The derivative of the continuous increasing function f; = f4 vanishes 

on G,. The family ¥; = ¥4 contains 2 boxes By = L, and Bo = Uy for next 

inductive step. 

25-4.5. Applying the above procedure again to the box Bo, then the head 

Koo = Hp, = [0.000, 0.0099 ---] contains all numbers x with x22 = 00 and 

Koo = Tg, = [0.09, 0.099 - --] all numbers x with x) 22 = 09. To By, we have the 

head Koo = Hp, = [0.900,0.9099---] contains all numbers x with x,;22 = 90 

and Koy = Tp, = [0.99,0.999.--] all numbers ¢ with 2,22 = 99. Hence 

Fy = Koo U Koo U Koo U Kog is a compact set. containing all numbers x with
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21,22 = 0 or 9 only and has measure AF, = 2? « (10%)? = 1/5*. The excluded 

middle G, = G, U Mg, U Mg, = [0,1] \ Fi has measure 1 — 1/5*. The 

derivative of the continuous increasing function f2, obtained this way 

vanishes on G2. Also |fo(x) — fi(z)| < 1/2? for all x € [0,1]. The family 

Fy =U{Fg: BEF} contains 2? boxes for next inductive step. 

25-4.6. In general, we construct a compact set F,, containing all numbers 

x with 2;,22,---,2, = 0 or 9 only and has measure AF, = 1/5". The 

excluded middle G,, = [0,1] \ Ff, has measure 1 — 1/5". The derivative of 

the continuous increasing function f, obtained this way vanishes on G,,. Also 

\fn(z) — fr—1(@)| < 1/2” for all x € [0,1]. The decimal Cantor set F = (\?., Fn 

is compact and contains exactly all numbers zx with every z; = 0 or 9 only. From 

AF < AF, < 1/5", F is a null set and hence cannot contain any interior point. 

Since {f,} is uniformly Cauchy on [0, 1], it converges uniformly to a continuous 

function f on [0,1]. It is called the decimal Cantor function. Since f = f, on 

G, for all large n, f’(x) = 0 on [0,1] \ F, that is f’ = 0 almost everywhere on 

(0, 1]. Therefore f is a singular function. 

25-4.7. The decimal Cantor set is uncountable. In fact, suppose to the 

contrary that 2” = O.c?afa}--- is an enumeration of all points in the 

decimal Cantor set where x? = 0 or 9 only. Define y = O.yy2y3--- where 

Yn = Oif ef =9 and y, =9 if 2? = 0. Since every digit of y is either 0 or 9, 

y is a member of the decimal Cantor set. On the other hand, y, 427. Hence 

y #2” of all n. This contradiction completes the proof. 

25-4.8. The decimal Cantor function is increasing. In fact, from the diagram, 

all f, are increasing. It is easy to show that |frye(z) — f,(x)| < 1/2” for all 

k > 0. Hence |f(x) — fr(z)| < 1/2". Now suppose 0 <a <b < 1. Then 

f(a) < fala) + 1/2" < f(b) + 1/2” < f(b) +2/2” for all n, that is f(a) < f(b) 

as required. Finally, from f(0) =0 and f(1) = 1, the range of f is (0, 1). 

25-99. References and Further Readings : Rudin-74, Swartz-94, Brown-69, 

Freilich, Takacs, Zamfirescu, Cater and Varberg. 



Chapter 26 

Spectral Measures 

26-1 Construction from Self-Adjoint Operators 

26-1.1. Let A be a self-adjoint operator on a (complex) Hilbert space H. In 

§14-6, we have constructed a functional calculus for continuous functions on 

the spectrum o(A) of A. We want to extend it to wider classes of functions 

starting with characteristic functions of semi-intervals from which we construct 

a special spectral measures as an example for the general study in coming 

sections. Our approach is more intuitive and geometrical but longer because 

identification of the dual space of continuous functions with compact support 

as regular measures is not available until later chapters. 

26-1.2. In this chapter, the universal set is denoted by X which is normally 

RR? essentially for p = 1,2 only; members of X by s,t; 8 a semiring over X; D 

the 6-ring of decent sets J, K generated by 8; IM the family of measurable sets 

M,N localized by ID; A, B operators on H; P,Q projectors on H; x,y € H and 

u,v, @ scalar coefficients. Hopefully this would resolve the notational conflicts 

from different parts of this book. Compare the following lemma with §20-1.4. 

26-1.3. Lemma Let f,, /,g be continuous real functions on R. 

(a) fn(A), f(A), g(A) are self-adjoint operators. 

(b) If f <g, then f(A) < g(A). 

(c) If f, | f everywhere, then f,(A) | f(A) strongly as n — oo. 

Proof. (a) follows from §14-6.12a and (b) from §14-6.12d. To prove (c), by 

Dini’s theorem f, | f uniformly on the compact set o(A). It follows from 

§14-6.6 that f,(A) — f(A) uniformly and hence strongly by §13-10.11. Oo 

26-1.4. Lemma Let f,,9, > 0 be continuous functions on R. Suppose that 

fn | f and gy, | g on R but f, g need not be continuous. 

(a) Both s-lim f,,(A) and s-lim g,(A) exist. 

(b) If f < g, then s-lim f,(A) < s-lim g,(A). See §20-1.5. 

(c) If f =g, then s-lim f,(A) = s-lim g,(A).
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Proof. Part (a) follows because bounded monotone sequence of self-adjoint 

operators is strongly convergent. To prove (b), observe that fim V gn is a 

continuous function on R. Letting m — oo in fm < fm V gn, we obtain 

Im 9n | f V 9n = gn. Hence s- lim Fm(A) < s- lim (fm V Gn)(A) = gn(A). 

Letting n — oo, we get (b). Part (c) follows by symmetry. 0 

26-1.5. Limits of decreasing sequences of continuous functions are called upper 

semi-continuous functions. Let f be an upper semi-continuous function and fy, 

be continuous functions with f, | f. Then f(A)=s- lim f,,(A) is well-defined 

independent. of the choice of {f,,}. In particular, if fis continuous, the new 

definition agrees with the old one. For analogy to upper functions, see §20-1.6. 

26-1.6. Lemma Let f,g > 0 be upper semi-continuous functions on R. 

(a) Monotonicity: If f < g, then f(A) < g(A). 

(b) Linearity: (f + g)(A) = f(A) + g(A) and (rf)(A) = r[f(A)] for every r > 0. 

(c) Product: (fg)(A) = f(A)g(A). 

(d) Commutativity: If AB = BA, then f(A)B = Bf(A) for every operator B. 

Proof. Let fn, gn be continuous functions on R with f, | f and gy | g. 

(c) Since f, > f > 0 and g, > g > 0, we have f,g, | fg. Hence we have 

(fagnA) | (f9)(A). Also (fngn)(A) = fn(A)gn(A) > fCA)g(A) strongly by 
§14-6.5b. Therefore (fg)(A) = f(A)g(A). 

(d) Since f,(A)B — f(A)B and Bf,(A) — Bf(A), the result follows from 

§14-6.7a immediately. a) 

26-1.7. Theorem Let f, be upper semi-continuous functions. If f, | f, then 

f is also an upper semi-continuous function with f,,(A) | f(A) strongly. See 

§20-1.8. 

Proof. For each n, there are continuous functions gmn | fx asm — oo. Define 

Am = Gmi A Gm2 A+++ A QGmm- Then hm > hme and GQmn > hm > fim 

for alln < m. For m — oo, we have f, > limh, > f. Next letting 

nm — oo, we get h,, | f. Hence f is an upper semi-continuous function 

approximated by the continuous functions hy. Since {fm(A)} is a decreas- 

ing sequence of self-adjoint operator bounded below by f(A), the strong limit 

of {fm(A)} exists. For all n < m, we get gmn(A) > hm(A) > fm(A). As 

m — oo, f,(A) > f(A) > s-lim f,,(A). Finally letting n — oo we obtain 

F(A) = s-lim f,(A). Oo
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26-1.8. A function f is semi-continuous if f is of the form f = f; — fz where 

fi, f, are upper semi-continuous. Clearly the set of all semi-continuous 

functions forms an algebra over the reals. Define f(A) = f(A) — f2(A). 

26-1.9. Theorem Let f,g be semi-continuous functions on R. 

(a) f(A) is independent of the choice of the representation. 

(b) Monotonicity: If f < g, then f(A) < g(A). 

(c) Linearity: (f + g)(A) = f(A) + g(A) and (rf)(A) = r[f(A)] for every r € R. 

(a) Product: (fg\(A) = f(A)g(4). 
(e) Commutativity: If AB = BA, then f(A)B = Bf(A) for every operator B. 

Proof. Let f = fi — fo < 9: — 92 = g where fi, f2,91,g2 are upper semi- 

continuous functions. Then f) +9. < 9; + fo gives f\(A)+9@2(A) < g(A)+ fo(A), 

that is f;(A) — fo(A) < gi(A) — mA). For (a), letting g = f we have 

Si (A) — fo(A) = 91(A) — 92(A) and hence f(A) is well-defined. We leave it 

as an exercise to complete the proof. Oo 

26-1.10. For every ¢ € R and 6 > 0, the spectral function 5 given by the 

following picture is continuous. More precisely, 

1 if s<t; 

W,6(s) = l+(t—s)/6 if t<s<t+6; 
0 if s>t+6é. 

The function py—oo,4] is upper semi-continuous because ~;1/n | 0,1}. Hence 

P(t) = p(~co,t\(A) is a self-adjoint operator on H. 

W —| (t, 8) ma Fab 8) 

t HS HB 

26-1.11. Lemma (a) P(t) is a projector for each t ¢ R. 

(b) P(é) is increasing in ¢. 

(c) If t < info(A), then P(t) =0. 

(d) If t > supo(A), then P(t) = J. 

(e) P(t) is strongly right continuous in f. 

The map P : R — P(H) is called the spectral resolution of A. 

Proof. (a) Because Peco] = Poot}, we have P(t)? = P(t). Since P(t) is 

self-adjoint, it is a projector. 

(b) If s <t, then peoo,s} S Pe-ooytl» OF PCS) = pc-o0,s1A) S pr—eo,ti(A) = P(t). 
(c) If ¢ < info(A), then ~~ 20,4)(0A) = 0 and hence P(t) = 0 by §14-6.5c.
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(d) If t > supo(A), then pyoo,4)(@A) = 1 and hence P(t) = I. 

(e) For every 6, | 0, the function d146,,5, is continuous. By sketching a 

picture, we have 16,6, | Poot}. From pc—co,t) S Pr—co,tt5n] S Wt15,,6n1 WE 
have P(t) < P(t+6n) < Wiu,,5,(A). Letting n — 00, we get 

POS s- lim | Pt + dn) < s- tim Wt45,,6,(A) = P-c0,t1(A) = PO, 

that is P(t+6,) — P(t) strongly as n — oo. Since 6, | 0 is arbitrary, P(é) is 

right continuous in t. Oo 

26-1.12. Theorem (a) For every a < 5 in R, let p(a, b] = P(b) — P(a). Then 

La, b] = Pra,p)(A) is a projector. 

(b) p is additive on the semiring of semi-intervals. 

(c) For all « € H, pz(a,b] =< p(a,bjx,x > defines a positive measure on 

semi-intervals. Note that we understand (a, b]z = {p(a, b]}x. 

(d) If a@ < info(A) and b > supo(A); then p(a, b] = J. 

(e) If B is an operator commuting with A, then B commutes with s(a, }]. 

Proof. (a) Since P(t) is increasing, P(b) — P(a) is a projector by §13-10.7. 

Next, P(6)—P(a) = pce, 6|(A) — P—00,a)(A) = { (00,61 — P(—00,a) }(A) = P(a,bi(A). 
(b) It is the charge induced by P. It also follows from §26-1.9c. 

(c) Since the function < P(t)x, 2x > is increasing and right continuous in t, its 

induced charge py, is a positive measure by §17-7.8. 

(d) follows from (c) and (d) of last lemma. 

(e) follows from §26-1.9e. Oo 

26-2 Extension of Spectral Measures 

26-2.1. Let H be a Hilbert space and P(#) all projectors. Let K be an upward 

directed semiring over X, that is for all J, K € K there is M € K such that 

JUK CM. Suppose that »: K — P(#) is a projector-valued charge. As a 

result of §17-2.10, the integral f fdy is defined for all K-step functions f with 

Sf esd = pd. 

26-2.2. Product Formula pJpK = p(J 1K) for all J, K € XK. 

Proof. Case 1: Suppose that JM K = @. We assume that XK is directed 

upward. There is M € K containing both J, K. Write M\ J\ K = Up D; as 

a disjoint union of sets D; e K. Then M=JUKU Ui D, is a disjoint union. 

Since pz is additive, we obtain uM = pJ+ pk + viel 4D;. Because every term 

is a projector, we have (uJ)(uK) = 0 by §13-9.8.
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Case 2: In general by Semiring Formula, there are disjoint D; € K such that 

Ps = 2) spp, and px = 72, pp, where s;,t; are either 0 or 1. Then, 

PINK = PIPK = (Syn $5 PD; )(Sopea ERPDu) = 205 kat SithPD; PD: 
= 1 sikyep, because D;’s are disjoint. 

By case 1, we have wD, uD, = 6;4D;. Hence 

(uI\uK) = (f psdp)(f pxdp) = (OF 8) ¢Dj)O2 ey teeDe) 

= iat Site uDj Dy = D521 8itiHD; = f Wy 83tipp, du 
= f pinkdu = WI OK). ao 

26-2.3. Corollary If Jc K, then pJ < pK. 

Proof. From pJwK = uJ K)= wJ, the result follows by §13-10.7. oO 

26-2.4. Example In @,, for each integer n > 1 let e, = (d1n, bon, 53n, +--+) and 

Pir =< £,€n > €n. Consider the semiring § consisting of all subsets of R. 

For each J € Y, let pJx = {P,z:ne€ J}. By §14-5.7, w: 9 > P(&) is a 

charge. For J;, = (k,00), we have Jy | @. Since ||uJ,|| = 1, it is impossible to 

have wd, — 0 in norm. 

26-2.5. Exercise Prove that the map wJ : 2,d0R) — L,(IR) given by 

(uJ)x = xp for every semi-interval J defines a projector-valued charge u on 

the semiring of semi-intervals. Show that yp is not of finite variation. 

26-2.6. Asa result, it is impossible to expect any theory of projector-valued 

measure with convergence in norm. This is why vectors have to play a crucial 

role. Write usyJ =< pJz,y > and us = zz for all z,y € H and J €¢ K. We 

understand pJx = [u(/)]x because Jxz makes no sense at all. The following 

formula is a simple result of §13-1.4c. 

3 
26-2.7. Polarization Formula 4p, = > 0 Tbe amy where 7? = —1. 

n= 

26-2.8. Lemma (a) icy is sesquilinear in (x,y). We also have flys = Uzy- 

(b) pie is a positive charge on K and p.X < ||z|j*. 

(c) fizy is a charge of finite variation. 

(d) |feyl(J) < ||| |ly!| for all J € &. Hence zy is a bounded charge. 

(e) [May] < 3 (He + Hy)- 

Proof. (a) To prove pyr = pzy, for every J € K we have 

Byrd =< py, 2 >=< y, pJe >a< plat, y >= wz, J.
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(d) Let J = an K; be a disjoint union where J, K; €¢ K. Because K; are 

projectors, we have 

Dia ey Kil = Dy | < eKie,y > |= | < ew Kia, pK > | 
<3 eK) leKiyll < VO eRe? VO le Kyl? 

= JU <pKig,c > JO < uKiy,y > 

=V<pJae> J<plyy> = lete|l lletyll- 
Hence pizy is of finite variation with |ucy|J < ||uJz|| ||uJyl| < [zl] llyll. In 

particular for J = X and y =<, we have (b). 

(e) IpeylI < uF) etyl| < 4(|etx||? + [le Fa|I) 
=h(< plac > + < ply,y >) = 5 (ua + by). o 

26-2.9. A charge p : K — P(A) is a spectral measure if yrzy are complex 

measures on K for all z,y € H. By polarization formula, if yz is a positive 

measure for each z € H, then p is a spectral measure. In last section, we 

constructed a spectral measure on the semiring of semi-intervals associated 

with each self-adjoint operator. Now we continue in general setting. Let u be 

a spectral measure on a semiring 8 over a set X. 

26-2.10. Theorem Every spectral measure pu on § has a unique extension to 

a spectral measure v on the d-ring ID generated by S. 

Proof. Every pz, has a unique extension vz, over ID. For every D € D, 

define yp : H x H — C by gp(z,y) = veyD. Then for every J € & we 

obtain VeryzJ = HesyjzI = Mazd + byzd = VezJ + vyzJ. By uniqueness of 

extension, we get Veyy,,D = vz,D + vy,D for all D € D, that is pp(z+ y, 2) = 

yp(2,z)+ ypty, z). Similarly we can verify all other conditions to show that 

yp is a sesquilinear form on H. Next, because D is the 6-ring generated by 5, 

D is contained in a finite union of sets in 8. Since 8 is directed upward, there 

is J €$ with Dc J. For the positive measure v,, we have 

gp(2,2)=¥,D= fepd, < f psdv, = fprdts =< pla, x >< ||z|I?. 

Hence the sesquilinear form yp is continuous. There is an operator yD such 

that < vDz,y >= pp(2, y) = vzyD. It is an exercise to show that v is additive 

on ID. Next, for every J € §, uzJ > 0 because yJ is a projector. The unique 

extension v, of jz > Ois a positive measure, i.e. < vDx, x >= p,D > 0. Hence 

vD > 0. Finally, we have to prove that vD is an idempotent for every D € D. 

Let K € 8 and z= pKa. Clearly €: D — € given by ED =< (DN K)z,y > 

is a measure. For any J € 8, we have by Product Formula,
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EJ=< UI K)t,y >=< WIN A)e,y >=< pl pKa, y >= peed = Ved. 

Thus =v,, on D ie. <u(DN K)z,y >=< vDpKa,y >=< vK2,(vD)*y >. 

Again, both < (DN M)sz,y > and < vMz,(vD)*y > are measures in M € D 

and they are equal on 8 and hence on D. Thus, 

<Uu(DNM)z,y >=< uMz,(vD)*y >=< vDvMz,y >. 

Since x,y € H are arbitrary; we have the product formula: yDuM = v(DNM). 

In particular, (yD)? = yD. Therefore vD is a projector. The uniqueness of y 

follows from the uniqueness of vy. Oo 

26-2.11. Theorem Every spectral measure vy on ID has a unique extension 

to a spectral measure 7 on the family IM of all measurable sets. 

Proof. Since each v, is a positive measure on D, it can be extended to a 

positive measure 7, on IM by 7M = sup{y,D : M > D € D} 

as in §20-2.2a. Since vzD < |[x||?, we have 72M < |lz|? < co. Thus 

Tey = 4i” Yo Tet i"y is a complex measure on IM where 7? = —1. Next, 

let z,y,z € H; M € IM and e > 0 be given. There are J,,Kn,Qn € D such 

that for n = 0,1,2,3 we get 

on, M<v..jn,dJnté&, In cM, Ta + ity xot+ivy 

Tae 4p {hgM <p 4 mz Kn te, K,CM; 

and Te 4 (yt 2) < Yo 4 iy + z)@ntté, Qn cM. 

Then D = Ue o(In U Kn UQn) is a decent subset of M satisfying 

OS my 4 ityM Sug inyD te; 

O< ty ingM <p, yn ,DteE; 

and OS my mye zy Ses ryt aQPte- 

Observe that 

|T2,ys2M — TryM —42,M| 

cn 
= Dae {m4 imqy + 2M - Te 4 ity M — tevrrelt} 

3 

s a {on 4 im(y +P - Yor 4 iryD — Main D}| 

3 

+o ie +i (yt ris Ve ity st yD 

+e Yes imyP- Ty 4 iy M 
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3 
+e a | Vg 4 §nzD — Te 4 itz M| 

< |Vz,yezD — VeyD — vz,D| + 12e = 12. 

Letting « | 0, we have tey2M = tM +a2.M. Similarly, we can 

verify that 7,,M is a sesquilinear form in (x,y). Since its associated quadratic 

form is bounded, there is an operator 7M on H such that < aMz,y >= tryM 

for all z,y € H. Because < tMax,x >= 1,M > 0; cM is a positive operator. 

Next, we claim vJaNzx =2(J9N) for all J € D, N € M. Indeed, let ¢ > 0 

and « € H be given. Write y = vJx. Choose K € ID such that K C N and 

inyN <u inyK + for n = 0, 1,2, 3. By §20-2.3, we may also assume Teta c+ 
(ION) < aiJnk)+e. Hence 

3 
0! Te 4 inyN - mI) 

3 
= log tes ty — melIN wo 

+e lr Te 4 iPyN =m 4 inyk| 

+ |t#2(J OK) — te( J N)I 

3 
=o gh Mart ity — vel OK) 

= |VayK — (JNK) +Se2|<vK2,y>-—<uJnK)z,x > | +5e 

|fayN — t2(J NN) = 

+5e 

=|<vKa,vJ¢2 >—-—<v(JN K)z,¢ > |+5e 

=|<vJvKzr,2>—-—<v(JOK)z,2 > |+5e =Se 

because vJ is self-adjoint and the product formula holds for ». Letting € | 0, 

we have tz,N = 7,(J9N), that is < vJaNa,x >=< (J 9 N)z,2 > for 

allx € H. Therefore vJaNx = n(J 1 N) as claim. Repeating the same 

process, we can prove that MaN = 7(M 1 N) for all measurable sets M,N. 

In particular, 7M is an idempotent. Consequently, 7M is a projector. The 

uniqueness follows because the measures are finite. a) 

26-2.12. Theorem If an operator B commutes with pJ for every J € 8, then 

B commutes with 7M for every measurable set M. 

Proof. For all z,y © H and J € 8, we have pz,p-y(J) = < pd 2, B*y > = 

< Bul ty >= < (uJ)Ba,y > = wBey(J). Thus pz,p-y = UBx,y as scalar 

measures on $8. By uniqueness of extension from $ over D, we obtain 

Vz,Bry = ¥Bz,y Now fix z,y € H and M € M. As in last proof, choose a 

decent subset D of M such that for n =0,1,2,3 we have
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OS Ty MB yM <p, im BryD te 

and O< T™Be +iMy+ 2M < YBa +itysz)Pté . 

Observe that 

\Te, Bey M — TBxyM| 
3 

= ea! rps mptyM ~ "Br sing esM}| 

3 
Ss Ds a” {vgs imBryD YBa +ityt »?} 

3 
+o lens im Bry _ Vag mpry?| 

3 
+o eae +it(yt QP — Br + iM(ys 2M] 

< |v, B+yD — vpzyD| + 8¢ = 8e. 

Letting ¢ | 0, we get 

< BrMz,y > =< 1Mz, B*y > = Tz,B+yM = B2yM = < (aM)Bza,y >. 

Since 2, y are arbitrary, we have Bn M =(xM)B. oO 

26-2.13. After this section, we identify v,a as yz for convenience. The treat- 

ment below requires merely bounded complex measures on o-algebras although 

we continue to use the term 6-spaces in order to be consistent within this 

book. It is a challenge to create new results by taking the full advantage of 

our machinery of vector measures on 6-rings. 

26-3 Spectral Integration 

26-3.1. Let y be a spectral measure on a 6-space X into a Hilbert space 

H. Note that our definition of measurable sets and functions is independent 

of any measure. Because 4 has been extended to all measurable sets, the 

integral of a simple function has been defined by §17-2.10 is an operator on 

H. A measurable function on X is p-integrable if it is zey-integrable for all 

x,y © H. Let L(y), Li (yey) denote the sets of all y-integrable functions and 

Hzy-integrable functions respectively. Clearly Ly(u) = {Li(uzy) : 2, y € A} is 

a conjugated complex algebra under pointwise operations. 

26-3.2. Theorem Let f be a y-integrable function. If f, are simple functions 

with f, > f and |f,| T |f|, then f fudu > f fdy weakly to a unique operator 

{fd on H such that < f fdu x,y >= f fdpry for all x,y € H. We shall
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prove later that f frdu— { fdy strongly in Spectral Dominated Convergence 

Theorem. 

Proof. For all z,y € H, |f| is |u2zy|-integrable. By Dominated Convergence 

theorem, < f frdu t,y >= f faducy — f fduey. By §13-10.13, the weakly 

Cauchy sequence {f f,du} of operators converges weakly to some operator 

J fdp, that is < f fradu x,y >< f fdu x,y >. Uniqueness of limits gives 

<ffdpr,y >= f fdpey for allz,y € H. Finally if A is any operator satisfying 

<At,y >= f fducy for all z,y € H. Then < f fdu x,y >=< Az,y > for all 

x,y € H. Consequently f fdy = A. This proves the uniqueness too. oO 

26-3.3. Theorem If f is p-integrable, then so is its conjugate f7. 

Furthermore we have f f~du=(f fdp)*. 

Proof. It is an exercise to show that f~ is y-integrable. For all z,y € H, 

<ffodp x,y >= f f-dpsy =(f fduzy)” =(f fdpys)- 
=< ffdwy,c >-=< a, f fdwy >=< (f fdu)* ty >. O 

26-3.4. Corollary If f is real p-integrable, then f fdy is self-adjoint. 

26-3.5. Product Theorem If f,g are y-integrable, then so is the product fg. 

Furthermore we have f fgdu =(f fdw)(f gdp). 

Proof. Let fr,gn be simple functions such that fr > f, gn > 9, |fmi T IAI 

and |g,| 7 |g|. By Step Mapping Theorem, write fim = a axiom, and 

Qn = a Bjem, where a;,8, € © and M; are disjoint measurable sets. 

Observe that 

(f fate) (Sf ondit) = X55 1 Be (f pm, du) (f en, de) 
= ja 0 Pee M UN = 905 5, 03 8eu(My O Ne) 

= 30; 0783 uM; because M; are disjoint 

= [Xj 058j)em,dh = f fmgndp. 
For all z,y € H; letting m — oo with fixed n, we have 

((f fay) (fondu) ey) = lim ((f frau) (fondu) 2,4) Mo 

= lim) < ffmondwz,y >= lim f fmgnduey = f f9ndpey 

because |fmgn| <|fg| and fg is pry-integrable. From 

<(f fa f gdpz,y >=< f gdp 2,2 > where z= (f fdu)*y 

=f 9dper = lim f gndjter= lim < f gndp 2,2 >
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= lim < fondu x,(f fdy)ty >= lim < (f fp) f andy x,y > 

= lim) < f fondp x,y >= lim f fondpay = f fodpey 

=< f fgdp x,y > for all z,y € H; 

we have (f fdw)(f gdu) = f fgdp as required. Qo 

26-3.6. Corollary If f,g are p-integrable; then f fdu, [ gdu commute. 

26-3.7. Corollary For every p-integrable function, f fdu is normal. 

26-3.8. Corollary ||(f fdy)z||? = f |f\?dus for every f € Li(u) and z € H. 

Proof. \\(f faye? = < (f fdude,f fdwye > = <(f fdpy-Uf fd, 2 > 
=<(f fd (f fdjz,a>=< ff fduarc> = f | fidpe. Oo 

26-3.9. An operator is said to commute with u on a family K of measurable 

sets if it commutes with uJ for every J € K. Two spectral measures commute 

on K if pJ commutes with vk for all J) K © K. When X is not mentioned 

explicitly, we understand that K is the family of all measurable sets. In 

§26-2.12, it suffices to test for a smaller class 8 of measurable sets. 

26-3.10. Theorem If an operator B commutes with p, then B commutes 

with f fdy for all -integrable function f. 

Proof. Choose simple functions f, — f with |f,| f |f|. Write f, = wha 5PM; 

where a; € © and M; are measurable sets. Then we have 

Bs frdu=B Dye aj; = a a5 BuM; 

= Dh Oj [(4My)B) = (Sj, oj ¢My)B = (f fad) B. 
Hence for all x,y € H, we obtain 

f fnduzpey=<ffaduz,Bty>=<Bf frduz,y> 

=<(f fadu)Ba,y >= J frdusey - 
The scalar dominated convergence theorem shows f fdyz,a-y = [ fdupz,y. 

Thus we get 

<Bf fdpz,y>=< f fdpa, Bry> 

= f fdpe,B-y = f fdpaey =e< (f fdu)Bz,y >. 

Therefore B f fdu=(f fdu)B. QO 

26-3.11. Corollary If two spectral measures 4,7 commutes on a semiring 

8 over a set X, then for every y-integrable function f and every v-integrable 

function g we have f fdy- f gdv = f gdv- f fdp.
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26-4 Null Sets of Spectral Measures 

26-4.1. Let ys be a spectral measure on a d-space X into a Hilbert space 

H. A measurable set is y-null if it is w2y-null for all x,y € H. As a result of 

|Mey| < 4(ua+Hy), it suffices to be jz,-null for all 2 € H. Furthermore if J = 0, 

then pry/J =< uJz,y >= 0 and hence J is y-null. Since countable unions of 

penull sets are u-null, the Banach space L,,(1) is well-defined by §§21-5.1,2,3,4. 

In particular, the u-essential sup-norm of a measurable function f is given by 

lf lloo = inf . op, |f(x)| where N runs over all j-null sets. The following results 

distinguish projector-valued spectral measures yz from the others. This might 

be the reason why some writers such as [Berberian-66] and [Meise] starts with 

bounded measurable functions. 

26-4.2, Theorem Lu) = Li(u) and || f fdyl| = ||flloo for every f € Ly (ys). 

Proof. Since every jizy is a bounded measure, every f € Loo is 4zy-integrable. 

Hence L.(4) C L, (4). Next observe that for all « € H, 

Il f fap all? = ff Pdus < fF eodue = WF llome(X) < IFS’, 
that is || f fdul| < ||flloo. Conversely, take any f € L,(j4). Let u; = || SJ fdull+;, 

= {te X:|f@®| > uj} and M={t eX: |fO! > || f fdyll }. Then for all 

az € H, we have 

mM? = fry, dus < fy, wy Pause Suz” Sf fPdpe 

Suz? ll f fd xi? < uF? ll f Faull, 
that is ||~M;|| < uy" f fdyl| <1. As 4M; is a projector, we have uM; = 0. 

Thus M, is p-null. Consequently M = Ur M; is p-null. In other words, 

f € Loo(u) and IF lloo < I f fapl. a) 

26-4.3. Corollary For all f,g € Li(u), f fd = f gdp iff f = g, p-ae. 

Proof. It follows from ||f — glloo =|| [Uf — 9) dull = || [ fdu — f gdp|l = 

26-4.4. Theorem sup / fds = inf sup f(t) for every f € L,(4) where N 
\jxI|<1 N tex¢eNn 

runs over all y-null sets. In particular we have || flo. = ne | |fldpr. 

Proof. Let @ = infy SUPpe X\.N Fé). Similar to p15 3a, it is easy to show 

that f < 0, p-ae. Take any ||z|| < lin H. Since yz is a positive measure, 

we have f fdu, < f @duz = Our.X < Aliz||? < 0, that is SUP |x| <1 ffdpr <0. 

On the other hand, because f € Lo, we have g = ||fllo +f > 0, p-ae.
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Without loss of generality, we may assume that g > 0 everywhere and hence 

h=VJG © Loo(u) = [y(u). Observe that 

2 2 

[due =| f ha sup f adux= sup f 1djig= sup = |All 
=inf sup A(t’ =inf sup g(t)=||fllot+inf sup f(t) = |lfllo+4 

N tex\N N teX\N 

lel] lz||<1 Izll<2 

N tex\Nn 

where N runs over all ji-null sets. Also 

dpe = co + f dps = volte ds 
ow fo a= sup ik [loo + Fate = sup (fii t +f Hs) 

< ool ||" diz) < co dpi. 
< sup (ust i|z"| ft i=) IIflloo + sup fs ” 

lzIl<1 

Hence @ < supyay<i f{ fdu,. This completes the proof. oO 

26-4.5. Theorem Let f,g be real y-integrable functions. Then f < g, p-ae iff 

f fdu < f gdp. In particular, if f > 0, u-ae; then f fdp is a positive operator. 

Proof. (=) By linearity, we may assume g = 0. For N runs over all p-null 

sets, we have inf sup f()= sup f fduz = 2, < f[fduz,e > <0 from 
N teX\N lz1<1 Iz< 

which we get f < 0, p-ae. 

(=) By linearity, it suffices to prove that if f > 0, p-ae, then f fdu > 0. 

Choose simple functions 0 < f, 1 f. Then lim f fadu — f fdp weakly. Write 

fn = Ve aj;pm, Where a; > 0 and M; are measurable sets. Then for every 

xz € H we have 

<f fd a,c >=lim < f fradu x,2 > = lim), a; < f em;du 2,2 > 

= lim), a; < pMj2,2 >= lim), a5||uM;2\|? > 0. 

Therefore f fdp > 0. oO 

26-4.6. Spectral Dominated Convergence Theorem Let f,,, f be measurable 

functions on X. Suppose fn — f, p-ae. If there is a p-integrable function g 

with |fn| < g, #-ae for all n; then all f,, f are z-integrable and f frdu— f fdu 

strongly as n — oo. In particular, the convergence in §26-3.2 is strong. 

Proof. For all z,y € H; we have f, -> f and |f,| < g, Ucy-ae. By scalar 

dominated convergence theorem, all f,,f are fzy-integrable and hence 

p-integrable by definition. Next, from | fn, — f|? < 4g, u2-ae; we obtain 

If fade — f fay) 2)" = f [fn - fPdpe 0, 
that is f fadu — f fdy strongly. a)
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26-4.7. Corollary If J, | K or J, | K as measurable sets, then uJ, — wk 

strongly. 

26-4.8. Spectral Integration Term by Term Let {fr} be a sequence of 

measurable maps. If the upper function >", |fn| is finite-valued p-ae and 

is y-integrable, then all f, and baa fn are p-integrable and 

/ do nde = / fndp , strongly. 

Proof. From | 77), f fal < 3202, fal, u-ae; we have 

[x fadps - J aim. net fad = lim, | ent fadp ; strongly 

= im, er [ tndu= ae [tod 0 

26-4.9. Corollary 4 is strongly countably additive on measurable sets. 

Proof. Let J =, Ky be a disjoint union of measurable sets. Then we have 

ps = >..2, pK, Since p is defined on all measurable sets, p3 is j-integrable. 

The result follows immediately from last theorem. oD 

26-4.10. A spectral measure p is normalized if ~X = I. From §26-1.11d, the 

spectral measure of a self-adjoint operator is normalized. 

26-4.11. Theorem Let y: be normalized. Then f fdp is invertible iff 

\f| = @ > 0, peae for some @. In this case, we have (f fdu)~' = f(l/f)du. 

Proof. (<=) Let N be a p-null set such that |f(t)| > @ for allt ¢e X \N. Then 

g9= fpx\nt pn =f, prae. Hence 1/g interpreted as 1/f is defined everywhere 

and is measurable. Now f fdp [0 /g)du = f gdu [U/g dp = fldu = pX =I 

and similarly [(1/g)du f fdu = I show that f fd is invertible with the 

required identity. 

(=>) Assume that A= f fdy is invertible. For Q = f7'(0), fn = f+ilsgn(f)+pql 

is measurable by §19-6.2. If t € Q, then f,(t) = + and if t ¢ Q, then |f,(t)| = 

(\f| + +)\sen(f)| > 1. Hence A, = f fndu is invertible and AZ! = f(i/fa)dp. 

From ||An — All = | {Un ~ S)dull = [lfn — flloo < 4 >» 0, we have by §8-6.4 
Ag! —A7 || > 0. Thus ||(1/fm)—-(1/frdlloo = |Am! — An! || > 0 as m,n — oo. 
Therefore 1/fpn — g in Loo(). From f, — f, we obtain g = 1/f, u-ae. Let 

a = |lglloo + 1. There is a y-null set N such that |g] < a on X \ N, that is 

|f| = /e) > Oon X\N. ia 

26-4.12. Theorem Let yu be normalized. Then A = f fd is unitary iff 

If| = 1, H-ae. 
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Proof. Observe f |f(?du = f f-fdu=(f fau)* f fdu = A*A and I = f idp. 

Hence A is unitary iff A*A = A*A=J iff f f- fdu= f dp iff |f|? = 1, p-ae, Le 

FI = I, Hae. Oo 

26-5 Product Spectral Measures 

26-5.1. Let 8,3 be semirings of semi-intervals over X = IR“, ¥Y = R” and p,v 

be projector-valued charges on 8,7 into a Hilbert space H respectively. We 

assume that for all J €¢ 8 and K € J we have pJvK =vKyJ which is denoted 

by (u x v)(J x K). We use general notation because most of this section has 

been generalized to locally compact spaces. 

26-5.2. Lemma ju x rv is a projector-valued charge on the semiring 8 x J. 

Proof. Let Jo x Ko = Uy J; x K; be a disjoint union where J; € 8 and 

A; € T are all nonempty. By Semiring Formula, there are disjoint nonempty 

sets M; € 8, disjoint nonempty sets N, € J and a,;,8;, are 0 or 1 such that 

py, = ve aijpm, and px, = ) 4.) Biken,. Observe that 

Fe) Db=1 005 50K PM, ON, = (225) 003M, OO hey GowPny) 

= PJoPKo = doiet PJ: PKi = Dopet Dohet Qovet ij BikPM, PNy- 

Evaluating at any point in M; x Nx, we obtain a9; Sox = 73") Oi Bik- From 

(u x v\(Jo x Ko) = pJov Ko = f padu f px.dv 

= (f 5-1 oem df hy Boren, dv) 

= ye Done 207 50% f pm; du f pn, dv 

= a1 oer Dore Oj Bik f pmt,du f pw, dv 

= Vin Sha oem, de f The Been 
= nS pad f pxdv = 30 whwkG = Su x Ji x FG) 

px vy is additive on 8 x J. Because pJvK = vKpJ, it follows from §13-9.6 

that ys x y is projector-valued. Oo 

26-5.3. For the rest of this section, we assume that jz, v are spectral measures. 

26-5.4. Theorem 4 x v is a spectral measure on X x Y = R“*”, 

Proof. To simplify the notation, let 7 = ux v. For every « © A, mz isa 

positive charge on the semiring 8 x T. It suffices to prove that 7, is countably 

additive. Let J = UP, Ki be a disjoint union where J, K; are nonempty sets 

in 8 x J. By §17-2.12a, we have 0%, 4,K; < 1,J. To prove the reserve
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inequality, let e, € X and e, € Y be the vectors with all coordinates equal to 

one. Draw pictures in order to visualize what are 

J = {a,b} x (a, 8), I™ = (a+ Leu, 1 x (at Len, 8], 
K; = (ai, bi] x (au, Bi], KT = (01,0 + Leu] x (oi, 8 + Lev. 

Since p(a + teu, b] > p(a, bj] and vat te, f] — (a, 8) strongly, we obtain 

aJ™ — «J strongly. Similarly, we also have tK™ — 1K; strongly as m — oo. 

For every € > 0, there is mp such that |laJ™xz — aJa|l| < e€ and 

|p KP 2 — Kj2|| < /2* for all m > mp. Hence 

|t2J™ — tJ | =| <aJ™2 —aJz,2 > |< |\r7I%2 — rJ2|| |x|] < ellzl|, 

that is t,J < t2J™ +e||z\| and similarly rK7” < wK;+e||z||/2°. Next, clearly 

we have 

[a+ dey, b] x [at Ley, BIC UR (ai, bi + Leu) x (04, Bi + Zen). 

By compactness, there is n such that J™ C Uni Ki. By §17-2.12b, we have 

TeJ <I + é|\z|] < 0, aK +t elle] 

< Dh te Ki + 2el|zl| < OP, te Ki + 2e hla). 
Letting < | 0, we have 7, J < S73, 7,K;. Therefore each 7, is a measure. By 

polarisation formula, all 7,, are measures on § x J. ia) 

26-5.5. Exercise Suppose that pz x v is extended to a spectral measure up @v 

on the measurable sets of X x Y. Prove that (u@v)(M x N) = pMvN for all 

measurable sets M,N in X,Y respectively. 

26-5.6. Corollary If v is normalized on Y, then for every p-integrable 

function f is 4 ® v-integrable with f f(s)d(u @ v)(s, t) = f f(sduts). 

Proof. Let f, be simple functions such that f, — f and |f,/| | |f|. Write 

fr = ye, a,pj, where J; are measurable subsets of X. Then for every x € H, 

we have 

<f fals)d(u ® vs, Oz, 2 >= an a; < f py,(s)d(u @ v\(s, Az, x > 

= a ai < f paxy(s, Od(u ® VY\(s, Daz, 2 > 

= ~, a, <(U@V\( J; x Y)z,2 >= ye, a; < pdvY x, 2 > 

= hay < phe, 2 >=< f fa(s\du(s)x, x >. 

Similarly, f ifrlde@ We =f \faldue < f |flduz < oc. By Monotone Conver- 

gence Theorem, f is (4 @v),-integrable for all x, i.e. 4@v-integrable. Letting 

nm — co, we obtain < f f(s)d(u@ v\(s,ba,2 >=< f f(s)du(s)z,2 >. Since 

x € Z is arbitrary, the result follows. Oo
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26-5.7. Exercise Prove that if yz, are normalized, then so is u@v. 

26-5.8. The complement of the union of all open p-null sets is called the 

support of yu. It is denoted by supp(z). Note that if ¢ € supp(u), then every 

open ball B(¢) is not y-null. 

26-5.9. Theorem The union N of all open p-null sets is p-null. 

Proof. The open set N is the union of some sequence of compact sets Ky. 

The family F of all open p-null sets is an open cover of K,. There is a finite 

subset 9, of ¥ such that K, C US,. Therefore N is contained in the countable 

union Ur Gp of p-null sets. Consequently, N is p-null. 5 

26-5.10. Exercise Prove that if f = g, p-ae on supp(j), then f fdu= f gdp. 

Therefore we may work with functions defined only on supp(j). 

26-5.11. Exercise Prove that if 4 has compact support, then every continuous 

function f is u-integrable. 

26-5.12. Exercise Prove that supp(u @ v) C supp(yz) x supp(v). 

26-6 Spectral Measures of Normal Operators 

26-6.1. Let y be a normalized spectral measure with compact support on 

X = K into a Hilbert space H. In this case, pu is said to be real or complex 

depending on K = R or K = C respectively. Since every continuous function 

f on X is p-integrable, f fdy is well-defined. In particular, A = f Ady(A) is 

a normal operator. In this case, y is called the spectral measure of A. In this 

section, we study the relationship between A and yu. As a result of the following 

uniqueness theorem, the only real spectral measure of a self-adjoint operator 

is obtained from §26-1. 

26-6.2. Uniqueness Theorem Let, yz, v be normalized spectral measures on 

X = K with compact support. If f Adp(A) = f Adv(A), then p= v. 

Proof. Let K = supp(s) U supp(v) and let ¥ be the vector space of continuous 

functions f on X such that f fdu = [ fdv. Because both p, v are normalized, ¥ 

contains all constant functions. Given that h € ¥ where h(A) = A, F separates 

points of K. Also F is a self-conjugated algebra by §§26-3.3,4,5. Hence § is 

dense in the Banach space C,.(K) of continuous functions on K with the sup- 

norm. For every continuous function f on X, there are f, € F such that f, > f 

uniformly on K. Hence || f f,du — f fdu|| > 0 and || f fadv — f fdvl| > 0.
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For f, € F, we have f € ¥. Next, for all x,y € H, both pry, ¥zy are Measures 

on X such that f fds, = f fdvzy for all continuous functions with compact 

support and hence pgy = Vey. Therefore we obtain p= v. D0 

26-6.3. Theorem If jz is the spectral measure of a normal operator A, then 

we have o(A) = supp(j). 

Proof. Take any ¢ ¢ supp(z). There is B(t,r) c X \ supp(u). Then we have 

| Az —tz|/? = | fA-—bdpQ) al]? = f |A—tPdurOQ) > fr'dus = r*||x||*. Hence 

A —tI is bounded below. Conversely suppose ¢t € supp(yu). For every r > 0, 

we have J #0 where J = B¢t,r). There is a unit vector x € (uJ)(H), that is 

x= pJa. Hence A—tI cannot be bounded below because 

|| Az—ta|? = || fA-DdpQ) f psQ)duQ) 2? = || f[A—DesIAdvO) al]? 
= f\A-tPpsdus < fred, =r? lal’. 

Therefore t € supp() iff A—t] cannot be bounded below iff ¢ is an approximate 

eigenvalue by §14-2.2 iff t € o(A) by §14-2.4. oO 

26-6.4. Theorem For every continuous function f on KR, we have 

f(A) = f fdp where f(A) is defined by §14-6.5 and f fd by §26-3.2. In 

particular, we have A= f tdy(t). Therefore, yu is the spectral measure of A. 

Proof. Firstly, assume that f is a real function. Choose a,b € R such that 

a < o(A) < 6. Subdivide [@,)] with a = co < c¢ < --- < cp = b where 

cj = at j(b—a)/2”. Define a; = sup{ f(t): ¢j-1 <t < cs}, B; = max{a;, 0541} 

and fn = i Oj Ples—1,¢5 1+ 
fy, horizonal 

line segments 

marked by o@ <4—g,, top line 
a 

9 9 

Tf 
As shown in the above picture, define g, by joining the points (c,,8;) and 

extend it outside [a,b] to a continuous function on R. From f,, | f on o(A), 

we have f frdu J fap, strongly. Since f < fn < gn on o(A), we have 

F(A) < fr(A) < gn(A) by §26-1.9b. It follows from §13-10.4b that 

\| f(A) — FCA)}] S Ilgn(A) — F(A)|| 0 
because g, — f uniformly on o(A). Therefore f,(A) — f(A) uniformly and 

thus strongly. From §26-1.12a, we obtain
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f fadu = Dar aj p(Cj_1,C;] = sr 4; P(e ;_1,¢5 (A) = f,(A). 

The uniqueness of strong limits gives f fdu = f(A). Finally for complex 

functions, apply the above result to the real and imaginary parts; then 

assemble them to complete the proof. Oo 

26-6.5. Corollary Every operator can be uniformly approximated by linear 

combination of projectors. 

Proof. Firstly let A be a self-adjoint operator. For the special case 

f(t) = t, we have f,(A) -> f(A), that is f f.du = 2, ;P; > A uniformly 

where P; = y(c;_1,¢;] are projectors. In general, every operator is the linear 

combination of its real and imaginary parts which are both self-adjoint, the 

result follows immediately. Oo 

26-6.6. Exercise Prove that for every semi-continuous function f on R, we 

have f(A) = f fdp where f(A) is defined by §26-1.8 and f fdu by §26-3.2. In 

particular, we have A= f tdu(t). 

26-6.7.. Theorem Every normal operator A has a spectral measure ys on C. 

Proof. Let A = B+iC be a normal operator where B,C are commuting 

self-adjoint operators and i” = —1. Let 7, be the spectral measures of B,C 

respectively. Since B commutes with C, the operator B commutes with vK 

for all measurable set K in R. This in turn implies 7J commutes with vk for 

every measurable set K in IR. Thus p is a spectral measure on IR? which is iden- 

tified as ©. Because both z,v are normalized with compact support, so is p. 

Consequently every continuous function f on C is p-integrable. In particular, 

J Adp(A) is well-defined. Write A = s+it where s,t are real variables. The proof 

is completed by the calculation: f Adw(A) = f sd(r@v)(s,t)+7 f[ td(r @v)(s, t) = 

f sdx(s) +i f tdv(t)= B+iC = A. By the way, if A is self-adjoint, then C =0, 

y=0Oand A= f Adu(A) = f sdx(s) = B. We may identify yz and 7. im 

26-6.8. Let y be the spectral measure of a normal operator A. For every 

integrable function f, define f(A) = f fdy. By §26-6.4, the new definition 

agrees real spectral measures of self-adjoint operators. Since yu is of compact 

support, every continuous function is integrable. In particular, every complex 

polynomial g(A) = leet cejp PN" is integrable. Furthermore §§26-3.3,5; we 

have g(A) = f gdp = reel aj, A7(A*)*. The following is an explicit formula 

to approximate f(A).
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26-6.9. Theorem Let f be a continuous function on KK. For every € > 0, 

there is a complex polynomial g such that || f(A) — g(A)|| < . 

Proof. Since o(A) = supp(z) is compact, for every € > 0, there is a complex 

polynomial g such that | f(t) — g(t)| < ¢ for all ¢ € supp(A). Hence we have 

Il f fd — f gdyl| = IF -glleo <6. o 

26-6.10. Theorem o[f(A)] = f[o(A)] for every continuous function f on C. 

By §26-6.4, this generalizes §14-6.11 from self-adjoint to normal operators. 

Proof. Take \ € o(A) but f(A) ¢ o[f(A)]. Then f(A)— f(A) is invertible. By 

§26-4.11, there is 6 > 0 such that |g| > 6, 4-ae where g(t) = f(t) — f(A). There 

is p-null set N with |g| > 6 on X\N. Since f is continuous, there is r > 0 such 

that [g(t)| < 46 for all t € BQ, r), ie. BO,r) Cc N. Thus BQ,71) is a u-null 

open set. The contradiction 1 € B(A,r) 1 o(A) = BO, r) M supp() = 8 shows 

fla(A)] C o[f(A)]. Conversely, take any 4 ¢ f[o(A)]. Then g(t) = fit) -— A 

never vanishes on the compact set o(A) = supp(A). There is 6 > 0 such that 

|g| = 6 on supp(A). Then f(A) — AJ = f fd — Al = f gdp is invertible, that is 

d ¢ o[ f(A)]. Therefore o[ f(A)] C f[o(A)]. o 

26-6.11. Theorem Let jz,v be spectral measures on X = K of normal oper- 

ators A, B respectively. Let U be a unitary operator such that yJ = U*(pJ)U 

for all semi-intervals J. Then a measurable function f is u-integrable iff it 

is v-integrable. Furthermore we have f fdy = U*(f fdu)U. In particular, we 

have B=U* AU. 

Proof. By uniqueness of extension, we have vM = U*(uzM)U for all mea- 

surable sets M. Choose simple functions f, > f with |f,| 1 |f|. Write 

fr = Dea aj;pm, where a; ¢ € and M; are disjoint measurable sets. Suppose 

that f is p-integrable. Take any x € H and let y=Uz. Then we have 

I \faldv. = ea lay| << vM,2, 2 >= ya la; | < U*(uM,)Ux, 2 > 

k 
= yer logy] <eMayy >= fl faldpy < f |flduy < oo. 

By Monotone Convergence Theorem, |f| and hence f are v,-integrable. The 

converse follows by symmetry. Letting n — oo in f f,dv, = f[ frduy, we obtain 

f fdv, = f fduy, that is 

<(f fdv)z, 2 >=< (f fdu)y,y >=< (f fd Uz, Us >=< U*(f fdwUz, 2 >. 

Since « is arbitrary, we get [ fdv =U*(f fdy)U as required. Oo 

26-6.12. Theorem Let 2, v be spectral measures on of normal operators A, B
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respectively. Let U be a unitary operator such that B = U* AU. Then we have 

vM =U*(uM)U for all measurable sets M. 

Proof. Let tM =U*(uM)U for all measurable sets M. Then 7 is a spectral 

measure of f Adm(A) = U*[f Ady(A)]U = U* AU = B. By uniqueness of spectral 

measure of B, we have v = 7. Oo 

26-6.13. Theorem If an operator B commutes with A, then B commutes 

with f(A) for every p-integrable function f. 

Proof. Consider the special case that B = U is unitary. From UA = AU, 

we have A = U*AU. It follows pM = U*pMU for all measurable sets M. 

Consequently f(A) = f fdp=U*(f fdujU = U* f(A)U, that is U f(A) = f(A)U. 

In general, the family F¥ = {A,A*} is self-adjoint and B € ¥' by Fuglede’s 

Theorem. From §14-6.18, B is a linear combination of unitary operators in F’. 

The proof is completed by the first case. oO 

26-6.14. Theorem 4 is an eigenvalue of A iff p{A} #0. Furthermore the 

eigenspace corresponding to 4 is the range of p{A}, i.e. ker(A—AI) = p{A} (A). 

Proof. (=) Let x be a nonzero eigenvector corresponding to the eigenvalue 4. 

For each n, let Qn = {t € X : |t—A| = +} and Q=X \ {A}. Define f@) =t—d 

and pata {t-te Qn: 
ou 10 iftE Qn. 

The bounded measurable functions and the continuous function f are all 

p-integrable. Observe that 

1Qn2 =f pondy «=f fafdp x 
=f fadu ft —A)du(t) « =(f faduy(A — AT)z = 0. 

Since Q,, | Q, we have 

| wQz||? =< pQz, 2 >= peQ = lim weQn = lim < pQnz, x >= lim ||uQnz\l? = 0. 
Hence p{A}x = pXx — pQr = Ix = 240. Therefore we have p{A} #0 and 

ker(A— AI) C pf A}(H). 
(<) Pick any nonzero z € p{A}(H). Because {A} is a projector, we have 

Ax =[f tdu(d)] w{A}a = (ftdu®) fepydu c= ftepyOdud) x 

= f App; Ody) =A f poy @du@ x = Apf{A}a = Az. 

Hence 4 is an eigenvalue with the corresponding eigenvector x. Therefore 

pw{A}(A) C ker(A— Ad). Oo
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26-6.15. Corollary Every isolated point of the spectrum o(A) of a normal 

operator A is an eigenvalue. 

Proof. Being an isolated point, there is an open set Q such that QMo(A) = {A}. 

If zQ = 0, then 0 =.@Q O supp(A) = QM ofA) is a contradiction. Therefore 

B{A} = n[Q M supp(z)] = uQ #0. Consequently, is an eigenvalue. oO 

26-6.16. Exercise Let A= diag(2,2,3,3,3,0) be a diagonal matrix. Express 

{2} as a projector-matrix. Show that 2p; + 3p{3} equals f(t) = ¢, p-ae. Find 

f payee and interpret f Adp(A) in terms of matrices. 

26-99. References and Further Readings : Berberian-66, Garnir-74, 

Helmberg, Lugovaya and Blank. 



Chapter 27 

Locally Compact Spaces 

27-1 Regular Measures 

27-1.1. Throughout this chapter, elementary properties of locally compact 

spaces will be assumed. Both JR” with usual topology and an infinite discrete 

metric space should be used as typical examples. In this section we shall 

start with the general framework of decent sets and measurable sets. Note 

that measurable sets in this book have nothing to do with any measure. To 

control the measures in terms of topology, we require the regularity which will 

guarantee that the continuous functions with compact support are dense in Lp 

for every 1 <p < oo. 

27-1.2. Let X be a separated locally compact space and F,E,FE Banach 

spaces with an admissible bilinear map F x & — FE. Let D be the 6-ring 

generated by the family of all compact subsets of X. Hence every decent set is 

relatively compact by §18-1.6b. Also a set M is measurable iff for each compact 

set V7, MV is a decent set by §19-1.3. A measure yu on the 6-ring of decent 

sets of X is also called a measure on X. 

27-1.3. Lemma The decent family I is also the d-ring generated by open 

relatively compact sets. A set M is measurable iff MM V is a decent set for 

each open relatively compact set V. 

Proof. Let V be an open relatively compact set. Then both the closure V and 

the boundary OV are compact sets and hence V = V \ AV is a decent sets. On 

the other hand, let A be any compact set. There is an open relatively compact 

neighborhood V of A. Then V \ A is an open relatively compact set. Hence 

A=V\(V \ A) belongs to the 6-ring generated by open relatively compact 

sets. The last statement follows by §19-1.3. oO 

27-1.4. Theorem Open sets, closed sets and compact sets are 

measurable. Open relatively compact sets are decent sets. Every continuous 

map is measurable.
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Proof. Let M be an open set. If V is any open relatively compact set, then so 

is MoV. Hence M is measurable. Since complements of measurable sets are 

measurable, all close sets are measurable. Because compact sets in separated 

topological spaces are closed, they are also measurable. An open relatively 

compact set V is a measurable subset of the decent set V and hence V is a 

decent set. The proof of last statement is similar to §23-2.4. Oo 

27-1.5. Exercise The long line X consists of all points in IR?. Let J be the 

family of subsets V satisfying the following conditions: for every (a,b) €¢ V 

there is € > 0 such that (a — ¢,a+e) x {b} is contained in V. Prove that T 

is a topology on X. Show that X becomes a separated locally compact space. 

Verify that the set @ x JR is a measurable set where Q denote the set of all 

rational numbers. Does the set Q x R belong to the o-algebra generated by 

open sets? 

27-1.6. Theorem Let yu be a vector measure on X into &. Every continuous 

map g: X — F is locally integrable. Every continuous map h: X —> F with 

compact support belongs to L,(X, F) for all 1 <p < ov. 

Proof. Every decent set. A has compact closure A on which the continuous 

map g is bounded, say |gp4| < tea for some 0 < t < oo. Since the decent 

function tp, is |y|-integrable, so is go4. Hence g is p-integrable on A. In 

particular for 1 < p < oo, |A|? is integrable on its support and hence it is 

integrable on X, ie. h € L,(X, F’). Finally, since h is bounded, it also belongs 

to Loo(X, F). q 

27-1.7._ A vector measure js on X into E is said to be regular if 

(a) 4 is outer regular at every decent set A, that is for every € > 0, there is an 

open relatively compact set V such that AC V and |y|(V \ A) < e; and 

(b) uw is inner regular at every open relatively compact set V, that is for every 

€ > 0, there is a compact set A such that AC V and |p|(V \ A) <e. 

27-1.8. Exercise Prove that linear combinations of regular measures are 

regular. The variation of a regular measure is regular. 

27-1.9. Exercise Let y be a regular vector measure on X. Prove that for 

every open relatively compact set V and for every € > 0, there is an open set 

W such that W is a compact subset of V and |p|(V\W) <«.
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27-1.10. Compact Regularity Theorem Let yz be a regular vector measure 

on X. Then for every decent set A and for every € > 0, there is a compact 

subset B of A such that |y|(A \ B) < e. 

Proof. Let ¢ > 0 be given. There is an open relatively compact set V 

containing A such that |y|(V \ A) < ¢. Again, there is an open relatively 

compact set W containing V \ A and satisfying ||{W \(V \ A)} <«. Finally, 

there is a compact subset Q of V such that |z|(V \Q) <«. Now B=Q\W is 

compact. Furthermore, B CV\W CV\(V\ .A)=A. The proof is complete 

by the following calculation: 

Iul(A\ BY < WV \B) < nV \1Q\ WY < WV \Q)+ IW 
Set |ui(W \(V \ Ap + [IV \ A) < 3e. O 

27-1.11. Theorem Let p be a regular vector measure on X into E. Then the 

set K(X, F) of all continuous maps with compact support is dense in Lp(X, F) 

for every 1 < p < oo. Furthermore if 0 < f € Lj, then for every < > 0 there is 

a continuous function g > 0 with compact support such that ||f — g/l, < . 

Proof. Let A be a decent set and € > 0 be given. There is an open relatively 

compact set V such that A C V and |y|(V \ A) < ¢. There is also a compact 

subset @ of A such that |u|(A \ Q) < ¢. Take any continuous function g 

satisfying pg <q < py. Then we have g(X) Cc [0, 1] and 

lg — pal = max(g, pa) — min(g, pa) < pv — PQ = Pv\a- 
Hence 

/ la ~ palPdly| < / prvadlul < |ul(V — @) < |ulV \ A) + [ul(A\ @) < 26. 
Therefore ||g—pallp < (22)'/? + O ase | 0. Next consider the general case. Let 

f € L,(X, F) and € > 0 be given. By Density Theorem, there is a decent map 

g such that ||f — g|lp < €. Write g = Ye ajpa, where A; are disjoint decent 

sets and a; € F. For each j, there is a continuous function h; : X — [0,1] 

such that ||h; — pa,|| < . Now h= re aj;h,; is a continuous map 
€ 

n(1 + |la5|l) 
with compact support satisfying 

Ilo — Ally S Ma Negea, — hs)\lp = 325 llasll leas — Palle Se 
that is ||f —hllp < 2e. Finally, if f > 0, then we may choose g > 0. Since A;’s 

are disjoint, all a; > 0 and hence h > 0. Oo 

27-1.12. Theorem Let yz be a positive measure on X. Then the integration 

{ 9du is a positive linear form in g on the complex vector lattice K(X). In 

next section, we shall recover z from its integration.
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27-1.13. Exercise Let yz be a regular vector measure on X. Prove the 

following statements. 

(a) A measurable set N is null if N71 A is null for every compact set A. 

(b) For every integrable set M and every < > 0, there is a compact subset A 

of M such that |p|(M \ A) < e. 

(c) For every p-o-finite set H, there exist compact sets Ap, C Ams and a 

p-null set N such that H=U"_, An UN. 

27-1.98. Let X be an infinite dimensional normed space. Then it is not locally 

compact. The empty set is the only open relatively compact set. Furthermore, 

the zero-function is the only continuous function with compact support. In this 

case, the whole treatment becomes trivial but meaningless. New definition of 

decent sets on general topological spaces is required. It is well known that 

nontrivial translation invariant measure on the o-algebra generated by open 

sets on general infinite dimensional Banach spaces does not exist. This is why 

we promote almost periodic functions at the end of this book and include our 

own work in that direction drawing the attention of community at large. 

27-2 Construction from Positive Linear Forms 

27-2.1. Suppose that Riemann integral of continuous functions on closed 

bounded intervals of IR has been constructed. It is trivially extended to a pos- 

itive linear form J on the vector lattice of continuous functions with compact 

support on JR. Assuming this background, how do we construct the Lebesgue 

measure? This section will identify each positive linear form J with a regular 

positive measure. 

27-2.2.. Throughout this section, let J be a positive linear form on the complex 

vector lattice K(X) of continuous functions with compact support on a sepa- 

rated locally compact space X. Let K*(X) denote the set of positive functions 

f >0Oin K(X). For convenience, write M < f if py, < f where M is a subset. 

of X and f a real function on X. In this case, we say that M is dominated 

by f. Similar notations: f < M,f > M,M > f are also understood. For 

every open relatively compact set V, define AV = sup{I(f): V > f € K*(X)}. 

Clearly 49 = 0. Since every relatively compact set V is dominated by some 

h € K*(X), we have 0 < AV < I(h) < oo. An outer measure A* on X from 

which a positive measure on A*-measurable sets is obtained. It is important
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to realize that A*-measurable sets defined in terms of outer measure may not 

be measurable in terms of decent sets. 

27-2.3. Lemma For every open relatively compact set V, we have A*V = AV. 

Proof. Take any f < V in K*(X). Then A = supp(f) is compact. Suppose 

{W,} is a sequential cover of V by open relatively compact sets. Then it is 

also a cover of A. There is a finite subcover {W; : 7 <n} of the compact set 

A, Let {1; : 7 <n} bea partition of unity on A subordinated to {W; : 7 <n}. 

Then we have 7; < W,, for each 7 <n. So, 

TAS TSO) <1) sO a Ss a. 
Taking infimum over {W;}, we have I(f) < A*V. Thus AV = sup I(f) < ATV. 

Since A*V < AV is always true, the proof is complete. Oo 

27-2.4. Lemma For every relatively compact set M, we have A*M = inf AU 

where U runs over all open relatively compact sets containing M. 

Proof. Since M is relatively compact, it is contained in some open relatively 

compact set W. For every € > 0, there are open relatively compact sets V; 

such that M c Uj2, V; and 092, AV; < A*M +e. Observe that Wn (U52, Vj) 

is an open relatively compact set containing M. Observe that 

wear alorn(US,¥))=* bro (Ur, 5) 
<r <a <MM +e. 

Letting « | 0, we have infAU < A*M. The reverse inequality follows from 

monotonicity of p*. Oo 

27-2.5. Lemma For every open relatively compact set V, we have 

AV = sup A*B where B runs over all compact subsets of V. 

Proof. For every « > 0, there is f € K*(X) satisfying f < V and 

AV —e < I(f). Since the compact set A = supp(f) is contained in the 

open set V, there is an open set W such that Ac Wc WC V. There 

is g € K*(X) such that g(A) = 1 and supp(g) Cc W. Since f < g, we 

obtain AV —e < I(f) < I(g) < AW. Taking the infimum over W, we get 

AV ~E<A*A< sup A*B. Letting « | 0, we have AV < supA*B. The reverse 

inequality is obvious. Oo 

27-2.6. Lemma If A, B are disjoint compact sets, then we have 

M(AU B) = A* AFB.
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Proof. Let V,W be open neighborhoods of A, B respectively such that their 

closures V,W are disjoint compact sets. For every « > 0, there is an open 

relatively compact set U > AU B such that AU < A*(AU B)+e. There are 

f,g € K*(X) such that f < UNV, 9g < UNW, XU NV) < If) +e and 

MU OW) < I(g) +e. Since V, W are disjoint, f+g < U. Therefore 

MAt+MB SAU NV) +AU OW) < If) + Ig) + 2 

<I(f+g)+2e < AU +22 < A*(AU B) 4+ 3e. 

Letting « | 0, we have A*4+A*B < \*(AU B). The subadditivity of outer 

measure completes the proof. oO 

27-2.7. Lemma Ifacompact set A is disjoint from an open relatively compact 

set V, then we have \*(AUV) = A* A+ A*V. 

Proof. Take any compact subset B of V. Since A, V are disjoint, so are A, B. 

Hence A*A+A*B < X*(AUB) < A*(AUV). Taking supremum over all compact 

subsets B of V, we have A\*A+A*V < A*(AUV). The reverse inequality is 

obvious. ia 

27-2.8. Theorem Every open set V is \*-measurable. 

Proof. Take any open relatively compact set W. For every compact subset 

A of VOW, it is disjoint from the open relatively compact set W \ A. Hence 

we have A*A+A*(W\ V) < A*A + A*(W \ A) = ATW = AW. Therefore, 

MN (WAV) + A*(W \ V) < AW. The result follows by §18-2.6. im] 

27-2.9. In particular, every open relatively compact set is A*-measurable. 

Consequently, all decent sets are A*-measurable. The restriction of the outer 

measure A* defines a positive measure pz on the family ID of decent sets. It is 

called the measure induced by the linear form [. 

27-2.10. Lemma Let A be a compact set and let f € K+(X) be given. 

(a) If A< f then pA < I(f). 

(b) If A > f then pA > I(f). 

Proof. (a) For everyO0<e<1,V={reEX: f(z) > 1 —€} is an open set 

containing A. For any g € K*(X) with g < V, we have g < f/(1 —«) and 

hence pA < pV = supl(g) < I(f)/(1 — €). The result follows as € | 0. 

(b) Take any open relatively compact neighborhood V of A. Then f < V. 

Hence I(f) < AV. Since V is arbitrary, we get I(f) < *A = pA. oO
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27-2.11. Riesz Representation Theorem For every positive linear form J on 

K(X), there is a regular positive measure js on the decent sets of X such that 

for every f € K(X), we have I(f) = f fd. 

Proof. Let y be constructed by previous lemmas of this section. Firstly, 

assume f > 0. Let e > 0 be given. Since f is bounded, there is some integer 

n such that |f| < ne. For each integer 1 < j <n, define 

0, if f(z) <Q — De ; 
wse= { fe) G~ De if (g — le < f(z) < je; 

E, if je < f(x). 

Then g; € K*(X). Clearly both Ap = supp(f) and A; = {@ € X : f(z) > je} are 

compact sets satisfying A; < (1/e)g; < Aj-1. Since f = ve gj, integrating 

with respect to py gives a Epa; < [te < a €A,;_1. By last lemma, 

we have enA; < [(g;) < evAj_1, and hence ia epaA; <I(f)< ia epAj_4. 

(fy - [se < ye epAj1 — en eA; =euAg because 

An = @. Letting ¢ | 0, we have I(f) = f fdu,V f € K*(X). By linearity, 

we have I(f) = f fdu, V f € K(X). The regularity of » follows immediately 

from §§27-2.4,5. Oo 

Consequently, 

27-3 Representations of Order-Bounded Linear Forms 

27-3.1. Let X be a separated locally compact space and K(X) the set of all 

continuous functions with compact support. In this section, we shall identify 

the order-bounded linear forms on K(X) with regular complex measures. This 

identification actually preserves lattice operations. For every f € K(X), let 

| f\| = sup{|f(a)| : 2 € X}. 

27-3.2. Lemma K(X) is a breakable vector lattice. Consequently, the dual 

space of order bounded linear forms is also a vector lattice. 

Proof. Clearly it is a vector lattice under pointwise operations. Let |f| < g+h 

where f,g,h € K(X) with g,h > 0. Write |f| = 9, +h; where 0 < g < g, 

and 0 < h; <A are in K(X). Define g. = gisgn(f) and hz = hisgn(f). Take 

any point a € X. Since sgn(f) = f/|f{ is continuous at each point a © X 

satisfying f(a) #0, so is go. Now suppose f(a) = 0. For every ¢ > 0, there is a 

neighborhood V of a such that for every x € V we have |f(x)| < ¢. Because 

lga| < 91 < |f|, we have |g2(x) — g2(a)| < |f(x)| < € for all x © V. Hence go



516 Locally Compact Spaces 

is continuous at every point a € X. Since |f| is of compact support, so is go. 

Therefore g2,h2 belong to K(X). Clearly |g2| < gi < g;|ha| < Ai < A and 

f =92+ h,. Consequently, K(X) is breakable. Oo 

27-3.3. Lemma Let J be a linear form on K(X). Then J is order-bounded 

iff for every compact set A, there is t > O such that for all g € K(X) with 

supp(g) C A, we have |I(g)| < |lg]J. 

Proof. (=) Assume that I is order-bounded and let [J| denote its variation. 

Take any compact set A. Let f € K*(X) satisfy f(A) = 1. Now for any 

04 9 € K(X) with supp(g) C A, we have |g| < ||g||f and hence 

(9) S$ Ida) < [ZIIgI|f) = #llgl] where t = |J{(f). 

(<=) Let f € K*(X) be given. Then A = supp(f) is compact. Choose t > 0 by 

given condition. Then for any g € K(X) with |g| < f, we have supp(g) c A. 

Hence |J(g)| < tl|g|| < t||f|| < oo. Therefore I is order-bounded. Q 

27-3.4. Theorem Let j: be a regular complex measure on X. For every 

fe K(X), let lh= f fdp. Then J is an order-bounded linear form on K(X). 

Furthermore, we have |I|(f) = f fd|j| for all f €¢ K(X). 

Proof. For any |g| < f in K(X), we have |I(9)| = |f gu] < fal dll < 
f fdlu| < oo. Hence I is order-bounded and |J|(f) = sup|I(9)| < f fdlzl- 

Conversely, take any f € K*(X) and anye > 0. Clearly g = (f—e)VO € K*(X) 

and f < g+€pg where B = supp(g). There is a simple function 0 < s < g 

such that f gd|u| < f sdlu| +e. Write s = em ajpm, where M; are disjoint 

measurable sets and a; > 0 for all 7. Since M; C B, it is a decent set. By 

inner regularity, there is a compact set A; C M, such that |y|(M; \ Aj) < 

é/(ka;). Now t = ye a;p,, is also a decent function satisfying t < g and 

f od\u| < f tdlu|+2e. By outer regularity, there is an open relatively compact 

set V; containing A; such that |y|(V; \ Aj) < €/(ka,;). Observe that for every 

x€ Aj, a; < g(x) < f(x)—e. Hence we have A; C {1 € X: f(x) > aj}. Thus 

we may assume that for every « € V, we get f(z) > a;. Since Aj are disjoint 

compact sets, we may also assume that V,; are disjoint by local compactness 

of X. Let h; € K(X) satisfy A; < h; < V;. Then h = a ajh; € K*(X). 

For any x € V; we obtain A(x) = a;h;(z) < a; < f(z). Therefore |h| < f. 

Furthermore, 

[sat < [rawr [pa 
k 

+ a a; [es — pa; dlp] + 2e
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k < 109+ >), [ov, ~ pa, ala +22 
< |T0h)| + 0" ag|al(V; \ Ay) #26 < [hy] +36 < [NICF)+3¢, 

thats f fal] < f gain) + elal(B) < [I+ 3+ e\ul(B), 
Letting ¢ | 0, we have |J|(f) = f fd|y| for all f € K*(X). The proof follows by 

linearity in f. Oo 

27-3.5. Complex Representation Theorem ‘For every order-bounded linear 

form I on K(X), there is a unique regular complex measure pu on the decent sets 

of X such that for every f € K(X), we have I(f) = f fdu. This correspondence 

preserves the lattice-operations. Furthermore, if I is positive (respectively 

real), then so is p. 

Proof. Write I as a linear combination of positive linear forms. As a result, 

the existence follows immediately from Riesz Representation Theorem. The 

preservation of lattice-operations was proved in last theorem. For uniqueness, 

let jz, A be regular complex measures such that [ fd(js—A) = 0 for all f € K(X) 

which is dense in £; for »— A. Hence f fd(u — A) = 0 for all decent functions 

f. Therefore uM = AM for every decent set M, that is y= A. Oo 

27-3.6. Corollary Let X be a separated compact space and C,(X) the 

Banach space of all continuous functions on X. For every regular measure pz 

on X, let I, be the corresponding integration. Then p — JI,, is an isometry 

from the Banach space of regular measures onto the dual space of C,,(X). 

Proof. By §27-3.3, the dual space Ci,(X) of C..(X) is identical to order- 

bounded linear forms with ||J|| = |f|(1). On the other hand, regular measures 

js on compact space X are bounded with ||y|| = |u/(X). The isometry follows 

as a special case of §27-3.4. Oo 

27-99. | References and Further Readings : Dinculeanu-74, Nachbin, Brooks 

and Uglanov. 



Chapter 28 

Almost Periodic Functions on Groups 

28-1 Almost Periodicity 

28-1.1. Starting with a simple example, we introduce group representations 

which motivates the definition of almost periodicity in terms of e-covers. Basic 

properties of almost periodic functions are developed in this section. 

28-1.2. Example The sum of two periodic functions need not be periodic. 

Solution. Clearly both sinz and sinaz are periodic functions. Suppose to 

the contrary that their sum f(x) = sinz + sinaz is periodic with period p > 0, 

that is sin(x + p)+sina(x +p) = sinz +sina7x for all x. Letting x = 0, 

we get sinp+sinap = 0. Differentiating twice and letting x = 0, we have 

—sinp — 7’ sinap = 0. Hence sinp = sinap = 0. From. sinzp = 0, p is an 

integer. From sinp = 0, we obtain p = nz for some integer n. Since p > 0, we 

have 7 = p/n but 7 is irrational. Therefore f cannot be periodic. Oo 

28-1.3. Observe that sine and cosine functions are linear combinations of 

exponential functions of the form p : IR — GL(1) where p(x) = e%* and 

GL) = {x eC: |z|=1}. Clearly we have p(x+y) = p(x) + ply), |o(x)| < 1 and 

p(x) is an invertible matrix of order one for all x,y € R. Note that harmonic 

analysis including special functions has been developed in the context of group 

representations. We vote for matrix representations for their simplicity. 

28-1.4. Let G be a (multiplicative) group. The identity element of every 

group is denoted by the same symbol e unless it is specified otherwise. The 

general linear group G(s) is the multiplicative group of all invertible matrices 

of order s with complex entries. A homomorphism from G into GL(s) is called a 

(matrix) representation of order s. A representation D : G = GL(s) is bounded 

if all entry functions D,; are bounded on G. The function p in last. paragraph 

is an example of a bounded representation of the additive group R. 

28-1.5. Let f : G— K bea function where the scalar field IK can be real or 

complex. For any ¢ > 0, a finite cover {A; : 1 <i < n} of G is called a left
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e-cover for a function f if |f(ar) — f(bxr)| < € for each 2 and for all a,b € Aj; 

zx eéG. A function f is said to be left almost periodic on G if every € > 0 have 

a left e-cover of G for f. As usual, write ||f loo = sup{|f(z)| : 2 € G}. 

28-1.6. Lemma Every entry function of a bounded representation D = [Dj] 

is left almost periodic. 

Proof. Since D is bounded, define a = max{||Djj|loo : 1 < 1,7 < s} where 

Dj; are the entry functions of D. For every ¢ > 0, choose open intervals B, 

of length < € such that [-a,a] ¢ U{B, : 1 < k < m}. Then for every 

1<i,j <s, we have GC U{Aij, 2 1 < & < m} where Ajj, = Dy\(Br) and s 

is the order of D. Thus GC Miz Ux Aaja = U{N8 52) Aagncaay | LS AG, 7) < mj. 

Take any a,b € Ajj xci,3). Then both D,;(a) and D;;(b) belong to Byg,;), that is 

|Dj;(a) — Dij(b)| < ¢ for all i, 7. Observe that for any 2 € G, we have D(ax) = 

D(a) D(a), ie. (Dij(ax)] = [Di;(a)] [Dij(ax)l, or Djj(a2) = S74) Din(@)Dej (a). 
This standard calculation will not shown explicitly any more. From 

|Dij(az) — Di(bx)| = | hay Die(@) Deg) — hz, DixOD es (@)| 
< Wher |Die(a) — Die (0) |Dij()| < sae, 

the family {3 jt Aig nin) :1<4,9 <s,1 < k(i,7) < m} is a left (sae)-cover of 

G for D,;;. Therefore D;; is left almost periodic on G. oO 

28-1.7. In particular, the function p above is left almost periodic. A (two 

sided) e-cover for a function f : G — KK is a finite cover {Aj : 1 <i < n} 

of G such that |f(yax) — f(ybr)| < e€ for every i and for all a,b € A; and 

x,y © G. A function f : G — K is said to be (two sided) almost periodic on G 

if every € > 0 have a two sided e¢-cover of G for f. Similarly, right ¢-cover and 

right almost periodic function are defined. Their properties will be assumed. 

Almost periodic functions are also called ap-functions for convenience. 

28-1.8. Lemma Every left ap-function f is uniformly bounded. 

Proof. Let {A;: 4 <n} be a left e-cover for f. Choose b; € A; for each i. 

Take any a € G. Then a € A; for some i. Hence | f(a) — f(b;)| < €, or 

If(@)| < |fOd| +e < Dh FO) +e. 
Since a € G is arbitrary, f is uniformly bounded. Oo 

28-1.9. As a subset of the Banach space B(G) of all bounded functions on G, 

the uniform norm of every left periodic function is defined. The left translate 

Leaf :G— K of f by a € G is defined by L, f(x) = f(az), that is to replace the
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argument x by az. Similarly, define Rg f(y) = f(ya) for all x € G. Clearly we 

have Ly, = L,L, and Ray = R, Rp. In fact, Lely f(z) = Ly(La fx) = Leaf (bx) = 

f(abr) = Lan f(z). Also Ra Ro fly) = Ra( Ro f\y) = Re flya) = f(yab) = Rav fly). 

28-1.10. Lemma Let f be a bounded function on G. Then f is left 

almost periodic iff L(f) = {Laf : a € G} is relatively compact in B(G). For 

right and two sided almost periodicity, work with R(f) = {Raf :a¢€ G} and 

T(f) = {LaRyf +a € G} respectively. 

Proof. Suppose f is left almost periodic. Choose any left e-cover {A; :i <n} 

and any ¢; € A; for each 7. Take any a,z € G. Then a € A; for some i. 

Thus |f(ax) — f(e;z)| < €, ie. |Laf(x) — Le, f(a)| < ©, or Lef € BiLe, f, 6). 

Therefore L(f) C UZ, B(L., f,¢). Consequently, [(f) is precompact in B(G). 

Since B(G) is complete, L(f) is relatively compact. Conversely, assume that 

L(f) is relatively compact. By precompactness of L(f), for every ¢ > 0, there 

are g1,:+*,9n € B(G) such that L(f) c UE, Baie). Define A; = fa € G: 

|Zaf — gilloo < €}. It follows immediately that (A; : i < n} is a cover of G. 

For any a,b € A; and x € G, we have ||Laf — gill < € and ||Lef — gillo <e, 

or ||Laf — Leflloo < 2¢, ie. |f(ax) — f(br)| = [La f(x) — Ly f(a)| < 2e. Hence 

{A; : i <n} is a left (2e)-cover. Therefore f is left almost periodic. The other 

parts follow in a similar way. Oo 

28-1.11. Theorem The set A(G) of all left ap-functions on G is a closed 

subalgebra of B(G). Consequently A(G) is itself a Banach space under the sup- 

norm. Let f be a left ap-function. Then the left translate of a left ap-function 

is left almost periodic. The complex conjugate f~, the inversion f” and the 

hermitian f* defined by f~(2) = f(z)~, f’(2) = f(z7!) and f*(2) = f(a7!)- 

respectively are all left almost periodic. 

Proof. The first statement follows immediately because the linear 

combinations, the product and the closure of precompact sets in B(G) are 

precompact. The second statement follows from L(L,f) = L(f). Since the 

map f — f— : B(G) > B(G) is continuous, the image L(f—) of the relatively 

compact set L(f) is relatively compact and hence f~ is left. almost periodic. 

Similar argument completes the proof. Oo 

28-1.12. Exercise Prove the following statement directly without using any 

property of compactness. 

(a) Linear combinations and products of left ap-functions are left ap-functions. 

(b) Uniform limits of left ap-functions are left almost periodic.
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(c) The translates, conjugates, inversions, hermitians and absolute values of 

left ap-functions are left almost periodic. 

28-1.13. Theorem A function f is left almost periodic iff it is two sided 

almost periodic. Similar result holds for right periodicity. As a result, there is 

no need to distinguish left, right and two sided periodicity. 

Proof. Suppose that {A; : i < n} is a two sided e-cover of G for f. Then for all 

a,b € A; and all z,y € G we have | f(yax)— f(ybz)| < €. In particular, for y = e 

the identity element, we have |f(ax) — f(bx)| < ¢. Hence {A;:% <n} is also a 

left e-cover {A;: i <n}. Consequently, f is left almost periodic. Conversely, 

suppose that f is a left ap-function. Let {A; : i < n} be a left e-cover for 

f. Choose any ¢; € Aj. Since L,,f is left almost periodic, let {By; : 7 < m} 

be its left e-cover. Define K = {ByjayN--- A Baja : 7) < mi}. Since 

Gah, Ui By; = UK, K is a finite cover of G. Let a,b © ByyayN-- A Baja 

and z,y € G be given. Then y € A; for some i. By y,a € Aj, we get 

lf(yax) — f(cjax)} < € and |f(ybr) — f(e;br)} < ¢. Because a,b € Biju, we 

obtain |Lo, f(az) — Le, f(br)| < «. Hence we have 

lf(yax)—f(ybx)| < |f(yax)— f(ciax)|+| f(ciax)— f (cybx)|+|f(esbr)— f(yba)| < €. 
Therefore f is two sided almost periodic. 0 

28-1.14. Theorem Let f be an ap-function on G. If y is a continuous function 

on a compact set K containing the range of f, then the composite yf is almost 

periodic. In particular, |f|? is almost periodic for all p with 1 <p < oo. 

Proof. For the last statement, the closed ball B(0, ||f||,0) is a compact set 

containing f(G). To prove the first statement, let ¢ > 0 be given. By uniform 

continuity of » on K, there is 6 > 0 such that a,f8 € K and ja — pi < 6 

implies |y(a@) — y(8)| < €. Choose a é-cover {A; : i < n} for f. For all 

a,b € A; and x € G, we have f(az), f(br) € K and |f(ax) — f(bx)| < 6. Hence 

lef(ax) — yf(bx)| < e. Therefore {A; : i < n} is also a left e-cover for pf. 

Consequently, yf is almost periodic on G. B 

28-1.15. Exercise Prove that if f € A(G) with |f| > r > 0, then 1/f € A(G). 

28-1.16. Corollary A(G) is a complex vector lattice. See §16-2.2. 

28-1.17. Theorem Let G,H be groups and y: H — G a homomorphism. If 

f is an ap-function on G, then the function fy is an ap-function on H. 

Proof. In fact, if {A; : i < n} isa left e-cover of G for f, then {p—!(A;) 13 < n} 

is a left c-cover of H for fy. Oo 
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28-2 Mean-Values 

28-2.1. The objective of this section is to construct a translation invariant 

continuous linear form on the vector space of ap-functions on a group. We need 

two combinatorial lemmas to accomplish this. The mean-value of a function 

f is the average of f over the whole group. For convenience, all indices start 

with 1. 

28-2.2. Lemma Let {A; : i <7} be a family of subsets of a set G. If for 

every 1 <r <n, the union of any r sets of {A; : i < n} contains at least r 

elements; then there are n distinct elements x,---,2, € G such that x; € A; 

for each i. 

Proof. If n=1, it is trivial. For every B Cc G, let vB denote the number of 

elements in B. Firstly, suppose there are indices 1 < ky < kp <--+-< kp Sn 

such that v Ui Ax, =7 <n. Without loss of generality, we may assume that 

k; = 3 for all j <r. By induction, there are distinct elements x; € A; for each 

j <r. Define B, = Ai \ {11,---,0,} for each i with r+1<i<n. Then for 

l<p<n-randr+l<kj <ky <---<k,p <n, we have 

u(By, U By, Use U By.) 

= WUBg, U Br, U++-U Bai) + (Ay U Ay UU Ap) — 9 

> v(Bi, U Br, U+++U By, U Ap U Ag UU Ap) 

= (A, U A2U---U A, U Ag, U Ag, U++-U Ag) 9 

2(r+p)—T=p. 
Thus B41, Byiz,---, By satisfy the inductive assumption. There are distinct 

elements x; € B; for r+1<i<n. Consequently, x,,22,---,2, are distinct 

elements satisfying x; € A; for each 1 <i <n. Secondly, assume that for all k; 

with 1 < kj <ky <---<k, <n, we have vie Ag, 27+. Pick any x; € A). 

Define B; = A; \ {zi} for all2<i<n. If2<kj <ky <---<k, <n, then 

we get V(Bx, U By, U-+-U Bg) = u(Ag, U Ay, U+++U Ag) — 1>(7r4+D-le=r. 

Hence by induction on B32, B3,---,B,, there are distinct elements x; € B; for 

all 2 <i <n. Consequently, 1),22,---,2%n are distinct elements satisfying 

a; € A; for each 1] <i<n. Oo 

28-2.3. Lemma Let {A;:i <n} and {B; : i <n} be two families of subsets 

of a set G. If for each 1 <r <n, the union of r sets of {A; :i <n} meets at 

least r sets of {B; : 4 <n}, then there is a permutation p of N = {1,2,---,n} 

such that A; Byy £9 for all 1 <i<n.
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Proof. Let Di = {j € N: A;NB; #9} for each 1 <i <n. Suppose 1 <r<n 

and 1< kj <k, <---<k, <n. For convenience, we may assume that each 

k, = t. Observe that j © Uj, D; iff for some i, j € Di, ie. ALN B; #0 

if (Uj, 4d) NB; #0. The given condition assures that LUj_, D; contains at 

least r elements. Hence the union of r sets of D,, D2,---, Dp, contains at least r 

elements. By last lemma, choose distinct elements p(t) € D; foreach 1 <i <n. 

Hence A; By # B. Since p(1), p(2),---, p(n) are distinct elements of N, p 

must be a permutation. oO 

28-2.4. Let f be an ap-function on a group G. An €é-cover 

{A; : i < n} of G for f is good if the number n is the smallest among all 

e-covers for f. 

28-2.5. Lemma If {A; :i <n} and {B; : i < n} are good e-covers for f, 

then there is a permutation p of {1,2,---,} such that A;N By 40. 

Proof. It suffices to prove that the union of any r sets of {A; : i < n} 

meets at least r sets of {B; : i < n}. Suppose it is false. Without loss of 

generality, we may assume that A; UA,U---UA, meets only B,, Bz,---,B, with 

l1<s<r<n. Since {B;:1 <n} is a cover of G, we have Ay U A.U---U A, C 

B,UB,U---UB,. Hence {B,, Bo,---, Bs, Ars, Arsa,**+, An} is also a cover 

of G. Clearly it is an ¢-cover containing at most r —1 sets. This contradicts 

the minimality of n. oO 

28-2.6. Lemma Let {A; :i <n} be a good e-cover for f and let a; € A; for 

. 1 R 1 n 
each i <n. Then a Ve f(a) - a an S(yayx)| < 2e for all z,y € G. 

Proof. Fix z,y € G. Clearly {yAjz : i < n} is also a good e-cover. There 

is a permutation p of {1,2,---,n} such that for each i < n there is some 

b; € A; NyApae. Thus | f(ai) — f(b){ < ¢ and |flyapaar] — f(b.)| < €. Hence 

|f(as) — flyapayx)| < 2e. The result follows by summing over i = 1 to n and 

dividing by n. Oo 

28-2.7. Lemma Let {A;:i <n} be a good e-cover and {B; : 7 < m} a good 
1 n 1 m 

6-cover for f. Then a an f(a) - m it fb) < 2(e + 5) for all a; € A; 

and b; € B;. 

Proof. Letting y =e and x = 6; in last lemma, we get 

: er Fai) — - >, f(aib;) < 2e. 
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Summing over j = 1 to m and dividing by m, we have 

- ~~, fai) - —— ~~ ie F(a;b;) 

By symmetry, we obtain 

1 ™m 1 n m 

\- ie F(b3) — mn an ea F(aib;) 

Their sum completes the proof. Oo 

< 2e. 

< 26. 

28-2.8. Theorem Every ap-function f on a group G has a number u(f) €¢ K 

satisfying the following condition: for every « > 0, there are aj,:--,dn € G 

and q),---,Q@, > 0 such that a; +:-++a@, = 1 and 

JHA - So" efuam| se, Vayee. 
t=1 

The number j(f) is called the mean-value of f and is also denoted by f fdr or 

{[f@®d,t. Note that the subscript m distinguishes mean-values from integrals 

although we use the integral sign for both of them. Also ¢ in f f(dmt is a 

dummy variable. 

Proof. For each integer k > 1, let {A¥,---, Ak uy} be a good (1/k)-cover for f. 

1 n(k) k k F _ k Choose any a; € A® for each k and 1 <i < nk). Define py = nk) y ia f(a). 

n(k) n(p) 

y k 1 1 1 

way FOO) — iy DL) <2(z+4). 

Thus {yu} is a Cauchy sequence. Let u(f) = limu,. Now take any 

€ > 0. Choose an integer p > (1/e) such that |u(f) — ux| < € for all k > p. 

From Hence we get 

Then we have 

[Hk — Bl = 

1 n(k) 
Mk nk) Ye f(yaFz) 

for all r,y € G and k > p. Therefore 

1 n(k) k 
Bf) — TAK) a f(yaj2) 

This proves the existence. For the uniqueness, let u,v be a complex numbers 

<7 <2 

< 3e. 

satisfying the following condition: for every € > 0 there are a),---,@p,01,---, bg 

in G and a,-++,@p, B1,°++, 8g = 0 such that 

Qt es + ap =f, +--°+8,=1, 

ju — Oh as f(yaiz)| < € 

and |v — 941 Bif(ybiz)| < € for all z,y € G.
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Setting y =e and x = 5; in the first inequality, we get |u — }°?_, ai f(a;b;)| <e. 

Multiplying 8; and summing for j = 1 to g, we obtain 

le ~ jel yh By F(aibs) <e. 

Similarly we have 

|»- Fol P , 08; f(aib;)) <e. 

Therefore ju —v| < 2e. Since € > 0 is arbitrary, we have u =v. This proves 

the uniqueness of mean-value. o 

28-2.9. The map p: A(G) > K given by f > f fd, is called the mean-value 

form on the group G. Reader should review positive linear forms, §16-4.4. 

28-2.10. Theorem The mean-value form 1: A(G) > K given by f > f fdn 

is a linear form on A(G). Furthermore the following conditions hold. 

(a) Translation invariant, ie. f Lafdm = f Rafdm = f fam. 

(b) Normalized, i.e. f fd, = 1 where f = 1 is a constant function. 

(c) Positive, i.e. f fdm > 0 for f > 0. In particular, if f is real, then [fn is 

also real. If f <g, then f fdm < f gdm. 

(d) Nondegenerate, ie. f fd > 0 forO< f 40. 

(e) | f fdml < f\f| dm. 
Proof. To prove that yu is linear, take any f,g € A(G) and a, @ € K. For any 

€ > Othere are a),---,@,6,,---,bg € G and aj, 6; > 0 such that 

Apter + Op =P, t--+Hyg=1 

and for all z,y € G, 

[f fd — 5 of (yaix)| <eé #1 

and JJ 94m — Dn Bifubja)| Se, #2 
Replacing x by bj” in #1, we have 

[f fdm — 7%, a4 f (yaib;2)| <e, Va,yeoG. 

Multiplying 8; and summing over j, we get 

JJ fam _ an fo iB; f(yaub2) < é. 

Similarly, 

[J 94m — 2 Oh eB, fuabja] se, Way eG. 
Hence 

lof fam + Bf gdm — 8, Dh eiBy(af + Boy(yaibjx)| <€
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for all x,y € G. The uniqueness of mean-value gives the linearity of pu: 

fof + Bg)dm =a f fdm+ Bf gdm. 

(a) Replacing y by ay in #1, we have 

If fd — 221 La f(yaiz)| =|f fdm — O21 vif layaia)| < e. 
The uniqueness of mean-value gives f Lafdm = [ fdm. Similarly replacement 

of x by xa in #2 gives [ Rafdm = f fam. 

(b) By #1, for f = 1 we have [f fam — 1 = [f fam — an ou f (ya;x)| <e. 

Since € > 0 is arbitrary, the result. follows. 

(c) If f > O, then #1 entails -e < f fdn — 2, af(yair) < f fdm. Letting 

e | 0, we have f fd,, > 0. The last statement follows from §16-4.5a. 

(d) Suppose that f(c) > 0 for some ce G. Let e = 4fO and {A;:i <p} an 

e-cover for f. Choose any a; € A; for each i. Then every x € G is contained 

in some A;. Hence for every y € G, |f(yx) — f(ya;)| <«. Picking y = ca;", we 

get |f(ca;'x) — f(d| <«, or -e< f(ca;"z) — f(o), Le. 

e= f(Q—e< flcas'2) < D2, fleaz's). 
Taking the mean-value, we obtain 

eS Dia S fcay'2)dme = Oh f f@dme =p f f@)dme 
by translation invariance. Therefore f fdm > e/p > 0. 

(e) It follows immediately from §16-4.5c. B 

28-2.11. Theorem The mean-value form is inversion invariant, that is for all 

f € A(G) we have f fie“ daz = f f(r)dine. 

Proof. For every ¢ > 0 choose a; € G and a; > 0 such that a, +--+ +a, =1 

and lf fam — S71 ou f(a7tayy7!)} < e¢ for all x,y € G. Then we obtain 

|f fdm — ey oi f’(yaz'x)| < « for all z,y € G. Therefore by uniqueness 

of mean-value, we have f f¥dm = f fdm. im 

28-2.12. Theorem Every left invariant subspace M of A(G) has a unique left 

translation invariant normalized positive linear form. 

Proof. The restriction of mean-value form to M provides the existence. For 

uniqueness, suppose that yz is any left translation invariant normalized positive 

linear form. Take any real ap-function f in M. For every ¢ > O there are a; € G 

and a; > 0 such that a, +---+a, = 1 and \f fdm — in ou f(yair)| <e for all 

x,y € G. Letting y = e, we have f fd,,—e < S72, aiLa, f(x) < f fdm+e for all 

2 eG. Applying 1, we obtain [ fd 2 < 0” am(= aN f fame.
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Letting « | 0, we have p(f) = f fd, for every real function in M. The 

complex case follows from linearity. oO 

28-3 Convolutions 

28-3.1. Example Let G = {2),22,---,2,} be a finite group and A; = {z;}. 

Every function f : G — K is almost periodic because {A;} is an e-cover for 

f. Let pif) = ta f(z;). Since yp is left translation invariant normalized 

positive linear form, it is the mean-value form. For every a & G, define f,(z) = 

Jaz Which is 1 if z = a and 0 otherwise. Then f = 7 cg f(@fa. Identify fa 

with a, functions on G can be identified as the formal sums u = 57, -, Ueda and aceG 

v= Veg vob where u,v, € K. The average of their formal product is given 

by 

UxXVE - > (uav)(ab) = SS So (uavs)e = S (: > vor] e. 

a€GbeG c€G ab=c céG beG 

Converting back to function notation, we have (f x g)(c) = 1 > F(cb7!)g(b). 
n 

beG 
This motivates the definition of convolution in terms of group algebra. 

28-3.2. Theorem Let G,H be two groups and f an ap-function on the 

product group G x H. 

(a) For each x € G, y > f(x,y) is an ap-function on H. 

(b) The function x — f f(x,y)dmy is almost periodic on G. 

(c) f f(z, ydnlz,y) = f [f fe, y)dy] dnt. For convenience, it is also denoted 

by fdnx f f(x, y)dmy. Therefore we are allowed to change the order of taking 

mean-values. 

Proof. (a) Let {A; : i <n} be an e-cover of G x H for f. Fix 2 € G. Let 

Ni = {y € H : (2,y) € Ai}. Clearly {N; : i < n} is a cover of H. Suppose 

a,b € N; and z € H. Then (z, a), (2, b) € A; and (e,z) € G x H. Hence 

lf(a, az) _ f(x, bz)| = If{(, a\(e, z)} ~ f{@, b\(e, z)}| < é. #1 

Thus {N; : 4 <n} is an e-cover of H for y — f(x,y). Consequently, f(x, y) is 

almost periodic in y € H. 

(b) Next fix az and bz but allow x to vary. Then f(z, az), f(x, bz) are almost 

periodic in « € G. Taking mean-value with respect to x in #1, we have 

\f f(a, az)dma — f f(a,bz)dma| < f |f(x, az) — f(x, bz)| dma < €.
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Hence {N; : i < n} is also a left e-cover of H for the function y > f f(x, y)dnz. 

Therefore f f(z, y)dmx is almost periodic in y € H. 

(c) Define u(f) = f f f(z, y)dmadmy for every ap-function f on Gx H. Clearly 

wis a translation invariant normalized positive linear form on A(G x H). By 

uniqueness of mean-values, we have f f(z, yWdm(z,y) = f f ft, Wdmrdmy. 

The proof is completed by symmetry between z, y. o 

28-3.3. Lemma (If f is an ap-function on G x H, then the function 

(2, y) — f(z7', y) is also almost periodic on G x H. 

Proof. Define g(x,y) = f(7', y) for all (x,y) € Gx H. Let {Aj :i <n} be an 

e-cover of Gx H for f. Consider B; = {(z,y) € Gx H: (x7!,y) € Ai}. Clearly 

{B;: i <n} is a cover of Gx H. Take any (a,c), (b, d) € B; and (x,y) € Gx H. 

Since (a~!,¢), (b7!, d) € A;, we get 

| g(a, Xx, yl — gl, d(x, yy} | = |f@T!a™, cy) — fa7'b7!, dy)| 

=| fl@ ea, eer, 9) — fem! e206", Aer, WI) | Se 

where ¢),€2 are the identity element of G,H respectively. Therefore 

{B; : 4 < n} is a left c-cover of G x H for g. Consequently g is almost 

periodic on G x H. Oo 

28-3.4. Lemma _ If / is an almost periodic on H, then the function f on 

G x H given by f(z, y) = h(y) is almost periodic. 

Proof. Let {B; :% <n} be an e-cover of H for A. Clearly {A;:i <n} isa 

cover of G x H where A; = G x B; for each 7. Take any (a,c), (b,d) € A; and 

(x,y) © G x H. Since b,d € B;; we have 

| f(a, edz, y)] ~ FIC, D(x, y)] | = |A(ey) — h(dy)| < e. 

Therefore {A; :i <n} is an €-cover of G x H for f. Consequently f is almost 

periodic on G x H. oO 

28-3.5. Lemma If f is a real ap-function on G x H, then the functions g, h 

on G defined by g(x) = sup{ f(x, y): y € H} and h(x) = inf{ f(z, y) : y € H} are 

almost periodic. 

Proof. Let {A; : i < mn} be an e-cover of G x H for f. Define 

B, = {x € G: (@,€2) € Aj}. Clearly {B; : i < n} is a cover of G. For all 

a,b € B;, we have | f[(a, e2)(2,y)] — fl, e2\(z,y)] | <é for all(z,y)e Gx A 

ie. f(az,y) —e < f(bz,y) < f(ar,y) +e. Taking supremum over y € H, we 

get g(ax)—e < g(bx) < g(ax)+¢, or |g(ax) — g(bx)| < «. Therefore {B; : i <n}
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is an e-cover of G for g. Consequently, g is almost periodic on G. Since 

h(x) = — sup{—f(z,y): y € H}, the function A is also almost periodic. QO 

28-3.6. Lemma Let f be an ap-function on G. Then the functions taking 

(z,y) € Gx G to f(xy), fay), fey), Fan!y7), yt), fy7'2), fy27"), 
f(y~'z7') respectively are all almost periodic on G x G. 

Proof. Define g(z,y) = f(xy) for all z,y € G. To show that g is almost 

periodic on G, let {A; : ¢ <n} be an e-cover of G for f. Define B,; = A; x Aj. 

Clearly {Bj; : 1,7 <n} is a cover of G x G. For all (a;,a;),(bi,b;) € Biz and 

(z,y) € G x G, we have 

| gl(as, ag )(a, y)] — gl(bi, 5 (x, y)] | = |flaiz ajy) — f(bix b;y)| 

< |flazzasy) — flazb;y)| + |f(aizbjy) — fbixbjy)| < e+e = 2e. 

Therefore g is almost periodic on G x G. Next, applying §28-3.3to g, f(x~!y) 

is almost periodic in (1, y) € G x G. Similarly, f(z7'y7!) is almost periodic 

in (@,y) € Gx G. Since the inversion of f is almost periodic on G, 

ftyz) = f{z—'y7'}~!) is almost periodic in (z,y) € Gx G. Repeated 

application of §28-3.3completes the proof. oD 

28-3.7. Theorem Let f,g be ap-function on G. For every x € G we have 

Sf fay )g@dmy = f faeygydmy 
=f fay 'z)dmy = f fy ayadmy.- 

This common value is denoted by f x g(x). The ap-function f x g on G is 

called the convolution of f,g. 

Proof. We have proved that all functions involved are almost periodic. 

Replacing y by y~! we have f f(zy~"Jo(y)dmy = f f(zy)g(y~')dmy. Replacing 

y by a~!y we get f feyg(y)dmy = f fay '2)dmy. Replacing y by y~! 
we obtain f f(ygy7'z)dmy = f fy ~')o(yt)dmy. Finally, f(ry~') and g(y) 
are almost periodic in (z,y) € G x G, so is their product f(ry~')g(y). Hence 

its mean-value for y € G is almost periodic in x € G. Therefore f x g is almost 

periodic on G. oD 

28-3.8. Theorem Let fi, fo,---, fp be ap-functions on G. Then for every 

€ > O there are a; > 0 and a; € G such that a; +---+a, =1 and 

lf fdm — 72, i fe(caiy)| <e Va,yeG,Vi<k<p. 

Proof. It is trivial for p= 1. Inductively, suppose that g is an ap-function in 

addition to f\, fo,---,fp. For every ¢ > 0 there are a;, 8; > 0 and a,,b; € G 

such that a; +++: +a, = 6,+---+$, =I1 and for allz,yeEeG;1<k<p; 
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If fedm — Sin Ui fe(wary)| <e and iu 94m — Dri B,a(xb;,| <e. 

Replacing y by 6;y in the first inequality, multiplying by 6; and summing 

over j = 1 to v, we have |f firdm — oy ye oui; felvaidy)| < ¢. Simi- 

larly replacing « by xa;, multiplying by a; and summing over 7 = 1| to u, 

we obtain If gdm — Vea jet iB) g(waxbyy)| < ¢. The proof is completed by 

wi Viel Qi Py = oan au) (yet By) =l. a) 

28-3.9. Theorem Convolutions can be approximated by linear combinations 

of translates of their factors. More precisely, for all f,g € A(G) and for every 

é > 0, there are a;, 8; € K and a;,b; € G such that for all x € G we have 

If x g(2) -— Dh aifea)| Se and [f x g(x) - Dh, Bialbjm)| <e. 

Proof. Choose 6 > 0 satisfying 6|gllo. <¢. Let {A;:i <n} be a 6-cover for 

f and pick any a; € A; for each i < n. Fix x € G. Select A; containing x. 

Then |f(zy—!) — f(azy7!)| < 6 for all y. Hence 

lf fey Yo@dmy — f Flay o@dmy | 

< f \fey) — Fay] lgllodmy < f dllglloodmy = dilglleo <é- 
There are a; > 0,6; € G such that a, +---+ a, = 1 and for each i < n we get 

[/ far DoWdmy — TP a5 flaid; Nob))| <e. 
Because x, a; € A;, we obtain | fab; ') — f(ab5")| <6 and thus 

[223.1 45 fads ath) ~ DF 05 F@E5")90j)| < dllglloo S =. 
Combining all inequalities we obtain 

[F x 9) ~ DP os a(b, (eb; 2)| < 36. 
Because it is independent of the choice of a;, it works for all c € G. The first 

inequality is proved by obvious modification of symbols. The second follows in 

a similar manner. oO 

28-3.10. Theorem Let f be an ap-function on G. Then for every ¢ > 0 there 

are ap-functions g,h > 0 such that f gd, = fhdm = 1 and |/f — f x glloo <¢, 

lf —hx flo Se. 

Proof. For every y € G, define p(y) = 0V [e — sup{| f(z) — F(zy~!)| : x € GR]. 

Clearly |f(z) — f(xy~')| ey) < ety) for all z,y € G. Since y(e) = € > 0, 

we have f p(y)dmy > 0 and g(y) = yly)/ f dm is well-defined. Hence we 

obtain 0 < g € A(G), f gdm = 1 and [ f(z) — f(cy~')| gly) < eg(y). Therefore 
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f@)~f x g@)=|f f@Qg@)dmy — f fay )g@)dmy | 
< flf@)— fey)| g@dmy < feg@)dmy <€ 

ie. || f — f x gllo <¢. The second part follows in a similar way. oO 

28-3.11. Theorem A(G) is an associative algebra under convolution. 

Proof. Let f,g,h be ap-functions on G. Then for all z € G, 

[fx @x AKa)= f fey 9 x D@)dmy 

=f f fey Doge )A@dmzdmy = f Lf fey oye" dmy] A(z)dmz 
=f [f f(az—!u-g(ujdul h(z)dmZ, yetsu, ylsztu! 

= f(f x g(ez7")h(2)dmz = [(f x g) x Al(). 

Therefore the convolution is associative. It is routine to verify that the 

convolution is distributive and a(f x g) =(af) x g=f x (ag) for alla © K.0 

28-3.12. Theorem For all f,g € A(G) and all a € G; we have 

Lalf x 9)=(Laf) x 9, Raf x g) = f x Rag and (Raf) x g = f x Lag. 

Proof. The first and the last equality are verified as follow: 

Lif x ge) = (f gaz) 

=f fry" gM dmy = f(LafcyaWdmy = (Laf) x g(t) 
and 

(Raf) x g(t) = f(Rafyoty'2)dmy = f fyagly7'2)dmy 

=f f(z)g(az—!x)dmy = f f(Laghz7'2)dmy = (f x Lag\(2). Oo 

28-3.13. Theorem If x is in the center of G i.e. ry = yx for all y € G, then 

Cf x g)\(z) = (gx f(x). In particular, if G is abelian, then A(G) is commutative. 

Proof. (§ x 9a) = f feng Ddmy = fgg )fUDdmy =(9 x fe). Oo 

28-3.14. Theorem For all f,g € A(G), the following statements hold. 

(a) f* € A(G) and |If*|loo = || flloo where f*(z) = f(z7!)-. 

(b) f™" =f, +g) = f* +9* and Af)* =X° f* for all A € K. 

(c) (f x g)* = g* x f*. 
Proof. To verify (c), observe that 

(f x g)*(x) = (fF x ga) = f fey} ody 

= ff ty) Gu)dmy = fo" YF Y2)dmy =(g" x f)@). 0 
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28-4 Eigen Expansion 

28-4.1. The technique of integral equations are employed to approximate 

ap-functions. This prepares the ground for further approximation by 

trigonometric polynomials. 

28-4.2. Let A(G) be the set of all ap-functions on a group G; 1 < p,q < co 

conjugate indices satisfying ; + ; = 1. We have proved that A(G) is a Banach 

space under the sup-norm || flo. = sup{|f(x)| : 2 € G}. For every 1 <p < 00, 

since |f|? is almost periodic, ||f|lp = [| f(a)|Pdm x)” ” is well-defined. Write 

A,(G) to emphasize the p-norm. 

28-4.3. Theorem (a) A,(G) is a normed space. 

(b} A2(G) is an inner product space under < f,g >= f f(x)9(z) dmx. Since we 

use the square norm most of the time, write ||f|| = ||f|}2 for all f € A(G). 

(c) |f f@)g@)dma| < |Ifllpllglle for all f,g € AC). 
Proof. Suppose 0 # f € A(G). Then 0 < |f|? 40 and hence f |f|?dn > 0 

by §28-2.10d. It follows ||f||p #0. It is routine to complete the proof as in 

measure theory. Oo 

28-4.4. Theorem Let f,, f,9n,g € A(G). 

(a) Zefll = |Refll = lIf*llp = lIfllp S IIflloo for every a € G. 
(b) [If x glloo S$ Wflle Iiglla: |f f@)dm2| < [lf llp and ||f x gl < III Ilgll- 
(c) If fn _- fillp — 0 and lon —- alle — 0, then II fn X On —f x G| loo => 0 

as nm — ©. 

Proof. (a) It follows immediately from definition. 

(b) IF x M@)=[f fey oy) dmny| 
< [f1F@y)Pdmy)’” [f lal?dmy|'”* = If lp lalla - 

Letting g = 1, we get 

[f f@)dm| = |f fle)g(am"e)dma| = (fF x 9)(€)| < IF lpllglla = Ilfle- 
Next, |f x gll = |If x glo < If x glloo S ||fllellglla = If ligtl- 
(c) It is a standard proof that the product is continuous. o 

28-4.5. Theorem Let f,g € A(G). Write || fl] = ||fll2- 

(a) FI)? = lf"? = x fe) = Cf* x fe) where e is the identity element of 

G. In particular, if f* = f, then |||? =( x f)(e). 

(b) < f,g >=< 9", f* > and ||f x gil < IIFIl gl 
(c) F x g)@) =< Leaf, g” >=< Rag, f* >=< fy (Le-19)" >=< 9, (Rea fy" >.
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Proof. Observe that ||f x gl| < ||f x glloo < ![Fl| llgl| and that 

< Lef,g* >= [La f(yg* y)dmy = f fay Ddmy = (Ff x 9@), 

< f,(Lo-19)* >= f fyLe-19)!"Wdmy = f Fygl@!y)"Idmy = (F x 9), 

<9, (Raf) >= f 9@M(Ra-fY’Qdmy = f fye") a Mdmy = F x g)(2). 
It is routine computation to complete the proof. Oo 

28-4.6. Lemma Let f be an ap-function on G. 

(a) The common value of the following is denoted by Ty. 

(f* x MFO=CF x FYE) 

= ||f* x fx ftx---|P, k alternative factors ended with either f* or f 

=|fxfexfx-|P, k alternative factors ended with either f or f* 

(b) TZ <P y-iT est and Pyyg <5 x. 

Proof. (a) Because e is in the center of G, we have 

(f x PN) = f x Uf x ART x Fe) = 1 x PET! x FL x Fe) 

=(f* x fyOaP* x fx x f x NE 

=(f* x fx-)xG--x f* x fie), k factors in each part 

HFK FX) K (PEK fx OS ILP x f xP 
Similarly (f x f*)*(e) = ||f x f* x +++ |[?. 
(b) Observe that 

Tr < (lf x ft x +++ x f x f* loo, 2k factors 

<P x fox eof: oe gx fils VTinPin 
first with (k + 1) factors, second (& — 1) factors. Also 

Tyan = (lf x f x---(P, j+k alternative factors 

< [ft x fx-- {Pte d, first j and second k alternative factors 

=TjTy. o 

28-4.7. Lemma Let f #0 be an ap-function on G. 

(a) Ty, > O for all k > 1. 

(b) A= limp ool ea /Ty exists, O< A < | fi]? and || f* x fi]? < Al Fl. 

(c) v = limp oo Ty /A* exists and y > 1. 

Proof. (a) Suppose T;, = 0 for some k > 3. Then 0 < ro < Ty, 2Py, = 0 

implies T,_, = 0. Repeating the same argument, we obtain I’, = || f* x f||? =0, 

ie. f* x f =0. Hence (f* x f)(e) = |IfI|? =0, or f =0. This proves (a).



534 Almost Periodic Functions on Groups 

(b) From T? < Ty_iV gui, we have 0 < Ty /Tx_1 < Teu/Te <1). It follows 

that O < Ty1i/T, tf A <T) for some limit A, that is \ < Ty = ||f||?. When 

k= 1, we get |[f* x fl? =To < ATi = IFIP. 
(c) Since Tyai/T, < A, we have T,/d* > Tey /A*"! > 0. It follows that 

T;/ A* | v for some limit v. Observe that 

Te > D 54k = Dy4e Djsk-1 Djan—2 woe Dj41 > ( re ) 

"Tj Vyskaa Pyae—a2 Tysn~s LT; 7 \Dj+e-1 

For j — 00, we get Ty, > A*, or Ty, /A* > 1. Letting k > oo we have > 1. O 

28-4.8. An ap-function ¢ is called a projector if p* = py = y x y. The map 

f — f* is called the involution on A(G). Interpret f* x f as the operator 

yg — (f* x f) x g on A(G). Next lemma gives an eigenvalue with a 

corresponding eigenvector and next theorem expands f* x f in terms of 

eigenvalues and eigenvectors. It prepares the ground for approximation by 

trigonometric polynomials later. 

28-4.9. Lemma Let f #0 be an ap-function on G. 

(a) The sequence {(f* x f)*/A* : & > 1} converges uniformly to a projector y. 

(b) f* x fx ysrp=y™x f* x f and |lyl|*? =v. 

Proof. For all 7,k > 1, we have 

|e x fy (ft x fret 
2 

Nt dk oo 

fot xy ot x pe ; 
= 30 | *  (: «Fy 

1 * j * k 2 

1 * 4 * k |? 

lr? gtx fe tx pFy 
s *| ns ©) 
_ Tt E x fy (e) 9 (f* x fy**ce) + (f* x ae 
~ 2 2 dirk Xie 

Ty (Ts 2 Tjsk | Toe 
CnC Cn en Cd 

Therefore the Cauchy sequence {(f* x f)*/A* : k > 1} converges uniformly on 

G to some ap-function y. Since convolution is continuous in A2(G), we have 

) 0 as j,k oo.
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* * k exes i, f =f) . i Gd) 
AF K-00 Xr 

— tam (LX DE DEY UD 
~ k—-00 ARK AE ~ ko AV a 

Since involution is continuous in A2(G), we get 

[im SPT FOX AI Ex AE 
a im, eC 

Next observe that 

Stim XD FOE Py DE] _ fost 
se aa Cs a WO eo 

that is f* x f xy = Ay. Taking the hermitian we have y x f* x f = Ay. Finally, 
2 

224 (f* x fy _ Dee _ 
lel" = Jim a = lim oe =: O 

28-4.10. Theorem For every ap-function f #0 on G, there is a sequence, 

finite or infinite, of real numbers 4, > A2 > --- | O and a sequence {y, :n > 1} 

of projectors in A(G) such that 

(a) [lvall 2 1, Gn = 9% = Pn X rs 
(b) fr X fn X Pn =An¥n = Pn X fp X fas 

(c) p; X py, =O for all 7 #k, 

(d) f* x f(x) = ys) AnYn(£) uniformly on G, 

(e) ILFIP = Cast Anlleall?. 
Proof. Let f= f. Choose 4, > 0 such that (ff x frye /AE = yy in Ag(G) as 

k > oo, llyil| = 1, gr =F = x Yi and ff x fi x gr = Agi = YX AT x fi 
Inductively, let frst = fn — fn X Pn. If frst = 0, stop otherwise choose An41 > 0 

such that (f7,, x fra ® (rey > Pn in Ao(G) as k > 00, |lpnatll > 1, 

Prat = Pra = Prt XPnei and fr. x frst X Pra = AnsiPns = Pnsi X fry x frat: 

We claim (f*,, x fan)’ = Ct x fa)® — Akin. For k= 1, 

a x frat =(fn _ fa x Yn)* x (fr _ fa x Pn) 

= (fn — Pn FR) X fn — fr X Pn) 

= fi * fa-9nX fa xX fn - fh X fa X Pn tn * fax fa X Pn 

= fe xX fn — AnPn- 

and in general by induction,
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Pra x frat"! =f x fr — Anny 
= (CFR x fr)® — Meal x (fF x fr — Ann) 

= (ft x fk — Bon x ft x fa PAX fn)® x Anon + Men X An¥n 

=(f2 x frh — Mon, 

It follows (=) (feu X frsi® 

An Meat 

Since ||(f%,. x fasi®/A* || > lleneil| = 1 as & 4 00, we have Anai/An < 1, 

Le. Aney < An. Next summing up the following 

Frat x frst = fi x fn _ An¥n 

fi x fr = frei x fr-1 _ An-1¥n-1 

> 0as k > oo. 
(ft x fade 

dE 
Th 

Pn 

fix haf xfi-Avi 

we obtain f*,. x faa =f* x f- ian Ane. Next we claim that for all k > 1 

we have f*,, X fnik X Yn =O and Ynik X Yn = 0. In fact for k = 1, we get 

Frei X frst X Yr = (fr x fa —AnYn) X Yr 

=fh x fa X Yu — An¥n X Pn =An¥n — An¥Yn = 9 

and Anti Pntl xX Yn = (Yn+1 x fra x fast) X On = Pn X (fiat x fai x Yn) =0. 

OF Yast X Pn =O since Any > O. Next for arbitrary k > 1, we have 

Frakes x Frvket xX Prn= (Fek x Fr+k 7 AntkOntk) x Pn 

= fri X frtk X Yn — Antk¥ntk X Yn = 9, by induction ; 

and also 

Antk+1Pnsktl X Yn = (Pnsk X Frvket x Frsktt) X Pn 

= Pntk X freee X fasktt X Pn) = 9. 

Therefore we obtain 

fx f Gn = (fray & fast + ope Ak PR) X Yn 

= fx. X frst X Pn t Ann X Ont (crc vr) X Pn 
=0+4+AnYn +9 = AnYn- 

Taking the involution, we have y, x f* x f =AnYn. From 

fll? = CF" * A) = har & fae (0) + hey Anne) 

= || Frsill? + Dear Avil Pall? 2 Dea Ae 
we get Ax | O. By §28-4.7b, il f* x fall? < Anllfall? < Ani[fl|? > 0. Hence 

ff x fa > 0 in A2(G). On the other hand since
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Diket [AK Pelloo S eet Avie X Palloo < Dyer Aellenll? < IFIP, 
the series h = pean Atv converges to some ap-function h € A..(G). Hence 

Seu faa = f* x f — ee Aner converges to f* x f —h in Ao(G) and thus 

also in A,(G). Since ||f, x fnll? > 0, we have f* x f —h = 0. Therefore 

fi xfe= pan An?’r in Aj(G). The proof is competed as follow: 

FI? =F" * P(e) = Ty Anee(e) = Ry Aker x GR(C) = Oy Acllyell?- O 

28-4.11. Theorem For every f € A(G) and every € > 0, there are projectors 

,€ in A(G) such that ||f — f x || < e and ||f —€ x f|| <e. 

Proof. Choose 0 < rn | 0 and projectors y, € A(G) according to the 

last theorem. Then for some n, we have ||f||? — S77, Anllvall? < 6%. Since 

~; XG, = 0 for j Zk, their sum 7 = Sy.) Ye is also a projector in A(G). 

Furthermore, 

If -—f x OP = -—f x bt x F-F x We) 

= f* x fle)— (x f* x fle) — F* x f x pyle) + x f* x f x He) 

= [FP — Soper Anlivell? < 67. 
This proves the first inequality. Taking the hermitian we get || f*— x f*|| < «. 

Since f* is also arbitrary in A(G), the proof is completed. oO 

28-4.12. Theorem Let f be an ap-function in A(G). For every € > 0, 

there are g,g € A(G) such that g > 0, fgdm = 1, y* = » = YX ~ and 

lf —f 9x ¢llo < €. For every € > 0, there are h,€ € A(G) such that h > 0, 

[ dm =1, ot = =~ xp and lf x hx flloo SE. 
Proof. If f = 0, then g = y = I satisfy the requirement. Assume f # 0. 

Choose g > 0 such that f gd, = 1 and ||f—f x glloo < 46. There is a projector 

g € A(G) such that ||g — 9 x y|| < $e/||f||. Therefore we have 

WF -f x9 x Glloo Sf —f x gllo+ If x 9—F x 9 x Ylloo 

< fe+lfll lg—9 x ol] < de ll de/llfl=e: 
Replacing f by f* and taking involution, the proof is completed. o 

28-4.13. Alternative method of integral equations and Hilbert spaces can be 

found in [Naimark, p189]. 

28-99. References and Further Readings : vonNeumann, Maak, Corduneanu, 

Amerio, Chulaevsky and Pankov.



Chapter 29 

Group Representations 

29-1 Matrix Representations 

29-1.1. We initiated the study of almost periodic functions in terms of linear 

combinations of entry functions of group representations of which the basic 

theory is developed in this chapter. We restrict ourselves to finite dimensional 

representations for its connection to almost periodic functions. 

29-1.2. The trace of a square matrix is the sum of its diagonal entries. Note 

that tr(AB) = tr(BA) for all conformable square matrices A,B. The set 

mat(s,t) of all complex matrices of size s x t is an inner product space 

under < A,B >= tr(B*A) = i, Diet aig By =< A’, BY > for all A = [aij] 

and B = [G;;] in mat(s,t) where the hermitian B* = B'~ is the complex 

conjugate of the transpose of B. 

29-1.3. Lemma (a) ||AB|| < |/Al] ||Bl| and |ér(AB)| < |All ||BIl for all 

conformable matrices A, B. 

(b) If A is unitary of order s, then ||Al| = s. 

(c) If A, B are similar matrices, then ||A|| = || Bll. 

(d) ||A*|| = || Al] in general. 

29-1.4. Let Gbeagroup. A map E =[E,,;}: G — mat(s, t) is almost periodic if 

all its entry functions F,; are almost periodic. Almost periodic maps are also 

called ap-maps for convenience. The mean-value of an ap-map F is defined 

by f E(x)dmx = [ f Ejj(x)dm}. Properties of mean-values of ap-maps follow 

immediately from their entry functions. Note that E*(2) = E(a7!)'- = E(a7!)* 

but we do not need this except when EF is a function. 

29-1.5. Lemma Let D(x), E(x) be ap-maps on G. 

(a) f E(ax)dmz = f E(@)dmx = f Ee daz. 

(b) f E(t) dmx =(f E(a)dmaz)~ and f E(x)'d,,x =(f E(x)dmaz}'. 

(c) ftr E(@)dnx = tr f Eade. 

(d) For conformable matrices B,C we have f BE(x)C dx = BUf E(z)d,x]C.
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(e) The function x = || E(z)||? is almost periodic and we have 

| [E@dmal? < fE@)|PPdme. 
(f) For every conformable matrix B the following generalizes the convolution 

of scalar functions: 

f Day BE dny = [ DeyBEY™)dmy 

= f DP)BEY'2dmy = f Dy") BEYndmy. 

29-1.6. The general linear group GL(s) is the multiplicative group of all 

invertible matrices of order s. A homomorphism from G into GL(s) is called 

a representation. A representation D : G — GL(s) is bounded if all entry 

functions D;; are bounded on G and unitary if D(z) is a unitary matrix for 

every x € G. The group of all unitary matrices of order s is denoted by U(s). 

Two representations D,E are equivalent, denoted by D ~ E if there is an 

invertible matrix P such that D(z) = P~'E(x)P for all « € G. In this case, 

the equivalence is said to be under the intertwining matrix P. 

29-1.7. Theorem Let D be arepresentation of a group G. Then the following 

statements are equivalent. 

(a) D is equivalent to a unitary representation. 

(b) D is a bounded representation. 

(c) D is an ap-map. 

Proof. (a = b) Suppose D is equivalent to a unitary representation & under 

an intertwining matrix P of order s, i.e. D(x) = P~'E(a)P for all x ¢ G. Then 

|D(x)|| < ||P" |E@) PHS sl-P MIP 
shows that D is bounded on G. 

(b => c) It has been proved in §28-1.6. 

(c => a) Suppose that D(z) is an ap-map. Let A = f[ D(x)*D(x)dmz. Then 

A* =A. Since D is a representation of G, D(e) is the identity matrix. For any 

nonzero column vector v € €*, we have ||D(e)u||? = |u|? > 0. Thus 

v* Ava fut D(z) D(a)udme = f ||D(x)u|\?dnz > 0. 

Hence A is a positive definite matrix. Therefore A = P*P for some invertible 

matrix P. By translation invariance, we have for all y € G, 

A= f D(x)*D(z)dmz = f D(zy)* Dizy)dmz 

= f Dy)* D(@)* De) Dy) dma = D(y)* [f D(z)* D(x)dmx| Dy) 

= Dy) ADYy),
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that is P*P = D(y)* P* PD(y). Now for every y € G, define E(y) = PD(y)P7?. 

Then F is a representation of G. Finally F is a unitary representation because 

Ey)" BY) =(PDy)P"')"PD@)P 

= P~*[D(y)*P*PD(y)|P-! = P~!*P* PP) = 1. o 

29-1.8. A representation D of G is reducible if there is an invertible matrix 
_ _ | A@) 0 P such that P-! D(x)P = ps B(x) 

matrix maps of order at least one. A representation is irreducible if it is not 

reducible. Clearly if A,B are representations of G, then D(x) = A(x) @ B(x) 

for all z € G is a representation which is called the direct sum of A, B. In this 

case, we write D= AB. 

| for all « € G where A, B are square 

A(x) 0 
29-1.9. Theorem Ifa representation D(x) = C) Bia) of G is reducible, 

then it is equivalent to A@® B. 

Proof. Equating the corresponding blocks from 

A(ry) 0 _ _ _ A(x) 0 Aly) 0 

Ew sew | = Day) = De) D@) = bs Bee) | Ee Buy | 
we get A(ay) = A(z)A(y), Czy) = C(x) A(y)+ B(x)C(y) and B(cy) = B(x) BY). 
Let N = {CMAQ dmy and P= I . From 

0 
N ff 

NAG) = [CMAQ )A@dmy = fCMAY!2)dmy 

= f CayAQg7dmy = fIC@AQ® + B@)CYIAG dmy 

= [C@dny + Bex) f CHAY Ddmy = C(z) + BON, 

we have D(xr)P = P[A(z) © B(a2)}, i.e. P~!D(2)P = A(z) ® B(a) for all « € G. 

Therefore D is equivalent to A @ B. oO 

29-1.10. Exercise Prove that if A, B are bounded representations of G, then 

A@B and B@A are equivalent bounded representations. Also show that 

if A,B are equivalent bounded representations, then A @ B is equivalent to 

A@A. That means we can move the diagonal blocks to get the next theorem. 

29-1.11. Theorem (a) Every bounded representation D of a group is 

equivalent to the direct sum of the form ®%_,m,D” where D!, D?,---,D” 

are inequivalent irreducible unitary representations. In this case, m,, is called 

the multiplicity of DY in D.
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(b) If D ~ @t_ir,E* where E!, E?,.--, E? are inequivalent irreducible bounded 

representations, then n = ¢ and there is a permutation p on {1,2,---,n} such 

that rp) = My and EP™ ~ D” for every 1 <w <n. 

29-1.12. Schur’s Lemma Let D, FE be irreducible representations of G of 

degrees s,t respectively. If A is an s x t matrix satisfying D(2)A = AE(x) for 

all « € G, then either A =0 or A is an invertible matrix. In this case, we must. 

have s=t. 

Proof. Let r be the rank of A. There are invertible matrices P,Q of order 

0 0 
s,t respectively such that A = P Q. Then for every r € G, we have 

[, 0 

P-'D(a)P E °| = IP °| QE(2)Q-'. Suppose that 

-1 | Di) Dire) _ | Bue) Fy2(x) 
Pp Dep = | pi pe and @ B99 = | BN) me | 

where Do2(x) and £,\(x) are square matrices of order r. Simple substitution 

ives ew of =| 0) 0) 
8 Dyl(x) 0 Ey,(z) E122) 

D, E are irreducible, we have either r=0 or r=s=t. Ifr=0, then A=0. If 

r=s=t, then A= PQ is invertible. o 

, Le. Dio(2) =0 and Ej3(x) = 0. Since 

29-1.13. Theorem Let D be an irreducible representation of G of degree s. 

If A is a matrix satisfying D(x)A = AD(2) for all x € G, then A= AJ for some 

AEC. If Dix) Dw) = Diy) D(z) for all x,y € G, then D is of degree one. 

Proof. Let X be an eigenvalue of A. Then D(x)(A — AI) = (A — AD D(z) for 

all x € G. Since A—AJ is singular, we have A— AJ = 0 as required. Next, take 

any y € G. Since D(x) D(y) = D(y) D(z) for all x € G, we have D(y) = A(y)I 

for some A(y) € €. Since D is irreducible, the order of D is one. The last 

statement is obvious. Oo 

29-1.14. Corollary Every irreducible representation of an abelian group is 

of degree one. 

29-1.15. Theorem Equivalent irreducible unitary representations D, & are 

unitarily equivalent, that is, there is some unitary matrix P such 

that D(z) = P~' E(2)P for all x € G. 

Proof. Let A be an invertible matrix such that D(z) = A7!E(2)A for all 

xz €G. Taking the hermitian, we have D(x)* = A*E(x)*(A*)7!. Since D,E 
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are unitary representations, we get D(a~!) = A*E(a~')(A*)~? for all « € G. 

Hence D(x) = A* E(x)A7!*, or E(x) = (A*)~! D(a) A* for all x € G. Thus 

D(a) = A7!E(a)A = A7!(A*)~! D(z) A* A = (A* A)! D(a) A* A. 

It follows that A*A = AI for some 4 € ©. Because A*A is positive 

definite and invertible, A = tr(A*A)/s > 0. Define P = wees Then we get 

P*P= (FA MRA) =I. Therefore P is unitary. Furthermore, 

-1 
P-1E(a)P = (4) EQ A= VXAT EG) JA = Dm), Vr eG. 

Consequently, D, E are unitarily equivalent. Oo 

29-1.16. Lemma _ If D, F are bounded representations of G, then for every 

conformable matrix B and all x € G we have 

D(a) f Dg“) BEW)dmy = [f Dy BEY) dmy] E@). 

Proof. Changing variables y = zx as in convolution, we have 

D(a) f Dy) BEW)dny = [ Decy" BEY) dmy 

= f D@-)BEG2)dmz = [f De) BE(2)dmz] E(z). oO 

29-1.17. Theorem If D, £& are inequivalent irreducible bounded representa- 

tions, then for all conformable matrix B we have f D(y~!)BE(y)dmy = 0. 

Proof. If f Dy~')BE)dmy = 0 is nonzero, then it is invertible by Schur’s 

Lemma and consequently D, EF are equivalent. oO 

29-1.18. Theorem If D is an irreducible bounded representation of degree s, 
tr(B) I 

8 
then for every conformable matrix B we have / Dy) BDW@)dmy = 

Proof. Since D is irreducible, the identity 

Dw) f De“ BDWdmy = [f Dy“) BDY)dmy| D(z) 

shows f Dy~)BDy)dmy = MI for some 4 € €. Taking the trace, we have 

As = tr f Dy) BD@)dmy = f tr Dy“ BD@)ldmy 

= ftr(D@)DY~Bldmy = f tr(B)dmy = tr(B). 

Therefore we have f Dy“')BD(y)dmy = AI = 2B) 7 as required. Oo 

29-1.19. Corollary Let D,E be inequivalent irreducible bounded 

representations of G of degrees s,t respectively. Suppose that Dj;, Exgn are 

entry functions of D, E respectively. 

(a) Di; x Ben = 0 and Di; x Den = 1 jk Din:
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(b) The functions D:;, Ex, for | < i,j < 5s, | < k,n < ¢ are linearly 

independent. 

Proof. (a) For fixed j,k, let B = [6,;54q] be the matrix of size s x t with 

all zero entries except the (j,k)-th which is one. Since D, EF are inequivalent 

irreducible, we have f Dizy“BE(y)dmy = D(z) f Dy )BE()dmy = 0 for 

alla € G. The (i,n)-th entry of this matrix is 

O= f Wher Dper Dipley- Vb pjSeq)EanW)dmy 
= f Di(cy Een (y)dmy = Dij x Exn(2), VaneG, 

that is Dj; x Ex, =0. Next, observe that 

f Day") BDY)dmy = D(x) f Dy") BD) dmy = ttr(B) D(a), VareG. 

Equating the (z,n)-th entries of both sides, we have 

Diz x Den(a) = ttr(B)Din(2) = $5jeDin(@), Vr G, 
that is Di; X Din = i jk Din- 

(b) Assume that a aij Diy + pg Ben Een = 0 for some ay;, Ben € C. Then 

Dip x (S35 aij Diz + len Pen Ekn ) x Dy =0 

le. Dy 0455 pi9jgD 1 +0= 0, 

OF Qpg = ApgD1(e) = 0. Hence all a,; = 0. Similarly, all 6,, = 0. Consequently 

all D,;; and Ex, are linearly independent. go 

29-1.20. Corollary Let D, & be inequivalent irreducible representations of 

G. If both D, E are unitary, then 

(a) < Diy, Ben >= f Dij@)Exn(@)dmt =0, 

(b) < Dij, Din >= f Dij(@)Din@)dnz = 15:45jn- 

Proof. (a) < Dig, Exn >= [ Diy(2)Exn(2)dme 

= f Dia) Enzo ')dmz = (Diz K Eng)(e) = 0. 

(b) < Diy, Din >= (Diz X Dn Me) = 15in Dir. o 

29-2 Characterization of Projectors 

29-2.1. Through eigen expansion, we constructed a nonzero projector yp 

associated with every nonzero ap-function. In this section, we show that the 

solution space S, of y x f = f in f is finite dimensional and right translation 

invariant. It is then used to characterize projectors.
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29-2.2. Let A(G) denote the space of ap-functions on a group G. A vector 

subspace M of A(G) is called a closed right invariant ideal if M is closed in 

Ao(G) and M is right translation invariant, ie. for every a € G we have 

RaM c M. Similarly we define closed left and two-sided invariant ideals. 

Two-sided ideals are simply called ideals. A subset M of A(G) is hermitian or 

self-adjoint if f* € M for all f € M. Clearly, a hermitian closed right or left 

invariant ideal is a closed two-sided invariant ideal because (R,-: f*)* = Laf. 

29-2.3. Theorem If M is a closed right invariant ideal of A(G), then M is 

a right ideal of the convolution algebra, ie. M x A(G) Cc M. Furthermore if 

f € M, then the function g given by g(x) = f f(zy)dmy belongs to M. Similar 

result holds for left and two-sided ideals. 

Proof. Let f € M and h € A(G). Then f x A is the uniform limit of linear 

combinations of right translations of f. Hence f x h € M. In particular for 

h=1,wehaveg=fxheM. QO 

29-2.4. Theorem Let M be a finite dimensional closed right invariant ideal 

of the inner product space A2(G) and H = [h),---,hs] an ordered orthonormal 

basis of M. For every a € G, let D(a) = [Di;(a)] be the matrix representation 

of the right translate R, : My — My. Then D is a representation of G of 

degree s. It is called the representation associated with H. Furthermore for all 

a,x € G we have h;(xa) = 7, hi(@) Di; (a). 

Proof. Clearly Raq is a linear operator on M. Since for all f,g € M, 

< Raf, Rag >= f f(ra)g(za)dnx = f g(x)g(@)dmz =< f,g >; 
R, is an isometry. Hence each D(a) is a unitary matrix. Furthermore, because 

D(ab) = [Ras} = [Ra Rs) = [Ra] [Re] = D(a) D(b), D is a representation of G. 

Since D(a) is the matrix representation of Ra, by §7-5.8 we have R,H = H D(a), 

that is [hi(za),---,hs(va)] = [Ai(2),---,hs(x)] [Dj;(a)}. Equating the j-th 

column, the result follows. oO 

29-2.5. Theorem Let H,K be ordered orthonormal bases of a closed right 

invariant ideal M of A(G). Then the unitary representations D, E associated 

with H, K respectively are equivalent. A representation associated with some 

orthonormal basis of M is said to be associated with M. 

Proof. Let P be the transition matrix from H to K. Then for each a € G 

we have D(a) = P~'E(a)P and P is a unitary matrix. Therefore D, E are 

unitarily equivalent. oO 
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29-2.6. Theorem Let ¢ be a projector in A(G). The right solution space of 

y defined by S, = {f € A(G): y x f = f} is a finite dimensional closed right 

invariant ideal of A(G). 

Proof. Let &f)=y x f —f for every f € A(G). Since 

HED lloo ¥ [le x Flloo + flloo < I Pllooll Flloo + HFlloo = ([l¥lloo + DIF loo, 

the linear map € : Aa(G) — A,(G) is continuous. Therefore its kernel S, is 

closed vector subspace of A.(G). Let H = [h,,-++,h,] be any orthonormal set 

in S,. Define m(z,y) = pry!) — a h,(x)h,(y) for all z,y € G. Then z is 

an ap-function on G x G. Observe that 

O< ff lr(@,y)Pdmadmy 

=f f [pey7") — SL hihi] [eeu - ia hy(a)hg@)| ~ dintdmny 

=f fle@yPdmtdmy ~ Diy ff hier) GY Ddmtdmy 
— ja SLRs @Ors Mey dmtdmy 

+ igen SS rR) hj@hjWdmedmy 

= loll? — Di SAO * hI@ dma ~ Dj. [OY * AN @)dmx 

+ Viget (f hi(a)hj(@)dme) (f hy Whi@)dmz) 

= Well? — Dir f PDR @dma — D5a1 [Ry @hy dmx + VF jay 45552 

= |lell? —s, 

or s < ||y||*. Therefore S,, is finite dimensional. For every a € G and f € Sy, 

we have 

p x (Rafa) = f elzyRafy)dmy = f plzy~)f(yadmy 

= f pray") f@)dmy = (vp x f)(ea) = Ray x f(x) = Raf (2). 

Hence Raf € Sy. Therefore RzS, C Sy. Consequently S, is a finite 

dimensional closed right invariant ideal. oO 

29-2.7. Theorem Let H = [hy,---,h,} be an orthonormal basis of the 

right solution space S, of a projector y in A(G). Then we have 

pry!) = ey ha)hi(y) for all x,y € G. Furthermore the dimension s of 

Sp is equal to ||y||*. 

Proof. Fix a € G. Define f(x) = (xa!) — an h(a)hifa) for every x € G. 

Then the routine calculation 

(yx fx) = felcy~f@)dny
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= f eay eye") dmy — Dia f e@y Dhi@yhil@dmy 
= f p(eam'y™oy)dmy — Viale x hs (ayhi(a) 
= (p x pza-") — Pe, hi(z)ha(a) 
= p(eaq!) — YY, hiw)hi(a) = f(a) 

shows that f € S,. Next observe that 

<f,hj>af [e(zaq!) — WL, Ai(z)hila) ] hj(2)dm= 

= foet(ca hj @dma — 2, f hi@hi(@ hj(z)dmz 

= f par!) hy(@)dmnx ~ Ley Sighila) 
= 9x Tyla) — Fa) = 0. 

Since H is an orthonormal basis, we have f =0, ie. y(za~') = Ti, hy(a)h,(a) 

for all a,x € G. It follows from the proof of last theorem that 

0= ff |r(@,y)Pdmedmy = \|¢l|? — s, or s = |le|l?. O 

29-2.8. Lemma Let {D” : w © J} be a finite set of inequivalent irreducible 

unitary representations of G. For each w, let s, be the order of DY” and A” 

a square matrix of order sy. If y = oe; Sw < DY,AY” >, then we have 

* = ues Sw < DY, (AY-)* > and y x p= Dey Su < DY (AY >. 

Proof. For DY = (Di) and A” = [a], we have 
Sw _=—_ 

ea)= 0 ey Sw ijt ay” D¥@ 

Sw wo pyw _ a w—yx = vey Yai je 8 Dn) = D0 Sw < DY), (AY > 
and 

Po eye Di je1 MP) ¥ (Ley Depa: 2m Pon) 
= owes ee eel SwSvOjOpq Sw Op 7 Dig 

= ves ge Sy OGG 5G Dig = wed Sy < DY (AY >. o 

29-2.9. Theorem An ap-function y on G is a projector iff 

2 = diweg Sw < DY, AY > 

where {D” : w € J} is a finite set of inequivalent irreducible unitary represen- 

tations of G, each A” is a projector matrix and each s,, is the order of D”, A”. 

In this case, we get AY =< y, DY >, that is [< 9, D% >}. 

Proof. (=>) Let y be a projector in A(G). Then y is a linear combination of 

entry functions of some unitary representation D of G. There is an invertible
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matrix P such that P-!D(z)P is the direct sum of some irreducible unitary 

representations among which the set of all inequivalent irreducible represen- 

tations is denoted by {DY : w € J}. Then ¢ is also a linear combination of 

entry functions of {DY : w € J}. More precisely, for some ai € C we have 

_ Sw w Pw . w y= oes Sw eget aj, Di; where s,, is the order of D,,. For A = [ay], we 

obtain the required equality. From y= y* = ~ x », we get 

owes Su < DY (2), AY7 >= Vey Su < DY (a), (AY) > 

= Dyes Su < DY(x), (AY? >. (a) 

Because the set {D%: w € J, | <i,j < s,,} is linearly independent, we obtain 

(AY) = (AY )* = (AY. Thus AY~ is a projector matrix and so is A’. 

(<=) Suppose that for all x € G we have y = Ye; Su < DY, AY” > where 

{D” : w € J} is a finite set of inequivalent irreducible unitary representations 

of G, each s,, is the order of D” and each A” is a projector matrix. Then we 

obtain the equation (a) above from which we get yp = y* = y x y. Therefore p 

is a projector in A(G). Finally, the proof is completed by the computation: 
Sw 

<9)Din >= do yeaa ay, < Di, Din > 

=e) wd. 4 08 ~ buvdindin =a. q 

29-2.10. Corollary Let D, F be sc uivatent irreducible unitary representations 

of G of the same degree s and A, B be nonzero projector matrices of order s. 

Ifp=s< D,A” >=s< E,B™ >; then A,B are unitarily similar. 

Proof. Let P be a unitary matrix such that D = P~'EP. Then the complex 

conjugate Q = P~ is also unitary and D- = Q-'E-@Q. Therefore we have 

A=< ¢,D>= f o(z)D(2) dix = f op(2)Q'E(2) Qdinz 

Lf P@)E@)~dm2]Q=Q-'<y,E>Q=Q"'BQ. 5 

29-3 Fourier Matrices 

29-3.1. Let D be a bounded representation of a group G and f,g be almost 

periodic functions on a group G. Then the Fourier matrix of f corresponding 

to D is defined by D(f) =< f, D >= f f(x)D(«) dmx, the Fourier inner product 

of f,g by D < f,g >=< D(f), Dg) >= tr D(g)*D(f) and the Fourier norm 

of f by ||D(f|| = WD < f, f > . The entries of D(f) are called the Fourier 

coefficients of f.
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29-3.2. Theorem (a) (f x D)(x) = D(f)'D(z) and (D x f(z) = D(a) D(f)*. 

(b) D(Laf) = D(a)’ D(f) and D(Raf) = D(f) D(a). 

Proof. We only prove the first equality of both parts as follow: 

fx D@=f fwDYy"aDdny = [f fWPOU7)dmy| D@) 

= [f FDU) dny] De) = [f FDO) dmy]’ D(a) = DYF)'D(@) 
and 

D(Laf) = f Laf(2)D(2)dmz = f f(at)D(a) dine 

=f fM)D@"ydmy = Da") f FWD) dmy = D(a)’ D(f). 0 

29-3.3. Theorem Let D be a unitary representation of G of order s. Then 

the map f — D(f) is a star homomorphism of the convolution algebra A(G) 

into the algebra M(s) of square matrices of order s. 

Proof. Clearly f — D(f) is a linear map. The proof is completed by the 

following calculation: 

D(f*) = f f*(@)D(@) dm = f f(a") Dee") dnt 

=f fe) D@y dn = [f f(@)D(@) dm)" = Df)" 
and 

DF x 9) = fF xX N@DGYdnz = f f fey )g@)D@) dntdmny 

=f [ f@)gY)D(zy) dntdmy 

= [fF@D@) dz] [f 9y)DW)~ dmy] = DA)D(9). o 

29-3.4. Theorem If D, FE are equivalent unitary representations of G, then the 

Fourier matrices D(f), E(f) are unitarily similar and D < f,g >= E < f,g > 

for all f,g € A(G). 

Proof. Let P be a unitary matrix such that D(x) = P* E(z)P for all r € G. 

Then Q = P7 is unitary, Diz)~ = Q* E(x) Q and 

D(f)= f f(@)D@)~ dmx = f f(2)Q*E(2)” Qdimx 

= Q* [f f@E@Y dnz] Q = Q*E(/)Q. 

Hence D(f), E(f) are unitarily similar. Finally for all f,g € A(G), we have 

D< f,g >=< D(f), Dg) >= trD(g)* D(f) 

= tr[Q* E(QOV1Q*E@)Q] = trilQ* E(g)*QQ* E(g)Q) 

= trE(g)* Eg) =< E(f), E@) >= E< f,g>. Oo
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29-3.5. Theorem Let {D” : w € J} be a finite set of inequivalent irreducible 

unitary representations of G and let s,, be the degree of D” for each w. Let 

f be an ap-function on G. Suppose that g = Uc; 8w < DY”, A” > where 

{AY : w € J} is a set of constant matrices. Then we have 

(a) If — gl? = WIP — Sey Swill DY CAI? + Des SwllA” — DXA, 

(b) Bessel’s Inequality = 7.7 swi|[D’ (AI? < lf’. 

Proof. Let AY = lov, DY (x)= (D5 (z)] and D“(f)= [2%]. Then we have 

If - al? =< F-Y028o0,  BDE FD 80 yy On Din > 

= [FIP — 0 ey Sw Daye 8 < DB FE Yn, - an < f, Din > 
+ ues Sw Sy >, ma Aon < Dy, Din > 

=IIFIP +O, Sw yf QM BM 4 tat 

=F + oe, 8 oy MOS” — BS Nays — By) — BB" 8} 

= IFIP +O, SullA” = DYE DD, swll DIP. 
Letting AY = D¥(f), we obtain 0 < ||f ~ gl? =[IfIl? — Cues sullD’ (IP. 0 

29-3.6. Theorem Let D, FE be bounded representations of G and TD,TE the 

vector subspaces of A(G) spanned by the entry functions of D, E respectively. 

If D, E are equivalent, then TD = TE. 

Proof. Let P be an invertible matrix such that D(x) = P~!'E(x)P for all 

x € G. Since every entry function of D(z) is a linear combination of entry 

functions of E(x), we have TD C TE. By symmetry, we have TD=TE. O 

29-3.7. Theorem If D is an irreducible bounded representation of G of 

degree s, then T'D is a minimal closed invariant ideal of A(G). Furthermore 

the dimension of TD is s?. 

Proof. Since TD is a finite dimensional vector subspace of A,.(G), it is closed 

in A.(G). Take any a € G. Since L,Djj(x) = Dij(ax) = 74, Dix(@) De; (2) 

and R,D,;(2) = Diy(xa) = he Dix(2)D;;(@), TD is translation invariant. 

Because (D x f)(z) = D(x)D(f)' for any f € A(G), TD is a right ideal of the 

convolution algebra A(G). Similarly, it is also a two-sided ideal. Since D is 

irreducible, the entry functions {D,; : 1 < i,j < s} are linearly independent. 

Hence the dimension of TD is s*. Finally let M be an ideal of A(G) such that
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{0} 4M CTD. There is a nonzero g = Diet a;;Di; in M. Suppose ann #0. 

Then for all 1 < p,q <s, 
$ Ak 

Dok x gx Dag = jet aj Dok x Di; x Dna = “se Poa 

shows that Dpg € M, i.e. TD C M. Therefore TD is minimal. oO 

29-3.8. Lemma If D, FE are inequivalent irreducible bounded representations 

of G, then we have T(D @ E)=TDOTE. 

Proof. Clearly we have T(D @ E)=TD+TE. Because Dj; x Exn = 0, we 

have TD TE = {0}. Therefore the sum is direct. Qo 

29-3.9. Theorem For every bounded representation D of G, if TD is minimal, 

then D is irreducible. 

Proof. lf D = E, ® kh, then TD = TE, @ TE, and TE, c TD but 

{0} TE, TD. Therefore D is not minimal. oO 

29-3.10. Corollary For every bounded representation D of G, TD is a closed 

invariant ideal of A(G). 

Proof. Write D = @{s,D” : w € J} where {DY : w € J} is a finite 

family of inequivalent irreducible unitary representations of G. Then 

TD=@{TD” : w € J} is a closed invariant ideal. Oo 

29-3.11. For the rest of this section, let T be the family of all equivalent 

classes of irreducible bounded representations of G. For each w € I’, choose 

any irreducible unitary representation DY” € w. Let s,, denote the degree 

of D”. For every subset A Cc I, functions in the vector subspace TA of 

A(G) spanned by U{Tw : w € A} are called trigonometric polynomials on G or 

A-trigonometric polynomials in order to be precise. 

29-3.12. Theorem Every projector in A(G) is a trigonometric polynomial. 

The translates of A-trigonometric polynomials are A-trigonometric 

polynomials. Furthermore, T'A is an ideal of the convolution algebra A(G). 

29-3.13. Lemma _ For every f € A(G), the set {w ET: ||D’(f)|| 4 0} is 

countable. 

Proof. For any integer k > 0, if the set J(k) = {w ET: ||[D’(f)|| > ¢} has 

more than || fj|?k* + 1 elements, then we have 

1 1 2 uw 2 -_ 2, 70 IAP > Oey Sul XO > Dey > MFP + 
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which is a contradiction. Hence J(k) is a finite set. Therefore the set 

{w €T: ||D’(f)|| 40} = UR, J(é) is countable. q 

29-3.14. Parseval’s Equation For all ap-function f,g on G, we have 

IF? = Ser swllD’(f)? and << fg >= Dep suD” < fg>. 

Proof. It follows from Bessel’s inequality that 37 <p sul|[D’(f)||?_< [lf ll’. 

On the other hand, for every ¢ > 0 there is a projector y on G such 

that ||f — ¢ x fll < ¢. Since w x f is a trigonometric polynomial, write 

ex f = Vues Sw < DY, AY” > where J is a finite subset of f and A, are 

constant matrices. From §29-3.5a, we obtain 

If? — ver Sul|DY CAI? < IF — ye x fI|? Se? 
or |[fl|? < 2? + owes Sw||D’(f)|/?. Since ¢ > 0 is arbitrary, we have 

If? < SverswllD’G)". This proves the first equality. The proof is 

completed by the following calculation: 

4< f,g>=|lf +l? — IF — oll? + allf + igll? — elf — égl|? 

= Ver Sw {||DY CF +9) |? — | DY CF —9)||? +4] DY (F +ig9)|? — 4] DY Ff —i9)]|7} 
= wel Su {4D” < fg >}. Oo 

29-3.15. Let M be a closed invariant ideal of G. A bounded 

representation D of G is called an M-representation of G if all entry functions 

of D belong to M. 

29-3.16. Lemma Let D, F be irreducible bounded representations of G. 

(a) If one of entry functions of D belongs to M, then D is an M-representation. 

(b) If D, FE are equivalent and if D is an M-representation, then so is E. 

Proof. If Di; € M, then Den = s* Dri X Di; x Djn © M where s is the degree 

of D. Part (b) is left as an exercise. Oo 

29-3.17. Theorem Let D be an irreducible bounded representation of G. If 

there is f € M such that the Fourier matrix D(f) is nonzero, then D is an 

M-representation. 

Proof. By §29-1.7a, we may assume that D is unitary of degree s. Given 

D(f)= f f@)D(a) dnt #0, we have < f, Din >= f f@)Dinl2) dn 0 for 

some k,n <s. Then for all i,7 <s and a € G, we obtain 

Dim X f X Daj(a) = (Dik X f\@)Dnj(e adn 

=f f Dey YS@)Dnj(e7!a)dmtdmy
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= Daal L Dip @)Dpn(y~ YF (Y)Dng(t~")Dqj(@)dm2bny 

= Doge Lf Dip@)Dng(t dm} {f Doel F@)dmy} Daj) 

= Viet (SL Div(@)Dan(2)~ dm} {f FY)Diply) dmy} Daj(a) 
= get < Dip, Dan >< f, Dip > Dyy(0) 

= Voget 4 SiaSpn < f, Dep > Dgj(a) = 4 < f, Din > Dij(Q), 

or D Dix x f x Dn; € M. Because D is irreducible, it is an 
s 

a < f, Den > 

M-representation. Bo 

29-3.18. Corollary Every minimal closed invariant ideal M is of the form 

TD for some irreducible unitary representation D. Consequently all minimal 

closed invariant ideals of A(G) are finite dimensional. 

Proof. Choose any nonzero f € M. There is an irreducible unitary 

representation D such that the Fourier matrix D(f) is not zero. It follows 

that D must be an M-representation. Hence TD is a closed invariant ideal 

contained in M. Therefore M =TD. in| 

29-99. References and Further Readings : Boyer, Naimark, Huang, Sugiura 

and Hofman.



Chapter 30 

Saturated Closed Invariant Ideals 

30-1 Dual Objects 

30-1.1. We are comfortable to work with sine-cosine functions which are real 

and imaginary parts of the exponential function e**. We shall prove later in 

this chapter that every continuous irreducible unitary representation of the real 

line is of the form e***. For vibrating strings with fixed end points, only periodic 

functions with fixed period are required. Continuity is normally imposed upon 

the study of topological groups. This is why A(G) begins to disappear from 

the scene. 

30-1.2. Let C(G) be a closed invariant ideal of a group G. From now on, it will 

become the subject of our study. Members of C(G) are called comfortable almost 

periodic functions, or cap-functions for convenience. By a representation, we 

actually mean a C(G)-representation defined in §29-3.15. By an uncomfortable 

representation, we indicate that it need not be a C(G)-representation. Write 

C,(G) to emphasize the norm in use. 

30-1.3. The family Q of all equivalent classes of irreducible bounded 

representations of G is called the dual object of G. The equivalent classes 

in 2 are called dual classes. A family DQ = {D” : w € QO} is called a unitary 

representative of the dual object if every representation DY € w is unitary. 

Clearly DQ is a maximal system of inequivalent irreducible unitary 

representations of G. Conversely if a maximal system of inequivalent 

irreducible representations of G is given, then the equivalent classes containing 

representations of this system is the dual object of G. 

30-1.4. Let w be a dual class. For all D © w, define the degree sy 

of w to be the degree of D; Tw = TD, w < f,g >= D < fig > and 

|JwCf)|} = ||.DCA||. They are all well defined because they are independent 

of the choice of D € w. Without loss of generality, we shall work with a 

particular unitary representative DQ of the dual object.
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30-1.5. Theorem For all cap-functions f, 9; we have || ||? = we Sw{lwCf)|l? 

and < f,g >= Dj eQ Sullw < fg > \|?. 

Proof. Let [T be the family of all equivalent classes of uncomfortable 

irreducible unitary representations and choose DY € w for each w € I. If 

w(f) # 0, then D’(f) 4 0 and hence D” is a comfortable representation. 

Therefore for all w ET \ 0, we have w(f) = 0. Consequently, we have 

Ill? = Coer sulle? = Coco swllw(AI. 
Part (b) is left as an exercise. o 

30-1.6. Corollary The Fourier matrices uniquely determine the convolution 

algebra C(G). More precisely, for all cap-functions f,g,h on G and a € C; the 

following statements hold. 

(a) f = 0 iff D(f) =0, for all irreducible unitary representations D. 

(b) f =g iff D(f) = D(g), for all D. 

(c) f =g* iff D(f) = D(g)*, for all D. 

(d) f=gth iff Dif) = Dig) + D(A), for all D. 

(e) f = ag iff D(f) = aD(q), for all D. 

(f) f=gx h iff Df) = Dig) D(A), for all D. 

Proof. (a) f = 0 iff fll? = 0-9 swll DY? = 0 iff DY(f) = 0. The rest 

follows because f — D(f) is a homomorphism from the convolution algebra 

w
e
 
S
e
 

C(G) into the algebra of square matrices. oO 

30-1.7. The formal sum >7,-¢9 Su < _D”, A” > is called a trigonometric series 

where each A” is a constant matrix of order s,.. The Fourier series of a 

cap-function f is defined by Q(f) = Vi eq sw < DY,DY(f)” >. There is 

some trigonometric series which is not a Fourier series of any cap-function. 

Fourier series of a cap-function need not be pointwise convergent. Example 

can be found from classical Fourier analysis on the circle group. 

30-1.8. Lemma The Fourier series is independent of the choice of the dual 

representatives. 

Proof. Let D, E be equivalent unitary representations and let P be a unitary 

matrix satisfying D(x) = P* E(x)P for all x € G. Then we have 

< D(a), D(f)- >= tr D(f)-* D(a) = tr [f fY)DQ)~4dmy]* D(z) 

=tr [f fy) Dwy)dmy|” D(x) = tr [f f)~ P* EQ) Pdmy|* P*E(2)P 

= tr [P* {f FMEQ)- dy} P| P*E(x)P 
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=tr P[P*E(f)*PP* E(2)| =< E(x), E(fy >. 

Hence every term < D”(x), D’(f)~ > is independent of the choice of DY” € w. 

Therefore the Fourier series is independent of the choice of {DY :w EQ}. O 

30-1.9. Theorem The Fourier series of f converges to f in C)(G). Therefore 
1 

GE Di iwe al is an orthonormal basis of the inner product space C2(G). 
Sw 

For compact groups, this is frequently called Peter-Weyl Theorem. 

Proof. For any € > 0, there is a finite subset J of 2 such that 

~ ye w lf — Dues Sw < DY, DY(A” >= IFIP — Dues SullD°DI? < € 
which is the statement of the theorem. o 

30-1.10. Theorem Then set TQ of all trigonometric polynomials is dense in 

C,(G) for all 1 <p < oo. This is also called Weierstrass’ Theorem for G= R. 

Proof. Let f be a cap-function on G. For every € > 0, there exist a projector 

y and a cap-function g such that ||f — py x 9 x fllp < ||f —e x 9 x fllo <e. 

Since y x g x f is a trigonometric polynomial, the proof is complete. Oo 

30-1.11. Corollary If f €¢ C(G), then the hermitian f* is also in C(G). 

Proof. Since D7,(x) = Di; (z—!)~ = Dji(x) for every unitary representation D, 

the hermitian of trigonometric polynomials in C(G) are in C(G). The proof is 

completed by uniform limits. q 

30-2 Characters 

30-2.1. General comfortable almost periodic functions or cap-functions are 

described by their Fourier matrices. In this section, we specialize an important 

case when commutativity is available. Let C(G) be the closed invariant ideal of 

comfortable almost periodic functions on a group G. The trace of a bounded 

representation D of G is called the character pp of D. If D is irreducible, then 

pp is said to be irreducible. The degree of D is also called the degree of pp. 

A character of degree one is a unitary representation. A function f on G is 

said to be central if f(xy) = f(yx) for all c,y € G. Clearly it is equivalent to 

f(y~'zy) = f(2) for all x, y € G. This section studies the relationship between 

central functions and characters. 

30-2.2. Lemma (a) popes =pp+t pe for all bounded representations D, E. 

(b) If D, E are equivalent bounded representations, then pp = pr.
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(c) Let p be the character of an uncomfortable irreducible representation D. 

If p is comfortable, then so is D. 

Proof. (b) Let P be an invertible matrix such that D = P~'EP. Then we 

have pp(2) = tr D(z) = tr_[P~!E(2)P] = tr PP E(2) = tr E(2) = pe(2). 

(c) Since Di, = sD x p € C(G) where s is the degree of D, all entry functions 

of D belong to C(G) because D is irreducible. Oo 

30-2.3. For every dual class w in the dual object 0 of G, the function p,, = pp 

is independent of the choice of D € w and hence it is well defined. Since every 

bounded representation E is equivalent to a direct sum 6, eQw DY where m,, 

is the multiplicity of DY” in BE. The integers m,, and the functions p,, = pp» 

are independent of the choice of DQ. We also called m., the multiplicity of the 

dual class w in E. Except a finite number of dual classes w, we get m, = 0. 

30-2.4. Theorem Let w,v be dual classes of G and s,, the degree of w. 

(a) (SuPw) X f =owof = f X (SuPw) for all trigonometric polynomials f € Tv. 

(b) (SwPu) X Po = Suvbws Pul@!) = Par Pt = Pwr Pul€) = Sw and also 
< Pw, Pu >= Swy. In particular, 5,0. is a projector and the set {py : w € N} 

is orthonormal in C(G). 

Proof. Choose any irreducible unitary representations D € w and EF € v. Let 

Di;, Exn be the entry functions of D, FE respectively. Observe that 

Sw sw 1 
Sw Pu X Ein = Sw 91. Dit X Een = Sw), — $08 8inEin = SuvE mn. 

~ ~ w 

Since Tv is spanned by {Exn : k,n < sy}, both (a) and s,py X py = dwoPw 

follow. Next, from Dj;(z~!) = Dji(x)~— we obtain p,(z~!) = py(z)~ and 

Px, = Pw. Clearly py (e) = tr(Z) = 5. Finally, we have 

< pw Pu >= f PulZ) P(t) dm = f pulx)pu(a7 "dm 

= Pw X pr(e) = + byypuwle) = Sw: Qo 
Sw 

30-2.5. Theorem Let pp,pe be the characters of bounded representations 

D, E respectively. 

(a) po = weM My Pw and My =< PD, Pw >. 

(b) The multiplicity of the identity representation in D is f pp(a)d,.x. 

(c) D, E are equivalent iff pp = pr. 

(4) |ppl? = /<Q7m%,- Note that this is actually a finite sum. 

(e) D is irreducible iff ||pp|] = 1.
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Proof. (a) Let P be an invertible matrix such that for all « € G we have 

P-'D(z)P = ewcQ Mu D(x). Then 

pp(2) = tr D(a) = tr|[P'D@)P] = Sq MutrD(z) = OQ Mu Pal) 

and < PDs Pu >= ViyeQ Mu < Pur Pw >= yey Meduw = Mw- 

(b) The identity representation carries every element of G to the number 1. 

Its character is the constant function 1. Therefore its multiplicity in D is 

<pp,1 >= f po(2)dnz. 

(c) Let pr = lr weQ NwPw- If pp = pe, then ny =< PE, Pw >=< PD, Pw >= Mw 

for all w € Q. Hence D, FE are equivalent. The converse is obvious. 

(d) leo ||? =< PD, PD =< we Mu Puy eR My Pu > 

= uve) MwMvdun = ye m,. 

(e) Suppose |Jap|| = 1. Then 3>,,.q m2, = |len||* = 1. There is some v € Q 

such that m, = 1 and m,, =0 for all w+#v. Therefore D is equivalent to Dy. 

Consequently D is irreducible. Then converse is obvious. o 

30-2.6. Lemma (a) The set ZC(G) of all central cap-functions is a subalgebra 

of C(G) under pointwise operations. 

(b) If f is central, then so is |f|. If f,g are central and real, then both f V g 

and f A g are central. 

(c) Every character pp is central. 

Proof. (¢) pp(sy) = trD(zy) = tr[{D(@)Dy)] = tr[D@D(@)] = pp(ya). Oo 

30-2.7.. Theorem A cap-function f is central iff f x g = gx f for all g € C(G). 

Proof. (=>) Take any g € C(G). If f is central, then 

(f x ga) = f fygy)dmy = f(y FYx)dmy = g x FY). 

(<=) Let D be any unitary representation of G. For every a € G, we have 

< Leaf, Di >= f f(ax)Dij(2)~ dnt = f f(ax)Dj(2" dnt 

=(f x Dj (@ = (Dy x fa) 

= f Dia") f(cadnz = f f(za)Dij(2)~ dna =< Raf, Dij >. 

Hence Lf, Raf have the same Fourier matrices. Therefore L,f = Raf, that 

is f(ax) = f(xa) for all a,x € G. oO 

30-2.8. Theorem Every central trigonometric polynomial f is a linear 

combination of characters.
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Proof. Write f=) | sw en a DY where J is a finite subset of the 
dual object Q of G and s,, the degree of w. Then for each vu € J, we have 

Sw uo w Pw vu 

fx Din = wes Sw Moin aj Daj X Din 

) y aM by, djn DY *” a, DY = aw. . v= ae u 
wes Lsi,jay I wVTR in inp 

Sw u _ wp vu 
kn * f= 5 were” 5 ijel ais Din x Dy 

y y “ Ow Oni D ye. y *Y qe De = ae. . = ae. .. 
wes Laijay  tF ween’ ky jer 9S 

Since f is central, we have f x Dz, = Dj, x f, ie. 

Sue pe Sue wu 
> icl On, Din = ) jel nj Dij- 

Since {D¥,} are linearly independent, we have ay, = 0 if i #k and an; = 0 if 

and 

j#n. This gives af, = af, for all k,n < sy. Therefore we obtain 
Sy 

f= es Se ve ois = eves SuQi Po. a 

30-2.9. Lemma If f ¢ C(G), then the central function €; associated with 

f given by €(2) = f[fqr'zy)dmy is a central function in C(G). If f is a 

trigonometric polynomial, then so is &;. 

Proof. For every a,x € G; we have 

Es(a7!za) = f fyla7"zay)dmy 

= f fl(ay)"'z(ay)idmy = f fY7!ty)dmy = Ef(2). 
Therefore &7 is central. Observe that for any representation D, 

f Dgysydmy = Saal f Diy Daj @dmy] Den(2). 

This proves the second statement. We shall show that €, € C(G) as part of 

next proof. oO 

30-2.10. Theorem The set of all linear combinations of irreducible characters 

is uniformly dense in ZC,,(G). 

Proof. Let f be a cap-function. For every ¢ > 0, choose a trigonometric 

polynomial g such that || f — gll.. <e¢. Then for all 2,y € G we obtain 

E(x) — (a) = | f LF! 2y) — gy! yl dmy | < SIF — glloodmy = €- 
Since £ is a linear combination of characters in C(G), the uniform limit 

€ belongs to C(G) as required by last Jemma. Finally if f is central, then 

fsx) = f fy 'sy)dny = f fyy'Ddmy = f(z) completes the proof. Oo
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30-2.11. Lemma Let D be an irreducible unitary representation of degree s, 

I the identity matrix of order s and f, g be central cap-functions on G. Then we 

have D(f) = 5 < f,pp >I, Diop) = $1, D< fig >= 5 < f,ep >< pp.g > 
and ||DA)\| = Zl < fren > |- 
Proof. For every y € G, observe that 

D(f)= f f(@)D@)~ dma = f f(y zy)Dy ay)" dmx 

= Dy") [f f@)D(@)~ dma] Dy) = Dy!) DP)D@). 

Taking complex conjugate, we get D(y)D(f)~ = D(f)~ Diy). It follows that 

D(f)~ is a scalar matrix. Write D(f) = AI for some A € €. Then 

sdt=trD(f) = i f f@)Di@)dme = f f(x) [Shy Du)" ] dime 

= {[ fDpen(e) dmx =< f, PD >, 

ie. Dif) = 1 <fipp> TJ. For f = pp, we get Dipp) = i <pp,pp >T=1I. 
a 

Next for inner product, 

D< fig >=< D(f), Dig) >= tr Dig)" Df) 

=tr4<9,pp >-< f,pp >1=4<9,pp >< fiep>. 

The last formula follows by setting g = f. a 

30-2.12. Theorem For all central cap-functions f,g on G, we have 

Ife = veQl<fiew >? and < fg >= Vea < few >< Pug > - 

Proof. It follows immediately from §30-1.5. oO 

30-2.13. Theorem Let f,g be cap-functions on G but they need not be 

central. 

(a) The Fourier series of f is O(f) = 0 .cQ SwPw X f. 

(b) < f.9 >= ye SwPu X g* x fle). 
(0) IFIP = neg SwPw XI? X LO. 
(d) The trigonometric series )7..<Q SwOw x f x g converges to f x g uniformly 

and absolutely in C,.(G). 

Proof. (a) For any unitary representation D of G, we have 

ep X f(a)= f trD(ar™') f(@)dme = trD(a) f Da7)f(@)dnz 

=trD(a) f f(z)D(2)*dinz = trD(@) [f f(z)D(a) dna) * 

=trD(a)D(f)-* =trD(f) * D(a) =< D(a), Dify >. 

Hence owe SwPw X f is the Fourier series of f.
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(b) Observe that 

D< fig >=< D(f), Dg) >= trD(g Df) 

=tr[fg@)DY dy)” [f F@)D@Y dm] 
=tr f f oy)” Dy) *f(@) De) dmtdmy 

=tr f f gy) Dy") f@)D@) dntdmy 

=tr f f gy) f@)DYy"'2)"dmtdmy 
=tr f Soy" fa) Dt) dntdmy, replacing x by yx 

= tr f(g" x f)(z)D(e) dmx = f(gt x fa)trD(e) dmx 

= [9" x f\@)p@) “dmx = f(g" x fa)p(e7 dint = p x g* X f(e). 
Hence we have w < f,g >= py X g* x f(e). The result follows from §30-1.5. 

(d) Let fy = Vo ye7 8wPw X f and gy = )y¢7 SwPw X g for any finite subset 

J of Q. Then fell? = wes Swlw X f* x fle= wes Sw |lwef)||? = |f\|? as 

J — co. Now observe that 

£4 X 97 = Veuve s SwSvPw X FX Pu X 9 
= wves Sw SuPw X py X f X 9 = wes SwPw xf xg. 

Therefore we obtain 

lf X9- Vues SwPw X FX glloo = If x 9— fa X Gulloo 

Sf — fall all + Fai] Ile — gah 

Mf — fall gll+i fll lg- gs] +0 as J 00. fs) 

30-3 Saturated Dual Objects 

30-3.1. Let C(G) be the ideal of comfortable almost periodic functions or 

cap-functions on a group G. A closed invariant ideal of C(G) is saturated 

if it is also closed under complex conjugation and pointwise multiplication. 

We shall prove that it is closely related to conjugate and tensor products of 

representations. Let N be a saturated closed invariant ideal of C(G). 

30-3.2. Theorem If f ¢ N then |f| €¢ N. Furthermore if f,g € N are real, 

then both f Vg and f Ag are in N. 

Proof. For every € > 0, choose a polynomial p without constant term by 

§3-8.9 such that |p(t) - Vt] < ¢ for allO <t < ||f~flloo. Since N is saturated, 

f—f © N and hence p(f~ f) € N. Therefore |f| is a uniform limit of functions 
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in N. Consequently, |f| € N. The last statement follows from the standard 

formulas: f Vg = 3 +9+)f — gl) and fAg= s(f+9- |f — gl). QO 

30-3.3. Lemma _ Every saturated closed invariant ideal N # {0} contains all 

constant functions. 

Proof. Let f # 0 be a function in N. There is an irreducible unitary 

N-representation D such that D(f) # 0. Then D is an N-representation. 

Its character p belongs to N. Hence 1 = p~ p belongs to N. Since N is a vector 

space, it contains all constant functions. oO 

30-3.4. Theorem If N separates points of G, then for all distinct elements 

@1,02,°°+,@,, € Gand arbitrary numbers a;, there is f € N such that f(a;) = a; 

for each i= 1,2,---,n. 

Proof. For each pair i #7, choose gi; € N such that gij(a:) # gij(az). Then 

9:5 (%) — giz(az) 
hy (2) = defines a function h,; € N with hyj(a;))=1 and 

9: (Qi) — guj) , | 
hy(a;) = 0. Clearly the function f given by f(z) = ea on Lax hi; (2) is 

a required cap-function in N. oO 

30-3.5. Theorem Let f € N and K a compact set containing f(G). For 

every continuous function y: K - ©, the composite yf belongs to N. 

Proof. Choose a sequence {g,} of polynomials in A,A~ such that 

lan(A, A7) — Y(A)} < 1/n for all A € K. Since N is saturated, f— € N and 

hence gn(f, f—) € N. As the uniform limit, we have yf € N. QO 

30-3.6. Corollary If f €¢ N with |f| >r > 0, then 1/f eN. 

Proof. The compact set K = {A € K:r < [t| < ||f|l.o} contains f(G) and 

the function y(A) = 1/t is continuous on K. Therefore pf =1/f € N. Oo 

30-3.7._ The sign-function is normally discontinuous and it is unlikely in C(G). 

Hence it has to be paired with a function of suitable amplitude as in next 

theorem. Then we approximate the sign-function with elements in C(G). 

30-3.8. Theorem Let h,f EN; sgn[f(z)]= {Joh if fx) 40; 
if f(z)=0 

and g(z) = h(x)sgn[f(2)]. If |h| < |f], then g € N. 

h(x) f(z) 

+, + |f(2)| 
all s, € N. Let ¢ > 0 be given. Take any n > (1 +||fll.0)/e. If 0 < |f(ax)| < 1, 

Proof. Let s(x) = for alla € Gand n > 0. Since N is saturated,
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then |g(x) — sp(x)| = [A(z)|/[ 1+ V7|f@] 1 < 4 < ©. If |f@| > +, then 

\o(x) — sn(z)| = |RG@)|/E 1+ n71f@)] 1 < Ifllo/A +n) < e. If f(z) = 0, then 
|o(x) — s,(x)| =O <e. Therefore s,, — g uniformly. Consequently,g¢N. O 

30-3.9. Theorem Let h € N. Then for every € > 0, there is g € N such that 

IIglloo <1, g(@)h(x) > 0 and |] gh —|Al ||, <e- 
Proof. For any € > 0, choose a polynomial p(t) with real coefficients and 

without constant term such that |p(t)— Vt| < ¢ for all O < t < |[ATAl[oo. 

Write p(t) = r(t)t where r(t) is a polynomial with real coefficients. The real 

function f = r(h7h) € N satisfies |f(a)h- (x)h(z) — |h(x)| | <eforallr eG. 

Replacing f by f*, we may assume that f > 0 as a result of h~h > 0. Since 

. . _ fz, if |zj)<1 
the function 4: € — © defined by X(z) = {Fn if zl >1 

the composite function given by g(x) = A{f(x)h(2)] for all x € G belongs to 

N. Clearly we have ||g|loo < 1 and g(x)h(z) > 0 for all zg € G. Furthermore if 

| f(x)h-(2)| < 1, then we have |g(x)h(x)—|h(2)| | = | f(2)h- (@)A(z)—|h(z)} | < e. 

If | f(z)h7 (z)| > 1, then we also have 

is continuous, 

F(xyh-(a)h(2) | f(x)|h@)P 
A —|h = |—+___ ~~ _ |h = | ——_—_—. _ |h =O<e. lgxyhCx) — IaCwy| | = | — Intell = | gay) ~ HMI] = OS & 

This completes the proof. oO 

30-3.10. Let M be a closed invariant ideal of C(G). As in §30-1.3, the family 

Qy of all equivalent classes of irreducible bounded representations of G is 

called the M-dual object of G. Because C(G) is nothing more than a closed 

invariant ideal of A(G), all results about C(G) hold for M and Qy. 

30-3.11. Theorem For every A C Qy, the following statements are 

equivalent. 

(a) A=Qy. 

(b) Every function in M is a uniform limit of A-trigonometric polynomials. 

(c) Every central function in M is a uniform limit of linear combinations of 

irreducible A-characters. 

Proof. Without loss of generality, we may assume M = C(G) and Qy =. 

We have proved (a = 5) by §30-1.10 and (b = c) by §30-2.10. It remains to 

prove (c => a). Suppose to the contrary that there is v € OQ but v ¢ A. Then 

Pv is a central function in (G). For ¢ = 1/2, there is a finite subset J of A and 

some constants a, such that ||, — wed AwSwPwlloo <€. Then we have 

Sy = pyle) < Il 20 |loo = ||Su pu x (Py — ewes AwSwPw)|loo
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€ |[svPoll2 [lov — veg CwSw Pu], 

< sy|{Polla lle _ wes MwSw Pw ||, <sye< ks, 

which is a contradiction. Therefore we have A =. Oo 

30-3.12. Theorem Let A be a nonempty subset of 2. Then the uniform 

closure M of TA is a closed invariant ideal. Furthermore we have A = Qy4(G). 

Proof. Clearly M is a closed vector subspace of C..(G). Suppose that f € M 

and a € G. For every € > 0, choose g € TA such that ||f — gllo < «, ie. 

||Raf — Raglloo < €. Since Rag € TA, we have R,f € M. Similarly, L.f € M. 

Hence M is a closed invariant ideal. Next, take any dual class w € A and 

pick any irreducible unitary representation D” € w. Then all entry functions 

of DY isin Tw Cc M. Hence D” is an M-representation, i.e. w € Qng(G). 

Therefore A C Qag(G). It follows from last theorem that A = Qy(G). Oo 

30-3.13. Theorem For M = {0}, let Qa(G) =. Then the map M — Q4(G) 

is a bijection from the family of all closed invariant ideals onto the family of 

all subsets of 2. 

Proof. The map M — Qy4(G) is surjective by last theorem. Suppose that 

M,N are closed invariant ideals with Qy4(G) = Qx(G). Let D be an irreducible 

M-representation of G. Then the dual class containing D is in Qag(G), and als> 

in Qy(G). Therefore D is equivalent to some N-representation. Consequently, 

D is an N-representation. As a result, every M-trigonometric polynomial is 

also an N-trigonometric polynomial. We obtain M c N. By symmetry, we 

get M=N. aq 

30-3. a Theorem Let M be a closed invariant ideal of C(G). 

(a) M~ ={f € C,(G):< f,h >=0, V h € M} is also a closed invariant ideal. 

(b) For all f,g € C(G), we have fx ge Mo@Mt. 

(c) M @ M+ is dense in C,.(G). 

(d) If M is self-conjugate, then so is M+. 

(e) Qyg and Qyy1 form a partition of the dual object Q. 

Proof. (a) For all f,h € M, let pa(f) =< f,h >. Then we have 

Ipa(fl=|<f,h> |< [lflloollhll- 
Hence pin : Co(G) > C is a continuous linear form. Thus M+ =Onem ker(up) 

is closed in C.o(G). Observe that for every f € M+ andhe M, we get 

<Lgf,h >=< f,Lg-th >= 0 and < R,f,h >=< f,R,-1h >= 0. Hence M+ is 

translation invariant. Therefore M+ forms a closed invariant ideal.
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(b) Observe that f x g = 37.cQ Swhw * f X g converges in Coo(G). Hence 

hy= weQat SwPw Xf xg EM and hy) = wey i SwPw XfxgeEMt. 

Then fxg = hth, € M+M-. Next, if f ¢e MMM", then < f, f >= ||fll2=0, 

or f =0. Hence the sum M + M* is direct. 

(c) It follows from §28-4.11. 

(d) Take any f ¢ M+. Then for every h € M, we have 

<f-,h>=f f(z) gz) daz = [f f(x)9(t)dmt|~ =< fig° >-=0. 

This shows that M+ is self-conjugate. 

(e) Suppose w € Qu (G)NQ41(G). Then py € MNM+ which is a contraction. 

Next, suppose w ¢ Qy.1(G). Then p, ¢ M+. Since the M-trigonometric 

polynomials are uniformly dense in M, there is an irreducible M-representation 

D such that < py, Di; > 0 for some i,j. Then the Fourier matrix D(p,,) is 

nonzero. Hence < pw,pp ># 0. It follows that p, = pp. Therefore D € w. 

Consequently, w € OQy4(G). oO 

30-3.15. For the rest of this section, let C(G) be a saturated closed invariant 

ideal, for example A(G) itself. We want to characterize those ideals M of C(G) 

that are saturated. 

30-3.16. Theorem Let D, E be bounded representations of a group G. 

(a) The map D~ is a bounded representation called the conjugate of D. 

(b) D> =D, pp =pp-,(D@E) =D eE. 
(c) D is irreducible iff D~ is irreducible. 

(d) D is unitary iff D~ is unitary. 

(e) D, E are equivalent iff D~, E~ are equivalent. 

(f) feTDifi f— eT(D). 

(g) D,D~ are equivalent iff pp is real. 

Proof. (a) Because C(G) is closed under conjugation, all entry functions of 

D~ belong to C(G). 

(c) D is irreducible iff ||@p- || = [|ep|| = 1 iff D7 is irreducible. 

(g) D, D~ are equivalent iff pp = pp- = pp iff pp is real. o 

30-3.17. Let Q be the dual object of G. For every w € 2, take any D € w and 

define w7 as the dual class containing D~. Clearly w7 is independent of the 

choice of D € w and it is called the dual class conjugate to w. Clearly w — w— 

is a bijection of 2 onto Q. Also w77 = w, py- = py, T(w7) = (Tw). Clearly
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w= w*7 iff py is real. Finally for every closed invariant ideal M of C(G), we 

have Qyy—-(G) = Qy(G)-. 

30-3.18. The tensor product of two matrices was defined in §15-4.4. For 

conformable matrices, we list the following properties. 

(a) (A+ B)@C=A@QC+BOC and C@(A+ B)=C@A+COB. 

(b) (A @ B)=(AA)@ B= A@(AB), A@(BOC)=(ASB@C. 

(c) (A® BY(C @ D) = AC @ BD, I, @ Iq = Ig. 

(a) (A® B)-! =A! @B-' if both A, B are invertible. 

(e) (A@ B) = A'@ BY, (A@ BY =A @B, (AB) = A* @B*. 
(f) tr(A ® B) = (tr A)(trB), ||A @ B|| = |}Al] ||B|| for square norm. 

(g) If both A, B are unitary, then so is A@ B. 

30-3.19. Theorem Let D,E be bounded representations of G of degree s,t 

respectively. For every x € G, let (D @ E)(z) = D(z) ® E(z). 

(a) D ® E is a bounded representation of G of degree st. It is called the 

tensor product representation of D, E. Furthermore if D, F are unitary, then so 

is D@E. 

(b) ppg@k = pops, (D® EE) =D @E-. 
(c) D@E and E @ D are equivalent. 

(d) The multiplicity of the identity representation in D @ D~ is equal to 

weQ m2, where 2 is the dual object of G and sy is the multiplicity of w 

in D. 

Proof. (a) Because C(G) is closed under multiplication, all entry functions 

DijEnn of D® E belong to C(G). 

(c) They have the same character. 

(8) feven-(a)dmz = f po(2)pp(2)dma 
= f lp @Pdme = llool? = Due m- a 

30-3.20. Theorem A closed invariant ideal M of C(G) is saturated 

iff tensor products and conjugates of bounded M-representations are also 

M-representations. 

Proof. If tensor products and conjugates of bounded M-representations are 

M-representations, then products and complex conjugate of M-trigonometric 

polynomials are M-trigonometric polynomials. Passing through limits, 

products and complex conjugate of functions in M belong to M. Hence M is 

saturated. The converse is obvious. Oo
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30-3.21. Let DQ = {DY : w € Q} be the dual system of distinct representa- 

tives of the dual object 9. For all u,v € 2, D“@D” is equivalent to a direct. sum 

B,,cQMwD” where the multiplicity m, of DY in DY ® D” is zero for all except 

only a finite number of w € 0. Define u@v = {w €2:m, 40}. Equivalently 

we have u@vu = {w €2 :< pug, Pw >¥ 0}. Obviously u @ v is independent 

of the choice of {DY : w € Q}. We identify elements in Q with singletons. For 

any nonempty subset U,V of Q, deine U @V = {u@u:u Ee U,v € V}. If 

one of U,V is empty, define U @ V = 0. Hence ® is defined on the power set 

of Q. A subset A of 2 is called a saturated of Gif A@ AC Aand A~ CA. 

Clearly the intersection of all saturated dual objects containing a subset A of 

Q is a saturated dual object which is said to be generated by A. It is denoted 

by sa(A). Clearly the intersection of all saturated closed invariant ideals con- 

taining a subset N of C(G) is a saturated closed invariant ideal which is called 

the saturated closed invariant ideal generated by N. It is denoted by sa(N). 

30-3.22. Exercise Let U,V,W be subsets of the dual object 9 and 

let 1 denote the dual class containing the identity representation. Prove the 

following statements. 

(a) 1@w=vw, for all w €Q. 

(b) 1 € w@w for every w EQ. 

(c) UQ@V=V QU. 

()VU@UESW)=(U QU EW. 

(e) U@V) =U" @V-. 

(f) sa(U UV) = sa(U) @ salV). 

30-3.23. Exercise Prove that a closed invariant ideal M of C(G) is saturated 

iff Qy¢(G) is saturated. Show that OQsacu(G) = sa[Qm(G)j for every closed 

invariant ideal M. 

30-4 Separating Points 

30-4.1. In this section, we start with simple results of continuous almost 

periodic functions on topological groups which readers without the necessary 

background may restrict themselves to the additive groups of Banach spaces. 

Then we derive an explicit formula for mean-values on Banach spaces. Finally 

we work with compact groups which readers may skip without discontinuity. 

30-4.2. Theorem Every continuous ap-function f on a topological group G
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is uniformly continuous. 

Proof. Let ¢ > 0 be given. Choose an e-cover {Aj, Az,---, An} of G for f. 

Pick a, € A; for each 7. By continuity of f, there is a symmetric neighborhood 

V of e such that | f(x) — f(a:)| < € for all  € a,V and all 7. Now suppose that 

z—'y € V. There is some A; containing x. Thus |f(e;y) — f(zy)| < « for all 

y €G, or |f(aj;z—!z) — f(z)| < « for all z € G. Observe that 

If(x) ~ FY)| = |F@) — F(as)| + |F@,) ~ flajz!y)| + |flazz~!y) — FY)| < 3e. 

The same inequality also holds for zy~! ¢ V. Therefore f is uniformly 

continuous with respect to both left and right uniformity of G. Oo 

30-4.3. Exercise Prove that the family of all continuous ap-functions on a 

topological group forms a saturated closed invariant ideal. 

30-4.4. Theorem The additive group of a Banach space E has enough 

continuous ap-function to separate points. 

Proof. Leta#bin E. Without loss of generality, assume that a #0. There 

is a continuous linear form f on & such that f(a) =7 and f(b) = 0. For every 

a € E, let v(x) =Re f(x). Then x — e* is a continuous character on E and 

hence it is a continuous ap-function. Furthermore e™® =-1/1=e, oO 

30-4.5. Lemma Every continuous irreducible unitary representation p on the 

real line R is of the form « — e*°? for some 6 € R. 
4 

Proof. Since R is commutative, the degree of p is one. By continuity at 

x = 0, there is 5 > 0 such that |p(z) — 1| = |e(x) — p(0)| < 3 for all |z| < 6. 

There is b € IR with |b| < 47 satisfying p(5) = e. Now p(46)* = p($5)(55) = 

A456 + 44) = p(d) = e*, ie. (4d) = ettbt2nm)/2 Tf n = 2k +1 is odd, then 

lp (46) _ 1| = Jet(bt2nm)/2 _ 1| = | et /242ka+n) _ 1| 

=|1—e®? —2| >2-|1-e®?|>2-4>1 

which is a contradiction. Thus n = 2k is even. Hence p(45) = etbttkm)/2 — eib/2, 

Similarly, we obtain p(6/2") = e**/2” for all integers n > 1. It follows that
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pld(k/2")] = e%*/2") for all integers k,n. Thus for all rationals r, we have 

p(ér) = e", By continuity, we have p(y) = e*¥ for all real y. Therefore 

p(x) = e%6/* for all « € RR. For an alternative proof, see [Naimark, p152]. 

30-4.6. Theorem Every continuous irreducible unitary representation p on a 

Banach space E is of the form z — e*” for some real continuous linear form 

von E. Note that v is a real part of a continuous linear form on £. 

Proof. Fix z € E. Define y,(t) = p(tx) for allt € IR. Then yz is a continuous 

representation on IR. There is v(z) € IR such that y,(t) = p(tz) = e#”™ for 

allt € R. Given any z,y € FE, we have plt(x + y)] = p(tz + ty) = p(tz)p(ty), 

Le, et = etree or ettlvicty)—v@)—vW] = 1, Hence for every t € R, 

there is some integer n such that ¢[v(x + y) — v(x) — v(y)] = 2n7. Thus for 

all ¢ € R, tlu(x + y) — v(x) — v(y)]/a = 2n is an integer. This can happen 

only if v(x + y) — v(x) — u(y) = 0, or v(x + y) = u(r) + u(y). Similarly, we have 

v(azr) = av(x) for all a € R. Therefore v is a real linear form on E. Next, 

take any 0 < « < 1. There is a ball V with center 0 € E such that for all 

xz € V, we have |p(x) — 1| < €. Suppose to the contrary that |v(x)| > 50 for 

some x € V. Choose |¢| < 1 such that te(z) = 50. Clearly tr ¢ V. Hence 

|e(tz) — 1] = je#’@ — 1] = Y2 > e. Therefore |v(z)| < 4m for all z € V. 

Consequently, v is continuous on &. Note that replacing V by a balanced 

O-neighborhood, the same proof works for separated locally convex spaces. 0 

30-4.7. Corollary Every continuous ap-function on & is a uniform limit of 

finite linear combinations of characters of the form e*’™ for all z € E where v 

is a real continuous linear form on E. 

30-4.8. Example The mean-value of a continuous ap-function f on R is 

given by / fdn = jim, ; “ f(z)dz = jim, — sf. f(x)dz. The convergence 

is uniformly and is independent of a. Furthermore if A is continuous periodic 

with period p > 0, then we have [tan = : [ A(x)dz. 

Proof. For every € > 0, choose a continuous trigonometric polynomial g with 

|f(z) — o(x)| < € for all g € R. Write o(x) = ag + ea aje"%i where 6; 40. 

ay 

Observe that 
a; @93 (e185 t_ 1) 

Cpa Sl 
1 att 

= / g(z)dz — ag 0 

uniformly in @ as t — oo. There is r > 0 such that for all s,t > r and for all 

t 

a € R we have
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1 ats 1 att 

|: | g(ax)dx — ; [ g(z)dz| <e 

|: i fa)de — + +f f(ayde 
att 

. f “gaye — + | glade 
1 att 

+7 [if - alae: 

Hence 

1 <-> f Ife) — g(@)|dx + 

< 3e. 

Therefore lim:—oo + t f 

Remember that continuous cane are bounded. From 
a+t t 

4 . 

:/ fade — > | f(x)dz} < if “floyds— f° fade E Zale 50, 

we have p(f) = himiioo 4 So f(2)dx which is independent of the choice of a. In 

art f(z)dz to some p(f) € € converges uniformly in a. 

particular, 

ph) = jim — if h(a)dz = im ae h(a)dz = — if h(a)dz. 

Clearly y is a normalized positive linear form on the invariant ideal of 

continuous ap-functions. Because 

lim + a fw — ade = jim * if fuddy = wl), 
t-r00 t 

jis also translation invariant. Therefore we have f fd, = (f) by the unique- 

ness of mean-value. Finally, by inversion invariance, 
t 0 

/ fd = / f(-a)dp = jim + [ fl-a)den = jim, + / fdy lim = lim = | 
from which we get 

| fan= 2 {hm} [ F(2jdz + jim, > aa soon = tim nef F(@jdz. 0 

30-4.9. Corollary For every nonzero real v € E’, we have fed, =0. 

Proof. Let a € E satisfy u(a) = 1 and let H = ker(v). Then we may identify 

BH=Ra@H=R-x H. For z= sat+y where s € R and y € H, we have 

[eed @=| fe ed SdmY 

1 . 
= lim rf[e eds = jim ——(e* —e") =0. Oo 

-t co 2t t



570 Saturated Closed Invariant Ideals 

30-4.10. Theorem Let C(G) be a closed invariant ideal of ap-functions on a 

group G and let a,bE G. 

(a) f(a) = f(b) for all f € C(G) iff D(a) = D(8) for every irreducible unitary 

representation D. 

(b) f(a) = f(6) for all central functions f € C(G) iff (a) = p(b) for all irreducible 

characters p € C(G). 

Proof. It follows because the trigonometric polynomials are dense in C(G).O 

30-4.11. Theorem The set H={reG: f(x)= fle), Vf € AG} isa 

normal subgroup of G where e is the identity element of G. If K is a normal 

subgroup such that G/K has enough ap-functions to separate points, then we 

have H Cc K. Without continuity of quotient map, we work with C(G) = A(G). 

Proof. Every unitary representation D of G is a homomorphism from G into 

some unitary group. Hence ker(D) is a normal subgroup of G. It follows that 

H =Mpker(D) is also a normal subgroup of G. Next, suppose a € G\ K. Let 

y be the quotient map from G onto G/K. Then y(a) ¥ y(e). There is some 

ap-function g on G/K such that gy(a) ¥ gy(e). It follows that f = gy is an 

ap-function on G with f(a) # f(e). Hence a ¢ H. Therefore H Cc K. Oo 

30-4.12. Theorem Every continuous function f on a (separated) compact 

group G is almost periodic. 

Proof. Since G is compact, f is uniformly continuous. There is a neighbor- 

hood of e such that |f(x) — f(y)| < ¢ for all z~'y € V. There is an open 

neighborhood W of e such that W-'W c V. By compactness of G, we have 

G c JW for some finite subset J of G. Now for allz € G,a € J and u,v € W; 

we have (zau)~'(zav) = u-'v € W-'W C V. Hence |f(zau) — f(zav)| < e. 

Consequently the family {aW : a € J} is a right e-cover of G for f. Therefore 

f is almost periodic on G. Oo 

30-4.13. Corollary The set of all continuous functions on a compact group 

forms a saturated closed invariant ideal. 

30-4.14. Corollary The family of all continuous irreducible unitary matrix 

representations of a compact group separates points. 

30-4.15. Note that there are groups without finite dimensional unitary 

representations, e.g. [Hewitt-63; p348}. 

30-99. References and Further Readings : Hewitt-63, GilDeLamadrid, Dunk], 

Rno, Cukerman, Das, Talman and Vilenkin. 



Chapter 31 

Mean Spaces 

31-1 Representations of Product Groups 

31-1.1.  Nontrivial translation invariant measures on o-algebras generated by 

open subsets of infinite dimensional Banach spaces do not exist. Continuous 

functions with compact support on infinite dimensional Banach spaces must be 

zero. Although mean-values behave like integrals, yet Monotone Convergence 

Theorem fails as shown by a counter example below. Harmonic analysis on 

unitary groups is largely restricted to finite dimensional cases. In short, we 

have to look for new objects in order to handle infinite dimensional Banach 

spaces and possibly some subgroups of infinite dimensional unitary groups of 

Hilbert spaces. In this section, we develop unitary representations on product 

groups as preparation for the new objects. 

31-1.2. A function f on R is piecewise differentiable if f’(z) exists except only 

a finite number of points in every compact interval and both left-right limits 

f'(@—), f' (z+) exist everywhere. 

Sf” IN 

| > 
(0,0) (8,0) (56,0) (64,0) 

31-1.3. Failure of Monotonic Convergence Theorem There are continuous 

periodic piecewise differentiable functions f, on JR such that for all 1 <p < co 

and all n > 1 we have 0 < f?,, < fP +0 pointwise and f f?d,, > 1/6. 

Proof. Define f,; on [0,87] by joining the points (0,0), (8,0), (9,1), (55, 1), 

(56,0), (64,0) and then extend it periodically over IR. By §30-4.8, we have 

1 se 1 > 55-9 1 [Rina af fade | [rede = PF > 5. 
0 9 2 

Inductively, define f,.) as the periodic function of period ge given by 
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0, if O<a2< 8"; ; 
Freie) =< f,(x), if B <a < ge — 8" 

0, if 87" — 92" <2 < 97". 

Basically, we take 82” lots of consecutive intervals of length 82” and change 

the value of f,, to zero on the first and the last intervals. Clearly all f, are 

ha < FR 30 

pointwise. We claim / fedm = IT. Ae — 274). In fact, the mean-value of f?,, 
j= 

continuous periodic and piecewise differentiable. Obviously 0 < 

is the average ° on 0 10, 32"), that is 

| Peadn= ae | Ran >a — 2/8") TT, (d- r4y> JT a-29 

Observe that for 0 < t < 5 we haveO< t? < ; and 1+t < e*; that is 

1—t=(1—#7)/(1 +t) > 1/(2e’). Hence 

| fam > TT 0-2 ) 2 Sates 23 2 

Therefore we do not have f fPdn — 0. ia 

> 0. 

a
l
e
 

31-1.4. Exercise For each n > 2, let g, be the real function on R joining 

the points (0,1), (n+ 1,1), (n+ 2,0), (an — n — 3,0), (an — n — 2,1) and 

(Qn, 1) and extend it periodically over IR where a, = 4n(n+ 1)(n +2). Verify 

that fgndm = 4(4 — i). Let f, = max{gi,92,---,gn}. Show that f, are 

continuous periodic functions satisfying f, 11,0< fr <91+92+-+:-+9n and 

[ fndm < 5 <le= f Id,,. Prove that {f,} is Cauchy in the Banach space 

C\(R) of all continuous ap-functions. 

31-1.5. Let G,H be groups and let A(G), A(H), A(G x H) be the sets of all 

almost periodic functions on G, H,G x H respectively. After we prepare the 

ground work, then we deal with closed invariant ideals C(G), CCH) and define 

C(G x H) later. 

31-1.6. Theorem Let f be an ap-function on their product group G x H. 

Then for every ¢ > O there are ap-functions g;,h; on G,H respectively such 

that |f(z, y) — S22, gi(a)hily)| < € for all (2, y) € G x H. 

Proof. Choose a trigonometric polynomial y on Gx H such that || f—lloo < ¢. 

Write 9 = yey Sw ise ,a%D% where J is a finite index set, each D” is 

a bounded representation of G x H of degree s,, and all aij are constants. 

For simplicity, let e denote the identity element of both G,H. From 

D(z, y) = D”[(a, ey(e, y)] = D(z, e)D”(e, y), we have
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D2(@,y) = Dit, D(x, )D¥(e,4)- 
Clearly, D”(z,e),D”’(e,y) in x,y are bounded representations of G, 

respectively. Therefore y is of the form an Big(z)hiy) where g;,h; are 

entry functions of some bounded representations of G, H respectively and all 

6; are constants. Oo 

31-1.7. Let C(G),C(A) be closed invariant ideals of ap-functions on G, H 

respectively. For every g € C(G),h € C(H); let (g @ A)(z, y) = g(z)A(y) for all 

(x,y) € G x H. It follows from §28-3.4 that g @ A is an ap-function on G x H. 

Let C(G x H) be the uniform closure of all linear combinations of functions on 

G x H of the form g @h for g € C(G),h € C(A). For convenience, C(G x H) 

is called the tensor product of C(G),C(H) and is denoted by C(G) @ C(A). 

As usual, functions in C(G),C(H),C(G x H) are called comfortable almost 

periodic functions or cap-functions. It is a reminder of continuous objects on 

topological groups. 

31-1.8. Theorem If f is real cap-functions on G x H, then for every 

€ > O there are real cap-functions g;,h; on G,H respectively such that for 

all (x,y) € G x H we have | f(x,y) — 7, gi(z)haly)| < ©. 

Proof. Choose complex cap-functions g;, 4; such that ||f— S77, 9 ®@hilloo <€. 

Then Re[gi(z)hi(y)] = [Re 9:(z)] [Re he(y)] — [Im g,(x)] [Im A,(y)] is a finite sum 
of products of real cap-functions on G, H respectively. Hence 

f(z, y) — Sy Relga(z)hily)l| = [Re { f(z, y) — Di, gaz} | 

<|f@, 9) — Diy ala)hay)| < €. 

The result follows by renaming. oO 

31-1.9. Problem If f > 0, can we choose g;,h; > 0? It seems to be 

affirmative if we invoke Bohr-compactification but we want a proof acceptable 

within our framework. 

31-1.10. Theorem Let f be a cap-function on G x H. If f is central, then 

for every € > 0 there are irreducible characters p;,€; on G, H respectively and 

constants a; such that |f(z,y) — S72, a:pi(@éi(y)| < € for all @,y) EG x H. 

Proof. Choose cap-functions g;,h; on G,H respectively such that 

If —2ey G2 @Ailloo < €. As in §30-2.10, we have || f —S72, gf @hilloo < € where 

g(x) = f g(u'ru)dnu and hi(y) = f hi(v—yv)d,,v are central cap-functions 

which can be uniformly approximated by linear combinations of irreducible 

characters on G, H respectively, the result follows. im)
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31-1.11. Theorem Let D,E be (comfortable) bounded representations 

of G, H respectively. 

(a) The map Dx E : (z,y) > D(z) ® Ely) is a (comfortable) bounded 

representation of the product proup G x H. It is called the product 

representation of D, E. 

(b) If both D, EF are unitary, then so is D x E. 

(c) ppxe(@,¥) = pp(2)pzY), llepxzll = |lepl| llpzl| and (Dx BE)” =D" x E-. 
(d) D x F is irreducible iff both D, E are irreducible. 

Proof. (a) For all (a,b), (x,y) € G x H, we have 

(D x E)[(a, x, y)] = (D x Eaz, by) = Dlar) ® E(by) 

= [D(a)D(z)] ® [EQ)EQ)] = (D(a) @ EO)[D(z) ® EY] 

= [(D x E)(a,})) [((D x EY, y)). 

As products of cap-functions on G,H; all entry functions of D x EF are 

cap-functions on G x H. Hence D x E is a comfortable representation. 

(b) It follows immediately from tensor product of matrices. 

(c) They all follow from simple calculation: 

pox E(2, y) = tr(D x E\(z,y) = trD(z) @ Ey) 

= [tr D()] [tr EY)] = po(z)pr@), 

lepx Ell” = fox lepx BZ, Y)["dm(2, Y) 

= Jo Sy lPp@)? |eBY) dmv dine 

= fg lev(2)?dint fy PEW) Pdmy = lle|"lleel 
and the last one is trivial. 

(d) Remember that ||ep||? is an integer. Hence D x E is irreducible iff 

lepxel| = 1 if |lep|l lleell = 1 if [ep] = 1 and lexi] = 1 iff D,E are 
irreducible. ia) 

31-1.12. Theorem (D@®D’)x E and Dx E@ D’ x E are equivalent repre- 

sentations of G x H. Also Dx (E@ E’) and Dx E@® Dx E’ are equivalent. 

Proof. The first statement follows from Pen! as a result of 
xB = Poessw'er 

the simple calculation: 

PweD)x EZ, Y) = po@p' (x) ® Ey) = [pp(z) + pp (2) pely) 

= Dz) pe(y) + pp (£)pey) = ppen (2, y) + ep an(®, ¥) = PD@E+D'@E(Z,y). 

The second statement follows in a similar way. Oo
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31-1.13. Theorem (D@D’)x(E@E’) and (D@E) x (D’ @ E’) are equivalent. 

Proof. ppep)x(E@E (2; Y) = PDep' (2)pr@e(y) = po(@)pp (2) pEY) PE LY) 

= po(@)pr(yep (2)pe(Y) = poee(@, Y)pp @E(Z,Y) = PDE Ha D'eEi(zZ,y). O 

31-1.14. Exercise Prove that if D, D’ are equivalent and E, FE’ are equivalent, 

then D x EB, D’ x E’ are also equivalent. 

31-1.15. Exercise Prove that every irreducible bounded representation of 

G x H is equivalent to some representation of the form D x E where D, F are 

irreducible unitary representations of G, H respectively. 

31-1.16. Exercise Prove that every irreducible character on G x H is for the 

form (x, y) > p(z)é(y) for (x,y) € G x H where y, € are irreducible characters 

on G, H respectively. 

31-1.17. Exercise For every u € Q(G) and vw € (4), choose any D, € u 

and &,, € v. Let u x uv be the dual class of G x H containing D, x Ey. 

Prove that u x v is independent of the choice of D,, £,. Show that the map 

(u,v) > ux v is a bijection from Q(G) x Q(A) onto Q(G x H). Hence we may 

identify Q(G) x Q(A) with Q(G x A). 

31-2 Means on Groups 

31-2.1. Let C(G) be a closed invariant ideal of comfortable almost periodic 

functions or cap-functions on a group G. The dual space M(G) of C.(G) is 

called the mean space of G. Members of M(G) are called a means on G. The 

norm of a mean yp is given by ||u|| = sup{|u(f)| : f € CCG), |lflloo < 1} for 

every 4. € M(G). Write Mg(G) to emphasize this norm. 

31-2.2. Write u(f)= f fdau=f f(e)dmptx), Vw € M(G) and f € C(G). Of 

course, « is merely a dummy variable. Obviously for all p,v € M(G) and all 

a € C, we have |f fdmu| < |flloollull, f fdm(utv) = f fdmut f fdmv and 

J fdm(ap) =o f fdmp. 

31-2.3. Theorem Let G,H be groups and f a cap-function on the product 

group G x H. Let u,v be means on G, H respectively. 

(a) y > f f(z, y)dmp(2) is a cap-function in y € H. 

(b) f ff, y)dmu@dmu(y) = ff fe, ydmu(y)dm ia). 
Proof. For every € > 0, choose g; € C(G), h; € C(H) such that
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Applying p, we have 

lf F@, Wdmu(z) — 32, {f gle)dmz)} hily)| <ellul], Vy eH. 

Thus y > f f(z, yd p(z) is a uniform limit of cap-functions on H and hence 

it is almost periodic on H. 

(b) Applying v to the last inequality, we get 

[Ff PE Wen wladmvly) — i f gle )dmvle) f hilydmuy)| < elle) [lv'l- 
Similarly by symmetry, we get 

If f $@, Wdmuy)dmia) — 2, f gee)dmulz) f hily)dmv(y)| < ell] [lvIl- 

Combining these two inequalities, we obtain 

If fF. YdmuDdmv(y) — ff £2, ydmvy)dmuwa)| < 2€'|1l| jIvI]- 
Since € > 0 is arbitrary, the result follows. Oo 

31-2.4. Theorem Let y:,v be means on a group G. For all f € C(G), let 

Sf f@din(u x ve) = ff f(2y)dmpa)dmv(y) and f fdmu* = [f f*dmul” - 
(a) uw x v is a mean on G. It is called the convolution of p, v. 

(b) y* is a mean on G. It is called the hermitian of ju. 

(c) ee x vl] < loll ull and yl = [lll 
(d) If f is a central function, then f fdm(u x v)= f fdm(v x 4). 

Proof. Clearly both uxv and p* are linear forms on C(G). Take any f € C(G). 

Since 

lf fame xv) =f f feydnue)dmvy)| < |l¥|| supyen |f fy)dmu(a)| 

< [loll supycr {SUP reg lI fllooll ell } = ell Il lI Flloos 
the linear form pz x v is continuous on C,,(G) and hence it is a mean on G. 

Furthermore we have || x || < |||] [vl]. Next, since 

If fame’| =|{f fdmn}”| < AFH ball = llc lal, 
u* is a continuous linear form on C,,.(G) and hence it is a mean on G. Further- 

more we have ||z*|| < ||y||. It is routine to verify that y** = 4. Thus replacing 

y by pt, we have [jul| = ||u"*| < llu"l]. ‘Therefore we obtain |ly"l] = [ull 
Finally, for central function f, we have 

Sf f£@dn(u x vz) = f f(cy)dnp(2)dmvy) 

= f FYZ)dmU(y)dm 2) = ff@dr x pz). QO
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31-2.5. Theorem The mean space M(G) is an associative algebra with 

involution under convolution. If G is abelian, then M(G) is commutative. 

When we want to emphasize the convolution, it is called the mean algebra 

of G. 

Proof. Let u,v,w € M(G) and f € C(G). From 

Sf f@)dmtu x & x wz) = f {f fey)dm(v x w)(y)} dns) 

=f {ff Fey2dnvy)dmulz)} dmu2) 

=f ff fyDdmUa)dmv(y)dmuz) = f fe)dm[(e x v) x wha), 
we obtain p x (v x w)=(u x v) x w. Next from 

J f@)dml(uet v) x wiz) = f f f(ry)dn(ut V\(2)dmw(y) 

=f {f fewdmule) + f feydnv(z)} dmw(y) 

=f f fey)dmpladmoty) + f f fey)dmv(2)dmw(y) 

=f f@)dm(u x w(x) + f f(@)dm(y x w)\(z) 

=f f(@)dm(u x w+ x w)(2), 

we get (+v)XW = ppxXw+yxw. Similarly we can prove px (v+w) = ~xwt+yxw, 

a(t x v) = (ap) x v= ux (av) fora € ©, (uty) = pt tu, (ux v)* =v* x p*. 

Therefore M(G) is an associative algebra with involution. If G is abelian, 

then every cap-function is central and hence f fdm(p x v) = f fdm(v x p), or 

BXVSsVUX p. Oo 

31-2.6. Theorem For each a € G and f € C(Q), let 6a(f) = f(a). 

(a) 6, is a mean on G. It is called the point-mean at a € G. To conform with 

out notation, we also write f f(x)dmba(x) = f(a). 

(b) |\6al]=1, wx ba = Ra, ba X w= pLa, Je X w= UX be = Uy bay = 6g X 5p and 
6* = bq-1. 

(c) M(G) is a unital algebra with 6, as the multiplicative identity. 

(d) The map a > 6, is a homomorphism from the group G into the semigroup 

M(G) under convolution. 

Proof. Clearly 5, is a linear form on C(G). Since |d.(f)| = |f(@] < || lo, 

bq is on Cy(G). Furthermore we have ||5,|| < 1. By considering the constant 

function f = 1, we obtain ||6,|| = 1. Next, since 

(ux Jaf) = f fe)dm(u x baz) = f f f(eydmu(t)dmda(y) 

=f f(va)d,,u(r) = f Ro f(z)dmu(a) = (URa)(f),
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we have pi X ba = Ry. Similarly, we obtain 6, x 4 = pL. In particular when 

a is the identity element e of G, we have 6. x w=p x db. = p. Next, since 

f f(x)dmban(z) = F(ab) = f f f(xy) dim Sa(z)dm5o(y) = f f(2)dm(6a x 5o)(), 

we get dap = do X 6». Finally, 6% = 6,-1 because of 

f F@)dmb3@) = [f F*(@)dmba(a)]” = LF @I- = fa!) = f f@)dmba-1.0 

31-2.7._ Corollary Let C(G) separate points of G. Then a — 4, is injective. 

Consequently, G is abelian iff M(G) is commutative. 

Proof. If 5, = 65, then f(a) = de(f) = de(f) = f(b) for all f € C(O), ie. a= b. 

Thus a —> 6, is injective. If M(G) is commutative, then from dap = 5g X 65 = 

bp X 5g = dba, we get ab = ba for all a,b € G and hence G is abelian. Oo 

31-3 Order Structure on Mean Spaces 

31-3.1. In this section, we show that Monotone Convergence Theorem and 

Fatou’s Lemma hold if we use the order structure of linear forms. Readers 

should review Chapter 16 if necessary. Let C(G) be a saturated closed invariant 

ideal of comfortable almost periodic functions or cap-functions on a group G. 

31-3.2. Lemma CG) is a breakable complex vector lattice. See §16-3.11. 

Proof. Since C(G) is saturated, it is a complex vector lattice. Let 

f.g,h © C(G) such that |A| < f +g and f,g > 0. Since the real vector 

lattice C"(G) is breakable, write |h| = f, + g: for some f,,g, € C*(G). From 

0< f, < |Al, we have fp = fisgn(h) € C(G) by §30-3.8. Similarly, we obtain 

g2 = gsen(h) € C(G). Now fa +g = fisgn(h) + fasgn(h) = (fi + f2)sgn(h) = 
|h|sgn(h) = h completes the proof. Oo 

31-3.3. Theorem The mean space M(G) is the order dual space C°(G) of all 

order bounded linear forms on C(G). 

Proof. Let » € MG). If |gl < f € CG), then |u(9)| < ||all llglloo < 
[all [iflloo. Hence sup{|u(g)} : lg < £} < lll [flloo- Therefore y is order 
bounded. Conversely, let y be a positive linear form on C(G). Then for 

every f € C(G), we get |u(f)| < wlf|) < ufo) < uMD||flloo- Hence pu is 
continuous on C,.(G), or wp € M(G). Oo 

31-3.4. As a result of the general theory of complex vector lattices, for every 

mean p on G, its conjugate z~ and valuation |j| are well defined by 

(a) w-(f) =[u(f)I- for all f € C(G),
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(b) ul(f) = sup{|u(9)] : |g] < f} for all f € C*(G). 
Standard properties can be found in Chapter 16. 

31-3.5. Lemma [If » € M*(G), then ||x|| = u(1). 

Proof. Since [u(f)| < wf) < |lFllou(1), we have |ly|| < (1). The result 

follows from pi(1) < fill |1[\50 = lal u 
31-3.6. Theorem If ,v are positive means, then so is p x v. 

Proof. It follows immediately from the trivial computation 

Sf@dm(u x Y(a)= ff f@y)dmuledmuly) 20, for all f € CNG). 0 

31-3.7. Clearly 6, is a positive mean for every a € G. We also have the 

following formulas: 

(a) hOB, (Bt) =p +H, (ap) =a, [Teo || = lel. 
(b) Jaw| = Jal lel, lett < lal +l, | lel — lel | Slee deh = ted = lal, 
[ex v] < [ml x pI. 
Proof. To prove the last inequality, for any f € C(G), we have 

If F@)dm(u x \(@)| = |f f Fcy)dmula)dmv(y)| 
Sf SIF ldmlul@dnlel@) = f fl@)dmn(ul x |vI)@). 

It follows that |p x v| < |p} x |v. o 

31-3.8. Theorem Let p,v € M(G). 

(a) ull = f Udrala|(e) = || al | 
(b) If 4 <v in M"(G), then for all f € C*(G), f f(t)dmula) < f f(a)dnv(z). 

(c) If y,v > 0, then yz + || = [full + ll. 
(d) The map p — |p| is continuous on Mg(G). 

(e) For all real means fn, Yn, pf, Vv on G, if pp, + wand v, — v in Mg(G), then 

Ln VU_ > BV and pn AY, > Av. Furthermore if p, > 0, then p > 0. 

Proof, (a) Observe that f ldm|ul(x) = sup{|u(9)| : |g] < 1, g € C(G)} = [lm]. 

Replacing p by ||, we obtain || |u| || = f 1dm| [ul |e) = f dma |sl(e) = [ol]. 
(c) let ull = fldm(utvya) = f ldmp(ae) + f 1dmv(x) = [lull + |lvIl- 
(d) From || [unl — wl |] = fldml teal — lel (2) < fldmlun — l(a) 
= [un — p|| > 0, the map uz — |p| is continuous. 

(e) It follows immediately from pvv = 4(u+v4|y—v|) and pAv = }(u+v—|p—v). 

Finally, take any f € C*(G), we have 0 < y,,(f) — wf). Therefore p(f) > 0. 

Consequently, > 0. oO
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31-3.9. For every mean ys on G, the mean-value of y is defined and denoted by 

HO) = f udm = f u(z)dnx although p(x) has no meaning at this moment. The 

linear form ys > f pdm is called the mean-value form. The following properties 

follow immediately from simple calculation. The mean-value form is norm- 

continuous on Mg(G). Furthermore for all  €¢ M(G) we have 

(a) fda x dm = f udm = f wx badm for all a € G, translation invariant; 

(b) f dm = f udm =Cf udm); 
(c) lull = f |uldm- 

31-3.10. Monotonic Convergence Theorem for Means If pn < Uns is a 

monotonic increasing sequence of real means satisfying sup f findm < oo, then 

{2 = SUP Hn exists in M(G). Furthermore we obtain f fdmin > f fdmy for all 

f €C(G). In particular, we also have f pindn > f tdm. 

Proof. Let a= sup f Mndm. For all k > 1, observe that 

Ilene ~ Hall =f lone ~ Hnldm = fHntk — Hn) 

=f trindm — f Unda <a- f tndm > 0 

as n — oo. Therefore {u,} is a Cauchy sequence in Mg(G). Let 

= limp, € Mg(G). Then p, > p weakly, that is f fdmun  f fda. 

Consequently y = sup p,. Letting f = 1, we obtain f tndm — f pdm. Oo 

31-3.11. Fatou’s Lemma for Means Let yu, € M*(G). If lim inf f Lndm <0, 

then liminf zy, = sup,,>, infeon fe exists in M(G). Furthermore we have 

fliminf tadm < liminf f pndm. 

Proof. For each n, define , = infg>n Ux. Since 0 < yy, < py for all k > n, we 

have 0 < findm < f Urdm. Hence 0 < findm < infkon [ Urdm. Since vp is 

monotonic increasing, we have 

sup, >, f Undm S limp oo itfyon f Uedm = liminf f pndm <0. 

Hence sup v, exists in M(G) and satisfies 

fliminf pndn = Sf supp> Unde = SUP, > 4 fundm <liminf f pndn. oO 

31-4 Identification of Functions as Means 

31-4.1. Let C(G) be a saturated closed invariant ideal of comfortable almost 

periodic functions or cap-functions on a group G and M(G) the mean space 

of G. In this section, we embed the normed space C)(G) into Mg(G). As an
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analogue of L\-spaces, we also develop £,;(G) on arbitrary group G including 

the additive groups of infinite dimensional Banach spaces. Note that £;(G) has 

nothing to do with £,(X) in §21-3.7. 

31-4.2. Theorem For every h € C(G), let dh : C(G) — K be defined by 

f f@)dph(2) = f f@OR@dnz for all f € C(G). Then d,,h is a mean on G 

called the mean from h. Furthermore, (d,,h)~ = dm(h—), (dmh)* = dm(h*) and 

|[dmhl| = |[hl|1. The mean-value forms on C(G), M(G) agree with each other. 

Proof. Clearly d,,h is a linear form on C(G). From 

[f f@)dmh(x)| = |f f@)Rx)dma| < ||flleolh hy 
dmh is continuous on C,.(G). Therefore d,h is a mean on G with 

l@mAl| < |[All;. To prove the equality, for every € > 0 choose g € C(G) 

by §30-3.9 such that |g(z)| < 1, g(z)h(x) > 0 and | gfx)h(x) ~ |h(x)| | < € 

for all x € G. Thus 

dhl] > | f g(e)dmh(x)| = | f g(z)h(x)dm2| 
=f o(z)R(a)dnx > f {|R(z)| ~ ehdma = |All; —e. 

Since € > 0 is arbitrary, we have ||d,,h|| > ||All1. To prove (djh)* = dn(h*), 

consider that for all f € C(G) we have 

f f@)dnhy*@) = [f P*@dmh(2)]” = Lf f° @DA@)dnz]~ 

=f f@R@ "dmx = f fa)h*(e)dme = f F(x)(dmh*)(2). 
Similarly we obtain (d,,h)~ = d»(h-). 0 

31-4.3. The map dm : C\(G) — Mg,(G) is a norm preserving star-algebra 

isomorphism which is called the natural embedding. The closure of its image 

in Mg(G) is denoted by 2;(G). Elements of £;(G) are called ¢;-means. As a 

closed subspace of the Banach space Mg(G), £:(G) is itself a Banach space. 

We identify C(G) c £\(G) C M(G). Clearly 4 — po~ and pu — p* are norm- 

preserving automorphism on £,(G). 

31-4.4. Theorem The natural embedding of C(G) into M(G) preserves 

convolution. The space £;(G) is a two-sided ideal of M(G). Furthermore for 

all 4 € M(G) and f € C(G), we have (u x h)(z) = f h(y"!2)dmuly) and 

(h x p(x) = f Aey")dn uty). 
Proof. By §31-2.3a, uw x h is a cap-function on G. For all f,k € C(G) and 

p & M(G); we have 

ff@dn(ux A(x) = f f fydmua)dnhy) = ff feyhG)dmul)dmy
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= ff fYh@y)dmu(a)dmy, replacing y by ay 

=f f@) [f hae!ydmu@)] dmy- 
Hence (u x h)(z) = fh(x—'ydnp(a), or wp x C(G) C C(G). Since the map 

v— pxu: M3(G) > Mg(G) is continuous, we have p x £(G) C £1(G). 

Similarly, we obtain £;(G) x pu C £)(G). Oo 

31-4.5. Theorem For every h € C(G), we have dm|A| = |d,h|. The natural 

embedding d,, : C(G) — M(G) preserves all lattice operations. 

Proof. Let h € C(G) and w=d,,h. Take any f € Ct(G). For every g € C(G) 

with |g| < f, we have 

[f g(2)A(x)dnz| < f lg@)r(2)\dma < f f(@)|A@)|dnz = f f(2)dm|h|(2). 
Taking the supremum, we obtain f f(z)dnluil@) < f fi@dalh|(x), or 

|u| < d»|h|. On the other hand, for every ¢ > 0 choose k € C(G) such that for 

all x € G, we have |k(x)| < 1, k(x)A(x) > 0 and | k(x)h(z) — |h(z)| | <e. Thus 

SL {F@R@)A) — f(@)|h(@)| }dme! <e f f@)dme. 

The function g defined by g(r) = f(x)k(z) satisfies g € C(G), |g| < f and 

Jf f@)|h@)|dma —e f fa)dme < f f(@)k(x)h@)dnx 

=f ge)h(x)dinx < f f(z)dm|u|(@). 
Since ¢ > 0 is arbitrary, we have d,,|h| < |u|. Consequently, we have proved 

that |u| = d,|h|. As a result, the natural embedding preserves all lattice 

operations. ia) 

31-4.6. Theorem If p € £)(g), then |u| € 2,(G). As a result, £;(G) is closed 

under lattice operations. 

Proof. Since £;(G) is the closure of C(G) in Mg(G), there are h, € C(G) such 

that dmhn > win Mg(G). Hence da|hn| = |dmhn| — |s4| in Mg(G). Therefore 

|u| € €(G). o 

31-4.7. Monotone Convergence Theorem for £;-Means If yp, < pny) in £)(G) 

and if sup f tndm < oo, then we have p=suppy € £,(G). 

Proof. The sequence {u,} is Cauchy in Mg(G) and hence it is also 

Cauchy in £;(G). Since £)(G) is a closed subspace of Mg(G), the limit 

w= limp, = sup fy also belongs to £,(G). oO 

31-4.8. Exercise Prove that if uz, > 0 and if liminf f undm < oo, then we 

have liminf pz, € @,(G).
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31-4.9. Example Let C(R) be the space of continuous ap-functions on R. 

By §31-1.3, there are h, € C(R) such that O<h, | Oand fhadm > i. Then 

infh, =0 in CCR) under pointwise order but infdmhn #0 in M(G). 

Proof. For every f € C(G), define u(f) = lim f f(r)ha(a)dmz. If f > 0, 

then the limit exists because f[ f(r)hn(x)dmz is monotonic decreasing in n and 

bounded below by zero. Since every cap-function is a linear combination of 

positive ones, u(f) = lim f f(Dhpr(e)dmzx exists for all f € C(G). Clearly pu is 

a linear form on C(R) and p = inf pn. From \f f(z)hn(z)dm2| < |[fhalloo < 

lf lloo||Rnlloo < I|flloo, # is continuous on C(G), ie.  € MCR). However p #0 

because (1) = lim f ha(x)dnz > i: oO 

31-4.98. Project Let 1 < p< oo and 1 <q < oo be conjugate indices given 

by 3 + ; = 1. Members of the dual space ¢,(G) of C,(G) are called £,-means 

of G. The norm of a p-mean yp is given by |{ul|p = sup{ |u(f)| : [file < 1}. 

Since |u(f)| < [[Filallell < | flloollull, we have £.(G) C M(G). We also have 

C(G) c £,(G) through the identification h — d,,h : C(G@) — M(G) defined by 

[ fdmh = f fhd,, for all f € C(G). What can we say about £,(G)? Consult 

the web-page of this book for further information. 

31-4.99. Project Let C(G),C(4) be closed invariant ideals of ap-functions 

on groups G, H respectively and C(G x H) = C(G)@C(A) their tensor product. 

For every p € M(G), v € M(A) and f € C(G x A), 

ff, pdm(u ® vx) = f f fe, y)dmue)dmu(y) 

is well-defined by §31-4.3. It is easy to show that p © v is a continuous linear 

form on C,.(G x H) and hence it is a mean on G x H. What can we say about 

the relationship among M(G), M(H), M(G x H); among @,(G), €,(4), £,(G x H) 

and among Fourier matrices of next section? 

31-5 Fourier Matrices of Means 

31-5.1. Let C(G) be a closed invariant ideal of comfortable almost periodic 

functions or cap-functions on a group G, M(G) the mean space of G and 

mat(s,t) the set of all s x t-matrices. Let A = [Ajj] : G — mat(s,t) be 

comfortable almost periodic or a cap-map, i.e. all entry functions A,;; :G — © are 

cap-functions. For every  € M(G), define f A@ nur) = [f Aij(2)dm e(2)] . 

The Fourier matrix of 4. corresponding to a bounded representation D of G is
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defined by D(j1) = f D~(x)dmp(x). The entries of D(f) are called the Fourier 

coefficients of bu. 

31-5.2. Theorem Let D be a bounded representation of G. 

(a) (ux D)(x) = D(u)'D(@) and (D x p)(@) = De) D(y)', Vw € M(G), # € G. 
(b) Dé.) = D(a) for alla eG. 

(c) D(dmh) = D(h) for all h € C(G). 

Proof. (a) (ux Dx) = f Dy a)dnuty) = f Dy") D(@)dm uy) 

= [f D*y)dmuty)] D(a) = [f D~dmuty)]" D(x) = Du) D(a). 
(b) D(ba) = f D> (x)dy5a(x) = D-(a). 

(c) Didmh) = f D7 (2)dm h(x) = f D~(x)h(z)dma = D(A). o 

31-5.3. Theorem Let D be a unitary representation of G of order s. Then 

the map 4 — D(y) is a star-homomorphism of the mean algebra M(G) into 

the matrix algebra. 

Proof. Clearly 4 — D() is a linear map. For all u,v ¢ M(G), we have 

Dit) = f Dey dmu* (2) = [f D@)-*dme(2)] = [f D@e ~~ dm pte)] 

= [f D@)tdnu(z)|” = [f D@)~dnuta)]* = Du)" 
and 

Diu xv) = f D@)dn(e x va) = f f Dey) dmu(t)dmvy) 

=f f D@) DY) dnu@)dmu(y) = Dw) DW). oO 

31-5.4. Theorem If D,F are equivalent unitary representations, then the 

Fourier matrices D(1), D(v) are unitarily similar. 

31-5.5. Theorem The Fourier matrices uniquely determine the mean algebra 

M(G). More precisely, for all means pz, v, A on G, the following statements hold. 

(a) » = 0 iff Diy) = 0, for all irreducible unitary representations D. 

(b) w =v iff Diu) = DV) for all D. 

(c) w=v* iff Diu) = Dwv)* for all D. 

(d) \=p+v iff DO) = Ds) + DO) for all D. 

(e) wp = av iff D(w) = aD(v) for all D. 

(f) A= x v iff DO) = Di) Dv) for all D. 

Proof. We shall prove (a<) only. Suppose that D(z) = 0 for all irreducible 

unitary representation D. Since every trigonometric polynomial f is a linear 

combination of entry functions of irreducible unitary representations, we have 

f f(e)dnp(x) = 0. Since the set of all trigonometric polynomials are dense
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in C,.(G) and p is continuous on C,,(G), we have f f(x)dmy(z) = 0 for all 

f € C(G), that is 4 = 0. The rest of the theorem is obvious. Oo 

31-5.6. A mean p on G is said to be central if px v =v x p for all vy € M(G). 

The set of all central means is denoted by ZM(G). 

31-5.7.. Theorem The following statements are equivalent for any pp © M(G). 

(a) p is central. 

(b) wx f =f x pw for all f € C(G). 

(c) For every irreducible unitary representation D of G of degree s, the Fourier 

matrix D() is a constant multiple of an identity matrix. 

(d) p x 6g =6, x pw for alla eG. 

Proof. (a = 6) It is obvious from the natural embedding C(G) Cc M(G). 

(6 => c) Let D,,k denote the entry functions of D. Then we have 

Dt) [45imdje] = DY)D( Dink) = Dt X Dink) 

= D(Dimk x ) = DDimk)D(p) = [15im5;x] D(w). 

Since for every x € G, D(x) is a linear combination of matrices [26im55x] , 

we have D(v) D(z) = D(x)D(u). Because D is irreducible, D(z) is a constant 

multiple of an identity matrix. 

(c = a) Take any v € M(G). Since D(u) is a constant multiple of identity, 

we have D(u) Dv) = DWV) D(y), i.e. Diu x v) = Div x ps) for every irreducible 

unitary representation D. Hence p x y=v x yp. Therefore p is central. 

(a => d) It is obvious for 6, is a mean. 

(d => c) Let D be any irreducible unitary representation of G. Then we have 

D(p)D~(a) = D2) Dba) = Dt x 62) = Dba x 1) = D(a) Du). 
Since D~(a) is an irreducible representation of G, D(y) is a constant multiple 

of an identity matrix. 

31-99. References and Further Readings : Ma-75, Trimeche, Houdre, Vakhania 

and Jones. 
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