Processing math: 12%
+ - 0:00:00
Notes for current slide
Notes for next slide

Lecture 10

Intro to Machine Learning

Ivan Rudik

AEM 7130

1 / 71

Roadmap

  1. Intro to machine learning
  2. Supervised methods, validation, and cross-validation
  3. Unsupervised methods
2 / 71

What is machine learning?

Machine learning is an algorithmically-driven way to predict outcomes

3 / 71

What is machine learning?

Machine learning is an algorithmically-driven way to predict outcomes

Unlike standard econometrics, we aren't as interested in unbiased estimators or causality

3 / 71

What is machine learning?

Machine learning is an algorithmically-driven way to predict outcomes

Unlike standard econometrics, we aren't as interested in unbiased estimators or causality

We just care about getting the prediction right and it working rather than having formal statistical properties

3 / 71

What is machine learning?

Machine learning is an algorithmically-driven way to predict outcomes

Unlike standard econometrics, we aren't as interested in unbiased estimators or causality

We just care about getting the prediction right and it working rather than having formal statistical properties

We want a good prediction of y, not good estimates of coefficients

3 / 71

What is machine learning?

Machine learning is an algorithmically-driven way to predict outcomes

Unlike standard econometrics, we aren't as interested in unbiased estimators or causality

We just care about getting the prediction right and it working rather than having formal statistical properties

We want a good prediction of y, not good estimates of coefficients

Econometricians are finding ways to do both (double selection, double ML, trees for heterogeneous causal effects, etc)

3 / 71

Terminology

You'll run into terms that have similar meaning to what we use in economics

  1. Features: regressors, your xs
  2. Supervised learning: settings where we have an outcome y and a set of features x, this will be called regression if y is continuous, or classification if y is categorical
  3. Unsupervised learning: settings where we only have features x, there's no outcomes!
  4. Training sample: the partition of the dataset used to estimate the model
  5. Validation sample: the partition of the dataset used to validate the out-of-sample fit within a fold
  6. Test sample: The partition of the dataset used to test out-of-sample fit of the final model
4 / 71

The key pieces

Out-of-sample validation: we will validate our methods by checking their fit and properties out-of-sample

The fact that we're trying to solve prediction problems is why we can do this: we see the actual realizations of y, so that we can test the quality of the fit

For causal inference problems we never observe the true β so we can't validate our solutions

We use our training sample to estimate our model and then test it on our test sample

5 / 71

The key pieces

Regularization: impose a penalty for overfitting the model

You can get great (perfect) in-sample prediction by having N=K

The problem is that this will lead to an over-fit model that will do very poorly out-of-sample

How much regularization do we want?

We typically use cross-validation methods to help us choose

6 / 71

The key pieces

Scalability: can handle a lot of data N or K

Could have thousands of features, billions of observations

Having parallelizable algorithms is important

7 / 71

The key pieces

Bias-variance trade-off: expected mean squared error (MSE) of a prediction is a combo of bias and variance

Typically as economists we want low (zero) bias estimators because we care about the sign and interpretation of coefficients

If we want a good prediction of y, we may be willing to allow more bias to reduce variance and decrease MSE

E(yˆf(x)2)=E[y2]+E[ˆf2]2[Eyˆf]=var(y)+E[y2]+var(ˆf)+E[ˆf2]2fE[ˆf]=var(y)+var(ˆf)+(fE[ˆf])2=σ2+variance+bias2

8 / 71

Bias-variance trade-off

9 / 71

Bias-variance trade-off

10 / 71

Shrinkage/regularization methods

One way to reduce variance is to shrink the βs, or even set some to zero (var(0)=0)

A common way we implement this is by penalizing deviation in βs different than zero:

min

If we set estimates to zero we will end up with sparse representations

Bet on the sparsity principle: use a procedure that does well in sparse problems, since no procedure does well in dense problems (Hastie, Tibshirani and Wainwright 2015)

11 / 71

Shrinkage/regularization methods

There are three common specifications for this approach depending on how we specify the penalty function

  • Ridge regression: Penalty = \sum_l \beta^2_l
  • Least Absolute Shrinkage and Selection Operator (LASSO): Penalty = \sum_l |\beta_l|
  • Elastic Net: Penalty = (1-\alpha)\sum_l \beta^2_l + \alpha\sum_l |\beta_l|
12 / 71

Ridge regression

\min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda\sum_l \beta^2_l

\min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda (||\beta||_2)^2

Ridge regression penalizes coefficients based on their L_2 norm, this tends to shrink coefficients toward zero

It rarely sets coefficients exactly equal to zero since the penalty is smooth

It does a good job with fixing ill-conditioning problems and in cases where K>N

It also has a closed form solution: \hat{\beta} = (X'X + \lambda I)^{-1} X'Y

13 / 71

Ridge regression

Ridge has a nice Bayesian interpretation

If

  • The prior distribution of \beta is \mathcal{N}(0,\tau^2 \times I)
  • The error term is distributed \mathcal{N}(0,\sigma^2)
  • \lambda = \sigma^2/\tau^2

Then

\hat{\beta}_{ridge} is the posterior mean, median, and mode

14 / 71

Sidebar: normalization

When regularizing we generally want to normalize our features and outcome

Why?

If features vary dramatically in magnitude or have different scales (dollars of GDP vs percent GDP), variables that are numerically large will get penalized more just because of their units

If we set all variables to mean zero, variance one they are on a common playing field for regularization

Regularizing the outcome will get rid of the intercept term as well

For ridge, normalizing results in coefficients being shrunk by a factor of 1/(1+\lambda)

15 / 71

LASSO

\min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda\sum_l |\beta_l|

\min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda ||\beta||_1

LASSO penalizes coefficients based on their L_1 norm, this tends to select a subset of ceofficients, i.e. it sets a number of them equal precisely to zero and generates a sparse solution

LASSO is generally used for variable or model selection

LASSO has no analytic solution, need to use convex optimization routines

16 / 71

LASSO

LASSO also has a nice Bayesian interpretation

If

  • The prior distribution of \beta is Laplacian
  • The error term is distributed \mathcal{N}(0,\sigma^2)

Then

\hat{\beta}_{LASSO} is the posterior mode

17 / 71

L_p regularization

\min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda (||\beta||_p)^{1/p}

Ridge and LASSO are special cases of a general L_p regularizer

Another special case is subset selection is we use the L_0 norm

Subset selection induces the estimates to be the OLS estimates but it is computationally tough to solve so it is not often used

18 / 71

Ridge vs LASSO

One way to reframe ridge and LASSO are as their dual, constrained problems:

Ridge: \min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 \text{ subject to } \sum_l \beta^2_l \leq s

LASSO: \min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 \text{ subject to } \sum_l |\beta_l| \leq s

We can then plot the constraints and the contours of the unconstrained problem to see how they differ

19 / 71

Ridge vs LASSO

LASSO induces a constraint set with kinks at x_1=0; x_2=0, ...

\rightarrow solutions will generally be at the kinks and we get lots of zero coefficients

Ridge induces a spherical constraint set, it tends to shrink coefficients toward zero without setting them exactly to zero

20 / 71

Elastic Net

\min_{\beta} \sum_{i=1}^N \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda [(1-\alpha)(||\beta||_2)^2 + \alpha||\beta||_1]

Elastic net tries to get the best of both ridge and LASSO by using a convex combination of their penalties

LASSO has one big problem:

Selection with Collinearity: if features are highly correlated LASSO tends to select one and ignore the others

The ridge penalty helps get around these issues by allowing us to select multiple of the correlated variables

21 / 71

Elastic Net

22 / 71

Validation and cross-validation

One thing we haven't discussed yet is how we select \lambda, our penalty parameter

Big lambdas tend to result in a lot of shrinkage and sparsity,
as \lambda \rightarrow 0 our solution approaches the OLS solution

There are two general ways to select \lambda

  1. Select model with lowest AIC/BIC/other plug-in criterion
    • This uses no out-of-sample information for selection but is fast
  2. Cross-validate by testing on our hold-out test sample
    • Variants of cross-validation are most commonly used
23 / 71

Cross-validation

When we perform cross-validation we split our sample into three different pieces: a training sample, a validation sample, and a test sample

First you randomly allocate some fraction of your data to the test sample

Next you perform cross-validation on the remaining data

A common way to do this is called k-fold cross-validation

24 / 71

k-fold cross-validation

In k-fold cross-validation we do the following:

  • Create a grid of \lambdas
  • For each \lambda:
    • Split data into k mutually-exclusive folds of about equal size, usually choose k=5,10
    • For j=1,...,k
      • fit the model using all folds but fold j
      • Predict out-of-sample on fold j
    • Compute average mean squared prediction error across the k folds: \bar{Q}(\lambda) = \frac{1}{k}\sum_{j=1}^k \sum_{i \in \text{fold j}} \left(y_i - (\alpha_0 + x_i' \beta) \right)^2 + \lambda ||\beta||_1
  • Choose \hat{\lambda}_{min} = argmin_{\lambda} \bar{Q}(\lambda) or to avoid modest overfitting
    choose the largest \lambda such that \bar{Q}(\lambda) \leq \hat{\lambda}_{min} + \sigma_{\hat{\lambda}_{min}} (1 standard deviation rule)
25 / 71

Supervised learning examples: Preliminaries

We need tidyverse to work with the data, glmnet to do the ML, , caret to do some higher-level tuning, and tidymodels to use a similar grammar and structure to tidyverse

We will be working with the mtcars dataset

if (!require("pacman")) install.packages("pacman")
require(devtools)
devtools::install_github("tidymodels/tidymodels")
pacman::p_load(tidymodels, tidyverse, glmnet, caret)
set.seed(123)
26 / 71

Supervised learning examples: Preliminaries

mtcars <- mtcars %>% as_tibble()
mtcars
## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # … with 22 more rows
27 / 71

Supervised learning example: pre-processing

y <- mtcars %>% # center and scale y's, glmnet will center and scale Xs
select(mpg) %>%
scale(center = TRUE, scale = FALSE) %>%
as.matrix()
X <- mtcars %>%
select(-mpg) %>%
as.matrix()
28 / 71

Ridge regression with glmnet

lambdas_to_try <- 10^seq(-3, 5, length.out = 100) # penalty parameter grid
ridge_cv <- cv.glmnet(X, y,
alpha = 0, # alpha is the elastic net parameter, 0 -> ridge
lambda = lambdas_to_try, # lambda grid
standardize = TRUE, # standardize X's
nfolds = 10) # number of CV folds
29 / 71

Ridge regression with glmnet

Here's MSE as a function of the choice of \log(\lambda), notice we keep all variables

30 / 71

Ridge regression with glmnet

res_ridge <- glmnet(X, y, alpha = 0, lambda = lambdas_to_try, standardize = TRUE)
plot(res_ridge, xvar = "lambda")
legend("bottomright", lwd = 1, col = 1:6, legend = colnames(X), cex = .7)

31 / 71

LASSO with glmnet

lambdas_to_try <- 10^seq(-3, 5, length.out = 100) # penalty parameter grid
lasso_cv <- cv.glmnet(X, y,
alpha = 1, # alpha is the elastic net parameter, 1 -> LASSO
lambda = lambdas_to_try, # lambda grid
standardize = TRUE, # standardize X's
nfolds = 10) # number of CV folds
32 / 71

LASSO with glmnet

Here's MSE as a function of the choice of \log(\lambda), LASSO generates sparse solutions

33 / 71

LASSO with glmnet

res_lasso <- glmnet(X, y, alpha = 1, lambda = lambdas_to_try, standardize = TRUE)
plot(res_lasso, xvar = "lambda")
legend("bottomright", lwd = 1, col = 1:6, legend = colnames(X), cex = .7)

34 / 71

Elastic net with glmnet

lambdas_to_try <- 10^seq(-3, 5, length.out = 100) # penalty parameter grid
elastic_net_cv <- cv.glmnet(X, y,
alpha = 0.45, # alpha is the elastic net parameter
lambda = lambdas_to_try, # lambda grid
standardize = TRUE, # standardize X's
nfolds = 10) # number of CV folds
35 / 71

Elastic net with glmnet

Here's MSE as a function of the choice of \log(\lambda), elastic net generates sparse solutions

36 / 71

Elastic net with glmnet

res_en <- glmnet(X, y, alpha = 0.45, lambda = lambdas_to_try, standardize = TRUE)
plot(res_en, xvar = "lambda")
legend("bottomright", lwd = 1, col = 1:6, legend = colnames(X), cex = .7)

37 / 71

Elastic net with caret

Elastic net has a second hyper-parameter, \alpha that we can tune in addition to \lambda

glmnet doesn't let you tune both, but caret does

train_control <- trainControl(method = "cv", # use repeated cv
number = 10, # number of folds
search = "random",
verboseIter = TRUE)
38 / 71

Elastic net with caret

use train to train the model in caret using glmnet

elastic_net_model <- train(mpg ~ .,
data = cbind(y, X), # data
method = "glmnet", # use glmnet package
preProcess = c("center", "scale"), # already centered and scaled
tuneLength = 100, # 100 point grid for tuning parameters
trControl = train_control)
## + Fold01: alpha=0.40947, lambda=0.381599
## - Fold01: alpha=0.40947, lambda=0.381599
## + Fold01: alpha=0.01047, lambda=0.004588
## - Fold01: alpha=0.01047, lambda=0.004588
## + Fold01: alpha=0.18385, lambda=0.293152
## - Fold01: alpha=0.18385, lambda=0.293152
## + Fold01: alpha=0.84273, lambda=0.016224
## - Fold01: alpha=0.84273, lambda=0.016224
## + Fold01: alpha=0.23116, lambda=0.668596
## - Fold01: alpha=0.23116, lambda=0.668596
## + Fold01: alpha=0.23910, lambda=0.035556
## - Fold01: alpha=0.23910, lambda=0.035556
## + Fold01: alpha=0.07669, lambda=6.069734
## - Fold01: alpha=0.07669, lambda=6.069734
## + Fold01: alpha=0.24572, lambda=5.963581
## - Fold01: alpha=0.24572, lambda=5.963581
## + Fold01: alpha=0.73214, lambda=0.681664
## - Fold01: alpha=0.73214, lambda=0.681664
## + Fold01: alpha=0.84745, lambda=0.009915
## - Fold01: alpha=0.84745, lambda=0.009915
## + Fold01: alpha=0.49753, lambda=0.007205
## - Fold01: alpha=0.49753, lambda=0.007205
## + Fold01: alpha=0.38791, lambda=0.204418
## - Fold01: alpha=0.38791, lambda=0.204418
## + Fold01: alpha=0.24645, lambda=0.010880
## - Fold01: alpha=0.24645, lambda=0.010880
## + Fold01: alpha=0.11110, lambda=0.116946
## - Fold01: alpha=0.11110, lambda=0.116946
## + Fold01: alpha=0.38999, lambda=1.155720
## - Fold01: alpha=0.38999, lambda=1.155720
## + Fold01: alpha=0.57194, lambda=0.004440
## - Fold01: alpha=0.57194, lambda=0.004440
## + Fold01: alpha=0.21689, lambda=0.037348
## - Fold01: alpha=0.21689, lambda=0.037348
## + Fold01: alpha=0.44477, lambda=0.068417
## - Fold01: alpha=0.44477, lambda=0.068417
## + Fold01: alpha=0.21799, lambda=2.437477
## - Fold01: alpha=0.21799, lambda=2.437477
## + Fold01: alpha=0.50230, lambda=4.095965
## - Fold01: alpha=0.50230, lambda=4.095965
## + Fold01: alpha=0.35390, lambda=2.761990
## - Fold01: alpha=0.35390, lambda=2.761990
## + Fold01: alpha=0.64999, lambda=0.424674
## - Fold01: alpha=0.64999, lambda=0.424674
## + Fold01: alpha=0.37471, lambda=5.105919
## - Fold01: alpha=0.37471, lambda=5.105919
## + Fold01: alpha=0.35545, lambda=0.102506
## - Fold01: alpha=0.35545, lambda=0.102506
## + Fold01: alpha=0.53369, lambda=0.176134
## - Fold01: alpha=0.53369, lambda=0.176134
## + Fold01: alpha=0.74033, lambda=0.020225
## - Fold01: alpha=0.74033, lambda=0.020225
## + Fold01: alpha=0.22110, lambda=0.022331
## - Fold01: alpha=0.22110, lambda=0.022331
## + Fold01: alpha=0.41275, lambda=0.001170
## - Fold01: alpha=0.41275, lambda=0.001170
## + Fold01: alpha=0.26569, lambda=0.090657
## - Fold01: alpha=0.26569, lambda=0.090657
## + Fold01: alpha=0.62997, lambda=2.502837
## - Fold01: alpha=0.62997, lambda=2.502837
## + Fold01: alpha=0.18383, lambda=0.001034
## - Fold01: alpha=0.18383, lambda=0.001034
## + Fold01: alpha=0.86364, lambda=0.001869
## - Fold01: alpha=0.86364, lambda=0.001869
## + Fold01: alpha=0.74657, lambda=0.004289
## - Fold01: alpha=0.74657, lambda=0.004289
## + Fold01: alpha=0.66828, lambda=1.009991
## - Fold01: alpha=0.66828, lambda=1.009991
## + Fold01: alpha=0.61802, lambda=0.735805
## - Fold01: alpha=0.61802, lambda=0.735805
## + Fold01: alpha=0.37224, lambda=6.209096
## - Fold01: alpha=0.37224, lambda=6.209096
## + Fold01: alpha=0.52984, lambda=0.065341
## - Fold01: alpha=0.52984, lambda=0.065341
## + Fold01: alpha=0.87468, lambda=0.001909
## - Fold01: alpha=0.87468, lambda=0.001909
## + Fold01: alpha=0.58175, lambda=0.337892
## - Fold01: alpha=0.58175, lambda=0.337892
## + Fold01: alpha=0.83977, lambda=0.908596
## - Fold01: alpha=0.83977, lambda=0.908596
## + Fold01: alpha=0.31245, lambda=0.003359
## - Fold01: alpha=0.31245, lambda=0.003359
## + Fold01: alpha=0.70829, lambda=0.034809
## - Fold01: alpha=0.70829, lambda=0.034809
## + Fold01: alpha=0.26502, lambda=0.007416
## - Fold01: alpha=0.26502, lambda=0.007416
## + Fold01: alpha=0.59434, lambda=0.001646
## - Fold01: alpha=0.59434, lambda=0.001646
## + Fold01: alpha=0.48129, lambda=0.034593
## - Fold01: alpha=0.48129, lambda=0.034593
## + Fold01: alpha=0.26503, lambda=0.001753
## - Fold01: alpha=0.26503, lambda=0.001753
## + Fold01: alpha=0.56459, lambda=0.007476
## - Fold01: alpha=0.56459, lambda=0.007476
## + Fold01: alpha=0.91319, lambda=0.001598
## - Fold01: alpha=0.91319, lambda=0.001598
## + Fold01: alpha=0.90187, lambda=0.409992
## - Fold01: alpha=0.90187, lambda=0.409992
## + Fold01: alpha=0.27417, lambda=0.014285
## - Fold01: alpha=0.27417, lambda=0.014285
## + Fold01: alpha=0.32148, lambda=0.002420
## - Fold01: alpha=0.32148, lambda=0.002420
## + Fold01: alpha=0.98564, lambda=0.001867
## - Fold01: alpha=0.98564, lambda=0.001867
## + Fold01: alpha=0.61999, lambda=2.724001
## - Fold01: alpha=0.61999, lambda=2.724001
## + Fold01: alpha=0.93731, lambda=0.873704
## - Fold01: alpha=0.93731, lambda=0.873704
## + Fold01: alpha=0.46653, lambda=1.532489
## - Fold01: alpha=0.46653, lambda=1.532489
## + Fold01: alpha=0.40683, lambda=6.810803
## - Fold01: alpha=0.40683, lambda=6.810803
## + Fold01: alpha=0.65923, lambda=0.002484
## - Fold01: alpha=0.65923, lambda=0.002484
## + Fold01: alpha=0.15235, lambda=0.002384
## - Fold01: alpha=0.15235, lambda=0.002384
## + Fold01: alpha=0.57287, lambda=1.305689
## - Fold01: alpha=0.57287, lambda=1.305689
## + Fold01: alpha=0.23873, lambda=1.148283
## - Fold01: alpha=0.23873, lambda=1.148283
## + Fold01: alpha=0.96236, lambda=0.001063
## - Fold01: alpha=0.96236, lambda=0.001063
## + Fold01: alpha=0.60137, lambda=1.092669
## - Fold01: alpha=0.60137, lambda=1.092669
## + Fold01: alpha=0.51503, lambda=0.698377
## - Fold01: alpha=0.51503, lambda=0.698377
## + Fold01: alpha=0.40257, lambda=0.285530
## - Fold01: alpha=0.40257, lambda=0.285530
## + Fold01: alpha=0.88025, lambda=0.074420
## - Fold01: alpha=0.88025, lambda=0.074420
## + Fold01: alpha=0.36409, lambda=0.004006
## - Fold01: alpha=0.36409, lambda=0.004006
## + Fold01: alpha=0.28824, lambda=0.001052
## - Fold01: alpha=0.28824, lambda=0.001052
## + Fold01: alpha=0.17065, lambda=0.057590
## - Fold01: alpha=0.17065, lambda=0.057590
## + Fold01: alpha=0.17217, lambda=0.082459
## - Fold01: alpha=0.17217, lambda=0.082459
## + Fold01: alpha=0.48204, lambda=0.032682
## - Fold01: alpha=0.48204, lambda=0.032682
## + Fold01: alpha=0.25296, lambda=0.064286
## - Fold01: alpha=0.25296, lambda=0.064286
## + Fold01: alpha=0.21625, lambda=0.604003
## - Fold01: alpha=0.21625, lambda=0.604003
## + Fold01: alpha=0.67438, lambda=0.001607
## - Fold01: alpha=0.67438, lambda=0.001607
## + Fold01: alpha=0.04766, lambda=0.023884
## - Fold01: alpha=0.04766, lambda=0.023884
## + Fold01: alpha=0.70085, lambda=1.353373
## - Fold01: alpha=0.70085, lambda=1.353373
## + Fold01: alpha=0.35189, lambda=1.820349
## - Fold01: alpha=0.35189, lambda=1.820349
## + Fold01: alpha=0.40894, lambda=0.008320
## - Fold01: alpha=0.40894, lambda=0.008320
## + Fold01: alpha=0.82095, lambda=0.023713
## - Fold01: alpha=0.82095, lambda=0.023713
## + Fold01: alpha=0.91886, lambda=2.203063
## - Fold01: alpha=0.91886, lambda=2.203063
## + Fold01: alpha=0.28253, lambda=2.141949
## - Fold01: alpha=0.28253, lambda=2.141949
## + Fold01: alpha=0.96110, lambda=0.014049
## - Fold01: alpha=0.96110, lambda=0.014049
## + Fold01: alpha=0.72839, lambda=0.003674
## - Fold01: alpha=0.72839, lambda=0.003674
## + Fold01: alpha=0.68638, lambda=0.555515
## - Fold01: alpha=0.68638, lambda=0.555515
## + Fold01: alpha=0.05284, lambda=0.002488
## - Fold01: alpha=0.05284, lambda=0.002488
## + Fold01: alpha=0.39522, lambda=0.001323
## - Fold01: alpha=0.39522, lambda=0.001323
## + Fold01: alpha=0.47785, lambda=7.957189
## - Fold01: alpha=0.47785, lambda=7.957189
## + Fold01: alpha=0.56025, lambda=0.001337
## - Fold01: alpha=0.56025, lambda=0.001337
## + Fold01: alpha=0.69826, lambda=0.020604
## - Fold01: alpha=0.69826, lambda=0.020604
## + Fold01: alpha=0.91568, lambda=3.721357
## - Fold01: alpha=0.91568, lambda=3.721357
## + Fold01: alpha=0.61835, lambda=0.254204
## - Fold01: alpha=0.61835, lambda=0.254204
## + Fold01: alpha=0.42842, lambda=0.012884
## - Fold01: alpha=0.42842, lambda=0.012884
## + Fold01: alpha=0.54208, lambda=0.753336
## - Fold01: alpha=0.54208, lambda=0.753336
## + Fold01: alpha=0.05848, lambda=1.793411
## - Fold01: alpha=0.05848, lambda=1.793411
## + Fold01: alpha=0.26086, lambda=0.016579
## - Fold01: alpha=0.26086, lambda=0.016579
## + Fold01: alpha=0.39715, lambda=0.082662
## - Fold01: alpha=0.39715, lambda=0.082662
## + Fold01: alpha=0.19774, lambda=0.523354
## - Fold01: alpha=0.19774, lambda=0.523354
## + Fold01: alpha=0.83193, lambda=0.316222
## - Fold01: alpha=0.83193, lambda=0.316222
## + Fold01: alpha=0.15289, lambda=0.323312
## - Fold01: alpha=0.15289, lambda=0.323312
## + Fold01: alpha=0.80342, lambda=6.552722
## - Fold01: alpha=0.80342, lambda=6.552722
## + Fold01: alpha=0.54683, lambda=0.040994
## - Fold01: alpha=0.54683, lambda=0.040994
## + Fold02: alpha=0.40947, lambda=0.381599
## - Fold02: alpha=0.40947, lambda=0.381599
## + Fold02: alpha=0.01047, lambda=0.004588
## - Fold02: alpha=0.01047, lambda=0.004588
## + Fold02: alpha=0.18385, lambda=0.293152
## - Fold02: alpha=0.18385, lambda=0.293152
## + Fold02: alpha=0.84273, lambda=0.016224
## - Fold02: alpha=0.84273, lambda=0.016224
## + Fold02: alpha=0.23116, lambda=0.668596
## - Fold02: alpha=0.23116, lambda=0.668596
## + Fold02: alpha=0.23910, lambda=0.035556
## - Fold02: alpha=0.23910, lambda=0.035556
## + Fold02: alpha=0.07669, lambda=6.069734
## - Fold02: alpha=0.07669, lambda=6.069734
## + Fold02: alpha=0.24572, lambda=5.963581
## - Fold02: alpha=0.24572, lambda=5.963581
## + Fold02: alpha=0.73214, lambda=0.681664
## - Fold02: alpha=0.73214, lambda=0.681664
## + Fold02: alpha=0.84745, lambda=0.009915
## - Fold02: alpha=0.84745, lambda=0.009915
## + Fold02: alpha=0.49753, lambda=0.007205
## - Fold02: alpha=0.49753, lambda=0.007205
## + Fold02: alpha=0.38791, lambda=0.204418
## - Fold02: alpha=0.38791, lambda=0.204418
## + Fold02: alpha=0.24645, lambda=0.010880
## - Fold02: alpha=0.24645, lambda=0.010880
## + Fold02: alpha=0.11110, lambda=0.116946
## - Fold02: alpha=0.11110, lambda=0.116946
## + Fold02: alpha=0.38999, lambda=1.155720
## - Fold02: alpha=0.38999, lambda=1.155720
## + Fold02: alpha=0.57194, lambda=0.004440
## - Fold02: alpha=0.57194, lambda=0.004440
## + Fold02: alpha=0.21689, lambda=0.037348
## - Fold02: alpha=0.21689, lambda=0.037348
## + Fold02: alpha=0.44477, lambda=0.068417
## - Fold02: alpha=0.44477, lambda=0.068417
## + Fold02: alpha=0.21799, lambda=2.437477
## - Fold02: alpha=0.21799, lambda=2.437477
## + Fold02: alpha=0.50230, lambda=4.095965
## - Fold02: alpha=0.50230, lambda=4.095965
## + Fold02: alpha=0.35390, lambda=2.761990
## - Fold02: alpha=0.35390, lambda=2.761990
## + Fold02: alpha=0.64999, lambda=0.424674
## - Fold02: alpha=0.64999, lambda=0.424674
## + Fold02: alpha=0.37471, lambda=5.105919
## - Fold02: alpha=0.37471, lambda=5.105919
## + Fold02: alpha=0.35545, lambda=0.102506
## - Fold02: alpha=0.35545, lambda=0.102506
## + Fold02: alpha=0.53369, lambda=0.176134
## - Fold02: alpha=0.53369, lambda=0.176134
## + Fold02: alpha=0.74033, lambda=0.020225
## - Fold02: alpha=0.74033, lambda=0.020225
## + Fold02: alpha=0.22110, lambda=0.022331
## - Fold02: alpha=0.22110, lambda=0.022331
## + Fold02: alpha=0.41275, lambda=0.001170
## - Fold02: alpha=0.41275, lambda=0.001170
## + Fold02: alpha=0.26569, lambda=0.090657
## - Fold02: alpha=0.26569, lambda=0.090657
## + Fold02: alpha=0.62997, lambda=2.502837
## - Fold02: alpha=0.62997, lambda=2.502837
## + Fold02: alpha=0.18383, lambda=0.001034
## - Fold02: alpha=0.18383, lambda=0.001034
## + Fold02: alpha=0.86364, lambda=0.001869
## - Fold02: alpha=0.86364, lambda=0.001869
## + Fold02: alpha=0.74657, lambda=0.004289
## - Fold02: alpha=0.74657, lambda=0.004289
## + Fold02: alpha=0.66828, lambda=1.009991
## - Fold02: alpha=0.66828, lambda=1.009991
## + Fold02: alpha=0.61802, lambda=0.735805
## - Fold02: alpha=0.61802, lambda=0.735805
## + Fold02: alpha=0.37224, lambda=6.209096
## - Fold02: alpha=0.37224, lambda=6.209096
## + Fold02: alpha=0.52984, lambda=0.065341
## - Fold02: alpha=0.52984, lambda=0.065341
## + Fold02: alpha=0.87468, lambda=0.001909
## - Fold02: alpha=0.87468, lambda=0.001909
## + Fold02: alpha=0.58175, lambda=0.337892
## - Fold02: alpha=0.58175, lambda=0.337892
## + Fold02: alpha=0.83977, lambda=0.908596
## - Fold02: alpha=0.83977, lambda=0.908596
## + Fold02: alpha=0.31245, lambda=0.003359
## - Fold02: alpha=0.31245, lambda=0.003359
## + Fold02: alpha=0.70829, lambda=0.034809
## - Fold02: alpha=0.70829, lambda=0.034809
## + Fold02: alpha=0.26502, lambda=0.007416
## - Fold02: alpha=0.26502, lambda=0.007416
## + Fold02: alpha=0.59434, lambda=0.001646
## - Fold02: alpha=0.59434, lambda=0.001646
## + Fold02: alpha=0.48129, lambda=0.034593
## - Fold02: alpha=0.48129, lambda=0.034593
## + Fold02: alpha=0.26503, lambda=0.001753
## - Fold02: alpha=0.26503, lambda=0.001753
## + Fold02: alpha=0.56459, lambda=0.007476
## - Fold02: alpha=0.56459, lambda=0.007476
## + Fold02: alpha=0.91319, lambda=0.001598
## - Fold02: alpha=0.91319, lambda=0.001598
## + Fold02: alpha=0.90187, lambda=0.409992
## - Fold02: alpha=0.90187, lambda=0.409992
## + Fold02: alpha=0.27417, lambda=0.014285
## - Fold02: alpha=0.27417, lambda=0.014285
## + Fold02: alpha=0.32148, lambda=0.002420
## - Fold02: alpha=0.32148, lambda=0.002420
## + Fold02: alpha=0.98564, lambda=0.001867
## - Fold02: alpha=0.98564, lambda=0.001867
## + Fold02: alpha=0.61999, lambda=2.724001
## - Fold02: alpha=0.61999, lambda=2.724001
## + Fold02: alpha=0.93731, lambda=0.873704
## - Fold02: alpha=0.93731, lambda=0.873704
## + Fold02: alpha=0.46653, lambda=1.532489
## - Fold02: alpha=0.46653, lambda=1.532489
## + Fold02: alpha=0.40683, lambda=6.810803
## - Fold02: alpha=0.40683, lambda=6.810803
## + Fold02: alpha=0.65923, lambda=0.002484
## - Fold02: alpha=0.65923, lambda=0.002484
## + Fold02: alpha=0.15235, lambda=0.002384
## - Fold02: alpha=0.15235, lambda=0.002384
## + Fold02: alpha=0.57287, lambda=1.305689
## - Fold02: alpha=0.57287, lambda=1.305689
## + Fold02: alpha=0.23873, lambda=1.148283
## - Fold02: alpha=0.23873, lambda=1.148283
## + Fold02: alpha=0.96236, lambda=0.001063
## - Fold02: alpha=0.96236, lambda=0.001063
## + Fold02: alpha=0.60137, lambda=1.092669
## - Fold02: alpha=0.60137, lambda=1.092669
## + Fold02: alpha=0.51503, lambda=0.698377
## - Fold02: alpha=0.51503, lambda=0.698377
## + Fold02: alpha=0.40257, lambda=0.285530
## - Fold02: alpha=0.40257, lambda=0.285530
## + Fold02: alpha=0.88025, lambda=0.074420
## - Fold02: alpha=0.88025, lambda=0.074420
## + Fold02: alpha=0.36409, lambda=0.004006
## - Fold02: alpha=0.36409, lambda=0.004006
## + Fold02: alpha=0.28824, lambda=0.001052
## - Fold02: alpha=0.28824, lambda=0.001052
## + Fold02: alpha=0.17065, lambda=0.057590
## - Fold02: alpha=0.17065, lambda=0.057590
## + Fold02: alpha=0.17217, lambda=0.082459
## - Fold02: alpha=0.17217, lambda=0.082459
## + Fold02: alpha=0.48204, lambda=0.032682
## - Fold02: alpha=0.48204, lambda=0.032682
## + Fold02: alpha=0.25296, lambda=0.064286
## - Fold02: alpha=0.25296, lambda=0.064286
## + Fold02: alpha=0.21625, lambda=0.604003
## - Fold02: alpha=0.21625, lambda=0.604003
## + Fold02: alpha=0.67438, lambda=0.001607
## - Fold02: alpha=0.67438, lambda=0.001607
## + Fold02: alpha=0.04766, lambda=0.023884
## - Fold02: alpha=0.04766, lambda=0.023884
## + Fold02: alpha=0.70085, lambda=1.353373
## - Fold02: alpha=0.70085, lambda=1.353373
## + Fold02: alpha=0.35189, lambda=1.820349
## - Fold02: alpha=0.35189, lambda=1.820349
## + Fold02: alpha=0.40894, lambda=0.008320
## - Fold02: alpha=0.40894, lambda=0.008320
## + Fold02: alpha=0.82095, lambda=0.023713
## - Fold02: alpha=0.82095, lambda=0.023713
## + Fold02: alpha=0.91886, lambda=2.203063
## - Fold02: alpha=0.91886, lambda=2.203063
## + Fold02: alpha=0.28253, lambda=2.141949
## - Fold02: alpha=0.28253, lambda=2.141949
## + Fold02: alpha=0.96110, lambda=0.014049
## - Fold02: alpha=0.96110, lambda=0.014049
## + Fold02: alpha=0.72839, lambda=0.003674
## - Fold02: alpha=0.72839, lambda=0.003674
## + Fold02: alpha=0.68638, lambda=0.555515
## - Fold02: alpha=0.68638, lambda=0.555515
## + Fold02: alpha=0.05284, lambda=0.002488
## - Fold02: alpha=0.05284, lambda=0.002488
## + Fold02: alpha=0.39522, lambda=0.001323
## - Fold02: alpha=0.39522, lambda=0.001323
## + Fold02: alpha=0.47785, lambda=7.957189
## - Fold02: alpha=0.47785, lambda=7.957189
## + Fold02: alpha=0.56025, lambda=0.001337
## - Fold02: alpha=0.56025, lambda=0.001337
## + Fold02: alpha=0.69826, lambda=0.020604
## - Fold02: alpha=0.69826, lambda=0.020604
## + Fold02: alpha=0.91568, lambda=3.721357
## - Fold02: alpha=0.91568, lambda=3.721357
## + Fold02: alpha=0.61835, lambda=0.254204
## - Fold02: alpha=0.61835, lambda=0.254204
## + Fold02: alpha=0.42842, lambda=0.012884
## - Fold02: alpha=0.42842, lambda=0.012884
## + Fold02: alpha=0.54208, lambda=0.753336
## - Fold02: alpha=0.54208, lambda=0.753336
## + Fold02: alpha=0.05848, lambda=1.793411
## - Fold02: alpha=0.05848, lambda=1.793411
## + Fold02: alpha=0.26086, lambda=0.016579
## - Fold02: alpha=0.26086, lambda=0.016579
## + Fold02: alpha=0.39715, lambda=0.082662
## - Fold02: alpha=0.39715, lambda=0.082662
## + Fold02: alpha=0.19774, lambda=0.523354
## - Fold02: alpha=0.19774, lambda=0.523354
## + Fold02: alpha=0.83193, lambda=0.316222
## - Fold02: alpha=0.83193, lambda=0.316222
## + Fold02: alpha=0.15289, lambda=0.323312
## - Fold02: alpha=0.15289, lambda=0.323312
## + Fold02: alpha=0.80342, lambda=6.552722
## - Fold02: alpha=0.80342, lambda=6.552722
## + Fold02: alpha=0.54683, lambda=0.040994
## - Fold02: alpha=0.54683, lambda=0.040994
## + Fold03: alpha=0.40947, lambda=0.381599
## - Fold03: alpha=0.40947, lambda=0.381599
## + Fold03: alpha=0.01047, lambda=0.004588
## - Fold03: alpha=0.01047, lambda=0.004588
## + Fold03: alpha=0.18385, lambda=0.293152
## - Fold03: alpha=0.18385, lambda=0.293152
## + Fold03: alpha=0.84273, lambda=0.016224
## - Fold03: alpha=0.84273, lambda=0.016224
## + Fold03: alpha=0.23116, lambda=0.668596
## - Fold03: alpha=0.23116, lambda=0.668596
## + Fold03: alpha=0.23910, lambda=0.035556
## - Fold03: alpha=0.23910, lambda=0.035556
## + Fold03: alpha=0.07669, lambda=6.069734
## - Fold03: alpha=0.07669, lambda=6.069734
## + Fold03: alpha=0.24572, lambda=5.963581
## - Fold03: alpha=0.24572, lambda=5.963581
## + Fold03: alpha=0.73214, lambda=0.681664
## - Fold03: alpha=0.73214, lambda=0.681664
## + Fold03: alpha=0.84745, lambda=0.009915
## - Fold03: alpha=0.84745, lambda=0.009915
## + Fold03: alpha=0.49753, lambda=0.007205
## - Fold03: alpha=0.49753, lambda=0.007205
## + Fold03: alpha=0.38791, lambda=0.204418
## - Fold03: alpha=0.38791, lambda=0.204418
## + Fold03: alpha=0.24645, lambda=0.010880
## - Fold03: alpha=0.24645, lambda=0.010880
## + Fold03: alpha=0.11110, lambda=0.116946
## - Fold03: alpha=0.11110, lambda=0.116946
## + Fold03: alpha=0.38999, lambda=1.155720
## - Fold03: alpha=0.38999, lambda=1.155720
## + Fold03: alpha=0.57194, lambda=0.004440
## - Fold03: alpha=0.57194, lambda=0.004440
## + Fold03: alpha=0.21689, lambda=0.037348
## - Fold03: alpha=0.21689, lambda=0.037348
## + Fold03: alpha=0.44477, lambda=0.068417
## - Fold03: alpha=0.44477, lambda=0.068417
## + Fold03: alpha=0.21799, lambda=2.437477
## - Fold03: alpha=0.21799, lambda=2.437477
## + Fold03: alpha=0.50230, lambda=4.095965
## - Fold03: alpha=0.50230, lambda=4.095965
## + Fold03: alpha=0.35390, lambda=2.761990
## - Fold03: alpha=0.35390, lambda=2.761990
## + Fold03: alpha=0.64999, lambda=0.424674
## - Fold03: alpha=0.64999, lambda=0.424674
## + Fold03: alpha=0.37471, lambda=5.105919
## - Fold03: alpha=0.37471, lambda=5.105919
## + Fold03: alpha=0.35545, lambda=0.102506
## - Fold03: alpha=0.35545, lambda=0.102506
## + Fold03: alpha=0.53369, lambda=0.176134
## - Fold03: alpha=0.53369, lambda=0.176134
## + Fold03: alpha=0.74033, lambda=0.020225
## - Fold03: alpha=0.74033, lambda=0.020225
## + Fold03: alpha=0.22110, lambda=0.022331
## - Fold03: alpha=0.22110, lambda=0.022331
## + Fold03: alpha=0.41275, lambda=0.001170
## - Fold03: alpha=0.41275, lambda=0.001170
## + Fold03: alpha=0.26569, lambda=0.090657
## - Fold03: alpha=0.26569, lambda=0.090657
## + Fold03: alpha=0.62997, lambda=2.502837
## - Fold03: alpha=0.62997, lambda=2.502837
## + Fold03: alpha=0.18383, lambda=0.001034
## - Fold03: alpha=0.18383, lambda=0.001034
## + Fold03: alpha=0.86364, lambda=0.001869
## - Fold03: alpha=0.86364, lambda=0.001869
## + Fold03: alpha=0.74657, lambda=0.004289
## - Fold03: alpha=0.74657, lambda=0.004289
## + Fold03: alpha=0.66828, lambda=1.009991
## - Fold03: alpha=0.66828, lambda=1.009991
## + Fold03: alpha=0.61802, lambda=0.735805
## - Fold03: alpha=0.61802, lambda=0.735805
## + Fold03: alpha=0.37224, lambda=6.209096
## - Fold03: alpha=0.37224, lambda=6.209096
## + Fold03: alpha=0.52984, lambda=0.065341
## - Fold03: alpha=0.52984, lambda=0.065341
## + Fold03: alpha=0.87468, lambda=0.001909
## - Fold03: alpha=0.87468, lambda=0.001909
## + Fold03: alpha=0.58175, lambda=0.337892
## - Fold03: alpha=0.58175, lambda=0.337892
## + Fold03: alpha=0.83977, lambda=0.908596
## - Fold03: alpha=0.83977, lambda=0.908596
## + Fold03: alpha=0.31245, lambda=0.003359
## - Fold03: alpha=0.31245, lambda=0.003359
## + Fold03: alpha=0.70829, lambda=0.034809
## - Fold03: alpha=0.70829, lambda=0.034809
## + Fold03: alpha=0.26502, lambda=0.007416
## - Fold03: alpha=0.26502, lambda=0.007416
## + Fold03: alpha=0.59434, lambda=0.001646
## - Fold03: alpha=0.59434, lambda=0.001646
## + Fold03: alpha=0.48129, lambda=0.034593
## - Fold03: alpha=0.48129, lambda=0.034593
## + Fold03: alpha=0.26503, lambda=0.001753
## - Fold03: alpha=0.26503, lambda=0.001753
## + Fold03: alpha=0.56459, lambda=0.007476
## - Fold03: alpha=0.56459, lambda=0.007476
## + Fold03: alpha=0.91319, lambda=0.001598
## - Fold03: alpha=0.91319, lambda=0.001598
## + Fold03: alpha=0.90187, lambda=0.409992
## - Fold03: alpha=0.90187, lambda=0.409992
## + Fold03: alpha=0.27417, lambda=0.014285
## - Fold03: alpha=0.27417, lambda=0.014285
## + Fold03: alpha=0.32148, lambda=0.002420
## - Fold03: alpha=0.32148, lambda=0.002420
## + Fold03: alpha=0.98564, lambda=0.001867
## - Fold03: alpha=0.98564, lambda=0.001867
## + Fold03: alpha=0.61999, lambda=2.724001
## - Fold03: alpha=0.61999, lambda=2.724001
## + Fold03: alpha=0.93731, lambda=0.873704
## - Fold03: alpha=0.93731, lambda=0.873704
## + Fold03: alpha=0.46653, lambda=1.532489
## - Fold03: alpha=0.46653, lambda=1.532489
## + Fold03: alpha=0.40683, lambda=6.810803
## - Fold03: alpha=0.40683, lambda=6.810803
## + Fold03: alpha=0.65923, lambda=0.002484
## - Fold03: alpha=0.65923, lambda=0.002484
## + Fold03: alpha=0.15235, lambda=0.002384
## - Fold03: alpha=0.15235, lambda=0.002384
## + Fold03: alpha=0.57287, lambda=1.305689
## - Fold03: alpha=0.57287, lambda=1.305689
## + Fold03: alpha=0.23873, lambda=1.148283
## - Fold03: alpha=0.23873, lambda=1.148283
## + Fold03: alpha=0.96236, lambda=0.001063
## - Fold03: alpha=0.96236, lambda=0.001063
## + Fold03: alpha=0.60137, lambda=1.092669
## - Fold03: alpha=0.60137, lambda=1.092669
## + Fold03: alpha=0.51503, lambda=0.698377
## - Fold03: alpha=0.51503, lambda=0.698377
## + Fold03: alpha=0.40257, lambda=0.285530
## - Fold03: alpha=0.40257, lambda=0.285530
## + Fold03: alpha=0.88025, lambda=0.074420
## - Fold03: alpha=0.88025, lambda=0.074420
## + Fold03: alpha=0.36409, lambda=0.004006
## - Fold03: alpha=0.36409, lambda=0.004006
## + Fold03: alpha=0.28824, lambda=0.001052
## - Fold03: alpha=0.28824, lambda=0.001052
## + Fold03: alpha=0.17065, lambda=0.057590
## - Fold03: alpha=0.17065, lambda=0.057590
## + Fold03: alpha=0.17217, lambda=0.082459
## - Fold03: alpha=0.17217, lambda=0.082459
## + Fold03: alpha=0.48204, lambda=0.032682
## - Fold03: alpha=0.48204, lambda=0.032682
## + Fold03: alpha=0.25296, lambda=0.064286
## - Fold03: alpha=0.25296, lambda=0.064286
## + Fold03: alpha=0.21625, lambda=0.604003
## - Fold03: alpha=0.21625, lambda=0.604003
## + Fold03: alpha=0.67438, lambda=0.001607
## - Fold03: alpha=0.67438, lambda=0.001607
## + Fold03: alpha=0.04766, lambda=0.023884
## - Fold03: alpha=0.04766, lambda=0.023884
## + Fold03: alpha=0.70085, lambda=1.353373
## - Fold03: alpha=0.70085, lambda=1.353373
## + Fold03: alpha=0.35189, lambda=1.820349
## - Fold03: alpha=0.35189, lambda=1.820349
## + Fold03: alpha=0.40894, lambda=0.008320
## - Fold03: alpha=0.40894, lambda=0.008320
## + Fold03: alpha=0.82095, lambda=0.023713
## - Fold03: alpha=0.82095, lambda=0.023713
## + Fold03: alpha=0.91886, lambda=2.203063
## - Fold03: alpha=0.91886, lambda=2.203063
## + Fold03: alpha=0.28253, lambda=2.141949
## - Fold03: alpha=0.28253, lambda=2.141949
## + Fold03: alpha=0.96110, lambda=0.014049
## - Fold03: alpha=0.96110, lambda=0.014049
## + Fold03: alpha=0.72839, lambda=0.003674
## - Fold03: alpha=0.72839, lambda=0.003674
## + Fold03: alpha=0.68638, lambda=0.555515
## - Fold03: alpha=0.68638, lambda=0.555515
## + Fold03: alpha=0.05284, lambda=0.002488
## - Fold03: alpha=0.05284, lambda=0.002488
## + Fold03: alpha=0.39522, lambda=0.001323
## - Fold03: alpha=0.39522, lambda=0.001323
## + Fold03: alpha=0.47785, lambda=7.957189
## - Fold03: alpha=0.47785, lambda=7.957189
## + Fold03: alpha=0.56025, lambda=0.001337
## - Fold03: alpha=0.56025, lambda=0.001337
## + Fold03: alpha=0.69826, lambda=0.020604
## - Fold03: alpha=0.69826, lambda=0.020604
## + Fold03: alpha=0.91568, lambda=3.721357
## - Fold03: alpha=0.91568, lambda=3.721357
## + Fold03: alpha=0.61835, lambda=0.254204
## - Fold03: alpha=0.61835, lambda=0.254204
## + Fold03: alpha=0.42842, lambda=0.012884
## - Fold03: alpha=0.42842, lambda=0.012884
## + Fold03: alpha=0.54208, lambda=0.753336
## - Fold03: alpha=0.54208, lambda=0.753336
## + Fold03: alpha=0.05848, lambda=1.793411
## - Fold03: alpha=0.05848, lambda=1.793411
## + Fold03: alpha=0.26086, lambda=0.016579
## - Fold03: alpha=0.26086, lambda=0.016579
## + Fold03: alpha=0.39715, lambda=0.082662
## - Fold03: alpha=0.39715, lambda=0.082662
## + Fold03: alpha=0.19774, lambda=0.523354
## - Fold03: alpha=0.19774, lambda=0.523354
## + Fold03: alpha=0.83193, lambda=0.316222
## - Fold03: alpha=0.83193, lambda=0.316222
## + Fold03: alpha=0.15289, lambda=0.323312
## - Fold03: alpha=0.15289, lambda=0.323312
## + Fold03: alpha=0.80342, lambda=6.552722
## - Fold03: alpha=0.80342, lambda=6.552722
## + Fold03: alpha=0.54683, lambda=0.040994
## - Fold03: alpha=0.54683, lambda=0.040994
## + Fold04: alpha=0.40947, lambda=0.381599
## - Fold04: alpha=0.40947, lambda=0.381599
## + Fold04: alpha=0.01047, lambda=0.004588
## - Fold04: alpha=0.01047, lambda=0.004588
## + Fold04: alpha=0.18385, lambda=0.293152
## - Fold04: alpha=0.18385, lambda=0.293152
## + Fold04: alpha=0.84273, lambda=0.016224
## - Fold04: alpha=0.84273, lambda=0.016224
## + Fold04: alpha=0.23116, lambda=0.668596
## - Fold04: alpha=0.23116, lambda=0.668596
## + Fold04: alpha=0.23910, lambda=0.035556
## - Fold04: alpha=0.23910, lambda=0.035556
## + Fold04: alpha=0.07669, lambda=6.069734
## - Fold04: alpha=0.07669, lambda=6.069734
## + Fold04: alpha=0.24572, lambda=5.963581
## - Fold04: alpha=0.24572, lambda=5.963581
## + Fold04: alpha=0.73214, lambda=0.681664
## - Fold04: alpha=0.73214, lambda=0.681664
## + Fold04: alpha=0.84745, lambda=0.009915
## - Fold04: alpha=0.84745, lambda=0.009915
## + Fold04: alpha=0.49753, lambda=0.007205
## - Fold04: alpha=0.49753, lambda=0.007205
## + Fold04: alpha=0.38791, lambda=0.204418
## - Fold04: alpha=0.38791, lambda=0.204418
## + Fold04: alpha=0.24645, lambda=0.010880
## - Fold04: alpha=0.24645, lambda=0.010880
## + Fold04: alpha=0.11110, lambda=0.116946
## - Fold04: alpha=0.11110, lambda=0.116946
## + Fold04: alpha=0.38999, lambda=1.155720
## - Fold04: alpha=0.38999, lambda=1.155720
## + Fold04: alpha=0.57194, lambda=0.004440
## - Fold04: alpha=0.57194, lambda=0.004440
## + Fold04: alpha=0.21689, lambda=0.037348
## - Fold04: alpha=0.21689, lambda=0.037348
## + Fold04: alpha=0.44477, lambda=0.068417
## - Fold04: alpha=0.44477, lambda=0.068417
## + Fold04: alpha=0.21799, lambda=2.437477
## - Fold04: alpha=0.21799, lambda=2.437477
## + Fold04: alpha=0.50230, lambda=4.095965
## - Fold04: alpha=0.50230, lambda=4.095965
## + Fold04: alpha=0.35390, lambda=2.761990
## - Fold04: alpha=0.35390, lambda=2.761990
## + Fold04: alpha=0.64999, lambda=0.424674
## - Fold04: alpha=0.64999, lambda=0.424674
## + Fold04: alpha=0.37471, lambda=5.105919
## - Fold04: alpha=0.37471, lambda=5.105919
## + Fold04: alpha=0.35545, lambda=0.102506
## - Fold04: alpha=0.35545, lambda=0.102506
## + Fold04: alpha=0.53369, lambda=0.176134
## - Fold04: alpha=0.53369, lambda=0.176134
## + Fold04: alpha=0.74033, lambda=0.020225
## - Fold04: alpha=0.74033, lambda=0.020225
## + Fold04: alpha=0.22110, lambda=0.022331
## - Fold04: alpha=0.22110, lambda=0.022331
## + Fold04: alpha=0.41275, lambda=0.001170
## - Fold04: alpha=0.41275, lambda=0.001170
## + Fold04: alpha=0.26569, lambda=0.090657
## - Fold04: alpha=0.26569, lambda=0.090657
## + Fold04: alpha=0.62997, lambda=2.502837
## - Fold04: alpha=0.62997, lambda=2.502837
## + Fold04: alpha=0.18383, lambda=0.001034
## - Fold04: alpha=0.18383, lambda=0.001034
## + Fold04: alpha=0.86364, lambda=0.001869
## - Fold04: alpha=0.86364, lambda=0.001869
## + Fold04: alpha=0.74657, lambda=0.004289
## - Fold04: alpha=0.74657, lambda=0.004289
## + Fold04: alpha=0.66828, lambda=1.009991
## - Fold04: alpha=0.66828, lambda=1.009991
## + Fold04: alpha=0.61802, lambda=0.735805
## - Fold04: alpha=0.61802, lambda=0.735805
## + Fold04: alpha=0.37224, lambda=6.209096
## - Fold04: alpha=0.37224, lambda=6.209096
## + Fold04: alpha=0.52984, lambda=0.065341
## - Fold04: alpha=0.52984, lambda=0.065341
## + Fold04: alpha=0.87468, lambda=0.001909
## - Fold04: alpha=0.87468, lambda=0.001909
## + Fold04: alpha=0.58175, lambda=0.337892
## - Fold04: alpha=0.58175, lambda=0.337892
## + Fold04: alpha=0.83977, lambda=0.908596
## - Fold04: alpha=0.83977, lambda=0.908596
## + Fold04: alpha=0.31245, lambda=0.003359
## - Fold04: alpha=0.31245, lambda=0.003359
## + Fold04: alpha=0.70829, lambda=0.034809
## - Fold04: alpha=0.70829, lambda=0.034809
## + Fold04: alpha=0.26502, lambda=0.007416
## - Fold04: alpha=0.26502, lambda=0.007416
## + Fold04: alpha=0.59434, lambda=0.001646
## - Fold04: alpha=0.59434, lambda=0.001646
## + Fold04: alpha=0.48129, lambda=0.034593
## - Fold04: alpha=0.48129, lambda=0.034593
## + Fold04: alpha=0.26503, lambda=0.001753
## - Fold04: alpha=0.26503, lambda=0.001753
## + Fold04: alpha=0.56459, lambda=0.007476
## - Fold04: alpha=0.56459, lambda=0.007476
## + Fold04: alpha=0.91319, lambda=0.001598
## - Fold04: alpha=0.91319, lambda=0.001598
## + Fold04: alpha=0.90187, lambda=0.409992
## - Fold04: alpha=0.90187, lambda=0.409992
## + Fold04: alpha=0.27417, lambda=0.014285
## - Fold04: alpha=0.27417, lambda=0.014285
## + Fold04: alpha=0.32148, lambda=0.002420
## - Fold04: alpha=0.32148, lambda=0.002420
## + Fold04: alpha=0.98564, lambda=0.001867
## - Fold04: alpha=0.98564, lambda=0.001867
## + Fold04: alpha=0.61999, lambda=2.724001
## - Fold04: alpha=0.61999, lambda=2.724001
## + Fold04: alpha=0.93731, lambda=0.873704
## - Fold04: alpha=0.93731, lambda=0.873704
## + Fold04: alpha=0.46653, lambda=1.532489
## - Fold04: alpha=0.46653, lambda=1.532489
## + Fold04: alpha=0.40683, lambda=6.810803
## - Fold04: alpha=0.40683, lambda=6.810803
## + Fold04: alpha=0.65923, lambda=0.002484
## - Fold04: alpha=0.65923, lambda=0.002484
## + Fold04: alpha=0.15235, lambda=0.002384
## - Fold04: alpha=0.15235, lambda=0.002384
## + Fold04: alpha=0.57287, lambda=1.305689
## - Fold04: alpha=0.57287, lambda=1.305689
## + Fold04: alpha=0.23873, lambda=1.148283
## - Fold04: alpha=0.23873, lambda=1.148283
## + Fold04: alpha=0.96236, lambda=0.001063
## - Fold04: alpha=0.96236, lambda=0.001063
## + Fold04: alpha=0.60137, lambda=1.092669
## - Fold04: alpha=0.60137, lambda=1.092669
## + Fold04: alpha=0.51503, lambda=0.698377
## - Fold04: alpha=0.51503, lambda=0.698377
## + Fold04: alpha=0.40257, lambda=0.285530
## - Fold04: alpha=0.40257, lambda=0.285530
## + Fold04: alpha=0.88025, lambda=0.074420
## - Fold04: alpha=0.88025, lambda=0.074420
## + Fold04: alpha=0.36409, lambda=0.004006
## - Fold04: alpha=0.36409, lambda=0.004006
## + Fold04: alpha=0.28824, lambda=0.001052
## - Fold04: alpha=0.28824, lambda=0.001052
## + Fold04: alpha=0.17065, lambda=0.057590
## - Fold04: alpha=0.17065, lambda=0.057590
## + Fold04: alpha=0.17217, lambda=0.082459
## - Fold04: alpha=0.17217, lambda=0.082459
## + Fold04: alpha=0.48204, lambda=0.032682
## - Fold04: alpha=0.48204, lambda=0.032682
## + Fold04: alpha=0.25296, lambda=0.064286
## - Fold04: alpha=0.25296, lambda=0.064286
## + Fold04: alpha=0.21625, lambda=0.604003
## - Fold04: alpha=0.21625, lambda=0.604003
## + Fold04: alpha=0.67438, lambda=0.001607
## - Fold04: alpha=0.67438, lambda=0.001607
## + Fold04: alpha=0.04766, lambda=0.023884
## - Fold04: alpha=0.04766, lambda=0.023884
## + Fold04: alpha=0.70085, lambda=1.353373
## - Fold04: alpha=0.70085, lambda=1.353373
## + Fold04: alpha=0.35189, lambda=1.820349
## - Fold04: alpha=0.35189, lambda=1.820349
## + Fold04: alpha=0.40894, lambda=0.008320
## - Fold04: alpha=0.40894, lambda=0.008320
## + Fold04: alpha=0.82095, lambda=0.023713
## - Fold04: alpha=0.82095, lambda=0.023713
## + Fold04: alpha=0.91886, lambda=2.203063
## - Fold04: alpha=0.91886, lambda=2.203063
## + Fold04: alpha=0.28253, lambda=2.141949
## - Fold04: alpha=0.28253, lambda=2.141949
## + Fold04: alpha=0.96110, lambda=0.014049
## - Fold04: alpha=0.96110, lambda=0.014049
## + Fold04: alpha=0.72839, lambda=0.003674
## - Fold04: alpha=0.72839, lambda=0.003674
## + Fold04: alpha=0.68638, lambda=0.555515
## - Fold04: alpha=0.68638, lambda=0.555515
## + Fold04: alpha=0.05284, lambda=0.002488
## - Fold04: alpha=0.05284, lambda=0.002488
## + Fold04: alpha=0.39522, lambda=0.001323
## - Fold04: alpha=0.39522, lambda=0.001323
## + Fold04: alpha=0.47785, lambda=7.957189
## - Fold04: alpha=0.47785, lambda=7.957189
## + Fold04: alpha=0.56025, lambda=0.001337
## - Fold04: alpha=0.56025, lambda=0.001337
## + Fold04: alpha=0.69826, lambda=0.020604
## - Fold04: alpha=0.69826, lambda=0.020604
## + Fold04: alpha=0.91568, lambda=3.721357
## - Fold04: alpha=0.91568, lambda=3.721357
## + Fold04: alpha=0.61835, lambda=0.254204
## - Fold04: alpha=0.61835, lambda=0.254204
## + Fold04: alpha=0.42842, lambda=0.012884
## - Fold04: alpha=0.42842, lambda=0.012884
## + Fold04: alpha=0.54208, lambda=0.753336
## - Fold04: alpha=0.54208, lambda=0.753336
## + Fold04: alpha=0.05848, lambda=1.793411
## - Fold04: alpha=0.05848, lambda=1.793411
## + Fold04: alpha=0.26086, lambda=0.016579
## - Fold04: alpha=0.26086, lambda=0.016579
## + Fold04: alpha=0.39715, lambda=0.082662
## - Fold04: alpha=0.39715, lambda=0.082662
## + Fold04: alpha=0.19774, lambda=0.523354
## - Fold04: alpha=0.19774, lambda=0.523354
## + Fold04: alpha=0.83193, lambda=0.316222
## - Fold04: alpha=0.83193, lambda=0.316222
## + Fold04: alpha=0.15289, lambda=0.323312
## - Fold04: alpha=0.15289, lambda=0.323312
## + Fold04: alpha=0.80342, lambda=6.552722
## - Fold04: alpha=0.80342, lambda=6.552722
## + Fold04: alpha=0.54683, lambda=0.040994
## - Fold04: alpha=0.54683, lambda=0.040994
## + Fold05: alpha=0.40947, lambda=0.381599
## - Fold05: alpha=0.40947, lambda=0.381599
## + Fold05: alpha=0.01047, lambda=0.004588
## - Fold05: alpha=0.01047, lambda=0.004588
## + Fold05: alpha=0.18385, lambda=0.293152
## - Fold05: alpha=0.18385, lambda=0.293152
## + Fold05: alpha=0.84273, lambda=0.016224
## - Fold05: alpha=0.84273, lambda=0.016224
## + Fold05: alpha=0.23116, lambda=0.668596
## - Fold05: alpha=0.23116, lambda=0.668596
## + Fold05: alpha=0.23910, lambda=0.035556
## - Fold05: alpha=0.23910, lambda=0.035556
## + Fold05: alpha=0.07669, lambda=6.069734
## - Fold05: alpha=0.07669, lambda=6.069734
## + Fold05: alpha=0.24572, lambda=5.963581
## - Fold05: alpha=0.24572, lambda=5.963581
## + Fold05: alpha=0.73214, lambda=0.681664
## - Fold05: alpha=0.73214, lambda=0.681664
## + Fold05: alpha=0.84745, lambda=0.009915
## - Fold05: alpha=0.84745, lambda=0.009915
## + Fold05: alpha=0.49753, lambda=0.007205
## - Fold05: alpha=0.49753, lambda=0.007205
## + Fold05: alpha=0.38791, lambda=0.204418
## - Fold05: alpha=0.38791, lambda=0.204418
## + Fold05: alpha=0.24645, lambda=0.010880
## - Fold05: alpha=0.24645, lambda=0.010880
## + Fold05: alpha=0.11110, lambda=0.116946
## - Fold05: alpha=0.11110, lambda=0.116946
## + Fold05: alpha=0.38999, lambda=1.155720
## - Fold05: alpha=0.38999, lambda=1.155720
## + Fold05: alpha=0.57194, lambda=0.004440
## - Fold05: alpha=0.57194, lambda=0.004440
## + Fold05: alpha=0.21689, lambda=0.037348
## - Fold05: alpha=0.21689, lambda=0.037348
## + Fold05: alpha=0.44477, lambda=0.068417
## - Fold05: alpha=0.44477, lambda=0.068417
## + Fold05: alpha=0.21799, lambda=2.437477
## - Fold05: alpha=0.21799, lambda=2.437477
## + Fold05: alpha=0.50230, lambda=4.095965
## - Fold05: alpha=0.50230, lambda=4.095965
## + Fold05: alpha=0.35390, lambda=2.761990
## - Fold05: alpha=0.35390, lambda=2.761990
## + Fold05: alpha=0.64999, lambda=0.424674
## - Fold05: alpha=0.64999, lambda=0.424674
## + Fold05: alpha=0.37471, lambda=5.105919
## - Fold05: alpha=0.37471, lambda=5.105919
## + Fold05: alpha=0.35545, lambda=0.102506
## - Fold05: alpha=0.35545, lambda=0.102506
## + Fold05: alpha=0.53369, lambda=0.176134
## - Fold05: alpha=0.53369, lambda=0.176134
## + Fold05: alpha=0.74033, lambda=0.020225
## - Fold05: alpha=0.74033, lambda=0.020225
## + Fold05: alpha=0.22110, lambda=0.022331
## - Fold05: alpha=0.22110, lambda=0.022331
## + Fold05: alpha=0.41275, lambda=0.001170
## - Fold05: alpha=0.41275, lambda=0.001170
## + Fold05: alpha=0.26569, lambda=0.090657
## - Fold05: alpha=0.26569, lambda=0.090657
## + Fold05: alpha=0.62997, lambda=2.502837
## - Fold05: alpha=0.62997, lambda=2.502837
## + Fold05: alpha=0.18383, lambda=0.001034
## - Fold05: alpha=0.18383, lambda=0.001034
## + Fold05: alpha=0.86364, lambda=0.001869
## - Fold05: alpha=0.86364, lambda=0.001869
## + Fold05: alpha=0.74657, lambda=0.004289
## - Fold05: alpha=0.74657, lambda=0.004289
## + Fold05: alpha=0.66828, lambda=1.009991
## - Fold05: alpha=0.66828, lambda=1.009991
## + Fold05: alpha=0.61802, lambda=0.735805
## - Fold05: alpha=0.61802, lambda=0.735805
## + Fold05: alpha=0.37224, lambda=6.209096
## - Fold05: alpha=0.37224, lambda=6.209096
## + Fold05: alpha=0.52984, lambda=0.065341
## - Fold05: alpha=0.52984, lambda=0.065341
## + Fold05: alpha=0.87468, lambda=0.001909
## - Fold05: alpha=0.87468, lambda=0.001909
## + Fold05: alpha=0.58175, lambda=0.337892
## - Fold05: alpha=0.58175, lambda=0.337892
## + Fold05: alpha=0.83977, lambda=0.908596
## - Fold05: alpha=0.83977, lambda=0.908596
## + Fold05: alpha=0.31245, lambda=0.003359
## - Fold05: alpha=0.31245, lambda=0.003359
## + Fold05: alpha=0.70829, lambda=0.034809
## - Fold05: alpha=0.70829, lambda=0.034809
## + Fold05: alpha=0.26502, lambda=0.007416
## - Fold05: alpha=0.26502, lambda=0.007416
## + Fold05: alpha=0.59434, lambda=0.001646
## - Fold05: alpha=0.59434, lambda=0.001646
## + Fold05: alpha=0.48129, lambda=0.034593
## - Fold05: alpha=0.48129, lambda=0.034593
## + Fold05: alpha=0.26503, lambda=0.001753
## - Fold05: alpha=0.26503, lambda=0.001753
## + Fold05: alpha=0.56459, lambda=0.007476
## - Fold05: alpha=0.56459, lambda=0.007476
## + Fold05: alpha=0.91319, lambda=0.001598
## - Fold05: alpha=0.91319, lambda=0.001598
## + Fold05: alpha=0.90187, lambda=0.409992
## - Fold05: alpha=0.90187, lambda=0.409992
## + Fold05: alpha=0.27417, lambda=0.014285
## - Fold05: alpha=0.27417, lambda=0.014285
## + Fold05: alpha=0.32148, lambda=0.002420
## - Fold05: alpha=0.32148, lambda=0.002420
## + Fold05: alpha=0.98564, lambda=0.001867
## - Fold05: alpha=0.98564, lambda=0.001867
## + Fold05: alpha=0.61999, lambda=2.724001
## - Fold05: alpha=0.61999, lambda=2.724001
## + Fold05: alpha=0.93731, lambda=0.873704
## - Fold05: alpha=0.93731, lambda=0.873704
## + Fold05: alpha=0.46653, lambda=1.532489
## - Fold05: alpha=0.46653, lambda=1.532489
## + Fold05: alpha=0.40683, lambda=6.810803
## - Fold05: alpha=0.40683, lambda=6.810803
## + Fold05: alpha=0.65923, lambda=0.002484
## - Fold05: alpha=0.65923, lambda=0.002484
## + Fold05: alpha=0.15235, lambda=0.002384
## - Fold05: alpha=0.15235, lambda=0.002384
## + Fold05: alpha=0.57287, lambda=1.305689
## - Fold05: alpha=0.57287, lambda=1.305689
## + Fold05: alpha=0.23873, lambda=1.148283
## - Fold05: alpha=0.23873, lambda=1.148283
## + Fold05: alpha=0.96236, lambda=0.001063
## - Fold05: alpha=0.96236, lambda=0.001063
## + Fold05: alpha=0.60137, lambda=1.092669
## - Fold05: alpha=0.60137, lambda=1.092669
## + Fold05: alpha=0.51503, lambda=0.698377
## - Fold05: alpha=0.51503, lambda=0.698377
## + Fold05: alpha=0.40257, lambda=0.285530
## - Fold05: alpha=0.40257, lambda=0.285530
## + Fold05: alpha=0.88025, lambda=0.074420
## - Fold05: alpha=0.88025, lambda=0.074420
## + Fold05: alpha=0.36409, lambda=0.004006
## - Fold05: alpha=0.36409, lambda=0.004006
## + Fold05: alpha=0.28824, lambda=0.001052
## - Fold05: alpha=0.28824, lambda=0.001052
## + Fold05: alpha=0.17065, lambda=0.057590
## - Fold05: alpha=0.17065, lambda=0.057590
## + Fold05: alpha=0.17217, lambda=0.082459
## - Fold05: alpha=0.17217, lambda=0.082459
## + Fold05: alpha=0.48204, lambda=0.032682
## - Fold05: alpha=0.48204, lambda=0.032682
## + Fold05: alpha=0.25296, lambda=0.064286
## - Fold05: alpha=0.25296, lambda=0.064286
## + Fold05: alpha=0.21625, lambda=0.604003
## - Fold05: alpha=0.21625, lambda=0.604003
## + Fold05: alpha=0.67438, lambda=0.001607
## - Fold05: alpha=0.67438, lambda=0.001607
## + Fold05: alpha=0.04766, lambda=0.023884
## - Fold05: alpha=0.04766, lambda=0.023884
## + Fold05: alpha=0.70085, lambda=1.353373
## - Fold05: alpha=0.70085, lambda=1.353373
## + Fold05: alpha=0.35189, lambda=1.820349
## - Fold05: alpha=0.35189, lambda=1.820349
## + Fold05: alpha=0.40894, lambda=0.008320
## - Fold05: alpha=0.40894, lambda=0.008320
## + Fold05: alpha=0.82095, lambda=0.023713
## - Fold05: alpha=0.82095, lambda=0.023713
## + Fold05: alpha=0.91886, lambda=2.203063
## - Fold05: alpha=0.91886, lambda=2.203063
## + Fold05: alpha=0.28253, lambda=2.141949
## - Fold05: alpha=0.28253, lambda=2.141949
## + Fold05: alpha=0.96110, lambda=0.014049
## - Fold05: alpha=0.96110, lambda=0.014049
## + Fold05: alpha=0.72839, lambda=0.003674
## - Fold05: alpha=0.72839, lambda=0.003674
## + Fold05: alpha=0.68638, lambda=0.555515
## - Fold05: alpha=0.68638, lambda=0.555515
## + Fold05: alpha=0.05284, lambda=0.002488
## - Fold05: alpha=0.05284, lambda=0.002488
## + Fold05: alpha=0.39522, lambda=0.001323
## - Fold05: alpha=0.39522, lambda=0.001323
## + Fold05: alpha=0.47785, lambda=7.957189
## - Fold05: alpha=0.47785, lambda=7.957189
## + Fold05: alpha=0.56025, lambda=0.001337
## - Fold05: alpha=0.56025, lambda=0.001337
## + Fold05: alpha=0.69826, lambda=0.020604
## - Fold05: alpha=0.69826, lambda=0.020604
## + Fold05: alpha=0.91568, lambda=3.721357
## - Fold05: alpha=0.91568, lambda=3.721357
## + Fold05: alpha=0.61835, lambda=0.254204
## - Fold05: alpha=0.61835, lambda=0.254204
## + Fold05: alpha=0.42842, lambda=0.012884
## - Fold05: alpha=0.42842, lambda=0.012884
## + Fold05: alpha=0.54208, lambda=0.753336
## - Fold05: alpha=0.54208, lambda=0.753336
## + Fold05: alpha=0.05848, lambda=1.793411
## - Fold05: alpha=0.05848, lambda=1.793411
## + Fold05: alpha=0.26086, lambda=0.016579
## - Fold05: alpha=0.26086, lambda=0.016579
## + Fold05: alpha=0.39715, lambda=0.082662
## - Fold05: alpha=0.39715, lambda=0.082662
## + Fold05: alpha=0.19774, lambda=0.523354
## - Fold05: alpha=0.19774, lambda=0.523354
## + Fold05: alpha=0.83193, lambda=0.316222
## - Fold05: alpha=0.83193, lambda=0.316222
## + Fold05: alpha=0.15289, lambda=0.323312
## - Fold05: alpha=0.15289, lambda=0.323312
## + Fold05: alpha=0.80342, lambda=6.552722
## - Fold05: alpha=0.80342, lambda=6.552722
## + Fold05: alpha=0.54683, lambda=0.040994
## - Fold05: alpha=0.54683, lambda=0.040994
## + Fold06: alpha=0.40947, lambda=0.381599
## - Fold06: alpha=0.40947, lambda=0.381599
## + Fold06: alpha=0.01047, lambda=0.004588
## - Fold06: alpha=0.01047, lambda=0.004588
## + Fold06: alpha=0.18385, lambda=0.293152
## - Fold06: alpha=0.18385, lambda=0.293152
## + Fold06: alpha=0.84273, lambda=0.016224
## - Fold06: alpha=0.84273, lambda=0.016224
## + Fold06: alpha=0.23116, lambda=0.668596
## - Fold06: alpha=0.23116, lambda=0.668596
## + Fold06: alpha=0.23910, lambda=0.035556
## - Fold06: alpha=0.23910, lambda=0.035556
## + Fold06: alpha=0.07669, lambda=6.069734
## - Fold06: alpha=0.07669, lambda=6.069734
## + Fold06: alpha=0.24572, lambda=5.963581
## - Fold06: alpha=0.24572, lambda=5.963581
## + Fold06: alpha=0.73214, lambda=0.681664
## - Fold06: alpha=0.73214, lambda=0.681664
## + Fold06: alpha=0.84745, lambda=0.009915
## - Fold06: alpha=0.84745, lambda=0.009915
## + Fold06: alpha=0.49753, lambda=0.007205
## - Fold06: alpha=0.49753, lambda=0.007205
## + Fold06: alpha=0.38791, lambda=0.204418
## - Fold06: alpha=0.38791, lambda=0.204418
## + Fold06: alpha=0.24645, lambda=0.010880
## - Fold06: alpha=0.24645, lambda=0.010880
## + Fold06: alpha=0.11110, lambda=0.116946
## - Fold06: alpha=0.11110, lambda=0.116946
## + Fold06: alpha=0.38999, lambda=1.155720
## - Fold06: alpha=0.38999, lambda=1.155720
## + Fold06: alpha=0.57194, lambda=0.004440
## - Fold06: alpha=0.57194, lambda=0.004440
## + Fold06: alpha=0.21689, lambda=0.037348
## - Fold06: alpha=0.21689, lambda=0.037348
## + Fold06: alpha=0.44477, lambda=0.068417
## - Fold06: alpha=0.44477, lambda=0.068417
## + Fold06: alpha=0.21799, lambda=2.437477
## - Fold06: alpha=0.21799, lambda=2.437477
## + Fold06: alpha=0.50230, lambda=4.095965
## - Fold06: alpha=0.50230, lambda=4.095965
## + Fold06: alpha=0.35390, lambda=2.761990
## - Fold06: alpha=0.35390, lambda=2.761990
## + Fold06: alpha=0.64999, lambda=0.424674
## - Fold06: alpha=0.64999, lambda=0.424674
## + Fold06: alpha=0.37471, lambda=5.105919
## - Fold06: alpha=0.37471, lambda=5.105919
## + Fold06: alpha=0.35545, lambda=0.102506
## - Fold06: alpha=0.35545, lambda=0.102506
## + Fold06: alpha=0.53369, lambda=0.176134
## - Fold06: alpha=0.53369, lambda=0.176134
## + Fold06: alpha=0.74033, lambda=0.020225
## - Fold06: alpha=0.74033, lambda=0.020225
## + Fold06: alpha=0.22110, lambda=0.022331
## - Fold06: alpha=0.22110, lambda=0.022331
## + Fold06: alpha=0.41275, lambda=0.001170
## - Fold06: alpha=0.41275, lambda=0.001170
## + Fold06: alpha=0.26569, lambda=0.090657
## - Fold06: alpha=0.26569, lambda=0.090657
## + Fold06: alpha=0.62997, lambda=2.502837
## - Fold06: alpha=0.62997, lambda=2.502837
## + Fold06: alpha=0.18383, lambda=0.001034
## - Fold06: alpha=0.18383, lambda=0.001034
## + Fold06: alpha=0.86364, lambda=0.001869
## - Fold06: alpha=0.86364, lambda=0.001869
## + Fold06: alpha=0.74657, lambda=0.004289
## - Fold06: alpha=0.74657, lambda=0.004289
## + Fold06: alpha=0.66828, lambda=1.009991
## - Fold06: alpha=0.66828, lambda=1.009991
## + Fold06: alpha=0.61802, lambda=0.735805
## - Fold06: alpha=0.61802, lambda=0.735805
## + Fold06: alpha=0.37224, lambda=6.209096
## - Fold06: alpha=0.37224, lambda=6.209096
## + Fold06: alpha=0.52984, lambda=0.065341
## - Fold06: alpha=0.52984, lambda=0.065341
## + Fold06: alpha=0.87468, lambda=0.001909
## - Fold06: alpha=0.87468, lambda=0.001909
## + Fold06: alpha=0.58175, lambda=0.337892
## - Fold06: alpha=0.58175, lambda=0.337892
## + Fold06: alpha=0.83977, lambda=0.908596
## - Fold06: alpha=0.83977, lambda=0.908596
## + Fold06: alpha=0.31245, lambda=0.003359
## - Fold06: alpha=0.31245, lambda=0.003359
## + Fold06: alpha=0.70829, lambda=0.034809
## - Fold06: alpha=0.70829, lambda=0.034809
## + Fold06: alpha=0.26502, lambda=0.007416
## - Fold06: alpha=0.26502, lambda=0.007416
## + Fold06: alpha=0.59434, lambda=0.001646
## - Fold06: alpha=0.59434, lambda=0.001646
## + Fold06: alpha=0.48129, lambda=0.034593
## - Fold06: alpha=0.48129, lambda=0.034593
## + Fold06: alpha=0.26503, lambda=0.001753
## - Fold06: alpha=0.26503, lambda=0.001753
## + Fold06: alpha=0.56459, lambda=0.007476
## - Fold06: alpha=0.56459, lambda=0.007476
## + Fold06: alpha=0.91319, lambda=0.001598
## - Fold06: alpha=0.91319, lambda=0.001598
## + Fold06: alpha=0.90187, lambda=0.409992
## - Fold06: alpha=0.90187, lambda=0.409992
## + Fold06: alpha=0.27417, lambda=0.014285
## - Fold06: alpha=0.27417, lambda=0.014285
## + Fold06: alpha=0.32148, lambda=0.002420
## - Fold06: alpha=0.32148, lambda=0.002420
## + Fold06: alpha=0.98564, lambda=0.001867
## - Fold06: alpha=0.98564, lambda=0.001867
## + Fold06: alpha=0.61999, lambda=2.724001
## - Fold06: alpha=0.61999, lambda=2.724001
## + Fold06: alpha=0.93731, lambda=0.873704
## - Fold06: alpha=0.93731, lambda=0.873704
## + Fold06: alpha=0.46653, lambda=1.532489
## - Fold06: alpha=0.46653, lambda=1.532489
## + Fold06: alpha=0.40683, lambda=6.810803
## - Fold06: alpha=0.40683, lambda=6.810803
## + Fold06: alpha=0.65923, lambda=0.002484
## - Fold06: alpha=0.65923, lambda=0.002484
## + Fold06: alpha=0.15235, lambda=0.002384
## - Fold06: alpha=0.15235, lambda=0.002384
## + Fold06: alpha=0.57287, lambda=1.305689
## - Fold06: alpha=0.57287, lambda=1.305689
## + Fold06: alpha=0.23873, lambda=1.148283
## - Fold06: alpha=0.23873, lambda=1.148283
## + Fold06: alpha=0.96236, lambda=0.001063
## - Fold06: alpha=0.96236, lambda=0.001063
## + Fold06: alpha=0.60137, lambda=1.092669
## - Fold06: alpha=0.60137, lambda=1.092669
## + Fold06: alpha=0.51503, lambda=0.698377
## - Fold06: alpha=0.51503, lambda=0.698377
## + Fold06: alpha=0.40257, lambda=0.285530
## - Fold06: alpha=0.40257, lambda=0.285530
## + Fold06: alpha=0.88025, lambda=0.074420
## - Fold06: alpha=0.88025, lambda=0.074420
## + Fold06: alpha=0.36409, lambda=0.004006
## - Fold06: alpha=0.36409, lambda=0.004006
## + Fold06: alpha=0.28824, lambda=0.001052
## - Fold06: alpha=0.28824, lambda=0.001052
## + Fold06: alpha=0.17065, lambda=0.057590
## - Fold06: alpha=0.17065, lambda=0.057590
## + Fold06: alpha=0.17217, lambda=0.082459
## - Fold06: alpha=0.17217, lambda=0.082459
## + Fold06: alpha=0.48204, lambda=0.032682
## - Fold06: alpha=0.48204, lambda=0.032682
## + Fold06: alpha=0.25296, lambda=0.064286
## - Fold06: alpha=0.25296, lambda=0.064286
## + Fold06: alpha=0.21625, lambda=0.604003
## - Fold06: alpha=0.21625, lambda=0.604003
## + Fold06: alpha=0.67438, lambda=0.001607
## - Fold06: alpha=0.67438, lambda=0.001607
## + Fold06: alpha=0.04766, lambda=0.023884
## - Fold06: alpha=0.04766, lambda=0.023884
## + Fold06: alpha=0.70085, lambda=1.353373
## - Fold06: alpha=0.70085, lambda=1.353373
## + Fold06: alpha=0.35189, lambda=1.820349
## - Fold06: alpha=0.35189, lambda=1.820349
## + Fold06: alpha=0.40894, lambda=0.008320
## - Fold06: alpha=0.40894, lambda=0.008320
## + Fold06: alpha=0.82095, lambda=0.023713
## - Fold06: alpha=0.82095, lambda=0.023713
## + Fold06: alpha=0.91886, lambda=2.203063
## - Fold06: alpha=0.91886, lambda=2.203063
## + Fold06: alpha=0.28253, lambda=2.141949
## - Fold06: alpha=0.28253, lambda=2.141949
## + Fold06: alpha=0.96110, lambda=0.014049
## - Fold06: alpha=0.96110, lambda=0.014049
## + Fold06: alpha=0.72839, lambda=0.003674
## - Fold06: alpha=0.72839, lambda=0.003674
## + Fold06: alpha=0.68638, lambda=0.555515
## - Fold06: alpha=0.68638, lambda=0.555515
## + Fold06: alpha=0.05284, lambda=0.002488
## - Fold06: alpha=0.05284, lambda=0.002488
## + Fold06: alpha=0.39522, lambda=0.001323
## - Fold06: alpha=0.39522, lambda=0.001323
## + Fold06: alpha=0.47785, lambda=7.957189
## - Fold06: alpha=0.47785, lambda=7.957189
## + Fold06: alpha=0.56025, lambda=0.001337
## - Fold06: alpha=0.56025, lambda=0.001337
## + Fold06: alpha=0.69826, lambda=0.020604
## - Fold06: alpha=0.69826, lambda=0.020604
## + Fold06: alpha=0.91568, lambda=3.721357
## - Fold06: alpha=0.91568, lambda=3.721357
## + Fold06: alpha=0.61835, lambda=0.254204
## - Fold06: alpha=0.61835, lambda=0.254204
## + Fold06: alpha=0.42842, lambda=0.012884
## - Fold06: alpha=0.42842, lambda=0.012884
## + Fold06: alpha=0.54208, lambda=0.753336
## - Fold06: alpha=0.54208, lambda=0.753336
## + Fold06: alpha=0.05848, lambda=1.793411
## - Fold06: alpha=0.05848, lambda=1.793411
## + Fold06: alpha=0.26086, lambda=0.016579
## - Fold06: alpha=0.26086, lambda=0.016579
## + Fold06: alpha=0.39715, lambda=0.082662
## - Fold06: alpha=0.39715, lambda=0.082662
## + Fold06: alpha=0.19774, lambda=0.523354
## - Fold06: alpha=0.19774, lambda=0.523354
## + Fold06: alpha=0.83193, lambda=0.316222
## - Fold06: alpha=0.83193, lambda=0.316222
## + Fold06: alpha=0.15289, lambda=0.323312
## - Fold06: alpha=0.15289, lambda=0.323312
## + Fold06: alpha=0.80342, lambda=6.552722
## - Fold06: alpha=0.80342, lambda=6.552722
## + Fold06: alpha=0.54683, lambda=0.040994
## - Fold06: alpha=0.54683, lambda=0.040994
## + Fold07: alpha=0.40947, lambda=0.381599
## - Fold07: alpha=0.40947, lambda=0.381599
## + Fold07: alpha=0.01047, lambda=0.004588
## - Fold07: alpha=0.01047, lambda=0.004588
## + Fold07: alpha=0.18385, lambda=0.293152
## - Fold07: alpha=0.18385, lambda=0.293152
## + Fold07: alpha=0.84273, lambda=0.016224
## - Fold07: alpha=0.84273, lambda=0.016224
## + Fold07: alpha=0.23116, lambda=0.668596
## - Fold07: alpha=0.23116, lambda=0.668596
## + Fold07: alpha=0.23910, lambda=0.035556
## - Fold07: alpha=0.23910, lambda=0.035556
## + Fold07: alpha=0.07669, lambda=6.069734
## - Fold07: alpha=0.07669, lambda=6.069734
## + Fold07: alpha=0.24572, lambda=5.963581
## - Fold07: alpha=0.24572, lambda=5.963581
## + Fold07: alpha=0.73214, lambda=0.681664
## - Fold07: alpha=0.73214, lambda=0.681664
## + Fold07: alpha=0.84745, lambda=0.009915
## - Fold07: alpha=0.84745, lambda=0.009915
## + Fold07: alpha=0.49753, lambda=0.007205
## - Fold07: alpha=0.49753, lambda=0.007205
## + Fold07: alpha=0.38791, lambda=0.204418
## - Fold07: alpha=0.38791, lambda=0.204418
## + Fold07: alpha=0.24645, lambda=0.010880
## - Fold07: alpha=0.24645, lambda=0.010880
## + Fold07: alpha=0.11110, lambda=0.116946
## - Fold07: alpha=0.11110, lambda=0.116946
## + Fold07: alpha=0.38999, lambda=1.155720
## - Fold07: alpha=0.38999, lambda=1.155720
## + Fold07: alpha=0.57194, lambda=0.004440
## - Fold07: alpha=0.57194, lambda=0.004440
## + Fold07: alpha=0.21689, lambda=0.037348
## - Fold07: alpha=0.21689, lambda=0.037348
## + Fold07: alpha=0.44477, lambda=0.068417
## - Fold07: alpha=0.44477, lambda=0.068417
## + Fold07: alpha=0.21799, lambda=2.437477
## - Fold07: alpha=0.21799, lambda=2.437477
## + Fold07: alpha=0.50230, lambda=4.095965
## - Fold07: alpha=0.50230, lambda=4.095965
## + Fold07: alpha=0.35390, lambda=2.761990
## - Fold07: alpha=0.35390, lambda=2.761990
## + Fold07: alpha=0.64999, lambda=0.424674
## - Fold07: alpha=0.64999, lambda=0.424674
## + Fold07: alpha=0.37471, lambda=5.105919
## - Fold07: alpha=0.37471, lambda=5.105919
## + Fold07: alpha=0.35545, lambda=0.102506
## - Fold07: alpha=0.35545, lambda=0.102506
## + Fold07: alpha=0.53369, lambda=0.176134
## - Fold07: alpha=0.53369, lambda=0.176134
## + Fold07: alpha=0.74033, lambda=0.020225
## - Fold07: alpha=0.74033, lambda=0.020225
## + Fold07: alpha=0.22110, lambda=0.022331
## - Fold07: alpha=0.22110, lambda=0.022331
## + Fold07: alpha=0.41275, lambda=0.001170
## - Fold07: alpha=0.41275, lambda=0.001170
## + Fold07: alpha=0.26569, lambda=0.090657
## - Fold07: alpha=0.26569, lambda=0.090657
## + Fold07: alpha=0.62997, lambda=2.502837
## - Fold07: alpha=0.62997, lambda=2.502837
## + Fold07: alpha=0.18383, lambda=0.001034
## - Fold07: alpha=0.18383, lambda=0.001034
## + Fold07: alpha=0.86364, lambda=0.001869
## - Fold07: alpha=0.86364, lambda=0.001869
## + Fold07: alpha=0.74657, lambda=0.004289
## - Fold07: alpha=0.74657, lambda=0.004289
## + Fold07: alpha=0.66828, lambda=1.009991
## - Fold07: alpha=0.66828, lambda=1.009991
## + Fold07: alpha=0.61802, lambda=0.735805
## - Fold07: alpha=0.61802, lambda=0.735805
## + Fold07: alpha=0.37224, lambda=6.209096
## - Fold07: alpha=0.37224, lambda=6.209096
## + Fold07: alpha=0.52984, lambda=0.065341
## - Fold07: alpha=0.52984, lambda=0.065341
## + Fold07: alpha=0.87468, lambda=0.001909
## - Fold07: alpha=0.87468, lambda=0.001909
## + Fold07: alpha=0.58175, lambda=0.337892
## - Fold07: alpha=0.58175, lambda=0.337892
## + Fold07: alpha=0.83977, lambda=0.908596
## - Fold07: alpha=0.83977, lambda=0.908596
## + Fold07: alpha=0.31245, lambda=0.003359
## - Fold07: alpha=0.31245, lambda=0.003359
## + Fold07: alpha=0.70829, lambda=0.034809
## - Fold07: alpha=0.70829, lambda=0.034809
## + Fold07: alpha=0.26502, lambda=0.007416
## - Fold07: alpha=0.26502, lambda=0.007416
## + Fold07: alpha=0.59434, lambda=0.001646
## - Fold07: alpha=0.59434, lambda=0.001646
## + Fold07: alpha=0.48129, lambda=0.034593
## - Fold07: alpha=0.48129, lambda=0.034593
## + Fold07: alpha=0.26503, lambda=0.001753
## - Fold07: alpha=0.26503, lambda=0.001753
## + Fold07: alpha=0.56459, lambda=0.007476
## - Fold07: alpha=0.56459, lambda=0.007476
## + Fold07: alpha=0.91319, lambda=0.001598
## - Fold07: alpha=0.91319, lambda=0.001598
## + Fold07: alpha=0.90187, lambda=0.409992
## - Fold07: alpha=0.90187, lambda=0.409992
## + Fold07: alpha=0.27417, lambda=0.014285
## - Fold07: alpha=0.27417, lambda=0.014285
## + Fold07: alpha=0.32148, lambda=0.002420
## - Fold07: alpha=0.32148, lambda=0.002420
## + Fold07: alpha=0.98564, lambda=0.001867
## - Fold07: alpha=0.98564, lambda=0.001867
## + Fold07: alpha=0.61999, lambda=2.724001
## - Fold07: alpha=0.61999, lambda=2.724001
## + Fold07: alpha=0.93731, lambda=0.873704
## - Fold07: alpha=0.93731, lambda=0.873704
## + Fold07: alpha=0.46653, lambda=1.532489
## - Fold07: alpha=0.46653, lambda=1.532489
## + Fold07: alpha=0.40683, lambda=6.810803
## - Fold07: alpha=0.40683, lambda=6.810803
## + Fold07: alpha=0.65923, lambda=0.002484
## - Fold07: alpha=0.65923, lambda=0.002484
## + Fold07: alpha=0.15235, lambda=0.002384
## - Fold07: alpha=0.15235, lambda=0.002384
## + Fold07: alpha=0.57287, lambda=1.305689
## - Fold07: alpha=0.57287, lambda=1.305689
## + Fold07: alpha=0.23873, lambda=1.148283
## - Fold07: alpha=0.23873, lambda=1.148283
## + Fold07: alpha=0.96236, lambda=0.001063
## - Fold07: alpha=0.96236, lambda=0.001063
## + Fold07: alpha=0.60137, lambda=1.092669
## - Fold07: alpha=0.60137, lambda=1.092669
## + Fold07: alpha=0.51503, lambda=0.698377
## - Fold07: alpha=0.51503, lambda=0.698377
## + Fold07: alpha=0.40257, lambda=0.285530
## - Fold07: alpha=0.40257, lambda=0.285530
## + Fold07: alpha=0.88025, lambda=0.074420
## - Fold07: alpha=0.88025, lambda=0.074420
## + Fold07: alpha=0.36409, lambda=0.004006
## - Fold07: alpha=0.36409, lambda=0.004006
## + Fold07: alpha=0.28824, lambda=0.001052
## - Fold07: alpha=0.28824, lambda=0.001052
## + Fold07: alpha=0.17065, lambda=0.057590
## - Fold07: alpha=0.17065, lambda=0.057590
## + Fold07: alpha=0.17217, lambda=0.082459
## - Fold07: alpha=0.17217, lambda=0.082459
## + Fold07: alpha=0.48204, lambda=0.032682
## - Fold07: alpha=0.48204, lambda=0.032682
## + Fold07: alpha=0.25296, lambda=0.064286
## - Fold07: alpha=0.25296, lambda=0.064286
## + Fold07: alpha=0.21625, lambda=0.604003
## - Fold07: alpha=0.21625, lambda=0.604003
## + Fold07: alpha=0.67438, lambda=0.001607
## - Fold07: alpha=0.67438, lambda=0.001607
## + Fold07: alpha=0.04766, lambda=0.023884
## - Fold07: alpha=0.04766, lambda=0.023884
## + Fold07: alpha=0.70085, lambda=1.353373
## - Fold07: alpha=0.70085, lambda=1.353373
## + Fold07: alpha=0.35189, lambda=1.820349
## - Fold07: alpha=0.35189, lambda=1.820349
## + Fold07: alpha=0.40894, lambda=0.008320
## - Fold07: alpha=0.40894, lambda=0.008320
## + Fold07: alpha=0.82095, lambda=0.023713
## - Fold07: alpha=0.82095, lambda=0.023713
## + Fold07: alpha=0.91886, lambda=2.203063
## - Fold07: alpha=0.91886, lambda=2.203063
## + Fold07: alpha=0.28253, lambda=2.141949
## - Fold07: alpha=0.28253, lambda=2.141949
## + Fold07: alpha=0.96110, lambda=0.014049
## - Fold07: alpha=0.96110, lambda=0.014049
## + Fold07: alpha=0.72839, lambda=0.003674
## - Fold07: alpha=0.72839, lambda=0.003674
## + Fold07: alpha=0.68638, lambda=0.555515
## - Fold07: alpha=0.68638, lambda=0.555515
## + Fold07: alpha=0.05284, lambda=0.002488
## - Fold07: alpha=0.05284, lambda=0.002488
## + Fold07: alpha=0.39522, lambda=0.001323
## - Fold07: alpha=0.39522, lambda=0.001323
## + Fold07: alpha=0.47785, lambda=7.957189
## - Fold07: alpha=0.47785, lambda=7.957189
## + Fold07: alpha=0.56025, lambda=0.001337
## - Fold07: alpha=0.56025, lambda=0.001337
## + Fold07: alpha=0.69826, lambda=0.020604
## - Fold07: alpha=0.69826, lambda=0.020604
## + Fold07: alpha=0.91568, lambda=3.721357
## - Fold07: alpha=0.91568, lambda=3.721357
## + Fold07: alpha=0.61835, lambda=0.254204
## - Fold07: alpha=0.61835, lambda=0.254204
## + Fold07: alpha=0.42842, lambda=0.012884
## - Fold07: alpha=0.42842, lambda=0.012884
## + Fold07: alpha=0.54208, lambda=0.753336
## - Fold07: alpha=0.54208, lambda=0.753336
## + Fold07: alpha=0.05848, lambda=1.793411
## - Fold07: alpha=0.05848, lambda=1.793411
## + Fold07: alpha=0.26086, lambda=0.016579
## - Fold07: alpha=0.26086, lambda=0.016579
## + Fold07: alpha=0.39715, lambda=0.082662
## - Fold07: alpha=0.39715, lambda=0.082662
## + Fold07: alpha=0.19774, lambda=0.523354
## - Fold07: alpha=0.19774, lambda=0.523354
## + Fold07: alpha=0.83193, lambda=0.316222
## - Fold07: alpha=0.83193, lambda=0.316222
## + Fold07: alpha=0.15289, lambda=0.323312
## - Fold07: alpha=0.15289, lambda=0.323312
## + Fold07: alpha=0.80342, lambda=6.552722
## - Fold07: alpha=0.80342, lambda=6.552722
## + Fold07: alpha=0.54683, lambda=0.040994
## - Fold07: alpha=0.54683, lambda=0.040994
## + Fold08: alpha=0.40947, lambda=0.381599
## - Fold08: alpha=0.40947, lambda=0.381599
## + Fold08: alpha=0.01047, lambda=0.004588
## - Fold08: alpha=0.01047, lambda=0.004588
## + Fold08: alpha=0.18385, lambda=0.293152
## - Fold08: alpha=0.18385, lambda=0.293152
## + Fold08: alpha=0.84273, lambda=0.016224
## - Fold08: alpha=0.84273, lambda=0.016224
## + Fold08: alpha=0.23116, lambda=0.668596
## - Fold08: alpha=0.23116, lambda=0.668596
## + Fold08: alpha=0.23910, lambda=0.035556
## - Fold08: alpha=0.23910, lambda=0.035556
## + Fold08: alpha=0.07669, lambda=6.069734
## - Fold08: alpha=0.07669, lambda=6.069734
## + Fold08: alpha=0.24572, lambda=5.963581
## - Fold08: alpha=0.24572, lambda=5.963581
## + Fold08: alpha=0.73214, lambda=0.681664
## - Fold08: alpha=0.73214, lambda=0.681664
## + Fold08: alpha=0.84745, lambda=0.009915
## - Fold08: alpha=0.84745, lambda=0.009915
## + Fold08: alpha=0.49753, lambda=0.007205
## - Fold08: alpha=0.49753, lambda=0.007205
## + Fold08: alpha=0.38791, lambda=0.204418
## - Fold08: alpha=0.38791, lambda=0.204418
## + Fold08: alpha=0.24645, lambda=0.010880
## - Fold08: alpha=0.24645, lambda=0.010880
## + Fold08: alpha=0.11110, lambda=0.116946
## - Fold08: alpha=0.11110, lambda=0.116946
## + Fold08: alpha=0.38999, lambda=1.155720
## - Fold08: alpha=0.38999, lambda=1.155720
## + Fold08: alpha=0.57194, lambda=0.004440
## - Fold08: alpha=0.57194, lambda=0.004440
## + Fold08: alpha=0.21689, lambda=0.037348
## - Fold08: alpha=0.21689, lambda=0.037348
## + Fold08: alpha=0.44477, lambda=0.068417
## - Fold08: alpha=0.44477, lambda=0.068417
## + Fold08: alpha=0.21799, lambda=2.437477
## - Fold08: alpha=0.21799, lambda=2.437477
## + Fold08: alpha=0.50230, lambda=4.095965
## - Fold08: alpha=0.50230, lambda=4.095965
## + Fold08: alpha=0.35390, lambda=2.761990
## - Fold08: alpha=0.35390, lambda=2.761990
## + Fold08: alpha=0.64999, lambda=0.424674
## - Fold08: alpha=0.64999, lambda=0.424674
## + Fold08: alpha=0.37471, lambda=5.105919
## - Fold08: alpha=0.37471, lambda=5.105919
## + Fold08: alpha=0.35545, lambda=0.102506
## - Fold08: alpha=0.35545, lambda=0.102506
## + Fold08: alpha=0.53369, lambda=0.176134
## - Fold08: alpha=0.53369, lambda=0.176134
## + Fold08: alpha=0.74033, lambda=0.020225
## - Fold08: alpha=0.74033, lambda=0.020225
## + Fold08: alpha=0.22110, lambda=0.022331
## - Fold08: alpha=0.22110, lambda=0.022331
## + Fold08: alpha=0.41275, lambda=0.001170
## - Fold08: alpha=0.41275, lambda=0.001170
## + Fold08: alpha=0.26569, lambda=0.090657
## - Fold08: alpha=0.26569, lambda=0.090657
## + Fold08: alpha=0.62997, lambda=2.502837
## - Fold08: alpha=0.62997, lambda=2.502837
## + Fold08: alpha=0.18383, lambda=0.001034
## - Fold08: alpha=0.18383, lambda=0.001034
## + Fold08: alpha=0.86364, lambda=0.001869
## - Fold08: alpha=0.86364, lambda=0.001869
## + Fold08: alpha=0.74657, lambda=0.004289
## - Fold08: alpha=0.74657, lambda=0.004289
## + Fold08: alpha=0.66828, lambda=1.009991
## - Fold08: alpha=0.66828, lambda=1.009991
## + Fold08: alpha=0.61802, lambda=0.735805
## - Fold08: alpha=0.61802, lambda=0.735805
## + Fold08: alpha=0.37224, lambda=6.209096
## - Fold08: alpha=0.37224, lambda=6.209096
## + Fold08: alpha=0.52984, lambda=0.065341
## - Fold08: alpha=0.52984, lambda=0.065341
## + Fold08: alpha=0.87468, lambda=0.001909
## - Fold08: alpha=0.87468, lambda=0.001909
## + Fold08: alpha=0.58175, lambda=0.337892
## - Fold08: alpha=0.58175, lambda=0.337892
## + Fold08: alpha=0.83977, lambda=0.908596
## - Fold08: alpha=0.83977, lambda=0.908596
## + Fold08: alpha=0.31245, lambda=0.003359
## - Fold08: alpha=0.31245, lambda=0.003359
## + Fold08: alpha=0.70829, lambda=0.034809
## - Fold08: alpha=0.70829, lambda=0.034809
## + Fold08: alpha=0.26502, lambda=0.007416
## - Fold08: alpha=0.26502, lambda=0.007416
## + Fold08: alpha=0.59434, lambda=0.001646
## - Fold08: alpha=0.59434, lambda=0.001646
## + Fold08: alpha=0.48129, lambda=0.034593
## - Fold08: alpha=0.48129, lambda=0.034593
## + Fold08: alpha=0.26503, lambda=0.001753
## - Fold08: alpha=0.26503, lambda=0.001753
## + Fold08: alpha=0.56459, lambda=0.007476
## - Fold08: alpha=0.56459, lambda=0.007476
## + Fold08: alpha=0.91319, lambda=0.001598
## - Fold08: alpha=0.91319, lambda=0.001598
## + Fold08: alpha=0.90187, lambda=0.409992
## - Fold08: alpha=0.90187, lambda=0.409992
## + Fold08: alpha=0.27417, lambda=0.014285
## - Fold08: alpha=0.27417, lambda=0.014285
## + Fold08: alpha=0.32148, lambda=0.002420
## - Fold08: alpha=0.32148, lambda=0.002420
## + Fold08: alpha=0.98564, lambda=0.001867
## - Fold08: alpha=0.98564, lambda=0.001867
## + Fold08: alpha=0.61999, lambda=2.724001
## - Fold08: alpha=0.61999, lambda=2.724001
## + Fold08: alpha=0.93731, lambda=0.873704
## - Fold08: alpha=0.93731, lambda=0.873704
## + Fold08: alpha=0.46653, lambda=1.532489
## - Fold08: alpha=0.46653, lambda=1.532489
## + Fold08: alpha=0.40683, lambda=6.810803
## - Fold08: alpha=0.40683, lambda=6.810803
## + Fold08: alpha=0.65923, lambda=0.002484
## - Fold08: alpha=0.65923, lambda=0.002484
## + Fold08: alpha=0.15235, lambda=0.002384
## - Fold08: alpha=0.15235, lambda=0.002384
## + Fold08: alpha=0.57287, lambda=1.305689
## - Fold08: alpha=0.57287, lambda=1.305689
## + Fold08: alpha=0.23873, lambda=1.148283
## - Fold08: alpha=0.23873, lambda=1.148283
## + Fold08: alpha=0.96236, lambda=0.001063
## - Fold08: alpha=0.96236, lambda=0.001063
## + Fold08: alpha=0.60137, lambda=1.092669
## - Fold08: alpha=0.60137, lambda=1.092669
## + Fold08: alpha=0.51503, lambda=0.698377
## - Fold08: alpha=0.51503, lambda=0.698377
## + Fold08: alpha=0.40257, lambda=0.285530
## - Fold08: alpha=0.40257, lambda=0.285530
## + Fold08: alpha=0.88025, lambda=0.074420
## - Fold08: alpha=0.88025, lambda=0.074420
## + Fold08: alpha=0.36409, lambda=0.004006
## - Fold08: alpha=0.36409, lambda=0.004006
## + Fold08: alpha=0.28824, lambda=0.001052
## - Fold08: alpha=0.28824, lambda=0.001052
## + Fold08: alpha=0.17065, lambda=0.057590
## - Fold08: alpha=0.17065, lambda=0.057590
## + Fold08: alpha=0.17217, lambda=0.082459
## - Fold08: alpha=0.17217, lambda=0.082459
## + Fold08: alpha=0.48204, lambda=0.032682
## - Fold08: alpha=0.48204, lambda=0.032682
## + Fold08: alpha=0.25296, lambda=0.064286
## - Fold08: alpha=0.25296, lambda=0.064286
## + Fold08: alpha=0.21625, lambda=0.604003
## - Fold08: alpha=0.21625, lambda=0.604003
## + Fold08: alpha=0.67438, lambda=0.001607
## - Fold08: alpha=0.67438, lambda=0.001607
## + Fold08: alpha=0.04766, lambda=0.023884
## - Fold08: alpha=0.04766, lambda=0.023884
## + Fold08: alpha=0.70085, lambda=1.353373
## - Fold08: alpha=0.70085, lambda=1.353373
## + Fold08: alpha=0.35189, lambda=1.820349
## - Fold08: alpha=0.35189, lambda=1.820349
## + Fold08: alpha=0.40894, lambda=0.008320
## - Fold08: alpha=0.40894, lambda=0.008320
## + Fold08: alpha=0.82095, lambda=0.023713
## - Fold08: alpha=0.82095, lambda=0.023713
## + Fold08: alpha=0.91886, lambda=2.203063
## - Fold08: alpha=0.91886, lambda=2.203063
## + Fold08: alpha=0.28253, lambda=2.141949
## - Fold08: alpha=0.28253, lambda=2.141949
## + Fold08: alpha=0.96110, lambda=0.014049
## - Fold08: alpha=0.96110, lambda=0.014049
## + Fold08: alpha=0.72839, lambda=0.003674
## - Fold08: alpha=0.72839, lambda=0.003674
## + Fold08: alpha=0.68638, lambda=0.555515
## - Fold08: alpha=0.68638, lambda=0.555515
## + Fold08: alpha=0.05284, lambda=0.002488
## - Fold08: alpha=0.05284, lambda=0.002488
## + Fold08: alpha=0.39522, lambda=0.001323
## - Fold08: alpha=0.39522, lambda=0.001323
## + Fold08: alpha=0.47785, lambda=7.957189
## - Fold08: alpha=0.47785, lambda=7.957189
## + Fold08: alpha=0.56025, lambda=0.001337
## - Fold08: alpha=0.56025, lambda=0.001337
## + Fold08: alpha=0.69826, lambda=0.020604
## - Fold08: alpha=0.69826, lambda=0.020604
## + Fold08: alpha=0.91568, lambda=3.721357
## - Fold08: alpha=0.91568, lambda=3.721357
## + Fold08: alpha=0.61835, lambda=0.254204
## - Fold08: alpha=0.61835, lambda=0.254204
## + Fold08: alpha=0.42842, lambda=0.012884
## - Fold08: alpha=0.42842, lambda=0.012884
## + Fold08: alpha=0.54208, lambda=0.753336
## - Fold08: alpha=0.54208, lambda=0.753336
## + Fold08: alpha=0.05848, lambda=1.793411
## - Fold08: alpha=0.05848, lambda=1.793411
## + Fold08: alpha=0.26086, lambda=0.016579
## - Fold08: alpha=0.26086, lambda=0.016579
## + Fold08: alpha=0.39715, lambda=0.082662
## - Fold08: alpha=0.39715, lambda=0.082662
## + Fold08: alpha=0.19774, lambda=0.523354
## - Fold08: alpha=0.19774, lambda=0.523354
## + Fold08: alpha=0.83193, lambda=0.316222
## - Fold08: alpha=0.83193, lambda=0.316222
## + Fold08: alpha=0.15289, lambda=0.323312
## - Fold08: alpha=0.15289, lambda=0.323312
## + Fold08: alpha=0.80342, lambda=6.552722
## - Fold08: alpha=0.80342, lambda=6.552722
## + Fold08: alpha=0.54683, lambda=0.040994
## - Fold08: alpha=0.54683, lambda=0.040994
## + Fold09: alpha=0.40947, lambda=0.381599
## - Fold09: alpha=0.40947, lambda=0.381599
## + Fold09: alpha=0.01047, lambda=0.004588
## - Fold09: alpha=0.01047, lambda=0.004588
## + Fold09: alpha=0.18385, lambda=0.293152
## - Fold09: alpha=0.18385, lambda=0.293152
## + Fold09: alpha=0.84273, lambda=0.016224
## - Fold09: alpha=0.84273, lambda=0.016224
## + Fold09: alpha=0.23116, lambda=0.668596
## - Fold09: alpha=0.23116, lambda=0.668596
## + Fold09: alpha=0.23910, lambda=0.035556
## - Fold09: alpha=0.23910, lambda=0.035556
## + Fold09: alpha=0.07669, lambda=6.069734
## - Fold09: alpha=0.07669, lambda=6.069734
## + Fold09: alpha=0.24572, lambda=5.963581
## - Fold09: alpha=0.24572, lambda=5.963581
## + Fold09: alpha=0.73214, lambda=0.681664
## - Fold09: alpha=0.73214, lambda=0.681664
## + Fold09: alpha=0.84745, lambda=0.009915
## - Fold09: alpha=0.84745, lambda=0.009915
## + Fold09: alpha=0.49753, lambda=0.007205
## - Fold09: alpha=0.49753, lambda=0.007205
## + Fold09: alpha=0.38791, lambda=0.204418
## - Fold09: alpha=0.38791, lambda=0.204418
## + Fold09: alpha=0.24645, lambda=0.010880
## - Fold09: alpha=0.24645, lambda=0.010880
## + Fold09: alpha=0.11110, lambda=0.116946
## - Fold09: alpha=0.11110, lambda=0.116946
## + Fold09: alpha=0.38999, lambda=1.155720
## - Fold09: alpha=0.38999, lambda=1.155720
## + Fold09: alpha=0.57194, lambda=0.004440
## - Fold09: alpha=0.57194, lambda=0.004440
## + Fold09: alpha=0.21689, lambda=0.037348
## - Fold09: alpha=0.21689, lambda=0.037348
## + Fold09: alpha=0.44477, lambda=0.068417
## - Fold09: alpha=0.44477, lambda=0.068417
## + Fold09: alpha=0.21799, lambda=2.437477
## - Fold09: alpha=0.21799, lambda=2.437477
## + Fold09: alpha=0.50230, lambda=4.095965
## - Fold09: alpha=0.50230, lambda=4.095965
## + Fold09: alpha=0.35390, lambda=2.761990
## - Fold09: alpha=0.35390, lambda=2.761990
## + Fold09: alpha=0.64999, lambda=0.424674
## - Fold09: alpha=0.64999, lambda=0.424674
## + Fold09: alpha=0.37471, lambda=5.105919
## - Fold09: alpha=0.37471, lambda=5.105919
## + Fold09: alpha=0.35545, lambda=0.102506
## - Fold09: alpha=0.35545, lambda=0.102506
## + Fold09: alpha=0.53369, lambda=0.176134
## - Fold09: alpha=0.53369, lambda=0.176134
## + Fold09: alpha=0.74033, lambda=0.020225
## - Fold09: alpha=0.74033, lambda=0.020225
## + Fold09: alpha=0.22110, lambda=0.022331
## - Fold09: alpha=0.22110, lambda=0.022331
## + Fold09: alpha=0.41275, lambda=0.001170
## - Fold09: alpha=0.41275, lambda=0.001170
## + Fold09: alpha=0.26569, lambda=0.090657
## - Fold09: alpha=0.26569, lambda=0.090657
## + Fold09: alpha=0.62997, lambda=2.502837
## - Fold09: alpha=0.62997, lambda=2.502837
## + Fold09: alpha=0.18383, lambda=0.001034
## - Fold09: alpha=0.18383, lambda=0.001034
## + Fold09: alpha=0.86364, lambda=0.001869
## - Fold09: alpha=0.86364, lambda=0.001869
## + Fold09: alpha=0.74657, lambda=0.004289
## - Fold09: alpha=0.74657, lambda=0.004289
## + Fold09: alpha=0.66828, lambda=1.009991
## - Fold09: alpha=0.66828, lambda=1.009991
## + Fold09: alpha=0.61802, lambda=0.735805
## - Fold09: alpha=0.61802, lambda=0.735805
## + Fold09: alpha=0.37224, lambda=6.209096
## - Fold09: alpha=0.37224, lambda=6.209096
## + Fold09: alpha=0.52984, lambda=0.065341
## - Fold09: alpha=0.52984, lambda=0.065341
## + Fold09: alpha=0.87468, lambda=0.001909
## - Fold09: alpha=0.87468, lambda=0.001909
## + Fold09: alpha=0.58175, lambda=0.337892
## - Fold09: alpha=0.58175, lambda=0.337892
## + Fold09: alpha=0.83977, lambda=0.908596
## - Fold09: alpha=0.83977, lambda=0.908596
## + Fold09: alpha=0.31245, lambda=0.003359
## - Fold09: alpha=0.31245, lambda=0.003359
## + Fold09: alpha=0.70829, lambda=0.034809
## - Fold09: alpha=0.70829, lambda=0.034809
## + Fold09: alpha=0.26502, lambda=0.007416
## - Fold09: alpha=0.26502, lambda=0.007416
## + Fold09: alpha=0.59434, lambda=0.001646
## - Fold09: alpha=0.59434, lambda=0.001646
## + Fold09: alpha=0.48129, lambda=0.034593
## - Fold09: alpha=0.48129, lambda=0.034593
## + Fold09: alpha=0.26503, lambda=0.001753
## - Fold09: alpha=0.26503, lambda=0.001753
## + Fold09: alpha=0.56459, lambda=0.007476
## - Fold09: alpha=0.56459, lambda=0.007476
## + Fold09: alpha=0.91319, lambda=0.001598
## - Fold09: alpha=0.91319, lambda=0.001598
## + Fold09: alpha=0.90187, lambda=0.409992
## - Fold09: alpha=0.90187, lambda=0.409992
## + Fold09: alpha=0.27417, lambda=0.014285
## - Fold09: alpha=0.27417, lambda=0.014285
## + Fold09: alpha=0.32148, lambda=0.002420
## - Fold09: alpha=0.32148, lambda=0.002420
## + Fold09: alpha=0.98564, lambda=0.001867
## - Fold09: alpha=0.98564, lambda=0.001867
## + Fold09: alpha=0.61999, lambda=2.724001
## - Fold09: alpha=0.61999, lambda=2.724001
## + Fold09: alpha=0.93731, lambda=0.873704
## - Fold09: alpha=0.93731, lambda=0.873704
## + Fold09: alpha=0.46653, lambda=1.532489
## - Fold09: alpha=0.46653, lambda=1.532489
## + Fold09: alpha=0.40683, lambda=6.810803
## - Fold09: alpha=0.40683, lambda=6.810803
## + Fold09: alpha=0.65923, lambda=0.002484
## - Fold09: alpha=0.65923, lambda=0.002484
## + Fold09: alpha=0.15235, lambda=0.002384
## - Fold09: alpha=0.15235, lambda=0.002384
## + Fold09: alpha=0.57287, lambda=1.305689
## - Fold09: alpha=0.57287, lambda=1.305689
## + Fold09: alpha=0.23873, lambda=1.148283
## - Fold09: alpha=0.23873, lambda=1.148283
## + Fold09: alpha=0.96236, lambda=0.001063
## - Fold09: alpha=0.96236, lambda=0.001063
## + Fold09: alpha=0.60137, lambda=1.092669
## - Fold09: alpha=0.60137, lambda=1.092669
## + Fold09: alpha=0.51503, lambda=0.698377
## - Fold09: alpha=0.51503, lambda=0.698377
## + Fold09: alpha=0.40257, lambda=0.285530
## - Fold09: alpha=0.40257, lambda=0.285530
## + Fold09: alpha=0.88025, lambda=0.074420
## - Fold09: alpha=0.88025, lambda=0.074420
## + Fold09: alpha=0.36409, lambda=0.004006
## - Fold09: alpha=0.36409, lambda=0.004006
## + Fold09: alpha=0.28824, lambda=0.001052
## - Fold09: alpha=0.28824, lambda=0.001052
## + Fold09: alpha=0.17065, lambda=0.057590
## - Fold09: alpha=0.17065, lambda=0.057590
## + Fold09: alpha=0.17217, lambda=0.082459
## - Fold09: alpha=0.17217, lambda=0.082459
## + Fold09: alpha=0.48204, lambda=0.032682
## - Fold09: alpha=0.48204, lambda=0.032682
## + Fold09: alpha=0.25296, lambda=0.064286
## - Fold09: alpha=0.25296, lambda=0.064286
## + Fold09: alpha=0.21625, lambda=0.604003
## - Fold09: alpha=0.21625, lambda=0.604003
## + Fold09: alpha=0.67438, lambda=0.001607
## - Fold09: alpha=0.67438, lambda=0.001607
## + Fold09: alpha=0.04766, lambda=0.023884
## - Fold09: alpha=0.04766, lambda=0.023884
## + Fold09: alpha=0.70085, lambda=1.353373
## - Fold09: alpha=0.70085, lambda=1.353373
## + Fold09: alpha=0.35189, lambda=1.820349
## - Fold09: alpha=0.35189, lambda=1.820349
## + Fold09: alpha=0.40894, lambda=0.008320
## - Fold09: alpha=0.40894, lambda=0.008320
## + Fold09: alpha=0.82095, lambda=0.023713
## - Fold09: alpha=0.82095, lambda=0.023713
## + Fold09: alpha=0.91886, lambda=2.203063
## - Fold09: alpha=0.91886, lambda=2.203063
## + Fold09: alpha=0.28253, lambda=2.141949
## - Fold09: alpha=0.28253, lambda=2.141949
## + Fold09: alpha=0.96110, lambda=0.014049
## - Fold09: alpha=0.96110, lambda=0.014049
## + Fold09: alpha=0.72839, lambda=0.003674
## - Fold09: alpha=0.72839, lambda=0.003674
## + Fold09: alpha=0.68638, lambda=0.555515
## - Fold09: alpha=0.68638, lambda=0.555515
## + Fold09: alpha=0.05284, lambda=0.002488
## - Fold09: alpha=0.05284, lambda=0.002488
## + Fold09: alpha=0.39522, lambda=0.001323
## - Fold09: alpha=0.39522, lambda=0.001323
## + Fold09: alpha=0.47785, lambda=7.957189
## - Fold09: alpha=0.47785, lambda=7.957189
## + Fold09: alpha=0.56025, lambda=0.001337
## - Fold09: alpha=0.56025, lambda=0.001337
## + Fold09: alpha=0.69826, lambda=0.020604
## - Fold09: alpha=0.69826, lambda=0.020604
## + Fold09: alpha=0.91568, lambda=3.721357
## - Fold09: alpha=0.91568, lambda=3.721357
## + Fold09: alpha=0.61835, lambda=0.254204
## - Fold09: alpha=0.61835, lambda=0.254204
## + Fold09: alpha=0.42842, lambda=0.012884
## - Fold09: alpha=0.42842, lambda=0.012884
## + Fold09: alpha=0.54208, lambda=0.753336
## - Fold09: alpha=0.54208, lambda=0.753336
## + Fold09: alpha=0.05848, lambda=1.793411
## - Fold09: alpha=0.05848, lambda=1.793411
## + Fold09: alpha=0.26086, lambda=0.016579
## - Fold09: alpha=0.26086, lambda=0.016579
## + Fold09: alpha=0.39715, lambda=0.082662
## - Fold09: alpha=0.39715, lambda=0.082662
## + Fold09: alpha=0.19774, lambda=0.523354
## - Fold09: alpha=0.19774, lambda=0.523354
## + Fold09: alpha=0.83193, lambda=0.316222
## - Fold09: alpha=0.83193, lambda=0.316222
## + Fold09: alpha=0.15289, lambda=0.323312
## - Fold09: alpha=0.15289, lambda=0.323312
## + Fold09: alpha=0.80342, lambda=6.552722
## - Fold09: alpha=0.80342, lambda=6.552722
## + Fold09: alpha=0.54683, lambda=0.040994
## - Fold09: alpha=0.54683, lambda=0.040994
## + Fold10: alpha=0.40947, lambda=0.381599
## - Fold10: alpha=0.40947, lambda=0.381599
## + Fold10: alpha=0.01047, lambda=0.004588
## - Fold10: alpha=0.01047, lambda=0.004588
## + Fold10: alpha=0.18385, lambda=0.293152
## - Fold10: alpha=0.18385, lambda=0.293152
## + Fold10: alpha=0.84273, lambda=0.016224
## - Fold10: alpha=0.84273, lambda=0.016224
## + Fold10: alpha=0.23116, lambda=0.668596
## - Fold10: alpha=0.23116, lambda=0.668596
## + Fold10: alpha=0.23910, lambda=0.035556
## - Fold10: alpha=0.23910, lambda=0.035556
## + Fold10: alpha=0.07669, lambda=6.069734
## - Fold10: alpha=0.07669, lambda=6.069734
## + Fold10: alpha=0.24572, lambda=5.963581
## - Fold10: alpha=0.24572, lambda=5.963581
## + Fold10: alpha=0.73214, lambda=0.681664
## - Fold10: alpha=0.73214, lambda=0.681664
## + Fold10: alpha=0.84745, lambda=0.009915
## - Fold10: alpha=0.84745, lambda=0.009915
## + Fold10: alpha=0.49753, lambda=0.007205
## - Fold10: alpha=0.49753, lambda=0.007205
## + Fold10: alpha=0.38791, lambda=0.204418
## - Fold10: alpha=0.38791, lambda=0.204418
## + Fold10: alpha=0.24645, lambda=0.010880
## - Fold10: alpha=0.24645, lambda=0.010880
## + Fold10: alpha=0.11110, lambda=0.116946
## - Fold10: alpha=0.11110, lambda=0.116946
## + Fold10: alpha=0.38999, lambda=1.155720
## - Fold10: alpha=0.38999, lambda=1.155720
## + Fold10: alpha=0.57194, lambda=0.004440
## - Fold10: alpha=0.57194, lambda=0.004440
## + Fold10: alpha=0.21689, lambda=0.037348
## - Fold10: alpha=0.21689, lambda=0.037348
## + Fold10: alpha=0.44477, lambda=0.068417
## - Fold10: alpha=0.44477, lambda=0.068417
## + Fold10: alpha=0.21799, lambda=2.437477
## - Fold10: alpha=0.21799, lambda=2.437477
## + Fold10: alpha=0.50230, lambda=4.095965
## - Fold10: alpha=0.50230, lambda=4.095965
## + Fold10: alpha=0.35390, lambda=2.761990
## - Fold10: alpha=0.35390, lambda=2.761990
## + Fold10: alpha=0.64999, lambda=0.424674
## - Fold10: alpha=0.64999, lambda=0.424674
## + Fold10: alpha=0.37471, lambda=5.105919
## - Fold10: alpha=0.37471, lambda=5.105919
## + Fold10: alpha=0.35545, lambda=0.102506
## - Fold10: alpha=0.35545, lambda=0.102506
## + Fold10: alpha=0.53369, lambda=0.176134
## - Fold10: alpha=0.53369, lambda=0.176134
## + Fold10: alpha=0.74033, lambda=0.020225
## - Fold10: alpha=0.74033, lambda=0.020225
## + Fold10: alpha=0.22110, lambda=0.022331
## - Fold10: alpha=0.22110, lambda=0.022331
## + Fold10: alpha=0.41275, lambda=0.001170
## - Fold10: alpha=0.41275, lambda=0.001170
## + Fold10: alpha=0.26569, lambda=0.090657
## - Fold10: alpha=0.26569, lambda=0.090657
## + Fold10: alpha=0.62997, lambda=2.502837
## - Fold10: alpha=0.62997, lambda=2.502837
## + Fold10: alpha=0.18383, lambda=0.001034
## - Fold10: alpha=0.18383, lambda=0.001034
## + Fold10: alpha=0.86364, lambda=0.001869
## - Fold10: alpha=0.86364, lambda=0.001869
## + Fold10: alpha=0.74657, lambda=0.004289
## - Fold10: alpha=0.74657, lambda=0.004289
## + Fold10: alpha=0.66828, lambda=1.009991
## - Fold10: alpha=0.66828, lambda=1.009991
## + Fold10: alpha=0.61802, lambda=0.735805
## - Fold10: alpha=0.61802, lambda=0.735805
## + Fold10: alpha=0.37224, lambda=6.209096
## - Fold10: alpha=0.37224, lambda=6.209096
## + Fold10: alpha=0.52984, lambda=0.065341
## - Fold10: alpha=0.52984, lambda=0.065341
## + Fold10: alpha=0.87468, lambda=0.001909
## - Fold10: alpha=0.87468, lambda=0.001909
## + Fold10: alpha=0.58175, lambda=0.337892
## - Fold10: alpha=0.58175, lambda=0.337892
## + Fold10: alpha=0.83977, lambda=0.908596
## - Fold10: alpha=0.83977, lambda=0.908596
## + Fold10: alpha=0.31245, lambda=0.003359
## - Fold10: alpha=0.31245, lambda=0.003359
## + Fold10: alpha=0.70829, lambda=0.034809
## - Fold10: alpha=0.70829, lambda=0.034809
## + Fold10: alpha=0.26502, lambda=0.007416
## - Fold10: alpha=0.26502, lambda=0.007416
## + Fold10: alpha=0.59434, lambda=0.001646
## - Fold10: alpha=0.59434, lambda=0.001646
## + Fold10: alpha=0.48129, lambda=0.034593
## - Fold10: alpha=0.48129, lambda=0.034593
## + Fold10: alpha=0.26503, lambda=0.001753
## - Fold10: alpha=0.26503, lambda=0.001753
## + Fold10: alpha=0.56459, lambda=0.007476
## - Fold10: alpha=0.56459, lambda=0.007476
## + Fold10: alpha=0.91319, lambda=0.001598
## - Fold10: alpha=0.91319, lambda=0.001598
## + Fold10: alpha=0.90187, lambda=0.409992
## - Fold10: alpha=0.90187, lambda=0.409992
## + Fold10: alpha=0.27417, lambda=0.014285
## - Fold10: alpha=0.27417, lambda=0.014285
## + Fold10: alpha=0.32148, lambda=0.002420
## - Fold10: alpha=0.32148, lambda=0.002420
## + Fold10: alpha=0.98564, lambda=0.001867
## - Fold10: alpha=0.98564, lambda=0.001867
## + Fold10: alpha=0.61999, lambda=2.724001
## - Fold10: alpha=0.61999, lambda=2.724001
## + Fold10: alpha=0.93731, lambda=0.873704
## - Fold10: alpha=0.93731, lambda=0.873704
## + Fold10: alpha=0.46653, lambda=1.532489
## - Fold10: alpha=0.46653, lambda=1.532489
## + Fold10: alpha=0.40683, lambda=6.810803
## - Fold10: alpha=0.40683, lambda=6.810803
## + Fold10: alpha=0.65923, lambda=0.002484
## - Fold10: alpha=0.65923, lambda=0.002484
## + Fold10: alpha=0.15235, lambda=0.002384
## - Fold10: alpha=0.15235, lambda=0.002384
## + Fold10: alpha=0.57287, lambda=1.305689
## - Fold10: alpha=0.57287, lambda=1.305689
## + Fold10: alpha=0.23873, lambda=1.148283
## - Fold10: alpha=0.23873, lambda=1.148283
## + Fold10: alpha=0.96236, lambda=0.001063
## - Fold10: alpha=0.96236, lambda=0.001063
## + Fold10: alpha=0.60137, lambda=1.092669
## - Fold10: alpha=0.60137, lambda=1.092669
## + Fold10: alpha=0.51503, lambda=0.698377
## - Fold10: alpha=0.51503, lambda=0.698377
## + Fold10: alpha=0.40257, lambda=0.285530
## - Fold10: alpha=0.40257, lambda=0.285530
## + Fold10: alpha=0.88025, lambda=0.074420
## - Fold10: alpha=0.88025, lambda=0.074420
## + Fold10: alpha=0.36409, lambda=0.004006
## - Fold10: alpha=0.36409, lambda=0.004006
## + Fold10: alpha=0.28824, lambda=0.001052
## - Fold10: alpha=0.28824, lambda=0.001052
## + Fold10: alpha=0.17065, lambda=0.057590
## - Fold10: alpha=0.17065, lambda=0.057590
## + Fold10: alpha=0.17217, lambda=0.082459
## - Fold10: alpha=0.17217, lambda=0.082459
## + Fold10: alpha=0.48204, lambda=0.032682
## - Fold10: alpha=0.48204, lambda=0.032682
## + Fold10: alpha=0.25296, lambda=0.064286
## - Fold10: alpha=0.25296, lambda=0.064286
## + Fold10: alpha=0.21625, lambda=0.604003
## - Fold10: alpha=0.21625, lambda=0.604003
## + Fold10: alpha=0.67438, lambda=0.001607
## - Fold10: alpha=0.67438, lambda=0.001607
## + Fold10: alpha=0.04766, lambda=0.023884
## - Fold10: alpha=0.04766, lambda=0.023884
## + Fold10: alpha=0.70085, lambda=1.353373
## - Fold10: alpha=0.70085, lambda=1.353373
## + Fold10: alpha=0.35189, lambda=1.820349
## - Fold10: alpha=0.35189, lambda=1.820349
## + Fold10: alpha=0.40894, lambda=0.008320
## - Fold10: alpha=0.40894, lambda=0.008320
## + Fold10: alpha=0.82095, lambda=0.023713
## - Fold10: alpha=0.82095, lambda=0.023713
## + Fold10: alpha=0.91886, lambda=2.203063
## - Fold10: alpha=0.91886, lambda=2.203063
## + Fold10: alpha=0.28253, lambda=2.141949
## - Fold10: alpha=0.28253, lambda=2.141949
## + Fold10: alpha=0.96110, lambda=0.014049
## - Fold10: alpha=0.96110, lambda=0.014049
## + Fold10: alpha=0.72839, lambda=0.003674
## - Fold10: alpha=0.72839, lambda=0.003674
## + Fold10: alpha=0.68638, lambda=0.555515
## - Fold10: alpha=0.68638, lambda=0.555515
## + Fold10: alpha=0.05284, lambda=0.002488
## - Fold10: alpha=0.05284, lambda=0.002488
## + Fold10: alpha=0.39522, lambda=0.001323
## - Fold10: alpha=0.39522, lambda=0.001323
## + Fold10: alpha=0.47785, lambda=7.957189
## - Fold10: alpha=0.47785, lambda=7.957189
## + Fold10: alpha=0.56025, lambda=0.001337
## - Fold10: alpha=0.56025, lambda=0.001337
## + Fold10: alpha=0.69826, lambda=0.020604
## - Fold10: alpha=0.69826, lambda=0.020604
## + Fold10: alpha=0.91568, lambda=3.721357
## - Fold10: alpha=0.91568, lambda=3.721357
## + Fold10: alpha=0.61835, lambda=0.254204
## - Fold10: alpha=0.61835, lambda=0.254204
## + Fold10: alpha=0.42842, lambda=0.012884
## - Fold10: alpha=0.42842, lambda=0.012884
## + Fold10: alpha=0.54208, lambda=0.753336
## - Fold10: alpha=0.54208, lambda=0.753336
## + Fold10: alpha=0.05848, lambda=1.793411
## - Fold10: alpha=0.05848, lambda=1.793411
## + Fold10: alpha=0.26086, lambda=0.016579
## - Fold10: alpha=0.26086, lambda=0.016579
## + Fold10: alpha=0.39715, lambda=0.082662
## - Fold10: alpha=0.39715, lambda=0.082662
## + Fold10: alpha=0.19774, lambda=0.523354
## - Fold10: alpha=0.19774, lambda=0.523354
## + Fold10: alpha=0.83193, lambda=0.316222
## - Fold10: alpha=0.83193, lambda=0.316222
## + Fold10: alpha=0.15289, lambda=0.323312
## - Fold10: alpha=0.15289, lambda=0.323312
## + Fold10: alpha=0.80342, lambda=6.552722
## - Fold10: alpha=0.80342, lambda=6.552722
## + Fold10: alpha=0.54683, lambda=0.040994
## - Fold10: alpha=0.54683, lambda=0.040994
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, : There were missing values in resampled performance measures.
## Aggregating results
## Selecting tuning parameters
## Fitting alpha = 0.0585, lambda = 1.79 on full training set
39 / 71

Elastic net with caret

We can figure out the best set of tuning parameters by looking at bestTune

elastic_net_model$bestTune
## alpha lambda
## 4 0.05847849 1.793411

Here we selected something close to ridge regression

40 / 71

Elastic net with caret

plot(elastic_net_model)

41 / 71

Non-parametric regression: Regression Trees

Regression trees sequentially split the feature space into subspaces where the function is estimated as the average outcome for units with features in that subspace

42 / 71

Non-parametric regression: Regression Trees

Regression trees sequentially split the feature space into subspaces where the function is estimated as the average outcome for units with features in that subspace

These are called trees because the splitting is sequential, one feature at a time, so when you plot all the splits it begins to look like an upside down tree where

Each split is called a node, and the first split is called your root node

Each terminal point of your tree is called a leaf node

42 / 71

Non-parametric regression: Regression Trees

Regression trees sequentially split the feature space into subspaces where the function is estimated as the average outcome for units with features in that subspace

These are called trees because the splitting is sequential, one feature at a time, so when you plot all the splits it begins to look like an upside down tree where

Each split is called a node, and the first split is called your root node

Each terminal point of your tree is called a leaf node

Trees effectively partition the space into a bunch of hyperrectangles in a way that reduces RSS

42 / 71

Growing a regression tree

How do we grow our regression tree?

  1. Let g(x) = \bar{y} and let the sum of squared errors be Q(g) = \sum_{i=1}^N(y_i-g(x_i))^2 = \sum_{i=1}^N (y_i - \bar{y})^2

  2. For a feature j and split point s consider splitting the data depending on whether x_{i,j} \leq s or x_{i,j} > s, and let \bar{y}_{left} and \bar{y}_{right} be the average values in the two subspaces

  3. If x_j \leq t let g_{j,t}(x) = \bar{y}_{left} else g_{j,t}(x) =\bar{y}_{right}

  4. Find the j^*,s^* = argmin_{j,s} Q(g_{j,s}(\cdot))
43 / 71

Growing a regression tree

This gives us the covariate j^* to split, and where to split it into separate subspaces s^* in order to minimize the sum of squared errors

This first split will end up being our root node

We then continue this process for each of the subspaces, splitting on the best covariates and creating new nodes and growing our tree

44 / 71

Growing a regression tree

This gives us the covariate j^* to split, and where to split it into separate subspaces s^* in order to minimize the sum of squared errors

This first split will end up being our root node

We then continue this process for each of the subspaces, splitting on the best covariates and creating new nodes and growing our tree

This is called a greedy approach because we are selecting the best split at each step instead of looking ahead

44 / 71

What do regression trees look like?

Whats the probability of kyphosis after surgery given age and the starting vertabrae?

The left shows the tree diagram

The middle shows the actual regression function

The right shows a 2d projection of the regression function where darker colors are higher probabilities

45 / 71

Regularizing regression trees

If we just followed the regression tree algorithm we could minimize error by splitting until there is just one observation in each feature subspace, this will have perfect in-sample prediction but terrible out-of-sample prediction

46 / 71

Regularizing regression trees

If we just followed the regression tree algorithm we could minimize error by splitting until there is just one observation in each feature subspace, this will have perfect in-sample prediction but terrible out-of-sample prediction

We solve this problem similar to how we did linear regression: we penalize complexity (the number of leaves)

Q(g) + \lambda \cdot \#leaves

The penalty (if large enough) will keep the tree from having too many nodes

46 / 71

Cross-validating trees

How do we choose \lambda? Basically the same way as we did for linear regression

  • Create a grid of \lambdas
  • For each \lambda:
    • Split data into k mutually-exclusive folds of about equal size, usually choose k=5,10
    • For j=1,...,k
      • Grow the tree using all folds but fold j
      • Predict out-of-sample on fold j
    • Compute squared prediction error across the k folds: Q(\lambda) = \sum_{j=1}^k \sum_{i \in \text{fold j}} \left(y_i - g(j,\lambda)\right)
  • Choose \hat{\lambda}_{min} = argmin_{\lambda} Q(\lambda)
47 / 71

Pruning trees

Using this simple cross-validation approach may stop growing the tree too early, one split may not help immediately, but it may help us find future profitable splits

- This is a drawback of a greedy algorithm

This suggests that one way we can improve is by pruning the tree

  1. Grow a big tree, select some rule to stop like 5 observations per leaf, or a very small \lambda
  2. Prune branches or leaves that don't improve the prediction by a sufficient amount
48 / 71

Pruning trees: examples

The simplest way to prune is called reduced error pruning

It works as follows

  1. Starting at the leaves, remove each node
  2. Check if prediction accuracy on the validation sample is the same or better
  3. If 2 is true, remove the node
  4. Continue until we cannot improve the tree any further

This is simple and fast

There are other more complex ways to prune (e.g. cost complexity)

49 / 71

Bagging predictors

Single trees typically are not great predictors

50 / 71

Bagging predictors

Single trees typically are not great predictors

One way to improve upon a single tree is to bootstrap aggregate (bag) a prediction

50 / 71

Bagging predictors

Single trees typically are not great predictors

One way to improve upon a single tree is to bootstrap aggregate (bag) a prediction

This generally reduces variance and helps with avoiding overfitting

50 / 71

Bagging predictors

Single trees typically are not great predictors

One way to improve upon a single tree is to bootstrap aggregate (bag) a prediction

This generally reduces variance and helps with avoiding overfitting

Bagging is easy:

  1. Bootstrap resample B datasets
  2. Estimate a tree on each dataset (can use data-driven cross-validation, pruning, whatever)
  3. Average all the predictions: \frac{1}{B}\sum_{j=1}^B g_j(x)
50 / 71

Bagging predictors

Single trees typically are not great predictors

One way to improve upon a single tree is to bootstrap aggregate (bag) a prediction

This generally reduces variance and helps with avoiding overfitting

Bagging is easy:

  1. Bootstrap resample B datasets
  2. Estimate a tree on each dataset (can use data-driven cross-validation, pruning, whatever)
  3. Average all the predictions: \frac{1}{B}\sum_{j=1}^B g_j(x)

This only matters because trees are non-linear,
so bagging smooths out the end predictions

50 / 71

Random forests

The problem with bagging is that the B bagged estimated are correlated

Important regressors will always appear near the top of the tree in the bootstrapped samples

This means all the trees will look similar

Predictions won't actually be as good as you might think

How can we break this correlation?

51 / 71

Random forests

Randomly select only L out of K features: feature bagging

52 / 71

Random forests

Randomly select only L out of K features: feature bagging

How big should L be?

52 / 71

Random forests

Randomly select only L out of K features: feature bagging

How big should L be?

Not obvious, no real theoretical guidance

52 / 71

Random forests

Randomly select only L out of K features: feature bagging

How big should L be?

Not obvious, no real theoretical guidance

For classification problems \sqrt{K} is recommended

For regression K/3 is recommended

52 / 71

Boosted trees

Boosting is another method to improve prediction from weak learners (better than random chance predictors)

53 / 71

Boosted trees

Boosting is another method to improve prediction from weak learners (better than random chance predictors)

We can improve on a regression tree by repeatedly applying shallow trees to residualized data

Let g(x|X,Y) be a simple regression tree

53 / 71

Boosted trees

Boosting is another method to improve prediction from weak learners (better than random chance predictors)

We can improve on a regression tree by repeatedly applying shallow trees to residualized data

Let g(x|X,Y) be a simple regression tree

Define the residual as \varepsilon{1i} = Y_i - g_1(X_i|X,Y)

53 / 71

Boosted trees

Boosting is another method to improve prediction from weak learners (better than random chance predictors)

We can improve on a regression tree by repeatedly applying shallow trees to residualized data

Let g(x|X,Y) be a simple regression tree

Define the residual as \varepsilon{1i} = Y_i - g_1(X_i|X,Y)

With a boosted tree we then estimate a regression tree on the new data (X,\varepsilon_{1})

53 / 71

Boosted trees

Repeat this process many times to get a set of gs

54 / 71

Boosted trees

Repeat this process many times to get a set of gs

These give you an additive approximation to the actual regression tree: \sum_{m=1}^M g_m(x|X,\varepsilon_{m-1}) = \sum_{k=1}^K h_k(x_k) \text{ where } \varepsilon_0 = Y

54 / 71

Boosted trees

Repeat this process many times to get a set of gs

These give you an additive approximation to the actual regression tree: \sum_{m=1}^M g_m(x|X,\varepsilon_{m-1}) = \sum_{k=1}^K h_k(x_k) \text{ where } \varepsilon_0 = Y

By continually residualizing and re-estimating, its like we are adding functions h_k sequentially to our regression

54 / 71

Boosted trees

Repeat this process many times to get a set of gs

These give you an additive approximation to the actual regression tree: \sum_{m=1}^M g_m(x|X,\varepsilon_{m-1}) = \sum_{k=1}^K h_k(x_k) \text{ where } \varepsilon_0 = Y

By continually residualizing and re-estimating, its like we are adding functions h_k sequentially to our regression

When boosting, we typically use shallow trees of only around 4-8 splits, but we grow many, many trees

54 / 71

Boosted trees

Repeat this process many times to get a set of gs

These give you an additive approximation to the actual regression tree: \sum_{m=1}^M g_m(x|X,\varepsilon_{m-1}) = \sum_{k=1}^K h_k(x_k) \text{ where } \varepsilon_0 = Y

By continually residualizing and re-estimating, its like we are adding functions h_k sequentially to our regression

When boosting, we typically use shallow trees of only around 4-8 splits, but we grow many, many trees

We generally fix tree depth but select number of trees in a quasi-cross-validation procedure

54 / 71

Trees examples: Preliminaries

We need ISLR to get our dataset, tree to do the regression tree, MASS for our random forest dataset, and randomForest to estimate a random forest

We will be working with the carseats dataset

if (!require("pacman")) install.packages("pacman")
pacman::p_load(ISLR, tree, randomForest, gbm, tidyverse)
set.seed(123)
55 / 71

Supervised learning examples: Preliminaries

carseats <- Carseats %>% as_tibble()
carseats
## # A tibble: 400 x 11
## Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <fct> <fct>
## 1 9.5 138 73 11 276 120 Bad 42 17 Yes Yes
## 2 11.2 111 48 16 260 83 Good 65 10 Yes Yes
## 3 10.1 113 35 10 269 80 Medium 59 12 Yes Yes
## 4 7.4 117 100 4 466 97 Medium 55 14 Yes Yes
## 5 4.15 141 64 3 340 128 Bad 38 13 Yes No
## 6 10.8 124 113 13 501 72 Bad 78 16 No Yes
## 7 6.63 115 105 0 45 108 Medium 71 15 Yes No
## 8 11.8 136 81 15 425 120 Good 67 10 Yes Yes
## 9 6.54 132 110 0 108 124 Medium 76 10 No No
## 10 4.69 132 113 0 131 124 Medium 76 17 No Yes
## # … with 390 more rows
56 / 71

Supervised learning example: estimating a tree

Lets estimate our regression tree with car sales as the outcome

tree_carseats <- tree(Sales ~ ., data = carseats)
summary(tree_carseats)
##
## Regression tree:
## tree(formula = Sales ~ ., data = carseats)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Income" "Population" "Advertising"
## Number of terminal nodes: 17
## Residual mean deviance: 2.878 = 1102 / 383
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.98700 -1.23000 -0.06125 0.00000 1.22500 4.75400
57 / 71

Supervised learning example: the tree

plot(tree_carseats)
text(tree_carseats, pretty = 0)

58 / 71

Supervised learning example: the tree

set.seed(101)
train <- sample(1:nrow(carseats), 320)
tree_carseats <- tree(Sales ~ ., carseats, subset = train)
plot(tree_carseats)
text(tree_carseats, pretty = 0)

59 / 71

Supervised learning example: the tree's error

tree_pred <- predict(tree_carseats, carseats[-train,])
mse <- mean((carseats[-train,]$Sales - tree_pred)^2)
mse
## [1] 5.040445
60 / 71

Supervised learning example: cross-validation

cv_carseats = cv.tree(tree_carseats)
plot(cv_carseats)

61 / 71

Supervised learning example: pruning

set.seed(123)
prune_carseats <- prune.tree(tree_carseats, best = 10)
plot(prune_carseats)
text(prune_carseats, pretty = 0)

62 / 71

Supervised learning example: pruning

tree_pred_prune = predict(prune_carseats, carseats[-train,])
mse_prune <- mean((carseats[-train,]$Sales - tree_pred_prune)^2)
mse
## [1] 5.040445
mse_prune
## [1] 5.905862
63 / 71

Supervised learning example: random forests

set.seed(101)
train = sample(1:nrow(carseats), 320)
rf_carseats = randomForest(Sales~., data = carseats, subset = train)
rf_carseats
##
## Call:
## randomForest(formula = Sales ~ ., data = carseats, subset = train)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 3
##
## Mean of squared residuals: 2.779889
## % Var explained: 64.79
mse
## [1] 5.040445
mse_prune
## [1] 5.905862
64 / 71

Random forests: variable importance

varImpPlot(rf_carseats)

65 / 71

Random forests: tuning feature bagging

oob_err = double(10)
test_err = double(10)
for (mtry in 1:10) {
set.seed(101)
fit = randomForest(Sales~., data = carseats, subset = train, mtry = mtry, ntree = 350)
oob_err[mtry] = mean(fit$mse)
pred = predict(fit, carseats[-train,])
test_err[mtry] = with(carseats[-train,], mean( (Sales - pred)^2 ))
}
66 / 71

Random forests: tuning feature bagging

matplot(1:mtry, cbind(test.err, oob.err), pch = 23, col = c("red", "blue"), type = "b", ylab = "Mean Squared Error")
legend("topright", legend = c("OOB", "Test"), pch = 23, col = c("red", "blue"))

67 / 71

Boosted trees

boost_carseats = gbm(Sales~., data = carseats[train,],
distribution = "gaussian", n.trees = 10000, shrinkage = 0.01, interaction.depth = 4)
summary(boost_carseats)

## var rel.inf
## Price Price 29.4259366
## ShelveLoc ShelveLoc 23.2557766
## CompPrice CompPrice 13.2196144
## Age Age 10.0723335
## Income Income 7.5246307
## Advertising Advertising 7.2502481
## Population Population 5.7258635
## Education Education 2.4757019
## US US 0.6202035
## Urban Urban 0.4296911
68 / 71

Boosted trees, the important variables

plot(boost_carseats, i = "Price")

plot(boost_carseats, i = "CompPrice")

69 / 71

Boosted trees, prediction error

n_trees = seq(from = 100, to = 10000, by = 100)
predmat = predict(boost_carseats, newdata = carseats[-train,], n.trees = n_trees)
boost_err = with(carseats[-train,], apply( (predmat - Sales)^2, 2, mean) )
plot(n_trees, boost_err, pch = 23, ylab = "Mean Squared Error", xlab = "# Trees", main = "Boosting Test Error")
abline(h = min(test_err), col = "red")

70 / 71

Econ-specific stuff

Often times we may want to predict using FEs

Aproblem with LASSO is that it may only select a few of them (recall they're just a vector of dummy variables)

How do we force LASSO to either select all or none?

Group LASSO

71 / 71

Roadmap

  1. Intro to machine learning
  2. Supervised methods, validation, and cross-validation
  3. Unsupervised methods
2 / 71
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow