Taking R and shiny to production

Gao Maribe, PhD
Data Scientist at dotmodus
From Prototyping to Production

Gao Maribe, PhD
Data Scientist at dotmodus
Building a simple app and deploying it on prem

Gao Maribe, PhD
Data Scientist at dotmodus
How to take over the world with R

Gao Maribe, PhD
Data Scientist at dotmodus
Problem statement

• Combine two data sets
 1. Attendance data
 2. Student Performance data
 3. Investigate impact using descriptives, t-test, F-test, correlation coefficient.

• My Problem:

 How will they use this workflow when I no longer work there?
Tools
Please sign in:

- gao
- Password

Sign in
Project structure

1. Building Shiny application
2. Testing
3. Containerizing using docker
4. Deploy using shinyproxy
data_collection_ui1 <- function(){
 fluidPage(
 # Download Data
 title = 'Download reports',
 sidebarLayout(
 sidebarPanel(
 # Input: Select a file ----
 fileInput("file1", "Upload tutorial attendance CSV File",
 multiple = FALSE,
 accept = c("text/csv",
 "text/comma-separated-values,text/plain",
 ".csv")),

 # Horizontal line ----
 tags$hr(),

 # Input: Checkbox if file has header ----
 checkboxInput("header", "Header", TRUE),

 # Input: Select separator ----
 radioButtons("sep", "Separator",
 choices = c(Comma = ",",
 Semicolon = ";",
 Tab = "\t"),
 selected = ","),

 # Input: Select quotes ----
 radioButtons("quote", "Quote",
 choices = c(None = "",
 "Double Quote" = """,
 "Single Quote" = ""'),
 selected = ""')
))
)
}
```r
# load Performance Data
mark <- read.csv("~/performance.csv")
if(ncol(mark)<=2){
  stop("Incorrect data")
}
# load Attendance data
att <- read.csv("~/attendance.csv")

FindMod <- function(x){
a1 <- att$Module.Code[!duplicated(att$Module.Code)]
if(is.atomic(a1))
  a1 <- unique(a1)
a2 <- mark$Module.Code[!duplicated(mark$Module.Code)]
a2 <- unique(a2)
if(any(a1%in%a2))
  return(paste(a1[(a1%in%a2)]))
}

# x <- att$Term
# i <- c(1:length(x))
# att$YEAR <- sapply(i, function(i) return(paste("201", substr(x[i],3,3), sep="")))

mcode <- agrep("Module_Code", names(mark), value=T, max=3, ignore.case = TRUE)
stdo <- agrep("STUDENT_NR", names(mark), value=T, max=1)
emplid <- agrep("EMPLID", names(mark), value=T, max=1)
stdno <- ifelse(length(emplid)>0, stdno, emplid)
facult <- agrep("FACULTY", names(mark), value=T, max=1, ignore.case = TRUE)
camp <- agrep("Campus", names(mark), value=T, ignore.case = TRUE, max = 1)
finalMarks <- agrep("FINAL.MARKS", names(mark), value=T, ignore.case = TRUE, max = 2)
apScore <- agrep("AP SCORE", names(mark), value=T, ignore.case = TRUE, max = 2)

names(mark)[names(mark)==mcode[1]] <- "Module.Code"
names(mark)[names(mark]==stdo[1]] <- "Attendee"
names(mark)[names(mark]==facult[1]] <- "FACULTY"
names(mark)[names(mark]==camp[1]] <- "Campus"
names(mark)[names(mark]==finalMarks[1]] <- "FINAL.MARK"
names(mark)[names(mark]==apScore[1]] <- "GR_12_ADSCORE"
```
Modules <- att %>% distinct(Module.Code) %>% .Module.Code %>% as.vector()
NOR_Modules <- att %>% filter(Tutor.Type=="NOR") %>% distinct(Module.Code) %>% .Module.Code %>% as.vector()
consol_data <- dplyr::right_join(mark, att, by = "UID", suffix = c("", "_new"))
after right joining, some modules will not exist in the marks data, so remove all these non joined values
consol_data <- consol_data[consol_data$Module.Code %in% Modules,]
Excluded<- (mark.trim![mark.trim$UID %in% att$Tutor.Type=="NOR",]$UID)]
GroupedData1<- consol_data %>% group_by(Attendee, Module.Code, Campus, FACULTY, GR_12_ADSCORE, FINAL_MARK, Tutor.Type) %>% summarise(freq=n())
GroupedData2<- Excluded %>% group_by(Attendee, Module.Code, Campus, FACULTY, GR_12_ADSCORE, FINAL_MARK) %>% summarise(Tutor.Type="NOR",freq=0)#
colnames(.GroupedData2)<- colnames(.GroupedData1)
GroupedData<- rbind(.GroupedData1,.GroupedData2)

#Take only the NOR Modules
GroupedData <- GroupedData %>% filter(Tutor.Type=="NOR")

count how many students in each module attended 0,1 or more tutorials
chk_mod <- GroupedData %>% group_by(Module.Code) %>% add_count(Module.Code)
chk_mod <- chk_mod %>% group_by(Module.Code,freq,n) %>% dplyr::summarise(zero_attendance=n())

Of those students extract only the one who attended zero tutorials and
compare with the number of students who attended more than 0. Add a column
of percentage number of students who didn't attend tutorials (missing column)
chk_mod <- chk_mod %>% filter(freq==0) %>% mutate(missing = 100*zero_attendance/n)

Remove from Groupdata, modules with %missing > 90% [more than 10% of students Modules in good_mods attended tutorials]
goodMods <- chk_mod %>% filter(missing < 90) %>% dplyr::select(Module.Code) %>% distinct(Module.Code) %>% .Module.Code
GroupedData <- GroupedData %>% filter(Module.Code %in% goodMods)
```r
load("Write_info.RData")
for(i in 1:nrow(our_info)) if(our_info$summary_decision1[i] == "") our_info$summary_decision1[i] = ""
our_info = our_info[-c(which(our_info$decision7 == ""))],

for(j in 1:nrow(our_info)){
  if(our_info$evid[j] != ""){
    if(our_info$decision[j] == ""){
      our_info$decision[j] = our_info$evid[j]
    }else{
      if(our_info$decision4[j] == ""){
        our_info$decision4[j] = our_info$evid[j]
      }
    }
  }else{
    our_info$decision21[j] = "Not enough data to make inference***"
  }
}
if(our_info$decision21[j] == "") {
  our_info$table1[j] = our_info$table2[j] = "Not enough data to make inference***"
}
input <- our_info
```

Testing
Containerization
We install Docker CE on our server.

There is a need for some dependencies. It is also better to install the latest version of Docker CE using Docker servers as a third-party repository.

```
sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ gnupg2 \ software-properties-common
curl -fsSL https://download.docker.com/linux/debian/gpg | sudo apt-key add - sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/debian \ $(lsb_release -cs) \ stable"

sudo apt-get install docker-ce
```

Test to see if it works

```
docker run hello-world
```
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:fc6a51919cfe2e6763f62b6d9e8815acbf7cd2e476ea353743570610737b752
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/
1. To ensure shinyproxy can hook docker instances we Modify the Docker file `/lib/systemd/systemd/system/docker.service` and restart Docker.

```
sudo nano /lib/systemd/system/docker.service

ExecStart=/usr/bin/dockerd -H fd:// -H tcp://127.0.0.1:2375
```

```
sudo systemctl daemon-reload
sudo systemctl restart docker
```

2. Pull our `knitr_report` project from github and build an image.

```
git clone https://github.com/atwgao/knitr_report
```

Navigate to where you placed the Dockerfile and run the following.

```
sudo docker build -t atwgao/knitr_report.
```

3. Push image to dockerhub

```
docker images

docker tag bb38******** atwgao/knitr_report:latest
```
Step 1/14: FROM r-base:3.5.0
--- 196055892827
Step 2/24: RUN apt-get update & apt-get install -y sudo gdebi-core pandoc pandoc-citeproc libcurl4-gnutls-dev liblibxml2-dev
--- Using cache
--- 8af034f53d8d
--- Using cache
--- 4d080560aebe
Step 4/24: RUN R -e "install.packages(c('shiny', 'shinydashboard', 'ppcorn', 'dplyr', 'rmarkdown', 'DT'), repos='http://cran.rstudio.com/')"
--- Using cache
--- 2f2847e27c31a
Step 5/24: RUN R -e "install.packages(c('htmlwidgets', 'httpuv'), dependencies = TRUE)"
--- Using cache
--- 70b81b0ecc6b
Step 6/24: RUN R -e "install.packages(c('shinyalert', 'Hmisc', 'plotly', 'kableExtra', 'shinyjs'), dependencies = TRUE)"
--- Using cache
--- 9deda9e0c966
Step 7/24: RUN apt-get install -y libxml2-dev
--- Using cache
--- c6d46b8b2094
Step 8/24: RUN R -e "install.packages('kableExtra', repos='http://cran.rstudio.com/')"
--- Using cache
--- 453ff5b6e62c
Step 9/24: RUN R -e "webshot::install_phantomjs0()"
--- Using cache
--- bd773094c873
Step 10/24: RUN mkdir /root/knitr_report
--- Using cache
--- 2c3eb374813e
--- Using cache
--- 2d5fa1a2f984
Step 12/14: COPY kprofile.site /usr/lib/R/etc/
--- Using cache
--- 7f5a87e47485
Step 13/24: EXPOSE 3838
--- Running in d54d13d96f8a
Removing intermediate container d54d13d96f8a
--- 92219fddf326
Step 14/14: CMD ["R", "-e", "shiny::runApp('/root/knitr_report')"]
--- Running in cc2c84e9b9b6
Removing intermediate container cc2c84e9b9b6
--- baba1883c3dd
Successfully built baba1883c3dd
Successfully tagged atwgoa/knitr_report:latest
1. Install Java

```bash
echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | sudo tee /etc/apt/sources.list.d/webupd8team-java.list
echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | sudo tee -a /etc/apt/sources.list.d/webupd8team-java.list
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886
sudo apt-get install oracle-java8-installer
```

Check if it works:

```bash
java -version
```

2. Install shinyproxy which will be used to spin the containers:

```bash
wget https://www.shinyproxy.io/download/shinyproxy_2.2.3_amd64.deb
```

Inside the shinyproxy folder ensure there is a pom.xml file. From that directory. From this directory install shinyproxy (you may need to install maven)

```bash
sudo apt install maven
mvn -U clean install
```
Once shinyproxy is installed you can navigate to the target folder inside the shinyproxy folder and open the **application.yml** configuration file

```yaml
proxy:
  title: Reporting dashboards
  logo-url: https://www.__________________________________
  landing-page: /
  heartbeat-rate: 10000
  heartbeat-timeout: 60000
  port: 8080
  authentication: simple
  admin-groups: tlcs

# Example: 'simple' authentication configuration
users:
  - name: gao
    password: statement
    groups: tlcs
  - name: providance
    password: password
    groups: tlcs

# Example: 'ldap' authentication configuration
ldap:
  url: ldap://ldap.forumsys.com:389/dc=example,dc=com
  user-dn-pattern: uid={0}
  group-search-base:
  group-search-filter: (uniqueMember={0})
  manager-dn: cn=read-only-admin,dc=example,dc=com
  manager-password: password

# Docker configuration

docker:
  cert-path: /home/none
  url: http://localhost:2375
  port-range-start: 20000

specs:
  - id: 01_asis
    display-name: ASIS
    description: This application generates A_STEP impact reports
    container-image: atwgao/knitr_report:latest
    access-groups: [tlcs]

spring:
  servlet:
    multipart:
      max-file-size: 500MB
      max-request-size: 500MB

logging:
  file: shinyproxy.log
```
Navigate to ~/shinyproxy/target and run:

```
sudo nohup java -jar shinyproxy-2.2.3.jar
```

For debugging purposes it’s advisable to run without `nohup`