Last updated: 2022-11-21

Checks: 7 0

Knit directory: gsmash/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220606) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 03048ee. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/poisson_mean_simulation/

Untracked files:
    Untracked:  figure/
    Untracked:  output/poisson_mean_simulation/
    Untracked:  output/poisson_smooth_simulation/

Unstaged changes:
    Modified:   analysis/normal_mean_penalty_glm_simplified.Rmd
    Modified:   code/poisson_mean/simulation_summary.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/overdispersed_splitting_nb.Rmd) and HTML (docs/overdispersed_splitting_nb.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 03048ee DongyueXie 2022-11-21 wflow_publish("analysis/overdispersed_splitting_nb.Rmd")

Introduction

We simulate mean parameter \(\lambda\) from \(\pi_0\delta_0 + \pi_1Exp(0.1)\).

Then generate data using a NB distribution \(NB(r,p)\). Then \(r(1-p)/p = \lambda\) so \(p = r/(r+\lambda)\). The variance is \(r(1-p)/p^2 = \lambda + \lambda^2/r\).

What’s the corresponding \(\sigma^2\) in \(Poisson(\exp(\mu+\sigma^2))\)?

Since \(\exp(\mu+\sigma2/2)=\lambda\), we have \(\mu = \log\lambda - \sigma^2/2\). Then by matching the variance of NB and the Poisson model, we solve \((\exp(\sigma^2)-1)\exp(2\mu+\sigma^2) = \lambda^2/r\) and we have \(\sigma^2 = \log(1+1/r)\). The smaller the \(r\), the larger oversidpersion.

library(vebpm)

r = 10

first run

set.seed(12345)
n = 3000
lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
r = 10
y = rnbinom(n,r,mu  = lambda)
sigma2 = log(1+1/r)
sigma2
[1] 0.09531018

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7394.922
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.09531018

$g_b
$pi
[1] 0.8402475 0.1597525

$mean
[1] -2.315816 -2.315816

$scale
[1] 0.000000 4.057725

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

second run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7463.391
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.09531018

$g_b
$pi
[1] 0.8344718 0.1655282

$mean
[1] -2.403966 -2.403966

$scale
[1] 0.000000 4.176129

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

third run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7394.452
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.09531018

$g_b
$pi
[1] 0.8412745 0.1587255

$mean
[1] -2.332336 -2.332336

$scale
[1] 0.000000 4.137975

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

r = 5

first run

set.seed(12345)
n = 3000
lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
r = 5
y = rnbinom(n,r,mu  = lambda)
sigma2 = log(1+1/r)
sigma2
[1] 0.1823216

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7338.985
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.1823216

$g_b
$pi
[1] 0.8542314 0.1457686

$mean
[1] -1.950497 -1.950497

$scale
[1] 0.000000 3.709187

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

second run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7372.572
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.1823216

$g_b
$pi
[1] 0.8516417 0.1483583

$mean
[1] -1.957995 -1.957995

$scale
[1] 0.000000 3.720176

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

third run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))

y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7357.373
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.1823216

$g_b
$pi
[1] 0.8561683 0.1438317

$mean
[1] -1.888776 -1.888776

$scale
[1] 0.000000 3.652401

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

r = 50

first run

set.seed(12345)
n = 3000
lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
r = 50
y = rnbinom(n,r,mu  = lambda)
sigma2 = log(1+1/r)
sigma2
[1] 0.01980263

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
Warning in pois_mean_split2(y, sigma2 = sigma2, est_sigma2 = FALSE, mu_pm_init =
log(y + : An iteration decreases ELBO. This is likely due to numerical issues.
fit$elbo
[1] -11559.26
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.01980263

$g_b
$pi
[1] 0.0004275021 0.9995724979

$mean
[1] -1.222233 -1.222233

$scale
[1] 0.0000000 0.6113245

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

second run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))

y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
Warning in pois_mean_split2(y, sigma2 = sigma2, est_sigma2 = FALSE, mu_pm_init =
log(y + : An iteration decreases ELBO. This is likely due to numerical issues.
fit$elbo
[1] -8852.339
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.01980263

$g_b
$pi
[1] 0.6725263 0.3274737

$mean
[1] -1.216211 -1.216211

$scale
[1] 0.0000000 0.8433485

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

third run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))

y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
fit$elbo
[1] -7723.969
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.01980263

$g_b
$pi
[1] 0.831282 0.168718

$mean
[1] -2.427278 -2.427278

$scale
[1] 0.000000 4.317392

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

r = 500

first run

set.seed(12345)
n = 3000
lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))
r = 500
y = rnbinom(n,r,mu  = lambda)
sigma2 = log(1+1/r)
sigma2
[1] 0.001998003

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
Warning in pois_mean_split2(y, sigma2 = sigma2, est_sigma2 = FALSE, mu_pm_init =
log(y + : An iteration decreases ELBO. This is likely due to numerical issues.
fit$elbo
[1] -14715.5
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.001998003

$g_b
$pi
[1] 1.234136e-11 1.000000e+00

$mean
[1] -0.694044 -0.694044

$scale
[1] 0.0000000 0.4826454

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

second run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))

y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
Warning in pois_mean_split2(y, sigma2 = sigma2, est_sigma2 = FALSE, mu_pm_init =
log(y + : An iteration decreases ELBO. This is likely due to numerical issues.
fit$elbo
[1] -14951.34
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.001998003

$g_b
$pi
[1] 3.637649e-08 1.000000e+00

$mean
[1] -0.3579676 -0.3579676

$scale
[1] 0.0000000 0.4422295

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

third run

lambda = c(rep(0,n*0.8),rexp(n*0.2,0.1))

y = rnbinom(n,r,mu  = lambda)

fix \(\sigma2\)

fit = pois_mean_split2(y,sigma2=sigma2,est_sigma2 = FALSE,mu_pm_init = log(y+1))
Warning in pois_mean_split2(y, sigma2 = sigma2, est_sigma2 = FALSE, mu_pm_init =
log(y + : An iteration decreases ELBO. This is likely due to numerical issues.
fit$elbo
[1] -14954.5
plot(lambda,col='grey80')
lines(fit$posterior$mean)

fit$fitted_g
$sigma2
[1] 0.001998003

$g_b
$pi
[1] 7.026071e-08 9.999999e-01

$mean
[1] -0.2497244 -0.2497244

$scale
[1] 0.0000000 0.4171243

attr(,"class")
[1] "laplacemix"
attr(,"row.names")
[1] 1 2

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
 [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
 [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
[10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] vebpm_0.2.6     workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.9         horseshoe_0.2.0    invgamma_1.1       lattice_0.20-45   
 [5] nleqslv_3.3.3      getPass_0.2-2      ps_1.7.1           assertthat_0.2.1  
 [9] rprojroot_2.0.3    digest_0.6.29      utf8_1.2.2         truncnorm_1.0-8   
[13] R6_2.5.1           rootSolve_1.8.2.3  evaluate_0.17      highr_0.9         
[17] httr_1.4.4         ggplot2_3.3.6      pillar_1.8.1       rlang_1.0.6       
[21] rstudioapi_0.14    ebnm_1.0-9         irlba_2.3.5.1      nloptr_2.0.3      
[25] whisker_0.4        callr_3.7.2        jquerylib_0.1.4    Matrix_1.5-1      
[29] rmarkdown_2.17     splines_4.2.1      stringr_1.4.1      munsell_0.5.0     
[33] mixsqp_0.3-43      compiler_4.2.1     httpuv_1.6.6       xfun_0.33         
[37] pkgconfig_2.0.3    SQUAREM_2021.1     htmltools_0.5.3    tidyselect_1.2.0  
[41] tibble_3.1.8       matrixStats_0.62.0 fansi_1.0.3        dplyr_1.0.10      
[45] later_1.3.0        grid_4.2.1         jsonlite_1.8.2     gtable_0.3.1      
[49] lifecycle_1.0.3    DBI_1.1.3          git2r_0.30.1       magrittr_2.0.3    
[53] scales_1.2.1       ebpm_0.0.1.3       cli_3.4.1          stringi_1.7.8     
[57] cachem_1.0.6       fs_1.5.2           promises_1.2.0.1   bslib_0.4.0       
[61] generics_0.1.3     vctrs_0.4.2        trust_0.1-8        tools_4.2.1       
[65] glue_1.6.2         parallel_4.2.1     processx_3.7.0     fastmap_1.1.0     
[69] yaml_2.3.5         colorspace_2.0-3   ashr_2.2-54        deconvolveR_1.2-1 
[73] knitr_1.40         sass_0.4.2