Last updated: 2020-03-11
Checks: 7 0
Knit directory: misc/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191122)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/gsea.Rmd
Untracked: analysis/methylation.Rmd
Untracked: analysis/scdeCalibration.Rmd
Untracked: analysis/susie.Rmd
Untracked: code/sccytokines.R
Untracked: code/scdeCalibration.R
Untracked: data/bart/
Untracked: data/cytokine/DE_controls_output_filter10.RData
Untracked: data/cytokine/DE_controls_output_filter10_addlimma.RData
Untracked: data/cytokine/README
Untracked: data/cytokine/test.RData
Untracked: data/cytokine_normalized.RData
Untracked: data/deconv/
Untracked: data/scde/
Unstaged changes:
Modified: analysis/deconvolution.Rmd
Modified: analysis/index.Rmd
Deleted: data/mout_high.RData
Deleted: data/scCDT.RData
Deleted: data/sva_sva_high.RData
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6b5f6c0 | DongyueXie | 2020-03-11 | wflow_publish(“analysis/binomialthinning.Rmd”) |
html | ab29772 | DongyueXie | 2020-03-11 | Build site. |
Rmd | 9e60ba9 | DongyueXie | 2020-03-11 | wflow_publish(“analysis/binomialthinning.Rmd”) |
html | 1aaef31 | DongyueXie | 2020-03-04 | Build site. |
Rmd | f55aff6 | DongyueXie | 2020-03-04 | wflow_publish(“analysis/binomialthinning.Rmd”) |
html | 74d8e40 | DongyueXie | 2020-03-04 | Build site. |
Rmd | 7cb2741 | DongyueXie | 2020-03-04 | wflow_publish(“analysis/binomialthinning.Rmd”) |
Investigate why effects with larger se are bigger.
Assume we have \(n\) samples and a fraction \(p\) of them belong to group 1 and the rest belong to group 2. So \(x = (1,1,1,...,1,0,0,0,...,0)^T\in R^n\) and \(\sum_ix_i=np\). Under this setting, in simple linear regression \(y = a+\beta x + \epsilon\), \(\epsilon\sim N(0,\sigma^2)\), the variance of \(\hat\beta\) is \(\hat s^2 = \frac{n\sigma^2}{n\sum_ix_i^2-(\sum_ix_i)^2}=\frac{\sigma^2}{np-np^2}\). For fixed \(n\) and \(p\), if \(\hat s\) is large, then this means \(\hat\sigma^2\) is large hence \(\sigma^2\) is large.
We now need to figure out the relationship between \(\beta\) and \(\sigma^2\).
Let’s assume we have RNA-Seq count data \(z_i\sim Poisson(\lambda)\) for \(i=1,2,...,n\). In binomial thinning, \(\beta\) is the log2 fold change between groups. Now assume \(\beta>0\), according to Gerard and Stephens(2017), the new(thinned) data vector is \(w_i\sim Poisson(\mu_i)\), where \(\mu_i=2^{-\beta(1-x_i)}\lambda\). The response \(y\) in the simple linear regression is the log transformation of \(w\), \(y_i=\log(w_i)\), \(i=1,2,...n\).
The Taylor series expansion of \(\log w_i\) around \(\mu_i\) is \(\log(w_i)\approx \log(\mu_i)+\frac{w_i-\mu_i}{\mu_i}\). So the mean of \(\log(w_i)\) is \(\log(\mu_i) = \lambda - \beta(1-x_i)\) and variance \(\frac{1}{\mu_i} = \frac{1}{2^{-\beta(1-x_i)}\lambda}\). So if \(\beta\) is large, then \(Var(\log(w_i))\) is large if \(x_i=0\). This explains the why effects with larger se are bigger.
For non-null genes \(j\in Non.null.gene.set\), choose \(p_{1j}+p_{2j}=1\) and \(\frac{p_{1j}}{p_{2j}}=\exp(\beta_j)\), and thin the counts \(w_{ij}\sim Binomial(z_{ij},p_{\{group.of.i\}j})\), where \(z_{ij}\) is the observed counts for \(i\)th sample, and group of \(i\) is either 1 or 2.
For null genes \(j\in Null.gene.set\), \(w_{ij}\sim Binomial(z_{ij},0.5)\)
#'@param Z count matrix, sample by features
#'@param x 1 for group 1, 0 for group 2
#'@param beta effect of fearures, 0 for null.
#'@return W, thinned matrix
bi_thin = function(Z,x,beta){
n=nrow(Z)
p=ncol(Z)
# group index
g1 = which(x==1)
g2 = which(x==0)
p2 = 1/(1+exp(beta))
p1 = 1-p2
P = matrix(nrow = n,ncol = p)
P[g1,] = t(replicate(length(g1),p1))
P[g2,] = t(replicate(length(g2),p2))
W = matrix(rbinom(n*p,Z,P),nrow=n)
W
}
quiet <- function(x) {
sink(tempfile())
on.exit(sink())
invisible(force(x))
}
Normal signal, sd=1.5. Run 50 reps.
library(sva)
load('data/scde/scCDT.RData')
Z = t(as.matrix(CDT))
rm.idx = which(colSums(Z!=0)<30)
Z = Z[,-rm.idx]
n = nrow(Z)
p = ncol(Z)
set.seed(12345)
nreps = 30
loglik=c()
roc_result = c()
for(rep in 1:nreps){
x = rbinom(n,1,0.5)
beta = rnorm(p,0,1.5)
beta[sample(1:p,p*0.9)]=0
W = bi_thin(Z,x,beta)
Wn = log(W+0.5)
X = model.matrix(~x)
sva_sva = quiet(sva(t(Wn),mod = X, mod0 = X[, -2, drop = FALSE], n.sv = 3))
X.sva = cbind(X, sva_sva$sv)
lmout = limma::lmFit(object = t(Wn), design = X.sva)
eout = limma::eBayes(lmout)
svaout <- list()
svaout$betahat <- lmout$coefficients[, 2]
svaout$sebetahat <- lmout$stdev.unscaled[, 2] * sqrt(eout$s2.post)
svaout$pvalues <- eout$p.value[, 2]
sva_limma_ash0 = ashr::ash(svaout$betahat,svaout$sebetahat,alpha=0)
sva_limma_ash1 = ashr::ash(svaout$betahat,svaout$sebetahat,alpha=1)
loglik = rbind(loglik,c(sva_limma_ash0$loglik,sva_limma_ash1$loglik))
#knitr::kable(cbind(sva_limma_ash0$loglik,sva_limma_ash1$loglik),
# col.names = c('alpha=0','alpha=1'), digits = 2,caption = 'log-lik')
which_null = ifelse(beta==0,1,0)
################
roc_out <- list(
#pROC::roc(response = which_null, predictor = c(mout$result$lfsr)),
#pROC::roc(response = which_null, predictor = c(mout1$result$lfsr)),
pROC::roc(response = which_null, predictor = c(svaout$pvalues)),
pROC::roc(response = which_null, predictor = c(sva_limma_ash0$result$lfsr)),
pROC::roc(response = which_null, predictor = c(sva_limma_ash1$result$lfsr)))
#name_vec <- c("MOUTHWASH0","MOUTHWASH1","SVA-limma","SVA-limma-ash0","SVA-limma-ash1")
auc_vec <- sapply(roc_out, FUN = function(x) { x$auc })
roc_result = rbind(roc_result,auc_vec)
#knitr::kable(sort(auc_vec, decreasing = TRUE), col.names = "AUC", digits = 3)
}
name_vec <- c("sva-limma","sva-limma-ash0","sva-limma-ash1")
colnames(roc_result) <- name_vec
colnames(loglik) = c('alpha=0','alpha=1')
boxplot(loglik,ylab = 'loglik')
Version | Author | Date |
---|---|---|
ab29772 | DongyueXie | 2020-03-11 |
boxplot(roc_result,ylab='AUC')
Version | Author | Date |
---|---|---|
ab29772 | DongyueXie | 2020-03-11 |
library(sva)
load('data/scde/scCDT.RData')
Z = t(as.matrix(CDT))
rm.idx = which(colSums(Z!=0)<30)
Z = Z[,-rm.idx]
n = nrow(Z)
p = ncol(Z)
set.seed(12345)
nreps = 30
loglik=c()
roc_result = c()
beta = rnorm(p,0,1.5)
beta[sample(1:p,p*0.9)]=0
for(rep in 1:nreps){
x = rbinom(n,1,0.5)
W = bi_thin(Z,x,beta)
Wn = log(W+0.5)
X = model.matrix(~x)
sva_sva = quiet(sva(t(Wn),mod = X, mod0 = X[, -2, drop = FALSE], n.sv = 3))
X.sva = cbind(X, sva_sva$sv)
lmout = limma::lmFit(object = t(Wn), design = X.sva)
eout = limma::eBayes(lmout)
svaout <- list()
svaout$betahat <- lmout$coefficients[, 2]
svaout$sebetahat <- lmout$stdev.unscaled[, 2] * sqrt(eout$s2.post)
svaout$pvalues <- eout$p.value[, 2]
sva_limma_ash0 = ashr::ash(svaout$betahat,svaout$sebetahat,alpha=0)
sva_limma_ash1 = ashr::ash(svaout$betahat,svaout$sebetahat,alpha=1)
loglik = rbind(loglik,c(sva_limma_ash0$loglik,sva_limma_ash1$loglik))
#knitr::kable(cbind(sva_limma_ash0$loglik,sva_limma_ash1$loglik),
# col.names = c('alpha=0','alpha=1'), digits = 2,caption = 'log-lik')
which_null = ifelse(beta==0,1,0)
################
roc_out <- list(
#pROC::roc(response = which_null, predictor = c(mout$result$lfsr)),
#pROC::roc(response = which_null, predictor = c(mout1$result$lfsr)),
pROC::roc(response = which_null, predictor = c(svaout$pvalues)),
pROC::roc(response = which_null, predictor = c(sva_limma_ash0$result$lfsr)),
pROC::roc(response = which_null, predictor = c(sva_limma_ash1$result$lfsr)))
#name_vec <- c("MOUTHWASH0","MOUTHWASH1","SVA-limma","SVA-limma-ash0","SVA-limma-ash1")
auc_vec <- sapply(roc_out, FUN = function(x) { x$auc })
roc_result = rbind(roc_result,auc_vec)
#knitr::kable(sort(auc_vec, decreasing = TRUE), col.names = "AUC", digits = 3)
}
name_vec <- c("sva-limma","sva-limma-ash0","sva-limma-ash1")
colnames(roc_result) <- name_vec
colnames(loglik) = c('alpha=0','alpha=1')
boxplot(loglik,ylab = 'loglik')
boxplot(roc_result,ylab='AUC')
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] sva_3.30.0 BiocParallel_1.16.0 genefilter_1.64.0
[4] mgcv_1.8-25 nlme_3.1-137
loaded via a namespace (and not attached):
[1] Biobase_2.42.0 bit64_0.9-7 splines_3.5.1
[4] foreach_1.4.4 assertthat_0.2.0 mixsqp_0.2-2
[7] stats4_3.5.1 blob_1.1.1 yaml_2.2.0
[10] pillar_1.3.1 RSQLite_2.1.1 backports_1.1.2
[13] lattice_0.20-38 glue_1.3.0 limma_3.38.2
[16] pROC_1.13.0 digest_0.6.18 promises_1.0.1
[19] colorspace_1.3-2 htmltools_0.3.6 httpuv_1.4.5
[22] Matrix_1.2-15 plyr_1.8.4 XML_3.98-1.16
[25] pkgconfig_2.0.2 purrr_0.3.2 xtable_1.8-3
[28] scales_1.0.0 whisker_0.3-2 later_0.7.5
[31] git2r_0.26.1 tibble_2.1.1 annotate_1.60.0
[34] IRanges_2.16.0 ggplot2_3.1.1 ashr_2.2-39
[37] BiocGenerics_0.28.0 lazyeval_0.2.1 survival_2.43-1
[40] magrittr_1.5 crayon_1.3.4 memoise_1.1.0
[43] evaluate_0.12 fs_1.3.1 doParallel_1.0.14
[46] MASS_7.3-51.1 truncnorm_1.0-8 tools_3.5.1
[49] matrixStats_0.54.0 stringr_1.3.1 S4Vectors_0.20.1
[52] munsell_0.5.0 AnnotationDbi_1.44.0 compiler_3.5.1
[55] rlang_0.4.0 grid_3.5.1 RCurl_1.95-4.11
[58] iterators_1.0.10 bitops_1.0-6 rmarkdown_1.10
[61] gtable_0.2.0 codetools_0.2-15 DBI_1.0.0
[64] R6_2.3.0 knitr_1.20 dplyr_0.8.0.1
[67] bit_1.1-14 workflowr_1.6.0 rprojroot_1.3-2
[70] stringi_1.2.4 pscl_1.5.2 parallel_3.5.1
[73] SQUAREM_2017.10-1 Rcpp_1.0.2 tidyselect_0.2.5