Last updated: 2024-03-21

Checks: 7 0

Knit directory: mi_spatialomics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230612) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e6213a5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/deprecated/.DS_Store
    Ignored:    analysis/molecular_cartography_python/.DS_Store
    Ignored:    analysis/seqIF_python/.DS_Store
    Ignored:    analysis/seqIF_python/pixie/.DS_Store
    Ignored:    analysis/seqIF_python/pixie/cell_clustering/
    Ignored:    annotations/.DS_Store
    Ignored:    annotations/SeqIF/.DS_Store
    Ignored:    annotations/molkart/.DS_Store
    Ignored:    annotations/molkart/Figure1_regions/.DS_Store
    Ignored:    annotations/molkart/Supplementary_Figure4_regions/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/140623.calcagno_et_al.seurat_object.rds
    Ignored:    data/Calcagno2022_int_logNorm_annot.h5Seurat
    Ignored:    data/IC_03_IF_CCR2_CD68 cell numbers.xlsx
    Ignored:    data/Traditional_IF_absolute_cell_counts.csv
    Ignored:    data/Traditional_IF_relative_cell_counts.csv
    Ignored:    data/pixie.cell_table_size_normalized_cell_labels.csv
    Ignored:    data/results_cts_100.sqm
    Ignored:    data/seqIF_regions_annotations/
    Ignored:    data/seurat/
    Ignored:    output/.DS_Store
    Ignored:    output/mol_cart.harmony_object.h5Seurat
    Ignored:    output/molkart/
    Ignored:    output/proteomics/
    Ignored:    output/results_cts.lowres.125.sqm
    Ignored:    output/seqIF/
    Ignored:    pipeline_configs/.DS_Store
    Ignored:    plots/
    Ignored:    references/.DS_Store
    Ignored:    renv/.DS_Store
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/deprecated/figures.supplementary_figureX.Rmd
    Untracked:  analysis/deprecated/figures.supplementary_figure_X.MistyR.Rmd

Unstaged changes:
    Deleted:    analysis/figures.supplementary_figureX.Rmd
    Deleted:    analysis/figures.supplementary_figure_X.MistyR.Rmd
    Deleted:    analysis/figures.supplementary_figure_X.proteomics_qc.Rmd
    Deleted:    figures/Figure_5.eps
    Deleted:    figures/Figure_5.pdf
    Deleted:    figures/Figure_5.png
    Deleted:    figures/Figure_5.svg
    Deleted:    figures/Supplementary_Figure_1_Molecular_Cartography_ROIs.png
    Deleted:    figures/Supplementary_figure_5.segmentation_metrics.poster.eps
    Modified:   figures/Supplementary_figure_X.proteomics.eps
    Modified:   figures/Supplementary_figure_X.proteomics.png
    Deleted:    results_cts.lowres.125.sqm

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/figures.Figure1.Rmd) and HTML (docs/figures.Figure1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 56559c7 FloWuenne 2024-03-21 Cleaned up repository.
Rmd a49803c FloWuenne 2024-02-29 Updated a number of figures.
Rmd b06dcd3 FloWuenne 2024-02-25 Updated Figure 1,4 and S4 and 5 code.
Rmd af64c40 FloWuenne 2024-01-30 Updated analysis for Figure 1 and 2.
Rmd 86e53f0 FloWuenne 2024-01-22 Finalized new Figure 1 plots.
Rmd 82f107f FloWuenne 2024-01-21 Updates to Molkart analysis.
html b267494 FloWuenne 2023-12-06 Build site.
Rmd 2dcd178 FloWuenne 2023-12-06 wflow_publish("*")
html 2dcd178 FloWuenne 2023-12-06 wflow_publish("*")
Rmd 5dee03d FloWuenne 2023-09-04 Latest code update.

Introduction

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.0
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(cowplot)

Attaching package: 'cowplot'

The following object is masked from 'package:lubridate':

    stamp
library(Seurat)
Loading required package: SeuratObject
Loading required package: sp
'SeuratObject' was built with package 'Matrix' 1.6.3 but the current
version is 1.6.5; it is recomended that you reinstall 'SeuratObject' as
the ABI for 'Matrix' may have changed

Attaching package: 'SeuratObject'

The following object is masked from 'package:base':

    intersect
library(SCpubr)


── SCpubr 2.0.0.9000 ───────────────────────────────────────────────────────────

ℹ Have a look at extensive tutorials in SCpubr's book.

✔ If you use SCpubr in your research, please cite it accordingly.

★ If the package is useful to you, consider leaving a Star in the GitHub repository.

! Keep track of the package updates on Twitter (@Enblacar) or in the Official NEWS website.

♥ Happy plotting!



── Package version ──

CRAN:           2.0.2
Installed: 2.0.0.9000

⚠ There is a new version available onCRAN!



── Required packages ──

✔ AnnotationDbi       1.64.1 | 1.58.0         ✔ assertthat           0.2.1 | 0.2.1          ✖ AUCell                                 
✔ circlize            0.4.15 | 0.4.16         ✔ cluster              2.1.6 | 2.1.6          ✖ clusterProfiler                        
✔ colorspace           2.1.0 | 2.1-0          ✔ decoupleR            2.8.0 | 2.2.2          ✔ dplyr                1.1.4 | 1.1.4     
✖ enrichplot                                  ✔ forcats              1.0.0 | 1.0.0          ✖ ggalluvial                             
✔ ggbeeswarm           0.7.2 | 0.7.2          ✖ ggdist                                      ✖ ggExtra                                
✖ ggnewscale                                  ✔ ggplot2              3.4.4 | 3.5.0          ✔ ggplotify            0.1.2 | 0.1.2     
✔ ggrastr              1.0.2 | 1.0.2          ✔ ggrepel              0.9.5 | 0.9.5          ✔ ggridges             0.5.5 | 0.5.6     
✔ ggsignif             0.6.4 | 0.6.4          ✔ labeling             0.4.3 | 0.4.3          ✖ liana                                  
✔ magrittr             2.0.3 | 2.0.3          ✔ MASS            7.3.60.0.1 | 7.3-60.0.1     ✔ Matrix               1.6.5 | 1.6-5     
✔ Nebulosa            1.12.0 | 1.6.0          ✔ patchwork            1.2.0 | 1.2.0          ✔ pbapply              1.7.2 | 1.7-2     
✔ plyr                 1.8.9 | 1.8.9          ✔ RColorBrewer         1.1.3 | 1.1-3          ✔ rlang                1.1.3 | 1.1.3     
✔ scales               1.3.0 | 1.3.0          ✔ scattermore            1.2 | 1.2            ✔ Seurat               5.0.1 | 5.0.3     
✔ SeuratObject         5.0.1 | 5.0.1          ✔ stringr              1.5.1 | 1.5.1          ✔ svglite              2.1.3 | 2.1.3     
✔ tibble               3.2.1 | 3.2.1          ✔ tidyr                1.3.0 | 1.3.1          ✖ UCell                                  
✔ viridis              0.6.4 | 0.6.5          ✔ withr                2.5.2 | 3.0.0     

ℹ Installed packages are denoted by a tick (✔) and missing packages by a cross (✖).
ℹ Installed packages that still require an update to correctly run SCpubr have an exclamation mark (!).
ℹ Packages version are displayed as: Installed | Available.



── Available functions ──

✔ do_AffinityAnalysisPlot | DEV     ✖ do_AlluvialPlot                   ✔ do_BarPlot                   
✔ do_BeeSwarmPlot                   ✔ do_BoxPlot                        ✖ do_CellularStatesPlot        
✔ do_ChordDiagramPlot               ✔ do_ColorPalette                   ✖ do_CopyNumberVariantPlot     
✔ do_CorrelationPlot                ✔ do_DiffusionMapPlot | DEV         ✔ do_DimPlot                   
✔ do_DotPlot                        ✖ do_EnrichmentHeatmap              ✔ do_ExpressionHeatmap         
✔ do_FeaturePlot                    ✖ do_FunctionalAnnotationPlot       ✖ do_GeyserPlot                
✖ do_GroupedGOTermPlot              ✔ do_GroupwiseDEPlot                ✖ do_LigandReceptorPlot | DEV  
✔ do_LoadingsPlot                   ✔ do_MetadataPlot | DEV             ✔ do_NebulosaPlot              
✔ do_PathwayActivityPlot            ✔ do_RidgePlot                      ✖ do_SCEnrichmentHeatmap | DEV 
✔ do_SCExpressionHeatmap | DEV      ✔ do_TermEnrichmentPlot             ✔ do_TFActivityPlot            
✔ do_ViolinPlot                     ✔ do_VolcanoPlot                    ✔ save_Plot | DEV              

ℹ Functions tied to development builds of SCpubr are marked by the (| DEV) tag.
ℹ You can install development builds of SCpubr by following the instructions in the Releases page.
ℹ Check the package requirements function-wise with: SCpubr::check_dependencies()



── Tips! ──

ℹ To adjust package messages to dark mode themes, use: options("SCpubr.darkmode" = TRUE)
ℹ To remove the white and black end from continuous palettes, use: options("SCpubr.ColorPaletteEnds" = FALSE)

✖ To suppress this startup message, use: suppressPackageStartupMessages(library(SCpubr))
✖ Alternatively, you can also set the following option: options("SCpubr.verbose" = FALSE)
  And then load the package normally (and faster) as: library(SCpubr)

────────────────────────────────────────────────────────────────────────────────
library(pals)
library(patchwork)

Attaching package: 'patchwork'

The following object is masked from 'package:cowplot':

    align_plots
library(ggbeeswarm)
library(viridis)
Loading required package: viridisLite

Attaching package: 'viridisLite'

The following objects are masked from 'package:pals':

    cividis, inferno, magma, plasma, turbo, viridis


Attaching package: 'viridis'

The following objects are masked from 'package:pals':

    cividis, inferno, magma, plasma, turbo, viridis
library(ggdark)

source("./code/functions.R")
here() starts at /Users/florian_wuennemann/1_Projects/MI_project/mi_spatialomics
## If the object has already been computed
seurat_object <-  readRDS(file = "./output/molkart/molkart.seurat_object.rds")
## How many cells did we recover per sample?
cells_per_sample <- seurat_object@meta.data %>%
  group_by(sample_ID) %>%
  tally() %>%
  ungroup()

mean(cells_per_sample$n)
[1] 8628.5

Umap plot

seurat_object@meta.data$anno_cell_type_lvl2 <- gsub("_"," ",seurat_object@meta.data$anno_cell_type_lvl2)
# 
# pal.bands(alphabet, alphabet2, cols25, glasbey, kelly, polychrome, 
#   stepped, tol, watlington, tableau20,
#   show.names=FALSE)

cell_types <- unique(seurat_object@meta.data$anno_cell_type_lvl2)
colors <- kelly(n=22)
## Replace white ish color as we can't see it well in plots

# Create a named vector for cell_types and colors to use in plots later

# Code from scanpy 
# https://github.com/scverse/scanpy/commit/58fae77cc15893503c0c34ce0295dd6f67af2bd7
vega10_scanpy <- c("#1f77b4","#ff7f0e","#2ca02c","#d62728","#9467bd","#8c564b","#e377c2","#7f7f7f","#bcbd22","#17becf")


# Use vega10 color palette for clusters
# named_colors <- c("Cardiac fibroblasts" = "#1f77b4",
#                   "Cardiomyocytes" = "#d62728",
#                   "Cardiomyocytes Nppa+" = "#ff7f0e",
#                   "Endocardial cells" = "#17becf",
#                   "Endothelial cells" = "#8c564b",
#                   "Lymphatic endothelial cells" = "lightgrey",
#                   "Lymphoid cells" = "#bcbd22",
#                   "Myeloid cells" = "#2ca02c",
#                   "Pericytes" = "#e377c2",
#                   "Smooth muscle cells" = "#9467bd"
#                   )

named_colors <- c("Cardiac fibroblasts" = "#1f77b4",
                  "Cardiomyocytes" = "#ff7697",
                  "Cardiomyocytes Nppa+" = "#ff9966",
                    "Endocardial cells" = "#17becf",
                    "Endothelial cells" = "#8c564b",
                  
                    "Lymphoid cells" = "#bcbd22",
                    "Myeloid cells" = "#2ca02c",
                    "Pericytes" = "#9467bd",
                    "Smooth muscle cells" = "#e377c2")

Figure 1C : UMAP plot of cell types

## Single total UMAP plot

library(scCustomize)
scCustomize v2.0.1
If you find the scCustomize useful please cite.
See 'samuel-marsh.github.io/scCustomize/articles/FAQ.html' for citation info.
## Set color palette
Idents(object = seurat_object) <- "anno_cell_type_lvl2"

umap_plot <- SCpubr::do_DimPlot(sample = seurat_object,
                                label = FALSE, label.box = TRUE,
                                group.by = "anno_cell_type_lvl2",
                                repel = TRUE, legend.position = "none", 
                                colors.use = named_colors, 
                                plot_cell_borders = TRUE,
                                plot_density_contour = FALSE, plot.axes = FALSE, raster.dpi = 300, shuffle = FALSE, pt.size = 0.4,
                                legend.icon.size = 5, legend.byrow = TRUE) +
  theme(legend.text = element_text(size = 18))

umap_plot

Version Author Date
2dcd178 FloWuenne 2023-12-06
# save_plot(umap_plot,
#           file = "./plots/Figure1.umap_plot.pdf",
#           base_height = 6)
# 
# 
# save_plot(umap_plot,
#           file = "./plots/Figure1.umap_plot.png",
#           base_height = 6)
## UMAP split by time
library(scCustomize)
## Set color palette
Idents(object = seurat_object) <- "anno_cell_type_lvl2"
seurat_object_ctrl <- subset(seurat_object, timepoint == "control")
seurat_object_4h <- subset(seurat_object, timepoint == "4h")
seurat_object_2d <- subset(seurat_object, timepoint == "2d")
seurat_object_4d <- subset(seurat_object, timepoint == "4d")

umap_plot_control <- SCpubr::do_DimPlot(sample = seurat_object_ctrl,
                                label = FALSE, label.box = FALSE,
                                group.by = "anno_cell_type_lvl2",
                                repel = TRUE, legend.position = "none", 
                                colors.use = named_colors, 
                                plot_cell_borders = TRUE,
                                plot_density_contour = FALSE, plot.axes = FALSE,
                                raster.dpi = 300, shuffle = FALSE, pt.size = 0.4,
                                legend.icon.size = 5)

umap_plot_4h <- SCpubr::do_DimPlot(sample = seurat_object_4h,
                                label = FALSE, label.box = FALSE,
                                group.by = "anno_cell_type_lvl2",
                                repel = TRUE, legend.position = "none", 
                                colors.use = named_colors, 
                                plot_cell_borders = TRUE,
                                plot_density_contour = FALSE, plot.axes = FALSE,
                                raster.dpi = 300, shuffle = FALSE, pt.size = 0.4,
                                legend.icon.size = 5)

umap_plot_2d <- SCpubr::do_DimPlot(sample = seurat_object_2d,
                                label = FALSE, label.box = FALSE,
                                group.by = "anno_cell_type_lvl2",
                                repel = TRUE, legend.position = "none", 
                                colors.use = named_colors, 
                                plot_cell_borders = TRUE,
                                plot_density_contour = FALSE, plot.axes = FALSE,
                                raster.dpi = 300, shuffle = FALSE, pt.size = 0.4,
                                legend.icon.size = 5)

umap_plot_4d <- SCpubr::do_DimPlot(sample = seurat_object_4d,
                                label = FALSE, label.box = FALSE,
                                group.by = "anno_cell_type_lvl2",
                                repel = TRUE, legend.position = "none", 
                                colors.use = named_colors, 
                                plot_cell_borders = TRUE,
                                plot_density_contour = FALSE, plot.axes = FALSE,
                                raster.dpi = 300, shuffle = FALSE, pt.size = 0.4,
                                legend.icon.size = 5)
full_plot <- umap_plot_control | umap_plot_4h | umap_plot_2d | umap_plot_4d

save_plot(full_plot,
          file = "./plots/Figure1.umap_plot.png",
          base_height = 4,
          base_asp = 4,
          dpi = 300)

save_plot(full_plot,
          file = "./plots/Figure1.umap_plot.pdf",
          base_height = 4,
          base_asp = 4,
          dpi = 300)

Figure 1F : Overview of spatial distribution of cell types within 1 sample

sample_highlight <- "sample_2d_r2_s1"
#sample_highlight <- "sample_control_r2_s1"

meta_sample <- subset(seurat_object@meta.data,sample_ID == sample_highlight)

full_overview <-  ggplot(meta_sample,aes(X_centroid,Y_centroid)) +
    geom_point(aes(color = anno_cell_type_lvl2),size = 0.6) +
    theme_classic() +
    dark_theme_void() +
    labs(x = "Spatial 1",
         y = "Spatial 2") +
    theme(axis.title = element_blank(),
          axis.ticks = element_blank(),
          axis.text = element_blank(),
          axis.line = element_blank(),
          legend.position = "none") +
    scale_color_manual(values = named_colors)
Inverted geom defaults of fill and color/colour.
To change them back, use invert_geom_defaults().
# Custom function to return an empty string for each label
blank_labels <- function(value) {
  return(rep("", length(value)))
}

cell_type_views <- ggplot(meta_sample,aes(X_centroid,Y_centroid)) +
  dark_theme_void() +
  geom_point(aes(color = anno_cell_type_lvl2),size = 0.4) +
  scale_color_manual(values = named_colors) +
  facet_wrap(~ anno_cell_type_lvl2,labeller = as_labeller(blank_labels)) +
  theme(strip.text = element_text(size = 18, color = "white"),
        legend.position = "none"
        )



full_plot <- (full_overview | cell_type_views) +   plot_layout(ncol = 2,widths = c(0.6, 1))

full_plot

Version Author Date
2dcd178 FloWuenne 2023-12-06
save_plot(full_plot,filename = here("./plots/molkart.Figure_1.spatial_distribution.pdf"),
          base_height = 4,
          base_asp = 2)
library(ggplot2)
library(dplyr)

# Assuming meta_sample is your data frame and named_colors is your color vector

# Get unique cell types
unique_cell_types <- sort(unique(meta_sample$anno_cell_type_lvl2))
max_x <- max(meta_sample$X_centroid)
max_y <- max(meta_sample$Y_centroid)

# Loop through each cell type and generate a plot
plots <- lapply(unique_cell_types, function(cell_type) {
  
  # Generate the plot
  ## Add a line of blank space on top of the plot
  p <- ggplot(meta_sample, aes(x = X_centroid, y = 
                                 Y_centroid)) +
    dark_theme_void() +
    # Set x and y limits
    xlim(0,max_x) +
    ylim(0,max_y) +
    # geom_point(data = subset(meta_sample,anno_cell_type_lvl2 != cell_type),
    #            size = 0.6, color = "white") +
    geom_point(data = subset(meta_sample,anno_cell_type_lvl2 == cell_type),
               size = 0.6, 
               aes(color = anno_cell_type_lvl2)) +
    scale_color_manual(values = named_colors) +
    theme(legend.position = "none")  # Hide legend or adjust as needed
    # Add a line of blank space on top of the plot
    p <- p + theme(plot.margin = margin(0.5,0,0,0, "cm"))
  
  # Return the plot
  return(p)
})

# Optionally, print plots or save them to files
# for (p in plots) print(p)
cell_type_views <- wrap_plots(plots, nrow = 3, ncol = 3)

save_plot(full_overview,
          filename = "./plots/molkart.Figure_1.spatial_distribution.full.pdf",
          base_height = 5,
          base_asp = 0.9)

save_plot(cell_type_views,
          filename = "./plots/molkart.Figure_1.spatial_distribution.cts.pdf",
          base_height = 5,
          base_asp = 1.3)

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.1.2

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] scCustomize_2.0.1  RColorBrewer_1.1-3 here_1.0.1         ggsci_3.0.0       
 [5] ggdark_0.2.1       viridis_0.6.4      viridisLite_0.4.2  ggbeeswarm_0.7.2  
 [9] patchwork_1.2.0    pals_1.8           SCpubr_2.0.0.9000  Seurat_5.0.1      
[13] SeuratObject_5.0.1 sp_2.1-2           cowplot_1.1.2      lubridate_1.9.3   
[17] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.2       
[21] readr_2.1.5        tidyr_1.3.0        tibble_3.2.1       ggplot2_3.4.4     
[25] tidyverse_2.0.0    workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] fs_1.6.3                    matrixStats_1.2.0          
  [3] spatstat.sparse_3.0-3       bitops_1.0-7               
  [5] httr_1.4.7                  tools_4.3.1                
  [7] sctransform_0.4.1           utf8_1.2.4                 
  [9] R6_2.5.1                    lazyeval_0.2.2             
 [11] uwot_0.1.16                 withr_2.5.2                
 [13] gridExtra_2.3               progressr_0.14.0           
 [15] textshaping_0.3.7           cli_3.6.2                  
 [17] Biobase_2.62.0              spatstat.explore_3.2-5     
 [19] fastDummies_1.7.3           labeling_0.4.3             
 [21] sass_0.4.8                  mvtnorm_1.2-4              
 [23] spatstat.data_3.0-3         ggridges_0.5.5             
 [25] pbapply_1.7-2               systemfonts_1.0.5          
 [27] yulab.utils_0.1.3           svglite_2.1.3              
 [29] dichromat_2.0-0.1           parallelly_1.36.0          
 [31] maps_3.4.2                  rstudioapi_0.15.0          
 [33] RSQLite_2.3.4               generics_0.1.3             
 [35] gridGraphics_0.5-1          shape_1.4.6                
 [37] ica_1.0-3                   spatstat.random_3.2-2      
 [39] Matrix_1.6-5                fansi_1.0.6                
 [41] S4Vectors_0.40.2            abind_1.4-5                
 [43] lifecycle_1.0.4             whisker_0.4.1              
 [45] yaml_2.3.8                  snakecase_0.11.1           
 [47] SummarizedExperiment_1.32.0 SparseArray_1.2.3          
 [49] Rtsne_0.17                  paletteer_1.5.0            
 [51] grid_4.3.1                  blob_1.2.4                 
 [53] promises_1.2.1              crayon_1.5.2               
 [55] miniUI_0.1.1.1              lattice_0.22-5             
 [57] KEGGREST_1.42.0             mapproj_1.2.11             
 [59] pillar_1.9.0                knitr_1.45                 
 [61] GenomicRanges_1.54.1        future.apply_1.11.1        
 [63] codetools_0.2-19            leiden_0.4.3.1             
 [65] glue_1.7.0                  getPass_0.2-4              
 [67] data.table_1.14.10          vctrs_0.6.5                
 [69] png_0.1-8                   spam_2.10-0                
 [71] gtable_0.3.4                rematch2_2.1.2             
 [73] assertthat_0.2.1            cachem_1.0.8               
 [75] ks_1.14.2                   xfun_0.41                  
 [77] S4Arrays_1.2.0              mime_0.12                  
 [79] pracma_2.4.4                survival_3.5-7             
 [81] SingleCellExperiment_1.24.0 ellipsis_0.3.2             
 [83] fitdistrplus_1.1-11         ROCR_1.0-11                
 [85] nlme_3.1-164                bit64_4.0.5                
 [87] RcppAnnoy_0.0.21            GenomeInfoDb_1.38.5        
 [89] rprojroot_2.0.4             bslib_0.6.1                
 [91] irlba_2.3.5.1               vipor_0.4.7                
 [93] KernSmooth_2.23-22          colorspace_2.1-0           
 [95] BiocGenerics_0.48.1         DBI_1.2.0                  
 [97] ggrastr_1.0.2               tidyselect_1.2.0           
 [99] processx_3.8.3              bit_4.0.5                  
[101] compiler_4.3.1              git2r_0.33.0               
[103] DelayedArray_0.28.0         plotly_4.10.4              
[105] scales_1.3.0                lmtest_0.9-40              
[107] callr_3.7.3                 digest_0.6.34              
[109] goftest_1.2-3               spatstat.utils_3.0-4       
[111] rmarkdown_2.25              XVector_0.42.0             
[113] decoupleR_2.8.0             htmltools_0.5.7            
[115] pkgconfig_2.0.3             MatrixGenerics_1.14.0      
[117] highr_0.10                  fastmap_1.1.1              
[119] rlang_1.1.3                 GlobalOptions_0.1.2        
[121] htmlwidgets_1.6.4           shiny_1.8.0                
[123] farver_2.1.1                jquerylib_0.1.4            
[125] zoo_1.8-12                  jsonlite_1.8.8             
[127] mclust_6.0.1                RCurl_1.98-1.14            
[129] magrittr_2.0.3              GenomeInfoDbData_1.2.11    
[131] ggplotify_0.1.2             dotCall64_1.1-1            
[133] munsell_0.5.0               Rcpp_1.0.12                
[135] reticulate_1.34.0           stringi_1.8.3              
[137] zlibbioc_1.48.0             MASS_7.3-60.0.1            
[139] plyr_1.8.9                  parallel_4.3.1             
[141] listenv_0.9.0               ggrepel_0.9.5              
[143] deldir_2.0-2                Biostrings_2.70.1          
[145] splines_4.3.1               tensor_1.5                 
[147] hms_1.1.3                   circlize_0.4.15            
[149] ps_1.7.6                    igraph_1.6.0               
[151] spatstat.geom_3.2-7         ggsignif_0.6.4             
[153] RcppHNSW_0.5.0              reshape2_1.4.4             
[155] stats4_4.3.1                evaluate_0.23              
[157] Nebulosa_1.12.0             renv_1.0.3                 
[159] BiocManager_1.30.22         ggprism_1.0.4              
[161] tzdb_0.4.0                  httpuv_1.6.14              
[163] RANN_2.6.1                  polyclip_1.10-6            
[165] future_1.33.1               scattermore_1.2            
[167] janitor_2.2.0               xtable_1.8-4               
[169] RSpectra_0.16-1             later_1.3.2                
[171] ragg_1.2.7                  memoise_2.0.1              
[173] beeswarm_0.4.0              AnnotationDbi_1.64.1       
[175] IRanges_2.36.0              cluster_2.1.6              
[177] timechange_0.2.0            globals_0.16.2