Last updated: 2023-06-20

Checks: 7 0

Knit directory: mi_spatialomics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230612) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 236130c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/140623.calcagno_et_al.seurat_object.rds
    Ignored:    references/
    Ignored:    renv/library/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/proteomics.bulk_de_analysis.Rmd) and HTML (docs/proteomics.bulk_de_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 236130c FloWuenne 2023-06-20 Updating proteomic analysis.
html 236130c FloWuenne 2023-06-20 Updating proteomic analysis.

library(data.table)
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.2     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.0
✔ ggplot2   3.4.2     ✔ tibble    3.2.1
✔ lubridate 1.9.2     ✔ tidyr     1.3.0
✔ purrr     1.0.1     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between()     masks data.table::between()
✖ dplyr::filter()      masks stats::filter()
✖ dplyr::first()       masks data.table::first()
✖ lubridate::hour()    masks data.table::hour()
✖ lubridate::isoweek() masks data.table::isoweek()
✖ dplyr::lag()         masks stats::lag()
✖ dplyr::last()        masks data.table::last()
✖ lubridate::mday()    masks data.table::mday()
✖ lubridate::minute()  masks data.table::minute()
✖ lubridate::month()   masks data.table::month()
✖ lubridate::quarter() masks data.table::quarter()
✖ lubridate::second()  masks data.table::second()
✖ purrr::transpose()   masks data.table::transpose()
✖ lubridate::wday()    masks data.table::wday()
✖ lubridate::week()    masks data.table::week()
✖ lubridate::yday()    masks data.table::yday()
✖ lubridate::year()    masks data.table::year()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(factoextra)
Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggsci)
library(cowplot)

Attaching package: 'cowplot'

The following object is masked from 'package:lubridate':

    stamp
library(here)
here() starts at /Users/florian_wuennemann/1_Projects/MI_project/mi_spatialomics
library(proDA)
library(limma)
library(dplyr)
library(tibble)
library(tidyr)
library(ggplot2)
library(pheatmap)
library(ggrepel)
library(eulerr)
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

    last_plot

The following object is masked from 'package:stats':

    filter

The following object is masked from 'package:graphics':

    layout
source(here("./code/params_R.R"))

Introduction

Load data

First, let’s load the filtered protein table.

## Import imputed protein table (our "bulk" data)
clean_proteins <- fread(file = "./output/proteomics.filtered_proteins.tsv")

Principal component analysis of proteomic samples

As a fist QC, we want to look at a principal component embedding of the samples in the first two principle components. Due to the strong perturbation effect of a myocardial infarction, we expect to find samples distributed by group (control, MI_remote, MI_IZ) in the first principle component.

clean_proteins_mat <- clean_proteins %>%
  select(-c(Protein_Group,Protein_Names,Protein_Ids,Genes))%>%
  drop_na()
  
## Calculate principal components and plot the firs two PCs
res.pca <- prcomp(t(log2(clean_proteins_mat)), scale = TRUE)
fviz_eig(res.pca)

Version Author Date
236130c FloWuenne 2023-06-20
pcs <- as.data.frame(res.pca$x)
pcs$sample <- colnames(clean_proteins_mat)
pcs <- pcs %>%
  mutate("group" = if_else(grepl("control",sample),"control",
                          if_else(grepl("MI_IZ",sample),"MI_IZ","MI_remote"))
         )

## Set order of groups
pcs$group <- factor(pcs$group,
                    levels = c("control","MI_remote","MI_IZ"))

## Plot PCs
ggplot(pcs,aes(PC1,PC2)) +
  geom_point(size = 5,pch = 21,color = "black", aes(fill = group)) +
  scale_fill_npg(labels = c("Control","MI_remote","MI_IZ")) +
  labs(color = "Group") +
  guides(fill=guide_legend(title="Treatment group"))

Version Author Date
236130c FloWuenne 2023-06-20

As we expected, samples separate in PC1, based on their group category, confirming that the strongest effect between samples is whether the heart experienced an infarct and the location of the endocardial cells relative to the infarct zone.

DEPs using proDA

## First we format the protein matrix for proDA
protein_ids <- clean_proteins$Protein_Ids
gene_mapping <- clean_proteins %>%
  select(Protein_Ids,Genes)

abundance_matrix <- clean_proteins %>%
  select(-c(Protein_Group,Protein_Ids,Protein_Names,Genes))
abundance_matrix <- log2(abundance_matrix)
rownames(abundance_matrix) <- protein_ids
barplot(colSums(is.na(abundance_matrix)),
        ylab = "# missing values",
        xlab = "Sample 1 to 36")

Version Author Date
236130c FloWuenne 2023-06-20
boxplot(abundance_matrix,
        ylab = "Intensity Distribution",
        xlab = "Sample 1 to 36")

Version Author Date
236130c FloWuenne 2023-06-20
normalized_abundance_matrix <- median_normalization(as.matrix(abundance_matrix))
da <- dist_approx(normalized_abundance_matrix)
plot_mat <- as.matrix(da$mean)
pheatmap::pheatmap(plot_mat)

Version Author Date
236130c FloWuenne 2023-06-20
design_matrix <- pcs %>%
  select(sample,group)

control_mi_cont <- c(0,0,0,1,1,1,1)
iz_remote_cont <- c(0,0,0,0,1,1,1,1)

## column numbers of different groups
control_idx <- c(1,2,3)
mi_iz_idx <- c(4,5,6,7)
mi_remote_idx <- c(8,9,10,11)

run proDA model fit

fit_full <- proDA(normalized_abundance_matrix,  design = ~ group, 
             col_data = design_matrix, reference_level = "control")

MI_IZ vs control

test_res_miiz <- test_diff(fit_full, "groupMI_IZ", pval_adjust_method = "fdr")
test_res_miiz$gene <- gene_mapping$Genes
test_res_miiz$protein_ids <- gene_mapping$Protein_Ids
test_res_miiz <- test_res_miiz %>% 
  arrange(adj_pval)

volc_test_miiz <- ggplot(data=test_res_miiz, aes(x=diff, y=-log10(pval), label = gene)) + 
    geom_point(aes(color = as.factor(n_obs))) + 
    theme_minimal() +
  labs(title = "MI_IZ vs control")
ggplotly(volc_test_miiz)

MI_remote vs control

test_res_miremote <- test_diff(fit_full, "groupMI_remote", pval_adjust_method = "fdr")
test_res_miremote$gene <- gene_mapping$Genes
test_res_miremote$protein_ids <- gene_mapping$Protein_Ids
test_res_miremote <- test_res_miremote %>% 
  arrange(adj_pval)

volc_test_miremote <- ggplot(data=test_res_miremote, aes(x=diff, y=-log10(pval), label = gene)) + 
    geom_point(aes(color = as.factor(n_obs))) + 
    theme_minimal() +
  labs(title = "Remote vs control")
ggplotly(volc_test_miremote)

IZ vs remote

normalized_abundance_matrix_sub <- normalized_abundance_matrix[,c(mi_iz_idx,mi_remote_idx)]
fit_iz_remote <- proDA(normalized_abundance_matrix_sub, design = as.factor(c("MI_IZ","MI_IZ","MI_IZ","MI_IZ","MI_remote","MI_remote","MI_remote","MI_remote")))
test_res_iz_remote <- test_diff(fit_iz_remote, MI_IZ - MI_remote, pval_adjust_method = "fdr")
test_res_iz_remote$gene <- gene_mapping$Genes
test_res_iz_remote$protein_ids <- gene_mapping$Protein_Ids
test_res_iz_remote <- test_res_iz_remote %>% 
  arrange(adj_pval)

volc_test_iz_remote <- ggplot(data=test_res_iz_remote, aes(x=diff, y=-log10(pval), label = gene)) + 
    geom_point(aes(color = as.factor(n_obs))) + 
    theme_minimal() +
  facet_wrap(~ n_obs) +
  labs(title = "MI_IZ vs remote")
ggplotly(volc_test_iz_remote)

Venn Diagram of DE genes

test_res_miiz_genes <- subset(test_res_miiz,adj_pval <= 0.1)$gene
test_res_miremote_genes <- subset(test_res_miremote,adj_pval <= 0.1)$gene
test_res_iz_remote_genes <- subset(test_res_iz_remote,adj_pval <= 0.1)$gene
venn_vec <- test_res_miremote$gene
venn_df <- data.frame("MI_control" = venn_vec %in% test_res_miiz_genes,
                      "remote_control" = venn_vec %in% test_res_miremote_genes,
                      "MI_IZ_MI_remote" = venn_vec %in% test_res_iz_remote_genes)
venn_df$gene <- venn_vec

## Plot the 3 group Venn diagram
plot(venn(venn_df[,1:3]))

Version Author Date
236130c FloWuenne 2023-06-20
## get proteins that are deferentially expressed between MI vs control and MI_IZ and MI_remote
MI_IZ_proteins <- subset(venn_df,MI_control == TRUE & remote_control == FALSE &  MI_IZ_MI_remote == TRUE)$gene
test_res_iz_remote_uniq <- subset(test_res_iz_remote,gene %in% MI_IZ_proteins)
write.table(test_res_miiz_genes,
            file = "./output/mi_iz_specific_proteins.tsv",
            col.names = FALSE,
            row.names = FALSE,
            quote = FALSE)

sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] plotly_4.10.2     eulerr_7.0.0      ggrepel_0.9.3     pheatmap_1.0.12  
 [5] limma_3.54.2      proDA_1.13.0      here_1.0.1        cowplot_1.1.1    
 [9] ggsci_3.0.0       factoextra_1.0.7  lubridate_1.9.2   forcats_1.0.0    
[13] stringr_1.5.0     dplyr_1.1.2       purrr_1.0.1       readr_2.1.4      
[17] tidyr_1.3.0       tibble_3.2.1      ggplot2_3.4.2     tidyverse_2.0.0  
[21] data.table_1.14.8 workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] bitops_1.0-7                matrixStats_1.0.0          
 [3] fs_1.6.2                    RColorBrewer_1.1-3         
 [5] httr_1.4.6                  rprojroot_2.0.3            
 [7] GenomeInfoDb_1.34.9         backports_1.4.1            
 [9] tools_4.2.3                 bslib_0.4.2                
[11] utf8_1.2.3                  R6_2.5.1                   
[13] lazyeval_0.2.2              BiocGenerics_0.44.0        
[15] colorspace_2.1-0            withr_2.5.0                
[17] tidyselect_1.2.0            processx_3.8.0             
[19] compiler_4.2.3              git2r_0.32.0               
[21] cli_3.6.1                   Biobase_2.58.0             
[23] DelayedArray_0.24.0         labeling_0.4.2             
[25] sass_0.4.6                  scales_1.2.1               
[27] callr_3.7.3                 digest_0.6.31              
[29] rmarkdown_2.21              extraDistr_1.9.1           
[31] XVector_0.38.0              pkgconfig_2.0.3            
[33] htmltools_0.5.5             MatrixGenerics_1.10.0      
[35] highr_0.10                  fastmap_1.1.1              
[37] htmlwidgets_1.6.2           rlang_1.1.1                
[39] rstudioapi_0.14             farver_2.1.1               
[41] jquerylib_0.1.4             generics_0.1.3             
[43] jsonlite_1.8.4              crosstalk_1.2.0            
[45] car_3.1-2                   RCurl_1.98-1.12            
[47] magrittr_2.0.3              GenomeInfoDbData_1.2.9     
[49] Matrix_1.5-3                Rcpp_1.0.10                
[51] munsell_0.5.0               S4Vectors_0.36.2           
[53] fansi_1.0.4                 abind_1.4-5                
[55] lifecycle_1.0.3             stringi_1.7.12             
[57] whisker_0.4.1               yaml_2.3.7                 
[59] carData_3.0-5               SummarizedExperiment_1.28.0
[61] zlibbioc_1.44.0             grid_4.2.3                 
[63] promises_1.2.0.1            lattice_0.20-45            
[65] hms_1.1.3                   polylabelr_0.2.0           
[67] knitr_1.42                  ps_1.7.4                   
[69] pillar_1.9.0                ggpubr_0.6.0               
[71] GenomicRanges_1.50.2        ggsignif_0.6.4             
[73] stats4_4.2.3                glue_1.6.2                 
[75] evaluate_0.21               getPass_0.2-2              
[77] renv_0.17.3                 BiocManager_1.30.21        
[79] vctrs_0.6.2                 tzdb_0.4.0                 
[81] httpuv_1.6.11               polyclip_1.10-4            
[83] gtable_0.3.3                cachem_1.0.8               
[85] xfun_0.39                   broom_1.0.5                
[87] rstatix_0.7.2               later_1.3.1                
[89] viridisLite_0.4.2           IRanges_2.32.0             
[91] timechange_0.2.0            ellipsis_0.3.2