Code
tictoc::tic()tictoc::tic()Source 00_Configuration.R
source(here::here("Code/00_Configuration.R"))
x <- lapply(package_list, require, character = TRUE)
sf_use_s2(TRUE)
rm(x)Load data produced from script: A_01_Get_data
grids <-
readRDS(vars$grid)
data_sf <-
readRDS(vars$data_sf)get list of cells and sampling repeats get list of species and filters (or whether to include them)
cells <-
data_sf %>%
st_drop_geometry() %>%
group_by(datasetID, scalingID, siteID, samplingPeriodID) %>%
mutate(cell_sampled = if_else(is.na(verbatimIdentification), 0, 1)) %>%
ungroup() %>%
distinct(datasetID, scalingID, siteID, samplingPeriodID, cell_sampled, croppedArea, time_span) %>%
group_by(datasetID, scalingID, siteID, croppedArea) %>%
dplyr::summarise(
cell_sampling_repeats = n_distinct(samplingPeriodID, na.rm = TRUE),
.groups = "keep") %>%
mutate(cells_keep =
case_when(
cell_sampling_repeats == 2 & !is.na(croppedArea) ~ 1,
cell_sampling_repeats %in% c(0,1) | is.na(croppedArea) ~ 0,
.default = NA)) %>%
unique()Checks:
glimpse(cells)Rows: 17,286
Columns: 6
Groups: datasetID, scalingID, siteID, croppedArea [17,286]
$ datasetID <int> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, …
$ scalingID <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ siteID <int> 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, …
$ croppedArea <dbl> 21.076318, 41.363317, 8.586563, 1.390874, 16.092…
$ cell_sampling_repeats <int> 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, …
$ cells_keep <dbl> 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, …
colSums(is.na(cells)) # 14 cells without area datasetID scalingID siteID
0 0 0
croppedArea cell_sampling_repeats cells_keep
14 0 0
species_df <-
data_sf %>%
st_drop_geometry() %>%
filter(scalingID == 1) %>%
distinct(datasetID, verbatimIdentification, scientificName, samplingPeriodID, time_span) %>%
filter(!is.na(verbatimIdentification))Checks:
glimpse(species_df)Rows: 2,272
Columns: 5
$ datasetID <int> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,…
$ verbatimIdentification <chr> "Carpodacus erythrinus", "Garrulus glandarius",…
$ scientificName <chr> "Carpodacus erythrinus", "Garrulus glandarius",…
$ samplingPeriodID <dbl> 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2,…
$ time_span <int> 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2,…
colSums(is.na(species_df)) datasetID verbatimIdentification scientificName
0 0 0
samplingPeriodID time_span
0 0
jp_sp_remove <-
read.csv(here("Data/input/META_removed_sp_Japan_expert_knowledge.csv"),
header = FALSE,
strip.white = TRUE) %>%
pull(V1)
jp_sp_remove [1] "Haliaeetus albicilla " "Spilornis cheela " "Circus spilonotus "
[4] "Accipiter gularis " "Accipiter nisus " "Accipiter gentilis "
[7] "Butastur indicus " "Buteo buteo " "Nisaetus nipalensis "
[10] "Otus lempiji " "Otus sunia " "Otus elegans "
[13] "Strix uralensis " "Ninox scutulata " "Asio otus "
[16] "Dendrocopos leucotos " "Dendrocopos major " "Dryocopus martius "
[19] "Picus awokera " "Picus canus " "Falco tinnunculus "
[22] "Falco subbuteo " "Falco peregrinus " "Zoothera sibirica "
[25] "Zoothera dauma " "Caprimulgus indicus "
species_df2 <- species_df %>%
mutate(
sp_remove_expert =
case_when(
verbatimIdentification %in% jp_sp_remove & datasetID == 13 ~ 1,
TRUE ~ 0))
head(species_df2) datasetID verbatimIdentification scientificName samplingPeriodID
1 5 Carpodacus erythrinus Carpodacus erythrinus 2
2 5 Garrulus glandarius Garrulus glandarius 2
3 5 Emberiza schoeniclus Emberiza schoeniclus 1
4 5 Parus cristatus Lophophanes cristatus 2
5 5 Streptopelia turtur Streptopelia turtur 1
6 5 Ciconia nigra Ciconia nigra 2
time_span sp_remove_expert
1 2 0
2 2 0
3 4 0
4 2 0
5 4 0
6 2 0
Read grid shapefiles at largest resolution(1-cell-aggregations)
sf_use_s2(FALSE) # fixes error with crossing geometries in EBBA
countries <-
grids %>%
group_by(datasetID) %>%
filter(scalingID == max(scalingID)) %>%
select(datasetID, geometry) %>%
summarize(
geometry = st_union(geometry),
.groups = "keep"
) %>%
st_make_valid()
head(countries)Simple feature collection with 4 features and 1 field
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: -79.79188 ymin: 24 xmax: 146 ymax: 81.95675
Geodetic CRS: WGS 84
# A tibble: 4 × 2
# Groups: datasetID [4]
datasetID geometry
<int> <GEOMETRY [°]>
1 5 POLYGON ((18.16496 49.19965, 18.16496 49.09965, 18.16497 48.99964, …
2 6 MULTIPOLYGON (((-71.95444 41.28819, -71.95234 41.33317, -71.89268 4…
3 13 MULTIPOLYGON (((123.25 24.33333, 123 24.33333, 122.75 24.33333, 122…
4 26 MULTIPOLYGON (((-18.45763 28.00178, -17.99985 27.99255, -17.54207 2…
Load range maps for introduced species
BirdLife_introduced <-
st_read(here("Data/input/shp_introduced/")) %>%
st_transform(crs = st_crs(countries))Reading layer `BirdLife_introduced' from data source
`C:\Users\wolke\OneDrive - CZU v Praze\Frieda_PhD_files\02_StaticPatterns\Git\Data\input\shp_introduced'
using driver `ESRI Shapefile'
Simple feature collection with 90 features and 4 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -180 ymin: -55.97681 xmax: 180 ymax: 66.6413
Geodetic CRS: WGS 84
check if they are identical now:
st_crs(countries) == st_crs(BirdLife_introduced)[1] TRUE
Spatial join: Countries and introduced ranges
introduced_sp <-
st_join(countries, BirdLife_introduced,
join = st_intersects) %>%
rename("scientificName" = "sci_name") %>%
mutate(introduced = 1) %>%
st_drop_geometry() %>%
select(datasetID, scientificName, introduced) %>%
arrange(datasetID)create new filtering column for introduced species in sp data
species_df3 <-
species_df2 %>%
left_join(introduced_sp) %>%
mutate(introduced = case_when(is.na(introduced) ~ 0,
.default = introduced))
head(species_df3) datasetID verbatimIdentification scientificName samplingPeriodID
1 5 Carpodacus erythrinus Carpodacus erythrinus 2
2 5 Garrulus glandarius Garrulus glandarius 2
3 5 Emberiza schoeniclus Emberiza schoeniclus 1
4 5 Parus cristatus Lophophanes cristatus 2
5 5 Streptopelia turtur Streptopelia turtur 1
6 5 Ciconia nigra Ciconia nigra 2
time_span sp_remove_expert introduced
1 2 0 0
2 2 0 0
3 4 0 0
4 2 0 0
5 4 0 0
6 2 0 0
excluding species that are introduced or under-sampled
common_sp <-
data_sf %>%
st_drop_geometry() %>%
filter(scalingID == 1) %>%
left_join(species_df3) %>%
left_join(cells %>% filter(scalingID == 1)) %>%
na.omit() %>%
filter(cells_keep == 1 & introduced == 0 & sp_remove_expert == 0) %>%
group_by(datasetID, verbatimIdentification) %>%
dplyr::summarise(sp_sampling_repeats = n_distinct(samplingPeriodID),
.groups = "drop")checks species with sp_sampling_repeats != 2 will be removed from the data
common_sp %>%
group_by(datasetID, sp_sampling_repeats) %>%
dplyr::summarise(n_sp = n_distinct(verbatimIdentification),
.groups = "keep")# A tibble: 8 × 3
# Groups: datasetID, sp_sampling_repeats [8]
datasetID sp_sampling_repeats n_sp
<int> <int> <int>
1 5 1 18
2 5 2 201
3 6 1 16
4 6 2 233
5 13 1 33
6 13 2 208
7 26 1 9
8 26 2 412
add filtering column for species that are kept for analysis
species_df4 <-
species_df3 %>%
left_join(common_sp) %>%
mutate(
species_keep =
case_when(
sp_remove_expert == 0 & sp_sampling_repeats == 2 & introduced == 0 ~ 1,
TRUE ~ 0))
head(species_df4) datasetID verbatimIdentification scientificName samplingPeriodID
1 5 Carpodacus erythrinus Carpodacus erythrinus 2
2 5 Garrulus glandarius Garrulus glandarius 2
3 5 Emberiza schoeniclus Emberiza schoeniclus 1
4 5 Parus cristatus Lophophanes cristatus 2
5 5 Streptopelia turtur Streptopelia turtur 1
6 5 Ciconia nigra Ciconia nigra 2
time_span sp_remove_expert introduced sp_sampling_repeats species_keep
1 2 0 0 2 1
2 2 0 0 2 1
3 4 0 0 2 1
4 2 0 0 2 1
5 4 0 0 2 1
6 2 0 0 2 1
data_sf2 <-
data_sf %>%
left_join(cells) %>%
left_join(species_df4)
head(data_sf2)Simple feature collection with 6 features and 32 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 14.16488 ymin: 50.99961 xmax: 14.49822 ymax: 51.09962
Geodetic CRS: WGS 84
datasetID scalingID siteID footprintSRS verbatimFootprintSRS area
1 5 1 1 epsg:4326 epsg:5514 130.0203
2 5 1 2 epsg:4326 epsg:5514 130.0204
3 5 1 2 epsg:4326 epsg:5514 130.0204
4 5 1 2 epsg:4326 epsg:5514 130.0204
5 5 1 2 epsg:4326 epsg:5514 130.0204
6 5 1 2 epsg:4326 epsg:5514 130.0204
croppedArea areaUnit croppedAreaPercent centroidDecimalLongitude
1 21.07632 km2 0.1621002 14.24822
2 41.36332 km2 0.3181295 14.41488
3 41.36332 km2 0.3181295 14.41488
4 41.36332 km2 0.3181295 14.41488
5 41.36332 km2 0.3181295 14.41488
6 41.36332 km2 0.3181295 14.41488
centroidDecimalLatitude croppedDecimalLongitude croppedDecimalLatitude
1 51.04961 14.30475 51.02347
2 51.04962 14.40960 51.01669
3 51.04962 14.40960 51.01669
4 51.04962 14.40960 51.01669
5 51.04962 14.40960 51.01669
6 51.04962 14.40960 51.01669
northSouthLength eastWestLength maxLength croppedNorthSouthLength
1 11.12540 11.69999 16.13557 6.239639
2 11.12541 11.70000 16.13557 5.178504
3 11.12541 11.70000 16.13557 5.178504
4 11.12541 11.70000 16.13557 5.178504
5 11.12541 11.70000 16.13557 5.178504
6 11.12541 11.70000 16.13557 5.178504
croppedEastWestLength croppedMaxLength lengthUnit startYear endYear
1 4.989069 7.069381 km NA NA
2 11.699831 12.789048 km 2001 2003
3 11.699831 12.789048 km 2001 2003
4 11.699831 12.789048 km 1985 1989
5 11.699831 12.789048 km 2001 2003
6 11.699831 12.789048 km 1985 1989
verbatimIdentification scientificName samplingPeriodID time_span
1 <NA> <NA> NA NA
2 Carpodacus erythrinus Carpodacus erythrinus 2 2
3 Garrulus glandarius Garrulus glandarius 2 2
4 Emberiza schoeniclus Emberiza schoeniclus 1 4
5 Parus cristatus Lophophanes cristatus 2 2
6 Streptopelia turtur Streptopelia turtur 1 4
cell_sampling_repeats cells_keep sp_remove_expert introduced
1 0 0 NA NA
2 2 1 0 0
3 2 1 0 0
4 2 1 0 0
5 2 1 0 0
6 2 1 0 0
sp_sampling_repeats species_keep geometry
1 NA NA MULTIPOLYGON (((14.16488 51...
2 2 1 MULTIPOLYGON (((14.33155 51...
3 2 1 MULTIPOLYGON (((14.33155 51...
4 2 1 MULTIPOLYGON (((14.33155 51...
5 2 1 MULTIPOLYGON (((14.33155 51...
6 2 1 MULTIPOLYGON (((14.33155 51...
keep only species and cells sampled twice
data_filt <-
data_sf2 %>%
st_drop_geometry() %>%
filter(!is.na(verbatimIdentification) & species_keep == 1 & cells_keep == 1)Checks:
data_filt %>%
group_by(datasetID, samplingPeriodID) %>%
skimr::skim()| Name | Piped data |
| Number of rows | 2508543 |
| Number of columns | 32 |
| _______________________ | |
| Column type frequency: | |
| character | 6 |
| numeric | 24 |
| ________________________ | |
| Group variables | datasetID, samplingPeriodID |
Variable type: character
| skim_variable | datasetID | samplingPeriodID | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| footprintSRS | 5 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 5 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 6 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 6 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 13 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 13 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 26 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| footprintSRS | 26 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| verbatimFootprintSRS | 5 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| verbatimFootprintSRS | 5 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| verbatimFootprintSRS | 6 | 1 | 0 | 1 | 10 | 10 | 0 | 1 | 0 |
| verbatimFootprintSRS | 6 | 2 | 0 | 1 | 10 | 10 | 0 | 1 | 0 |
| verbatimFootprintSRS | 13 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| verbatimFootprintSRS | 13 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| verbatimFootprintSRS | 26 | 1 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| verbatimFootprintSRS | 26 | 2 | 0 | 1 | 9 | 9 | 0 | 1 | 0 |
| areaUnit | 5 | 1 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 5 | 2 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 6 | 1 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 6 | 2 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 13 | 1 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 13 | 2 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 26 | 1 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| areaUnit | 26 | 2 | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| lengthUnit | 5 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 5 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 6 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 6 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 13 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 13 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 26 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| lengthUnit | 26 | 2 | 0 | 1 | 2 | 2 | 0 | 1 | 0 |
| verbatimIdentification | 5 | 1 | 0 | 1 | 9 | 29 | 0 | 201 | 0 |
| verbatimIdentification | 5 | 2 | 0 | 1 | 9 | 29 | 0 | 201 | 0 |
| verbatimIdentification | 6 | 1 | 0 | 1 | 9 | 32 | 0 | 233 | 0 |
| verbatimIdentification | 6 | 2 | 0 | 1 | 9 | 32 | 0 | 233 | 0 |
| verbatimIdentification | 13 | 1 | 0 | 1 | 9 | 29 | 0 | 208 | 0 |
| verbatimIdentification | 13 | 2 | 0 | 1 | 9 | 29 | 0 | 208 | 0 |
| verbatimIdentification | 26 | 1 | 0 | 1 | 9 | 29 | 0 | 412 | 0 |
| verbatimIdentification | 26 | 2 | 0 | 1 | 9 | 29 | 0 | 412 | 0 |
| scientificName | 5 | 1 | 0 | 1 | 9 | 29 | 0 | 198 | 0 |
| scientificName | 5 | 2 | 0 | 1 | 9 | 29 | 0 | 198 | 0 |
| scientificName | 6 | 1 | 0 | 1 | 9 | 39 | 0 | 233 | 0 |
| scientificName | 6 | 2 | 0 | 1 | 9 | 39 | 0 | 233 | 0 |
| scientificName | 13 | 1 | 0 | 1 | 9 | 29 | 0 | 208 | 0 |
| scientificName | 13 | 2 | 0 | 1 | 9 | 29 | 0 | 208 | 0 |
| scientificName | 26 | 1 | 0 | 1 | 9 | 29 | 0 | 412 | 0 |
| scientificName | 26 | 2 | 0 | 1 | 9 | 29 | 0 | 412 | 0 |
Variable type: numeric
| skim_variable | datasetID | samplingPeriodID | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| scalingID | 5 | 1 | 0 | 1 | 2.07 | 3.92 | 1.00 | 1.00 | 1.00 | 2.00 | 64.00 | ▇▁▁▁▁ |
| scalingID | 5 | 2 | 0 | 1 | 2.05 | 3.85 | 1.00 | 1.00 | 1.00 | 2.00 | 64.00 | ▇▁▁▁▁ |
| scalingID | 6 | 1 | 0 | 1 | 2.13 | 4.91 | 1.00 | 1.00 | 1.00 | 2.00 | 128.00 | ▇▁▁▁▁ |
| scalingID | 6 | 2 | 0 | 1 | 2.09 | 4.76 | 1.00 | 1.00 | 1.00 | 2.00 | 128.00 | ▇▁▁▁▁ |
| scalingID | 13 | 1 | 0 | 1 | 3.46 | 9.17 | 1.00 | 1.00 | 1.00 | 2.00 | 128.00 | ▇▁▁▁▁ |
| scalingID | 13 | 2 | 0 | 1 | 3.39 | 8.80 | 1.00 | 1.00 | 1.00 | 2.00 | 128.00 | ▇▁▁▁▁ |
| scalingID | 26 | 1 | 0 | 1 | 2.23 | 5.50 | 1.00 | 1.00 | 1.00 | 2.00 | 128.00 | ▇▁▁▁▁ |
| scalingID | 26 | 2 | 0 | 1 | 2.18 | 5.31 | 1.00 | 1.00 | 1.00 | 2.00 | 128.00 | ▇▁▁▁▁ |
| siteID | 5 | 1 | 0 | 1 | 250.54 | 204.87 | 1.00 | 65.00 | 183.00 | 425.00 | 673.00 | ▇▅▃▃▃ |
| siteID | 5 | 2 | 0 | 1 | 252.28 | 206.62 | 1.00 | 64.00 | 183.00 | 431.00 | 673.00 | ▇▃▃▃▃ |
| siteID | 6 | 1 | 0 | 1 | 2150.86 | 1484.84 | 1.00 | 872.00 | 1921.00 | 3225.00 | 5335.00 | ▇▇▆▃▃ |
| siteID | 6 | 2 | 0 | 1 | 2128.88 | 1473.71 | 1.00 | 859.00 | 1905.00 | 3175.00 | 5335.00 | ▇▇▆▃▃ |
| siteID | 13 | 1 | 0 | 1 | 492.31 | 423.73 | 1.00 | 122.00 | 365.00 | 814.00 | 1464.00 | ▇▃▂▂▂ |
| siteID | 13 | 2 | 0 | 1 | 490.33 | 425.59 | 1.00 | 118.00 | 350.00 | 828.00 | 1464.00 | ▇▃▂▂▂ |
| siteID | 26 | 1 | 0 | 1 | 1553.41 | 945.02 | 1.00 | 787.00 | 1476.00 | 2187.00 | 5225.00 | ▇▇▆▁▁ |
| siteID | 26 | 2 | 0 | 1 | 1574.18 | 957.70 | 1.00 | 788.00 | 1499.00 | 2226.00 | 5225.00 | ▇▇▆▁▁ |
| area | 5 | 1 | 0 | 1 | 1031.30 | 5730.33 | 130.02 | 133.05 | 134.95 | 531.66 | 90569.14 | ▇▁▁▁▁ |
| area | 5 | 2 | 0 | 1 | 1008.82 | 5625.60 | 130.02 | 133.05 | 134.95 | 531.66 | 90569.14 | ▇▁▁▁▁ |
| area | 6 | 1 | 0 | 1 | 291.59 | 3264.13 | 24.93 | 25.01 | 25.02 | 100.05 | 133087.29 | ▇▁▁▁▁ |
| area | 6 | 2 | 0 | 1 | 282.42 | 3188.68 | 24.93 | 25.01 | 25.02 | 100.05 | 133087.29 | ▇▁▁▁▁ |
| area | 13 | 1 | 0 | 1 | 6547.79 | 33516.77 | 362.47 | 412.92 | 432.25 | 1691.29 | 538550.03 | ▇▁▁▁▁ |
| area | 13 | 2 | 0 | 1 | 6231.39 | 31892.21 | 362.47 | 412.92 | 433.84 | 1691.29 | 538550.03 | ▇▁▁▁▁ |
| area | 26 | 1 | 0 | 1 | 41113.52 | 455431.19 | 1550.65 | 2501.63 | 2501.97 | 10005.38 | 13223660.56 | ▇▁▁▁▁ |
| area | 26 | 2 | 0 | 1 | 38512.74 | 437568.42 | 1550.65 | 2501.63 | 2501.97 | 10005.38 | 13223660.56 | ▇▁▁▁▁ |
| croppedArea | 5 | 1 | 0 | 1 | 911.91 | 5035.89 | 7.57 | 132.53 | 134.43 | 527.25 | 78873.98 | ▇▁▁▁▁ |
| croppedArea | 5 | 2 | 0 | 1 | 892.01 | 4944.05 | 7.57 | 132.52 | 134.43 | 525.09 | 78873.98 | ▇▁▁▁▁ |
| croppedArea | 6 | 1 | 0 | 1 | 278.72 | 3120.13 | 0.01 | 25.01 | 25.02 | 100.05 | 127077.41 | ▇▁▁▁▁ |
| croppedArea | 6 | 2 | 0 | 1 | 270.15 | 3048.35 | 0.01 | 25.01 | 25.02 | 100.04 | 127077.41 | ▇▁▁▁▁ |
| croppedArea | 13 | 1 | 0 | 1 | 4758.46 | 23545.63 | 0.15 | 373.15 | 420.71 | 1619.60 | 371982.46 | ▇▁▁▁▁ |
| croppedArea | 13 | 2 | 0 | 1 | 4515.97 | 22411.90 | 0.15 | 371.75 | 419.86 | 1606.52 | 371982.46 | ▇▁▁▁▁ |
| croppedArea | 26 | 1 | 0 | 1 | 34547.11 | 387572.23 | 0.15 | 2494.24 | 2501.93 | 8928.22 | 11171485.87 | ▇▁▁▁▁ |
| croppedArea | 26 | 2 | 0 | 1 | 32345.75 | 372332.04 | 0.15 | 2493.95 | 2501.70 | 8667.47 | 11171485.87 | ▇▁▁▁▁ |
| croppedAreaPercent | 5 | 1 | 0 | 1 | 0.91 | 0.19 | 0.06 | 0.97 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
| croppedAreaPercent | 5 | 2 | 0 | 1 | 0.91 | 0.19 | 0.06 | 0.97 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
| croppedAreaPercent | 6 | 1 | 0 | 1 | 0.96 | 0.16 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
| croppedAreaPercent | 6 | 2 | 0 | 1 | 0.96 | 0.15 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
| croppedAreaPercent | 13 | 1 | 0 | 1 | 0.77 | 0.29 | 0.00 | 0.60 | 0.94 | 1.00 | 1.00 | ▁▁▁▂▇ |
| croppedAreaPercent | 13 | 2 | 0 | 1 | 0.76 | 0.30 | 0.00 | 0.58 | 0.92 | 1.00 | 1.00 | ▁▁▁▂▇ |
| croppedAreaPercent | 26 | 1 | 0 | 1 | 0.84 | 0.28 | 0.00 | 0.77 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
| croppedAreaPercent | 26 | 2 | 0 | 1 | 0.84 | 0.28 | 0.00 | 0.78 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
| centroidDecimalLongitude | 5 | 1 | 0 | 1 | 15.39 | 1.60 | 12.08 | 14.08 | 15.25 | 16.66 | 18.80 | ▃▇▇▆▃ |
| centroidDecimalLongitude | 5 | 2 | 0 | 1 | 15.39 | 1.59 | 12.08 | 14.16 | 15.25 | 16.58 | 18.80 | ▃▇▇▆▃ |
| centroidDecimalLongitude | 6 | 1 | 0 | 1 | -75.49 | 1.71 | -79.76 | -76.63 | -75.12 | -74.12 | -71.87 | ▂▃▆▇▁ |
| centroidDecimalLongitude | 6 | 2 | 0 | 1 | -75.55 | 1.72 | -79.76 | -76.69 | -75.21 | -74.15 | -71.87 | ▂▃▆▇▁ |
| centroidDecimalLongitude | 13 | 1 | 0 | 1 | 137.81 | 4.35 | 123.00 | 134.45 | 138.88 | 141.12 | 145.88 | ▁▂▃▇▅ |
| centroidDecimalLongitude | 13 | 2 | 0 | 1 | 137.73 | 4.44 | 123.00 | 134.19 | 138.88 | 140.88 | 145.88 | ▁▃▃▇▃ |
| centroidDecimalLongitude | 26 | 1 | 0 | 1 | 14.01 | 12.02 | -31.26 | 5.42 | 15.35 | 23.60 | 41.92 | ▁▂▅▇▂ |
| centroidDecimalLongitude | 26 | 2 | 0 | 1 | 14.27 | 12.17 | -31.26 | 5.43 | 15.57 | 24.00 | 41.92 | ▁▂▅▇▂ |
| centroidDecimalLatitude | 5 | 1 | 0 | 1 | 49.73 | 0.56 | 48.60 | 49.25 | 49.75 | 50.15 | 51.05 | ▅▇▇▆▂ |
| centroidDecimalLatitude | 5 | 2 | 0 | 1 | 49.73 | 0.57 | 48.60 | 49.25 | 49.75 | 50.20 | 51.05 | ▅▇▇▆▂ |
| centroidDecimalLatitude | 6 | 1 | 0 | 1 | 42.88 | 0.99 | 40.49 | 42.22 | 42.80 | 43.51 | 45.03 | ▂▅▇▅▃ |
| centroidDecimalLatitude | 6 | 2 | 0 | 1 | 42.89 | 0.97 | 40.49 | 42.24 | 42.81 | 43.51 | 45.03 | ▂▅▇▅▃ |
| centroidDecimalLatitude | 13 | 1 | 0 | 1 | 37.44 | 4.07 | 24.25 | 34.67 | 36.42 | 40.90 | 45.47 | ▁▁▇▃▃ |
| centroidDecimalLatitude | 13 | 2 | 0 | 1 | 37.35 | 4.12 | 24.25 | 34.58 | 36.50 | 40.75 | 45.47 | ▁▁▇▃▅ |
| centroidDecimalLatitude | 26 | 1 | 0 | 1 | 51.06 | 8.27 | 28.47 | 44.77 | 50.09 | 56.60 | 80.61 | ▁▇▇▃▁ |
| centroidDecimalLatitude | 26 | 2 | 0 | 1 | 50.90 | 8.22 | 28.47 | 44.67 | 49.87 | 56.35 | 80.61 | ▁▇▇▃▁ |
| croppedDecimalLongitude | 5 | 1 | 0 | 1 | 15.39 | 1.59 | 12.14 | 14.10 | 15.25 | 16.66 | 18.75 | ▃▇▇▆▃ |
| croppedDecimalLongitude | 5 | 2 | 0 | 1 | 15.39 | 1.58 | 12.14 | 14.16 | 15.25 | 16.58 | 18.75 | ▃▇▇▆▃ |
| croppedDecimalLongitude | 6 | 1 | 0 | 1 | -75.49 | 1.71 | -79.74 | -76.63 | -75.12 | -74.12 | -71.88 | ▂▃▅▇▁ |
| croppedDecimalLongitude | 6 | 2 | 0 | 1 | -75.55 | 1.72 | -79.74 | -76.69 | -75.21 | -74.15 | -71.88 | ▂▃▆▇▁ |
| croppedDecimalLongitude | 13 | 1 | 0 | 1 | 137.82 | 4.33 | 122.99 | 134.38 | 138.88 | 141.02 | 145.84 | ▁▂▃▇▅ |
| croppedDecimalLongitude | 13 | 2 | 0 | 1 | 137.74 | 4.42 | 122.99 | 134.23 | 138.88 | 140.88 | 145.84 | ▁▃▃▇▃ |
| croppedDecimalLongitude | 26 | 1 | 0 | 1 | 14.02 | 12.01 | -31.19 | 5.59 | 15.36 | 23.64 | 41.96 | ▁▂▅▇▂ |
| croppedDecimalLongitude | 26 | 2 | 0 | 1 | 14.29 | 12.16 | -31.19 | 5.61 | 15.55 | 24.00 | 41.96 | ▁▂▅▇▂ |
| croppedDecimalLatitude | 5 | 1 | 0 | 1 | 49.73 | 0.56 | 48.64 | 49.25 | 49.75 | 50.15 | 51.02 | ▅▇▇▅▂ |
| croppedDecimalLatitude | 5 | 2 | 0 | 1 | 49.73 | 0.56 | 48.64 | 49.25 | 49.75 | 50.19 | 51.02 | ▅▇▇▅▂ |
| croppedDecimalLatitude | 6 | 1 | 0 | 1 | 42.88 | 0.99 | 40.51 | 42.23 | 42.80 | 43.51 | 45.01 | ▂▅▇▅▃ |
| croppedDecimalLatitude | 6 | 2 | 0 | 1 | 42.89 | 0.97 | 40.51 | 42.24 | 42.81 | 43.51 | 45.01 | ▂▅▇▅▃ |
| croppedDecimalLatitude | 13 | 1 | 0 | 1 | 37.45 | 4.06 | 24.30 | 34.66 | 36.42 | 40.81 | 45.40 | ▁▁▇▃▃ |
| croppedDecimalLatitude | 13 | 2 | 0 | 1 | 37.35 | 4.12 | 24.30 | 34.58 | 36.42 | 40.75 | 45.40 | ▁▁▇▃▅ |
| croppedDecimalLatitude | 26 | 1 | 0 | 1 | 51.06 | 8.25 | 28.34 | 44.89 | 50.07 | 56.60 | 80.27 | ▁▇▇▃▁ |
| croppedDecimalLatitude | 26 | 2 | 0 | 1 | 50.90 | 8.20 | 28.34 | 44.70 | 49.87 | 56.32 | 80.27 | ▁▇▇▃▁ |
| northSouthLength | 5 | 1 | 0 | 1 | 20.36 | 26.05 | 11.12 | 11.12 | 11.12 | 22.25 | 289.19 | ▇▁▁▁▁ |
| northSouthLength | 5 | 2 | 0 | 1 | 20.20 | 25.69 | 11.12 | 11.12 | 11.12 | 22.25 | 289.19 | ▇▁▁▁▁ |
| northSouthLength | 6 | 1 | 0 | 1 | 9.78 | 17.62 | 5.00 | 5.05 | 5.12 | 10.11 | 509.30 | ▇▁▁▁▁ |
| northSouthLength | 6 | 2 | 0 | 1 | 9.67 | 17.28 | 5.00 | 5.05 | 5.12 | 10.11 | 509.30 | ▇▁▁▁▁ |
| northSouthLength | 13 | 1 | 0 | 1 | 60.10 | 164.39 | 18.46 | 18.49 | 18.52 | 37.03 | 2403.75 | ▇▁▁▁▁ |
| northSouthLength | 13 | 2 | 0 | 1 | 58.67 | 157.37 | 18.46 | 18.49 | 18.52 | 37.03 | 2403.75 | ▇▁▁▁▁ |
| northSouthLength | 26 | 1 | 0 | 1 | 109.52 | 259.90 | 50.16 | 50.74 | 51.43 | 101.61 | 6056.01 | ▇▁▁▁▁ |
| northSouthLength | 26 | 2 | 0 | 1 | 106.63 | 250.62 | 50.16 | 50.73 | 51.40 | 101.51 | 6056.01 | ▇▁▁▁▁ |
| eastWestLength | 5 | 1 | 0 | 1 | 22.79 | 35.43 | 11.70 | 11.97 | 12.15 | 24.05 | 517.14 | ▇▁▁▁▁ |
| eastWestLength | 5 | 2 | 0 | 1 | 22.61 | 34.89 | 11.70 | 11.97 | 12.15 | 24.05 | 517.14 | ▇▁▁▁▁ |
| eastWestLength | 6 | 1 | 0 | 1 | 10.03 | 20.55 | 5.01 | 5.05 | 5.12 | 10.12 | 654.17 | ▇▁▁▁▁ |
| eastWestLength | 6 | 2 | 0 | 1 | 9.90 | 20.15 | 5.01 | 5.05 | 5.12 | 10.12 | 654.17 | ▇▁▁▁▁ |
| eastWestLength | 13 | 1 | 0 | 1 | 65.95 | 167.92 | 19.60 | 22.30 | 23.28 | 46.10 | 2363.01 | ▇▁▁▁▁ |
| eastWestLength | 13 | 2 | 0 | 1 | 64.83 | 161.53 | 19.60 | 22.25 | 23.36 | 46.19 | 2363.01 | ▇▁▁▁▁ |
| eastWestLength | 26 | 1 | 0 | 1 | 114.60 | 337.24 | 32.26 | 50.84 | 51.63 | 102.42 | 9604.23 | ▇▁▁▁▁ |
| eastWestLength | 26 | 2 | 0 | 1 | 111.60 | 324.81 | 32.26 | 50.82 | 51.59 | 102.30 | 9604.23 | ▇▁▁▁▁ |
| maxLength | 5 | 1 | 0 | 1 | 30.11 | 39.79 | 16.14 | 16.33 | 16.46 | 32.72 | 512.06 | ▇▁▁▁▁ |
| maxLength | 5 | 2 | 0 | 1 | 29.88 | 39.24 | 16.14 | 16.33 | 16.46 | 32.72 | 512.06 | ▇▁▁▁▁ |
| maxLength | 6 | 1 | 0 | 1 | 13.77 | 24.32 | 7.06 | 7.07 | 7.07 | 14.15 | 659.64 | ▇▁▁▁▁ |
| maxLength | 6 | 2 | 0 | 1 | 13.60 | 23.88 | 7.06 | 7.07 | 7.07 | 14.15 | 659.64 | ▇▁▁▁▁ |
| maxLength | 13 | 1 | 0 | 1 | 87.35 | 216.25 | 26.94 | 28.99 | 29.81 | 59.10 | 3041.50 | ▇▁▁▁▁ |
| maxLength | 13 | 2 | 0 | 1 | 85.70 | 207.63 | 26.94 | 28.99 | 29.88 | 59.24 | 3041.50 | ▇▁▁▁▁ |
| maxLength | 26 | 1 | 0 | 1 | 149.97 | 313.08 | 59.51 | 70.73 | 70.74 | 141.46 | 7056.48 | ▇▁▁▁▁ |
| maxLength | 26 | 2 | 0 | 1 | 146.30 | 302.10 | 59.51 | 70.73 | 70.74 | 141.46 | 7056.48 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 5 | 1 | 0 | 1 | 19.66 | 25.10 | 3.15 | 11.12 | 11.12 | 22.24 | 278.50 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 5 | 2 | 0 | 1 | 19.50 | 24.76 | 3.15 | 11.12 | 11.12 | 22.24 | 278.50 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 6 | 1 | 0 | 1 | 9.63 | 17.40 | 0.18 | 5.05 | 5.10 | 10.10 | 502.08 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 6 | 2 | 0 | 1 | 9.52 | 17.07 | 0.18 | 5.05 | 5.10 | 10.09 | 502.08 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 13 | 1 | 0 | 1 | 58.62 | 163.09 | 0.72 | 18.49 | 18.52 | 37.03 | 2383.21 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 13 | 2 | 0 | 1 | 57.20 | 156.14 | 0.72 | 18.49 | 18.52 | 37.02 | 2383.21 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 26 | 1 | 0 | 1 | 106.44 | 258.76 | 0.59 | 50.51 | 51.29 | 101.06 | 6034.16 | ▇▁▁▁▁ |
| croppedNorthSouthLength | 26 | 2 | 0 | 1 | 103.55 | 249.53 | 0.59 | 50.50 | 51.27 | 100.54 | 6034.16 | ▇▁▁▁▁ |
| croppedEastWestLength | 5 | 1 | 0 | 1 | 22.30 | 34.55 | 4.62 | 11.97 | 12.12 | 23.95 | 499.54 | ▇▁▁▁▁ |
| croppedEastWestLength | 5 | 2 | 0 | 1 | 22.12 | 34.03 | 4.62 | 11.97 | 12.12 | 23.95 | 499.54 | ▇▁▁▁▁ |
| croppedEastWestLength | 6 | 1 | 0 | 1 | 9.92 | 20.45 | 0.06 | 5.05 | 5.11 | 10.11 | 650.95 | ▇▁▁▁▁ |
| croppedEastWestLength | 6 | 2 | 0 | 1 | 9.78 | 20.05 | 0.06 | 5.05 | 5.11 | 10.10 | 650.95 | ▇▁▁▁▁ |
| croppedEastWestLength | 13 | 1 | 0 | 1 | 63.50 | 166.17 | 0.40 | 21.81 | 23.14 | 45.83 | 2343.58 | ▇▁▁▁▁ |
| croppedEastWestLength | 13 | 2 | 0 | 1 | 62.36 | 159.79 | 0.40 | 21.76 | 23.14 | 45.83 | 2343.58 | ▇▁▁▁▁ |
| croppedEastWestLength | 26 | 1 | 0 | 1 | 110.17 | 333.37 | 0.70 | 50.65 | 51.51 | 101.93 | 9544.56 | ▇▁▁▁▁ |
| croppedEastWestLength | 26 | 2 | 0 | 1 | 107.22 | 321.03 | 0.70 | 50.64 | 51.48 | 101.79 | 9544.56 | ▇▁▁▁▁ |
| croppedMaxLength | 5 | 1 | 0 | 1 | 29.17 | 38.38 | 5.54 | 16.33 | 16.44 | 32.58 | 492.74 | ▇▁▁▁▁ |
| croppedMaxLength | 5 | 2 | 0 | 1 | 28.94 | 37.84 | 5.54 | 16.32 | 16.44 | 32.58 | 492.74 | ▇▁▁▁▁ |
| croppedMaxLength | 6 | 1 | 0 | 1 | 13.61 | 24.16 | 0.32 | 7.07 | 7.07 | 14.15 | 655.19 | ▇▁▁▁▁ |
| croppedMaxLength | 6 | 2 | 0 | 1 | 13.44 | 23.72 | 0.32 | 7.07 | 7.07 | 14.15 | 655.19 | ▇▁▁▁▁ |
| croppedMaxLength | 13 | 1 | 0 | 1 | 83.93 | 213.23 | 1.47 | 28.39 | 29.64 | 58.67 | 2999.27 | ▇▁▁▁▁ |
| croppedMaxLength | 13 | 2 | 0 | 1 | 82.28 | 204.70 | 1.47 | 28.43 | 29.67 | 58.67 | 2999.27 | ▇▁▁▁▁ |
| croppedMaxLength | 26 | 1 | 0 | 1 | 144.00 | 309.76 | 0.80 | 70.73 | 70.74 | 141.46 | 7027.49 | ▇▁▁▁▁ |
| croppedMaxLength | 26 | 2 | 0 | 1 | 140.42 | 298.86 | 0.80 | 70.73 | 70.74 | 141.46 | 7027.49 | ▇▁▁▁▁ |
| startYear | 5 | 1 | 0 | 1 | 1985.00 | 0.00 | 1985.00 | 1985.00 | 1985.00 | 1985.00 | 1985.00 | ▁▁▇▁▁ |
| startYear | 5 | 2 | 0 | 1 | 2001.00 | 0.00 | 2001.00 | 2001.00 | 2001.00 | 2001.00 | 2001.00 | ▁▁▇▁▁ |
| startYear | 6 | 1 | 0 | 1 | 1980.00 | 0.00 | 1980.00 | 1980.00 | 1980.00 | 1980.00 | 1980.00 | ▁▁▇▁▁ |
| startYear | 6 | 2 | 0 | 1 | 2000.00 | 0.00 | 2000.00 | 2000.00 | 2000.00 | 2000.00 | 2000.00 | ▁▁▇▁▁ |
| startYear | 13 | 1 | 0 | 1 | 1974.00 | 0.00 | 1974.00 | 1974.00 | 1974.00 | 1974.00 | 1974.00 | ▁▁▇▁▁ |
| startYear | 13 | 2 | 0 | 1 | 1997.00 | 0.00 | 1997.00 | 1997.00 | 1997.00 | 1997.00 | 1997.00 | ▁▁▇▁▁ |
| startYear | 26 | 1 | 0 | 1 | 1972.00 | 0.00 | 1972.00 | 1972.00 | 1972.00 | 1972.00 | 1972.00 | ▁▁▇▁▁ |
| startYear | 26 | 2 | 0 | 1 | 2013.00 | 0.00 | 2013.00 | 2013.00 | 2013.00 | 2013.00 | 2013.00 | ▁▁▇▁▁ |
| endYear | 5 | 1 | 0 | 1 | 1989.00 | 0.00 | 1989.00 | 1989.00 | 1989.00 | 1989.00 | 1989.00 | ▁▁▇▁▁ |
| endYear | 5 | 2 | 0 | 1 | 2003.00 | 0.00 | 2003.00 | 2003.00 | 2003.00 | 2003.00 | 2003.00 | ▁▁▇▁▁ |
| endYear | 6 | 1 | 0 | 1 | 1985.00 | 0.00 | 1985.00 | 1985.00 | 1985.00 | 1985.00 | 1985.00 | ▁▁▇▁▁ |
| endYear | 6 | 2 | 0 | 1 | 2005.00 | 0.00 | 2005.00 | 2005.00 | 2005.00 | 2005.00 | 2005.00 | ▁▁▇▁▁ |
| endYear | 13 | 1 | 0 | 1 | 1978.00 | 0.00 | 1978.00 | 1978.00 | 1978.00 | 1978.00 | 1978.00 | ▁▁▇▁▁ |
| endYear | 13 | 2 | 0 | 1 | 2002.00 | 0.00 | 2002.00 | 2002.00 | 2002.00 | 2002.00 | 2002.00 | ▁▁▇▁▁ |
| endYear | 26 | 1 | 0 | 1 | 1995.00 | 0.00 | 1995.00 | 1995.00 | 1995.00 | 1995.00 | 1995.00 | ▁▁▇▁▁ |
| endYear | 26 | 2 | 0 | 1 | 2017.00 | 0.00 | 2017.00 | 2017.00 | 2017.00 | 2017.00 | 2017.00 | ▁▁▇▁▁ |
| time_span | 5 | 1 | 0 | 1 | 4.00 | 0.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | ▁▁▇▁▁ |
| time_span | 5 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| time_span | 6 | 1 | 0 | 1 | 5.00 | 0.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | ▁▁▇▁▁ |
| time_span | 6 | 2 | 0 | 1 | 5.00 | 0.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | ▁▁▇▁▁ |
| time_span | 13 | 1 | 0 | 1 | 4.00 | 0.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | ▁▁▇▁▁ |
| time_span | 13 | 2 | 0 | 1 | 5.00 | 0.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | ▁▁▇▁▁ |
| time_span | 26 | 1 | 0 | 1 | 23.00 | 0.00 | 23.00 | 23.00 | 23.00 | 23.00 | 23.00 | ▁▁▇▁▁ |
| time_span | 26 | 2 | 0 | 1 | 4.00 | 0.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 5 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 5 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 6 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 6 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 13 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 13 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 26 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cell_sampling_repeats | 26 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| cells_keep | 5 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 5 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 6 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 6 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 13 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 13 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 26 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| cells_keep | 26 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| sp_remove_expert | 5 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 5 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 6 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 6 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 13 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 13 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 26 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_remove_expert | 26 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 5 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 5 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 6 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 6 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 13 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 13 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 26 | 1 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| introduced | 26 | 2 | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 5 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 5 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 6 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 6 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 13 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 13 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 26 | 1 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| sp_sampling_repeats | 26 | 2 | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| species_keep | 5 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 5 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 6 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 6 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 13 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 13 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 26 | 1 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| species_keep | 26 | 2 | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
saveRDS(data_sf2, here::here("Data", "output", "1_data_sf.rds"))
saveRDS(data_filt, here::here("Data", "output", "1_data_filtered.rds"))tictoc::toc()161.14 sec elapsed