# Models to fit on tp 2 data## Pooled modelsres_full <-readRDS(here::here("Data/output/B_models/","B_01_list_all_results_rf.rds" ))## Split modelsres_split <-readRDS(here::here("Data/output/B_models/","B_02_rf_res_atlas_split.rds" ))# Response to test predictions against from tp 3 datatp3 <-readRDS(here::here("Data/output/","2_big_table_3.rds" )) %>%select( datasetID, verbatimIdentification, Jaccard_dissim, log_R3_2 ) %>%mutate(datasetID =as.factor(datasetID) )# Tp 2 data = predictors for model predictions for change towards tp3dta2 <-readRDS(here::here("Data/output/","1_all_predictors_merged.rds" )) %>%filter(samplingPeriodID ==2) %>%filter(datasetID %in%c(5, 13))
# A tibble: 6 × 4
datasetID .metric .estimator .estimate
<fct> <chr> <chr> <dbl>
1 5 rmse standard 0.0885
2 13 rmse standard 0.121
3 5 rsq standard 0.916
4 13 rsq standard 0.779
5 5 mae standard 0.0549
6 13 mae standard 0.0774
Code
print(metrics_logRatio)
# A tibble: 6 × 4
datasetID .metric .estimator .estimate
<fct> <chr> <chr> <dbl>
1 5 rmse standard 0.428
2 13 rmse standard 0.638
3 5 rsq standard 0.167
4 13 rsq standard 0.0102
5 5 mae standard 0.245
6 13 mae standard 0.390
Pearson's product-moment correlation
data: logRatio_validation$.pred and logRatio_validation$log_R3_2
t = 6.2384, df = 754, p-value = 7.366e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1526506 0.2882928
sample estimates:
cor
0.2215431
Code
print(cor_jaccard)
Pearson's product-moment correlation
data: Jaccard_validation$.pred and Jaccard_validation$Jaccard_dissim
t = 74.154, df = 754, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9285569 0.9458305
sample estimates:
cor
0.9377712
Code
print(cor_logRatio)
Spearman's rank correlation rho
data: logRatio_validation$.pred and logRatio_validation$log_R3_2
S = 58486931, p-value = 1.968e-07
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1878328