Last updated: 2021-03-14

Checks: 6 1

Knit directory: esoph-micro-cancer-workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e3241da. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/

Unstaged changes:
    Modified:   analysis/ordered-logit-model.Rmd
    Modified:   analysis/species-sample-type-combined.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/species-sample-type-combined.Rmd) and HTML (docs/species-sample-type-combined.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 092bf33 noah-padgett 2021-02-25 fixed group error in violin plots
html 092bf33 noah-padgett 2021-02-25 fixed group error in violin plots
Rmd f91e666 noah-padgett 2021-02-25 violin updates
html f91e666 noah-padgett 2021-02-25 violin updates
Rmd 13f1528 alisonjung 2021-02-18 Barretts violin plot updates
Rmd fe971b9 noah-padgett 2021-02-13 violin plot scale fixed
Rmd 285a2fb noah-padgett 2021-02-10 updated violion plots
html 285a2fb noah-padgett 2021-02-10 updated violion plots

Violin Plot Fuso

# merge datasets by subsetting to specific variables then merging
analysis.dat <- dat.16s.s %>% 
  dplyr::mutate(ID = as.factor(accession.number)) %>%
  dplyr::select(OTU, sample_type, Abundance, ID, source)

dat <- dat.rna.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)
analysis.dat <- full_join(analysis.dat, dat)

dat <- dat.wgs.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)

analysis.dat <- full_join(analysis.dat, dat) %>%
  mutate(pres = ifelse(Abundance > 0, 1, 0)) %>%
  filter(OTU=="Fusobacterium nucleatum")# create a presence/absences variable


tb <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  group_by(sample_type, OTU) %>%
  summarise(
    N=n(),
    p = sum(pres, na.rm=T),
    percent = p/N*100
  )

kable(tb, format="html")%>%
  kable_styling(full_width = T)
sample_type OTU N p percent
16SrRNA Barrett’s (BO) Fusobacterium nucleatum 5 3 60.00000
16SrRNA Non-tumor (w/ Barrett’s history) Fusobacterium nucleatum 43 19 44.18605
16SrRNA Tumor (w/ Barrett’s history) Fusobacterium nucleatum 35 16 45.71429
RNA-seq Non-tumor (w/ Barrett’s history) Fusobacterium nucleatum 3 2 66.66667
RNA-seq Tumor (w/ Barrett’s history) Fusobacterium nucleatum 26 5 19.23077
WGS Non-tumor (w/ Barrett’s history) Fusobacterium nucleatum 6 2 33.33333
WGS Tumor (w/ Barrett’s history) Fusobacterium nucleatum 4 2 50.00000
analysis.dat <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  mutate(
    Abund = Abundance*100
  )

#root function
root<-function(x){
  x <- ifelse(x < 0, 0, x)
  x**(0.2)
}
#inverse root function
invroot<-function(x){
  x**(5)
}

p <- ggplot(analysis.dat, aes(sample_type, Abund)) +
  geom_violin(scale="width", adjust=2)+
  geom_point(alpha=0.75)+
  scale_y_continuous(
    trans=scales::trans_new("root", root, invroot),
    breaks=c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    labels = c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    limits = c(0, 110)
  )+
  annotate(
    "text", x=c(1:7), y=c(rep(110, 7)),
    label=c(paste0(round(tb[1,5], 0),"% (",tb[1,4],"/",tb[1,3],")"), 
            paste0(round(tb[2,5], 0),"% (",tb[2,4],"/",tb[2,3],")"),
            paste0(round(tb[3,5], 0),"% (",tb[3,4],"/",tb[3,3],")"),
            paste0(round(tb[4,5], 0),"% (",tb[4,4],"/",tb[4,3],")"),
            paste0(round(tb[5,5], 0),"% (",tb[5,4],"/",tb[5,3],")"),
            paste0(round(tb[6,5], 0),"% (",tb[6,4],"/",tb[6,3],")"),
            paste0(round(tb[7,5], 0),"% (",tb[7,4],"/",tb[7,3],")"))
  )+
  labs(x=NULL, y="% Abundance")+
  theme(
    axis.text.x = element_text(angle=30, hjust=0.95, vjust=0.95)
  )
p

ggsave("output/Barretts_violin-fuso.pdf", p, units = "in", width = 10, height = 6)

Violin Plot Strepto

# merge datasets by subsetting to specific variables then merging
analysis.dat <- dat.16s.s %>% 
  dplyr::mutate(ID = as.factor(accession.number)) %>%
  dplyr::select(OTU, sample_type, Abundance, ID, source)

dat <- dat.rna.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)
analysis.dat <- full_join(analysis.dat, dat)

dat <- dat.wgs.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)

analysis.dat <- full_join(analysis.dat, dat) %>%
  mutate(pres = ifelse(Abundance > 0, 1, 0)) %>%
  filter(OTU%like%"Streptococcus")# create a presence/absences variable


tb <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  group_by(sample_type, OTU) %>%
  summarise(
    N=n(),
    p = sum(pres, na.rm=T),
    percent = p/N*100
  )

kable(tb, format="html")%>%
  kable_styling(full_width = T)
sample_type OTU N p percent
16SrRNA Barrett’s (BO) Streptococcus spp. (not uniquely identified) 5 5 100.00000
16SrRNA Non-tumor (w/ Barrett’s history) Streptococcus spp. (not uniquely identified) 43 41 95.34884
16SrRNA Tumor (w/ Barrett’s history) Streptococcus spp. (not uniquely identified) 35 33 94.28571
RNA-seq Non-tumor (w/ Barrett’s history) Streptococcus sanguinis 3 2 66.66667
RNA-seq Tumor (w/ Barrett’s history) Streptococcus sanguinis 26 6 23.07692
WGS Non-tumor (w/ Barrett’s history) Streptococcus sanguinis 6 2 33.33333
WGS Tumor (w/ Barrett’s history) Streptococcus sanguinis 4 2 50.00000
analysis.dat <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  mutate(
    Abund = Abundance*100
  )

#root function
root<-function(x){
  x <- ifelse(x < 0, 0, x)
  x**(0.2)
}
#inverse root function
invroot<-function(x){
  x**(5)
}

p <- ggplot(analysis.dat, aes(sample_type, Abund)) +
  geom_violin(scale="width", adjust=2)+
  geom_point(alpha=0.75)+
  scale_y_continuous(
    trans=scales::trans_new("root", root, invroot),
    breaks=c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    labels = c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    limits = c(0, 110)
  )+
  annotate(
    "text", x=c(1:7), y=c(rep(110, 7)),
    label=c(paste0(round(tb[1,5], 0),"% (",tb[1,4],"/",tb[1,3],")"), 
            paste0(round(tb[2,5], 0),"% (",tb[2,4],"/",tb[2,3],")"),
            paste0(round(tb[3,5], 0),"% (",tb[3,4],"/",tb[3,3],")"),
            paste0(round(tb[4,5], 0),"% (",tb[4,4],"/",tb[4,3],")"),
            paste0(round(tb[5,5], 0),"% (",tb[5,4],"/",tb[5,3],")"),
            paste0(round(tb[6,5], 0),"% (",tb[6,4],"/",tb[6,3],")"),
            paste0(round(tb[7,5], 0),"% (",tb[7,4],"/",tb[7,3],")"))
  )+
  labs(x=NULL, y="% Abundance")+
  theme(
    axis.text.x = element_text(angle=30, hjust=0.95, vjust=0.95)
  )
p

ggsave("output/Barretts_violin-strepto.pdf", p, units = "in", width = 10, height = 6)

Violin Plot Campy

# merge datasets by subsetting to specific variables then merging
analysis.dat <- dat.16s.s %>% 
  dplyr::mutate(ID = as.factor(accession.number)) %>%
  dplyr::select(OTU, sample_type, Abundance, ID, source)

dat <- dat.rna.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)
analysis.dat <- full_join(analysis.dat, dat)

dat <- dat.wgs.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)

analysis.dat <- full_join(analysis.dat, dat) %>%
  mutate(pres = ifelse(Abundance > 0, 1, 0)) %>%
  filter(OTU %like% "Campylobacter")# create a presence/absences variable


tb <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  group_by(sample_type, OTU) %>%
  summarise(
    N=n(),
    p = sum(pres, na.rm=T),
    percent = p/N*100
  )

kable(tb, format="html")%>%
  kable_styling(full_width = T)
sample_type OTU N p percent
16SrRNA Barrett’s (BO) Campylobacter spp. (not uniquely identified) 5 2 40.000000
16SrRNA Non-tumor (w/ Barrett’s history) Campylobacter spp. (not uniquely identified) 43 6 13.953488
16SrRNA Tumor (w/ Barrett’s history) Campylobacter spp. (not uniquely identified) 35 9 25.714286
RNA-seq Non-tumor (w/ Barrett’s history) Campylobacter concisus 3 0 0.000000
RNA-seq Tumor (w/ Barrett’s history) Campylobacter concisus 26 1 3.846154
WGS Non-tumor (w/ Barrett’s history) Campylobacter concisus 6 1 16.666667
WGS Tumor (w/ Barrett’s history) Campylobacter concisus 4 2 50.000000
analysis.dat <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  mutate(
    Abund = Abundance*100
  )

#root function
root<-function(x){
  x <- ifelse(x < 0, 0, x)
  x**(0.2)
}
#inverse root function
invroot<-function(x){
  x**(5)
}

p <- ggplot(analysis.dat, aes(sample_type, Abund)) +
  geom_violin(scale="width", adjust=2)+
  geom_point(alpha=0.75)+
  scale_y_continuous(
    trans=scales::trans_new("root", root, invroot),
    breaks=c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    labels = c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    limits = c(0, 110)
  )+
  annotate(
    "text", x=c(1:7), y=c(rep(110, 7)),
    label=c(paste0(round(tb[1,5], 0),"% (",tb[1,4],"/",tb[1,3],")"), 
            paste0(round(tb[2,5], 0),"% (",tb[2,4],"/",tb[2,3],")"),
            paste0(round(tb[3,5], 0),"% (",tb[3,4],"/",tb[3,3],")"),
            paste0(round(tb[4,5], 0),"% (",tb[4,4],"/",tb[4,3],")"),
            paste0(round(tb[5,5], 0),"% (",tb[5,4],"/",tb[5,3],")"),
            paste0(round(tb[6,5], 0),"% (",tb[6,4],"/",tb[6,3],")"),
            paste0(round(tb[7,5], 0),"% (",tb[7,4],"/",tb[7,3],")"))
  )+
  labs(x=NULL, y="% Abundance")+
  theme(
    axis.text.x = element_text(angle=30, hjust=0.95, vjust=0.95)
  )
p

ggsave("output/Barretts_violin-campy.pdf", p, units = "in", width = 10, height = 6)

Violin Plot Prevo

# merge datasets by subsetting to specific variables then merging
analysis.dat <- dat.16s.s %>% 
  dplyr::mutate(ID = as.factor(accession.number)) %>%
  dplyr::select(OTU, sample_type, Abundance, ID, source)

dat <- dat.rna.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)
analysis.dat <- full_join(analysis.dat, dat)

dat <- dat.wgs.s %>% 
  dplyr::select(OTU, sample_type, Abundance, ID, source)

analysis.dat <- full_join(analysis.dat, dat) %>%
  mutate(pres = ifelse(Abundance > 0, 1, 0)) %>%
  filter(OTU %like% "Prevotella")# create a presence/absences variable


tb <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  group_by(sample_type, OTU) %>%
  summarise(
    N=n(),
    p = sum(pres, na.rm=T),
    percent = p/N*100
  )

kable(tb, format="html")%>%
  kable_styling(full_width = T)
sample_type OTU N p percent
16SrRNA Barrett’s (BO) Prevotella spp. 5 4 80.00000
16SrRNA Non-tumor (w/ Barrett’s history) Prevotella spp. 43 28 65.11628
16SrRNA Tumor (w/ Barrett’s history) Prevotella spp. 35 27 77.14286
RNA-seq Non-tumor (w/ Barrett’s history) Prevotella denticola 3 1 33.33333
RNA-seq Non-tumor (w/ Barrett’s history) Prevotella intermedia 3 2 66.66667
RNA-seq Non-tumor (w/ Barrett’s history) Prevotella melaninogenica 3 2 66.66667
RNA-seq Non-tumor (w/ Barrett’s history) Prevotella ruminicola 3 1 33.33333
RNA-seq Tumor (w/ Barrett’s history) Prevotella denticola 26 4 15.38462
RNA-seq Tumor (w/ Barrett’s history) Prevotella intermedia 26 3 11.53846
RNA-seq Tumor (w/ Barrett’s history) Prevotella melaninogenica 26 5 19.23077
RNA-seq Tumor (w/ Barrett’s history) Prevotella ruminicola 26 0 0.00000
WGS Non-tumor (w/ Barrett’s history) Prevotella denticola 6 1 16.66667
WGS Non-tumor (w/ Barrett’s history) Prevotella intermedia 6 2 33.33333
WGS Non-tumor (w/ Barrett’s history) Prevotella melaninogenica 6 1 16.66667
WGS Non-tumor (w/ Barrett’s history) Prevotella ruminicola 6 0 0.00000
WGS Tumor (w/ Barrett’s history) Prevotella denticola 4 1 25.00000
WGS Tumor (w/ Barrett’s history) Prevotella intermedia 4 1 25.00000
WGS Tumor (w/ Barrett’s history) Prevotella melaninogenica 4 3 75.00000
WGS Tumor (w/ Barrett’s history) Prevotella ruminicola 4 0 0.00000
analysis.dat <- analysis.dat %>%
  filter(is.na(sample_type)==F)%>%
  mutate(
    Abund = Abundance*100
  )

#root function
root<-function(x){
  x <- ifelse(x < 0, 0, x)
  x**(0.2)
}
#inverse root function
invroot<-function(x){
  x**(5)
}

p <- ggplot(analysis.dat, aes(sample_type, Abund)) +
  geom_violin(scale="width", adjust=2)+
  geom_point(alpha=0.75)+
  scale_y_continuous(
    trans=scales::trans_new("root", root, invroot),
    breaks=c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    labels = c(0, 0.001,0.01, 0.1, 1,10,50, 100),
    limits = c(0, 110)
  )+
  annotate(
    "text", x=c(1:7), y=c(rep(110, 7)),
    label=c(paste0(round(tb[1,5], 0),"% (",tb[1,4],"/",tb[1,3],")"), 
            paste0(round(tb[2,5], 0),"% (",tb[2,4],"/",tb[2,3],")"),
            paste0(round(tb[3,5], 0),"% (",tb[3,4],"/",tb[3,3],")"),
            paste0(round(tb[4,5], 0),"% (",tb[4,4],"/",tb[4,3],")"),
            paste0(round(tb[5,5], 0),"% (",tb[5,4],"/",tb[5,3],")"),
            paste0(round(tb[6,5], 0),"% (",tb[6,4],"/",tb[6,3],")"),
            paste0(round(tb[7,5], 0),"% (",tb[7,4],"/",tb[7,3],")"))
  )+
  labs(x=NULL, y="% Abundance")+
  theme(
    axis.text.x = element_text(angle=30, hjust=0.95, vjust=0.95)
  )
p

ggsave("output/Barretts_violin-prevo.pdf", p, units = "in", width = 10, height = 6)

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_1.1.1     dendextend_1.14.0 ggdendro_0.1.22   reshape2_1.4.4   
 [5] car_3.0-10        carData_3.0-4     gvlma_1.0.0.3     patchwork_1.1.1  
 [9] viridis_0.5.1     viridisLite_0.3.0 gridExtra_2.3     xtable_1.8-4     
[13] kableExtra_1.3.4  MASS_7.3-53.1     data.table_1.14.0 readxl_1.3.1     
[17] forcats_0.5.1     stringr_1.4.0     dplyr_1.0.5       purrr_0.3.4      
[21] readr_1.4.0       tidyr_1.1.3       tibble_3.1.0      ggplot2_3.3.3    
[25] tidyverse_1.3.0   lmerTest_3.1-3    lme4_1.1-26       Matrix_1.2-18    
[29] vegan_2.5-7       lattice_0.20-41   permute_0.9-5     phyloseq_1.34.0  
[33] workflowr_1.6.2  

loaded via a namespace (and not attached):
  [1] minqa_1.2.4         colorspace_2.0-0    rio_0.5.26         
  [4] ellipsis_0.3.1      rprojroot_2.0.2     XVector_0.30.0     
  [7] fs_1.5.0            rstudioapi_0.13     farver_2.1.0       
 [10] fansi_0.4.2         lubridate_1.7.10    xml2_1.3.2         
 [13] codetools_0.2-16    splines_4.0.3       knitr_1.31         
 [16] ade4_1.7-16         jsonlite_1.7.2      nloptr_1.2.2.2     
 [19] broom_0.7.5         cluster_2.1.0       dbplyr_2.1.0       
 [22] BiocManager_1.30.10 compiler_4.0.3      httr_1.4.2         
 [25] backports_1.2.1     assertthat_0.2.1    cli_2.3.1          
 [28] later_1.1.0.1       htmltools_0.5.1.1   prettyunits_1.1.1  
 [31] tools_4.0.3         igraph_1.2.6        gtable_0.3.0       
 [34] glue_1.4.2          Rcpp_1.0.6          Biobase_2.50.0     
 [37] cellranger_1.1.0    jquerylib_0.1.3     vctrs_0.3.6        
 [40] Biostrings_2.58.0   rhdf5filters_1.2.0  multtest_2.46.0    
 [43] svglite_2.0.0       ape_5.4-1           nlme_3.1-149       
 [46] iterators_1.0.13    xfun_0.21           ps_1.6.0           
 [49] openxlsx_4.2.3      rvest_1.0.0         lifecycle_1.0.0    
 [52] statmod_1.4.35      zlibbioc_1.36.0     scales_1.1.1       
 [55] hms_1.0.0           promises_1.2.0.1    parallel_4.0.3     
 [58] biomformat_1.18.0   rhdf5_2.34.0        curl_4.3           
 [61] yaml_2.2.1          sass_0.3.1          stringi_1.5.3      
 [64] highr_0.8           S4Vectors_0.28.1    foreach_1.5.1      
 [67] BiocGenerics_0.36.0 zip_2.1.1           boot_1.3-25        
 [70] systemfonts_1.0.1   rlang_0.4.10        pkgconfig_2.0.3    
 [73] evaluate_0.14       Rhdf5lib_1.12.1     tidyselect_1.1.0   
 [76] plyr_1.8.6          magrittr_2.0.1      R6_2.5.0           
 [79] IRanges_2.24.1      generics_0.1.0      DBI_1.1.1          
 [82] foreign_0.8-80      pillar_1.5.1        haven_2.3.1        
 [85] whisker_0.4         withr_2.4.1         mgcv_1.8-33        
 [88] abind_1.4-5         survival_3.2-7      modelr_0.1.8       
 [91] crayon_1.4.1        utf8_1.1.4          rmarkdown_2.7      
 [94] progress_1.2.2      grid_4.0.3          git2r_0.28.0       
 [97] webshot_0.5.2       reprex_1.0.0        digest_0.6.27      
[100] httpuv_1.5.5        numDeriv_2016.8-1.1 stats4_4.0.3       
[103] munsell_0.5.0       bslib_0.2.4