Last updated: 2020-10-22

Checks: 6 1

Knit directory: esoph-micro-cancer-workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200916) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5b186b4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/

Untracked files:
    Untracked:  analysis/ids_abundance_misc.Rmd

Unstaged changes:
    Modified:   analysis/data_processing_nci_umd.Rmd
    Modified:   analysis/data_processing_tcga.Rmd
    Modified:   code/get_cleaned_data.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/data_processing_nci_umd.Rmd) and HTML (docs/data_processing_nci_umd.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5b186b4 noah-padgett 2020-10-08 fixed image showing
html 5b186b4 noah-padgett 2020-10-08 fixed image showing
html aaf0192 noah-padgett 2020-09-24 Build site.
Rmd 498a050 noah-padgett 2020-09-24 updated data processing
html 498a050 noah-padgett 2020-09-24 updated data processing
Rmd ec3d151 noah-padgett 2020-09-24 updated processing files
Rmd 0159b72 noah-padgett 2020-09-23 initial commit
html 0159b72 noah-padgett 2020-09-23 initial commit

Make table of sequencial cut-offs where we removed OTUs

This page contains the investigation of the raw data (OTUs) to identify if outliers are present or whether other issues emerge that may influence our results in unexpected ways. This file goes through the following checks:

  1. Removal of Phylum NA features
  2. Computation of total and average prevalence in each Phylum
  3. Removal Phyla with 1% or less of all samples
  4. Computation of total read count for each Phyla
  5. Plotting taxa prevalence vs total counts - identify a natural threshold if clear, if not use 5%
  6. Merging taxa to genus rank/level
  7. Abundance Value Transformations
  8. Plotting of abundance values by “Intervention A or B” before transformation and after
  9. Checking of any bimodal distributions using “subset_taxa” function and plot by “intervention”

Taxonomic Filtering

0. Sample Reads, Totals, and Rarifying

sampleReads <- phyloseq::sample_sums(phylo.data.nci.umd)

# Total quality Reads
sum(sampleReads)
[1] 79000
# Average reads
mean(sampleReads)
[1] 500
# max sequencing depth
max(sampleReads)
[1] 500
# rarified to an even depth of
phylo.data.nci.umd <- phyloseq::rarefy_even_depth(phylo.data.nci.umd, replace = T, rngseed = 20200923)
`set.seed(20200923)` was used to initialize repeatable random subsampling.
Please record this for your records so others can reproduce.
Try `set.seed(20200923); .Random.seed` for the full vector
...
25OTUs were removed because they are no longer 
present in any sample after random subsampling
...
# even depth of:
phyloseq::sample_sums(phylo.data.nci.umd)
      1.S37.Jun172016 100.D06.S42.Jul202017     102.S57.Jun172016 
                  500                   500                   500 
    103.S58.Jun172016     104.S23.Jun172016 106.E02.S50.Jun232016 
                  500                   500                   500 
108.E06.S54.Jul202017     109.S70.Jun172016  11.B08.S20.Jun232016 
                  500                   500                   500 
    110.S69.Jun172016 112.F02.S62.Jun232016 113.F01.S61.Jun232016 
                  500                   500                   500 
    114.S41.Jun172016     118.S82.Jun172016 119.G01.S73.Jun232016 
                  500                   500                   500 
121.G05.S77.Jul202017     124.S93.Jun172016 125.H06.S90.Jul202017 
                  500                   500                   500 
     127.S6.Jun172016      128.S5.Jun172016  129.A01.S1.Jul202017 
                  500                   500                   500 
     13.S20.Jun172016  130.A02.S2.Jul202017     131.S62.Jun172016 
                  500                   500                   500 
134.F11.S71.Jun172016 135.B06.S18.Jun232016 137.F09.S69.Jul202017 
                  500                   500                   500 
139.F07.S67.Jun232016 140.B02.S14.Jul202017 142.E08.S56.Jul202017 
                  500                   500                   500 
143.G08.S80.Jul202017 145.D09.S45.Jul202017     146.S29.Jun172016 
                  500                   500                   500 
    148.S30.Jun172016 149.C05.S29.Jun232016 150.C06.S30.Jun232016 
                  500                   500                   500 
151.E03.S51.Jun232016 152.H07.S91.Jun232016 154.C02.S26.Jul202017 
                  500                   500                   500 
155.C09.S33.Jul202017     156.S42.Jun172016 157.D05.S41.Jun232016 
                  500                   500                   500 
158.D06.S42.Jun232016 159.B10.S22.Jul202017      16.S38.Jun172016 
                  500                   500                   500 
160.E04.S52.Jun232016 162.G04.S76.Jun232016     165.S54.Jun172016 
                  500                   500                   500 
166.E06.S54.Jun232016 167.E05.S53.Jun232016     168.S59.Jun172016 
                  500                   500                   500 
     17.S14.Jun172016 170.E02.S50.Jul202017     172.S65.Jun172016 
                  500                   500                   500 
    173.S66.Jun172016     174.S76.Jun172016     175.S88.Jun172016 
                  500                   500                   500 
176.H07.S91.Jul202017 178.F02.S62.Jul202017 179.F01.S61.Jul202017 
                  500                   500                   500 
     18.S35.Jun172016 181.D02.S38.Jul202017     184.S61.Jun172016 
                  500                   500                   500 
185.G08.S80.Jun232016     186.S77.Jun172016     187.S78.Jun172016 
                  500                   500                   500 
188.G06.S78.Jun232016 189.G05.S77.Jun232016      19.S25.Jun172016 
                  500                   500                   500 
190.G01.S73.Jul202017 191.G02.S74.Jul202017 194.H05.S89.Jun232016 
                  500                   500                   500 
195.H06.S90.Jun232016 196.D08.S44.Jun232016 197.G07.S79.Jul202017 
                  500                   500                   500 
198.F03.S63.Jun232016 199.A11.S11.Jun232016       2.S16.Jun172016 
                  500                   500                   500 
  20.A09.S9.Jun232016     200.S96.Jun172016 201.H02.S86.Jun242016 
                  500                   500                   500 
202.D07.S43.Jul202017      204.S1.Jun172016      205.S2.Jun172016 
                  500                   500                   500 
    206.S51.Jun172016 208.D03.S39.Jun232016  211.A07.S7.Jun232016 
                  500                   500                   500 
 212.A08.S8.Jun232016  22.C07.S31.Jun232016     226.S50.Jun172016 
                  500                   500                   500 
    227.S74.Jun172016     229.S79.Jun172016      23.S75.Jun172016 
                  500                   500                   500 
233.G07.S79.Jun232016 234.C07.S31.Jul202017 239.D09.S45.Jun232016 
                  500                   500                   500 
     24.S92.Jun172016  25.C03.S27.Jul202017  26.H04.S88.Jun232016 
                  500                   500                   500 
 27.F09.S69.Jun232016      28.S87.Jun172016      29.S31.Jun172016 
                  500                   500                   500 
 31.C08.S32.Jun232016      32.S52.Jun172016  33.F03.S63.Jul202017 
                  500                   500                   500 
 34.C10.S34.Jun232016   35.A03.S3.Jul202017  36.F04.S64.Jul202017 
                  500                   500                   500 
     37.S32.Jun172016  38.C09.S33.Jun232016       4.S13.Jun172016 
                  500                   500                   500 
  42.A04.S4.Jul202017      43.S49.Jun172016  46.C04.S28.Jul202017 
                  500                   500                   500 
     47.S44.Jun172016      48.S43.Jun172016      49.S47.Jun172016 
                  500                   500                   500 
       5.S4.Jun172016      50.S56.Jun172016      51.S55.Jun172016 
                  500                   500                   500 
 52.E10.S58.Jun232016  53.E09.S57.Jun232016  54.G11.S83.Jul202017 
                  500                   500                   500 
 55.E03.S51.Jul202017      57.S68.Jun172016      58.S67.Jun172016 
                  500                   500                   500 
     59.S72.Jun172016   6.A10.S10.Jun232016  60.C10.S34.Jul202017 
                  500                   500                   500 
 61.G09.S81.Jun232016  62.G10.S82.Jun232016  63.D03.S39.Jul202017 
                  500                   500                   500 
 66.G04.S76.Jul202017  67.D10.S46.Jul202017      68.S91.Jun172016 
                  500                   500                   500 
   7.A08.S8.Jul202017  70.H09.S93.Jun232016  71.H10.S94.Jun232016 
                  500                   500                   500 
 73.H04.S88.Jul202017  74.H03.S87.Jul202017      77.S10.Jun172016 
                  500                   500                   500 
      79.S3.Jun172016        8.S8.Jun172016   80.A01.S1.Jun232016 
                  500                   500                   500 
  81.A02.S2.Jun232016   82.A05.S5.Jul202017   83.A06.S6.Jul202017 
                  500                   500                   500 
     84.S22.Jun172016  86.B02.S14.Jun232016  87.B01.S13.Jun232016 
                  500                   500                   500 
 88.B05.S17.Jul202017  89.B06.S18.Jul202017      90.S33.Jun172016 
                  500                   500                   500 
 95.C06.S30.Jul202017      96.S46.Jun172016      97.S45.Jun172016 
                  500                   500                   500 
 98.D02.S38.Jun232016  99.D01.S37.Jun232016 
                  500                   500 

1. Removal of Phylum NA features

# show ranks
phyloseq::rank_names(phylo.data.nci.umd)
[1] "Kingdom" "Phylum"  "Class"   "Order"   "Family"  "Genus"  
# table of features for each phylum
table(phyloseq::tax_table(phylo.data.nci.umd)[,"Phylum"], exclude=NULL)

     p__Acidobacteria     p__Actinobacteria      p__Bacteroidetes 
                    2                   110                    89 
       p__Chloroflexi p__DeinococcusThermus         p__Firmicutes 
                    2                     7                   242 
      p__Fusobacteria     p__Planctomycetes     p__Proteobacteria 
                   23                     2                   287 
      p__Spirochaetes      p__Synergistetes        p__Tenericutes 
                    4                     2                     2 
               p__TM7         p__unassigned    p__Verrucomicrobia 
                    3                     3                     3 

Note that no taxa were labels as NA so none were removed.

2. Computation of total and average prevalence in each Phylum

# compute prevalence of each feature
prevdf <- apply(X=phyloseq::otu_table(phylo.data.nci.umd), 
                MARGIN= ifelse(phyloseq::taxa_are_rows(phylo.data.nci.umd), yes=1, no=2),
                FUN=function(x){sum(x>0)})
# store as data.frame with labels
prevdf <- data.frame(Prevalence=prevdf,
                     TotalAbundance=phyloseq::taxa_sums(phylo.data.nci.umd),
                     phyloseq::tax_table(phylo.data.nci.umd))

Compute the totals and averages abundances.

totals <- plyr::ddply(prevdf, "Phylum",
            function(df1){
              A <- cbind(mean(df1$Prevalence), sum(df1$Prevalence))
              colnames(A) <- c("Average", "Total")
              A
              }
            ) # end

totals
                  Phylum   Average Total
1       p__Acidobacteria  1.000000     2
2      p__Actinobacteria  4.190909   461
3       p__Bacteroidetes  6.292135   560
4         p__Chloroflexi  1.500000     3
5  p__DeinococcusThermus  1.000000     7
6          p__Firmicutes  8.834711  2138
7        p__Fusobacteria  8.260870   190
8      p__Planctomycetes  1.000000     2
9      p__Proteobacteria  3.811847  1094
10       p__Spirochaetes  2.750000    11
11      p__Synergistetes  2.500000     5
12        p__Tenericutes  2.000000     4
13                p__TM7 10.333333    31
14         p__unassigned  1.000000     3
15    p__Verrucomicrobia  1.000000     3

Any of the taxa under a total of 100 may be suspect. First, we will remove the taxa that are clearly too low in abundance (<=5).

filterPhyla <- totals$Phylum[totals$Total <= 5, drop=T] # drop allows some of the attributes to be removed

phylo.data1 <- phyloseq::subset_taxa(phylo.data.nci.umd, !Phylum %in% filterPhyla)
phylo.data1
phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 765 taxa and 158 samples ]
sample_data() Sample Data:       [ 158 samples by 78 sample variables ]
tax_table()   Taxonomy Table:    [ 765 taxa by 6 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 765 tips and 763 internal nodes ]

Next, we explore the taxa in more detail next as we move to remove some of these low abundance taxa.

3. Removal Phyla with 1% or less of all samples (prevalence filtering)

prevdf1 <- subset(prevdf, Phylum %in% phyloseq::get_taxa_unique(phylo.data1, "Phylum"))

4. Total count computation

# already done above ()

5. Threshold identification

ggplot(prevdf1, aes(TotalAbundance+1,
                    Prevalence/nsamples(phylo.data.nci.umd))) +
  geom_hline(yintercept=0.01, alpha=0.5, linetype=2)+
  geom_point(size=2, alpha=0.75) +
  scale_x_log10()+
  labs(x="Total Abundance", y="Prevalance [Frac. Samples]")+
  facet_wrap(.~Phylum) + theme(legend.position = "none")

Note: for plotting purposes, a \(+1\) was added to all TotalAbundances to avoid a taking the log of 0.

Next, we define a prevalence threshold, that way the taxa can be pruned to a prespecified level. In this study, we used 0.01 (1%) of total samples.

prevalenceThreshold <- 0.01*(phyloseq::nsamples(phylo.data.nci.umd))
prevalenceThreshold
[1] 1.58
# execute the filtering to this level
keepTaxa <- rownames(prevdf1)[(prevdf1$Prevalence >= prevalenceThreshold)]
phylo.data2 <- phyloseq::prune_taxa(keepTaxa, phylo.data1)

6. Merge taxa (to genus level)

genusNames <- phyloseq::get_taxa_unique(phylo.data2, "Genus")
#phylo.data3 <- merge_taxa(phylo.data2, genusNames, genusNames[which.max(taxa_sums(phylo.data2)[genusNames])])


# How many genera would be present after filtering?
length(phyloseq::get_taxa_unique(phylo.data2, taxonomic.rank = "Genus"))
[1] 144
## [1] 144

phylo.data3 = phyloseq::tax_glom(phylo.data2, "Genus", NArm = TRUE)

7. Relative Adbundance Plot

plot_abundance = function(physeq, title = "", ylab="Abundance"){
  mphyseq = phyloseq::psmelt(physeq)
  mphyseq <- subset(mphyseq, Abundance > 0)
  ggplot(data = mphyseq, aes(x=tissue, y=Abundance)) +
    geom_violin(fill = NA) +
    geom_point(size = 1, alpha = 0.9,
    position = position_jitter(width = 0.3)) +
    scale_y_log10()+
    labs(y=ylab)+
    theme(legend.position="none")
}


# Transform to relative abundance. Save as new object.
phylo.data3ra = transform_sample_counts(phylo.data3, function(x){x / sum(x)})


plotBefore = plot_abundance(phylo.data3, ylab="Abundance prior to transformation")
plotAfter = plot_abundance(phylo.data3ra, ylab="Relative Abundance")
# Combine each plot into one graphic.
plotBefore + plotAfter + plot_layout(nrow=2)

8. Plotting Abundance

Abundance by Phylum

plot_abundance = function(physeq, title = "", Facet = "Phylum", ylab="Abundance"){
  mphyseq <- phyloseq::psmelt(physeq)
  mphyseq <- subset(mphyseq, Abundance > 0)
  ggplot(data = mphyseq, aes(x=tissue, y=Abundance)) +
    geom_violin(fill = NA) +
    geom_point(size = 1, alpha = 0.9,
              position = position_jitter(width = 0.3)) +
    facet_wrap(facets = Facet) + scale_y_log10()+
    labs(y=ylab)+
    theme(legend.position="none")
}

plotBefore = plot_abundance(phylo.data3,
                            ylab="Abundance prior to transformation")
plotAfter = plot_abundance(phylo.data3ra,
                           ylab="Relative Abundance")

plotBefore + plotAfter + plot_layout(nrow=2)

Phylum: Fusobacteria

plot_abundance = function(physeq, title = "", Facet = "Genus", ylab="Abundance"){
  mphyseq = phyloseq::subset_taxa(physeq, Phylum %in% "p__Fusobacteria")
  mphyseq <- phyloseq::psmelt(mphyseq)
  mphyseq <- subset(mphyseq, Abundance > 0)
  ggplot(data = mphyseq, aes(x=tissue, y=Abundance)) +
    geom_violin(fill = NA) +
    geom_point(size = 1, alpha = 0.9,
               position = position_jitter(width = 0.3)) +
    facet_wrap(facets = Facet) + scale_y_log10()+
    labs(y=ylab)+
    theme(legend.position="none")
}

plotBefore = plot_abundance(phylo.data3,
                            ylab="Abundance prior to transformation")
plotAfter = plot_abundance(phylo.data3ra,
                           ylab="Relative Abundance")

plotBefore + plotAfter + plot_layout(nrow=2)


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] car_3.0-8         carData_3.0-4     gvlma_1.0.0.3     patchwork_1.0.1  
 [5] viridis_0.5.1     viridisLite_0.3.0 gridExtra_2.3     xtable_1.8-4     
 [9] kableExtra_1.1.0  plyr_1.8.6        data.table_1.13.0 readxl_1.3.1     
[13] forcats_0.5.0     stringr_1.4.0     dplyr_1.0.1       purrr_0.3.4      
[17] readr_1.3.1       tidyr_1.1.1       tibble_3.0.3      ggplot2_3.3.2    
[21] tidyverse_1.3.0   lmerTest_3.1-2    lme4_1.1-23       Matrix_1.2-18    
[25] vegan_2.5-6       lattice_0.20-41   permute_0.9-5     phyloseq_1.32.0  
[29] workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] minqa_1.2.4         colorspace_1.4-1    rio_0.5.16         
 [4] ellipsis_0.3.1      rprojroot_1.3-2     XVector_0.28.0     
 [7] fs_1.5.0            rstudioapi_0.11     farver_2.0.3       
[10] fansi_0.4.1         lubridate_1.7.9     xml2_1.3.2         
[13] codetools_0.2-16    splines_4.0.2       knitr_1.29         
[16] ade4_1.7-15         jsonlite_1.7.0      nloptr_1.2.2.2     
[19] broom_0.7.0         cluster_2.1.0       dbplyr_1.4.4       
[22] BiocManager_1.30.10 compiler_4.0.2      httr_1.4.2         
[25] backports_1.1.7     assertthat_0.2.1    cli_2.0.2          
[28] later_1.1.0.1       htmltools_0.5.0     tools_4.0.2        
[31] igraph_1.2.5        gtable_0.3.0        glue_1.4.1         
[34] reshape2_1.4.4      Rcpp_1.0.5          Biobase_2.48.0     
[37] cellranger_1.1.0    vctrs_0.3.2         Biostrings_2.56.0  
[40] multtest_2.44.0     ape_5.4             nlme_3.1-148       
[43] iterators_1.0.12    xfun_0.16           openxlsx_4.1.5     
[46] rvest_0.3.6         lifecycle_0.2.0     statmod_1.4.34     
[49] zlibbioc_1.34.0     MASS_7.3-51.6       scales_1.1.1       
[52] hms_0.5.3           promises_1.1.1      parallel_4.0.2     
[55] biomformat_1.16.0   rhdf5_2.32.2        curl_4.3           
[58] yaml_2.2.1          stringi_1.4.6       S4Vectors_0.26.1   
[61] foreach_1.5.0       BiocGenerics_0.34.0 zip_2.0.4          
[64] boot_1.3-25         rlang_0.4.7         pkgconfig_2.0.3    
[67] evaluate_0.14       Rhdf5lib_1.10.1     labeling_0.3       
[70] tidyselect_1.1.0    magrittr_1.5        R6_2.4.1           
[73] IRanges_2.22.2      generics_0.0.2      DBI_1.1.0          
[76] foreign_0.8-80      pillar_1.4.6        haven_2.3.1        
[79] whisker_0.4         withr_2.2.0         mgcv_1.8-31        
[82] abind_1.4-5         survival_3.2-3      modelr_0.1.8       
[85] crayon_1.3.4        rmarkdown_2.3       grid_4.0.2         
[88] blob_1.2.1          git2r_0.27.1        reprex_0.3.0       
[91] digest_0.6.25       webshot_0.5.2       httpuv_1.5.4       
[94] numDeriv_2016.8-1.1 stats4_4.0.2        munsell_0.5.0