Last updated: 2025-08-21

Checks: 7 0

Knit directory: genomics_ancest_disease_dispar/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 605013e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/gwas_catalog/
    Ignored:    output/gwas_study_info_cohort_corrected.csv

Untracked files:
    Untracked:  data/.DS_Store
    Untracked:  renv/

Unstaged changes:
    Modified:   .Rprofile
    Modified:   code/collapse_diseases.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/icite_rcr.Rmd) and HTML (docs/icite_rcr.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d0edbb8 IJbeasley 2025-08-06 Halfway through converting cohorts
html 88e1648 IJbeasley 2025-08-05 Build site.
Rmd 852dd98 IJbeasley 2025-08-05 Convert icite analysis to workflowr page

knitr::opts_chunk$set(
  echo = TRUE,
  message = FALSE,
  warning = FALSE
)
library(httr)
library(jsonlite)
library(dplyr)
library(data.table)
library(purrr)
library(ggplot2)

Overview

  • Retrieves citation metrics from NIH’s iCite API for publications listed in the GWAS Catalog (like in Reales & Wallace, 2023 - sharing gwas data results in more citations)
  • Due to iCite API limitations, PMIDs of papers in the GWAS catalog are queried in chunks.
  • Note: tried iciteR R package (as I believe Reales & Wallace do) but found it didn’t retrieve the complete set of metrics - I think because adding &format=csv to api call seems to cause problems example call: iCiteR::get_metrics(“27599104”)

1. Define Function to Query iCite API

Define a helper function that accepts a chunk of PMIDs and returns a data frame with citation data.

# Function to fetch a chunk of PMIDs from the iCite API
fetch_icite_chunk <- function(pmid_chunk) {
  pmid_vec <- paste0(pmid_chunk, collapse = ",")
  
  # Construct API URL
  url <- paste0("https://icite.od.nih.gov/api/pubs?pmids=", 
                pmid_vec)
  
  # Perform GET request
  response <- GET(url)
  
  # Parse the response content as JSON
  data_list <- fromJSON(content(response, "text"), flatten = TRUE)
  
  # Convert to data frame
  pub_df <- as.data.frame(data_list)
  
  # Remove "data." prefix from column names
  pub_df <- pub_df |> rename_all(~gsub("data.", "", .x))
  
  # Drop large nested citation data (optional)
  pub_df <- pub_df |> select(-c(citedByPmidsByYear))
  
  return(pub_df)
}

2. Load and Clean GWAS Catalog Study Data

Extract unique PMIDs for papers from the GWAS catalog

# Load GWAS Catalog studies
gwas_study_info <- fread("data/gwas_catalog/gwas-catalog-v1.0.3.1-studies-r2025-07-21.tsv",
                         sep = "\t", quote = "")

# Standardize column names (remove spaces)
gwas_study_info <- gwas_study_info |> rename_all(~gsub(" ", "_", .x))

# Extract unique publication information
gwas_study_info <- gwas_study_info |>
  select(FIRST_AUTHOR, DATE, JOURNAL, PUBMED_ID) |>
  distinct()

# Vector of PMIDs
pmid <- gwas_study_info$PUBMED_ID

3. Fetch Citation Metrics from iCite

To comply with iCite rate limits, we split the PMIDs into batches (≤ 400 per request) and apply our fetch function.

# Split PMIDs into chunks of 400
pmid_chunks <- split(pmid, ceiling(seq_along(pmid) / 400))

# Fetch citation metrics for all chunks
all_results <- map_dfr(pmid_chunks, fetch_icite_chunk)

Confirm RCR calculations match provided equation

# Check if RCR ≈ citations_per_year / expected_citations_per_year
check = all_results |>
  select(field_citation_rate,
         expected_citations_per_year,
         citations_per_year,
         relative_citation_ratio) |>
  mutate(calculated_rcr = citations_per_year / expected_citations_per_year)

head(check)
  field_citation_rate expected_citations_per_year citations_per_year
1            7.254935                    2.838550           5.000000
2            7.241446                    2.834556           3.428571
3            8.243854                    3.116852          38.000000
4            8.075742                    3.131311          87.083333
5            8.682365                    3.545011           6.000000
6            8.981703                    3.644344          45.200000
  relative_citation_ratio calculated_rcr
1                1.761462       1.761462
2                1.209562       1.209562
3               12.191789      12.191789
4               27.810498      27.810498
5                1.692519       1.692519
6               12.402780      12.402780
check = check |> 
        filter(!is.na(relative_citation_ratio))

sum(check$calculated_rcr == check$relative_citation_ratio)
[1] 7012
nrow(check)
[1] 7012

Visual exploration of data

4. Distribution of citation metrics

# Example: Distribution of Relative Citation Ratios (RCR)
ggplot(all_results, aes(x = relative_citation_ratio)) +
  geom_histogram(bins = 50) +
  theme_minimal() +
  labs(title = "Distribution of RCR among GWAS publications",
       x = "Relative Citation Ratio (RCR)",
       y = "Count")

Version Author Date
88e1648 IJbeasley 2025-08-05
# Summary of citation counts
summary(all_results$relative_citation_ratio)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
  0.0000   0.7022   1.5072   3.6552   3.4473 214.2744      313 
# Distribution of raw citation counts
ggplot(all_results, aes(x = citation_count)) +
  geom_histogram() +
  theme_bw() + 
  labs(title = "Distribution of Raw Citation Counts among GWAS catalog publications")

Version Author Date
88e1648 IJbeasley 2025-08-05
# Summary of citation counts
summary(all_results$citation_count)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00   11.00   30.00   98.85   88.00 7167.00 

5. Investigate Missing and Zero RCRs

# Publication Year of Papers with NA RCR
all_results |>
  filter(is.na(relative_citation_ratio)) |>
  ggplot(aes(x = year)) +
  geom_histogram() +
  scale_x_continuous(breaks = seq(min(all_results$year, na.rm = TRUE),
                                  max(all_results$year, na.rm = TRUE), 1)) +
  theme_bw() +
  labs(title = "Publication Year of Papers with NA RCR")

Version Author Date
88e1648 IJbeasley 2025-08-05
# Count of NA RCR publications
all_results |>
  filter(is.na(relative_citation_ratio)) |>
  nrow()
[1] 313
# Values for other citation metrics for papers with
# NA RCR 
all_results |>
  filter(is.na(relative_citation_ratio)) |>
  select(field_citation_rate,
         expected_citations_per_year,
         citation_count,
         citations_per_year,
         relative_citation_ratio) |>
  head()
  field_citation_rate expected_citations_per_year citation_count
1           13.822219                          NA              3
2           10.571710                          NA              1
3                  NA                          NA              0
4           14.848473                          NA              2
5            8.535105                          NA              1
6            5.326717                          NA              4
  citations_per_year relative_citation_ratio
1                  3                      NA
2                  1                      NA
3                  0                      NA
4                  2                      NA
5                  1                      NA
6                  4                      NA
# Publication Year of Paper with zero RCR
all_results |>
  filter(relative_citation_ratio == 0) |>
  ggplot(aes(x = year)) +
  geom_histogram() +
  scale_x_continuous(breaks = seq(min(all_results$year, na.rm = TRUE),
                                  max(all_results$year, na.rm = TRUE), 1)) +
  theme_bw() + 
  labs(title = "Publication Year of Papers with Zero RCR")

Version Author Date
88e1648 IJbeasley 2025-08-05
# Count of zero RCR publications
all_results |>
  filter(relative_citation_ratio == 0) |>
  nrow()
[1] 36
# Values for other citation metrics for papers with
# zero RCR 
all_results |>
  filter(relative_citation_ratio == 0) |>
  select(field_citation_rate,
         expected_citations_per_year,
         citation_count,
         citations_per_year,
         relative_citation_ratio) |>
  head()
  field_citation_rate expected_citations_per_year citation_count
1           0.9545455                   0.7909298              0
2           3.0000000                   1.6893112              0
3           2.1426202                   0.8013203              0
4           2.2334348                   0.8352841              0
5           2.5710387                   0.9615448              0
6           1.2419355                   0.4644725              0
  citations_per_year relative_citation_ratio
1                  0                       0
2                  0                       0
3                  0                       0
4                  0                       0
5                  0                       0
6                  0                       0

6. Correlations Between Citation Metrics

# Spearman correlation: citation count vs RCR
cor(all_results$citation_count,
    all_results$relative_citation_ratio,
    method = "spearman",
    use = "pairwise.complete.obs")
[1] 0.8763393
# Spearman correlation: citations per year vs RCR
cor(all_results$citations_per_year,
    all_results$relative_citation_ratio,
    method = "spearman",
    use = "pairwise.complete.obs")
[1] 0.9867908

7. Relationships between citation metrics (scatterplots)

# RCR vs citation count (log x-axis)
ggplot(all_results, aes(x = citation_count + 1, y = relative_citation_ratio)) +
  scale_x_log10() +
  geom_point() +
  theme_bw()

Version Author Date
88e1648 IJbeasley 2025-08-05
# RCR vs expected citations per year
ggplot(all_results, aes(x = expected_citations_per_year, y = relative_citation_ratio)) +
  scale_x_log10() +
  geom_point() +
  theme_bw()

Version Author Date
88e1648 IJbeasley 2025-08-05
# RCR vs field citation rate
ggplot(all_results, aes(x = field_citation_rate, y = relative_citation_ratio)) +
  scale_x_log10() +
  geom_point() +
  theme_bw()

Version Author Date
88e1648 IJbeasley 2025-08-05

8. RCR Over Time (Like in Reales & Wallace)

Reales & Wallace observe bump in the RCR of papers published in the last two years (their conclusion is that citation metrics stabilise after two year) - do we observe the same trend?

# RCR vs publication year (raw scale)
all_results |>
  filter(!is.na(relative_citation_ratio), relative_citation_ratio != 0) |>
  ggplot(aes(x = year, y = relative_citation_ratio)) +
  geom_point() +
  theme_bw() + 
  labs(x = 'Year')

Version Author Date
88e1648 IJbeasley 2025-08-05
# RCR vs year (log y-axis)
all_results |>
  filter(!is.na(relative_citation_ratio), relative_citation_ratio != 0) |>
  ggplot(aes(x = year, y = relative_citation_ratio)) +
  scale_y_log10() +
  geom_point() +
  theme_bw() + 
  labs(title = "RCR over time",
       x = 'Year')

Version Author Date
88e1648 IJbeasley 2025-08-05
# Boxplot of RCRs per year
all_results |>
  filter(!is.na(relative_citation_ratio), relative_citation_ratio != 0) |>
  ggplot(aes(x = factor(year), y = relative_citation_ratio)) +
  geom_boxplot(outlier.size = 0.5) +
  scale_y_log10() +
  theme_bw() + 
  labs(x = 'Year')

Version Author Date
88e1648 IJbeasley 2025-08-05
# Citations per year over time
all_results |>
  filter(!is.na(relative_citation_ratio), relative_citation_ratio != 0) |>
  ggplot(aes(x = year, y = citations_per_year)) +
  geom_point() +
  theme_bw()

Version Author Date
88e1648 IJbeasley 2025-08-05

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Los_Angeles
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
[1] ggplot2_3.5.2     purrr_1.1.0       data.table_1.17.8 dplyr_1.1.4      
[5] jsonlite_2.0.0    httr_1.4.7        workflowr_1.7.1  

loaded via a namespace (and not attached):
 [1] gtable_0.3.6       compiler_4.3.1     renv_1.0.3         promises_1.3.3    
 [5] tidyselect_1.2.1   Rcpp_1.1.0         stringr_1.5.1      git2r_0.36.2      
 [9] callr_3.7.6        later_1.4.2        jquerylib_0.1.4    scales_1.4.0      
[13] yaml_2.3.10        fastmap_1.2.0      R6_2.6.1           labeling_0.4.3    
[17] generics_0.1.4     curl_6.4.0         knitr_1.50         tibble_3.3.0      
[21] rprojroot_2.1.0    RColorBrewer_1.1-3 bslib_0.9.0        pillar_1.11.0     
[25] rlang_1.1.6        cachem_1.1.0       stringi_1.8.7      httpuv_1.6.16     
[29] xfun_0.52          getPass_0.2-4      fs_1.6.6           sass_0.4.10       
[33] cli_3.6.5          withr_3.0.2        magrittr_2.0.3     ps_1.9.1          
[37] grid_4.3.1         digest_0.6.37      processx_3.8.6     rstudioapi_0.17.1 
[41] lifecycle_1.0.4    vctrs_0.6.5        evaluate_1.0.4     glue_1.8.0        
[45] farver_2.1.2       whisker_0.4.1      rmarkdown_2.29     tools_4.3.1       
[49] pkgconfig_2.0.3    htmltools_0.5.8.1