Last updated: 2020-08-31

Checks: 7 0

Knit directory: Embryoid_Body_Pilot_Workflowr/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200804) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 162da72. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory
    Ignored:    output/.Rhistory
    Ignored:    output/pdfs/

Untracked files:
    Untracked:  analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.1_minPCT0.2.Rmd
    Untracked:  analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.5_minPCT0.2.Rmd
    Untracked:  analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.8_minPCT0.2.Rmd
    Untracked:  analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes1_minPCT0.2.Rmd
    Untracked:  analysis/RunscHCL_HarmonyBatchInd.Rmd
    Untracked:  analysis/SingleCell_HierarchicalClustering_NoGeneFilter.Rmd
    Untracked:  analysis/child/
    Untracked:  code/ConvertToDGE.Rmd
    Untracked:  code/ConvertToDGE_PseudoBulk.Rmd
    Untracked:  code/EB.getHumanMetadata.Rmd
    Untracked:  code/get_genelist_byPCTthresh.Rmd
    Untracked:  figure/
    Untracked:  output/DGELists/
    Untracked:  output/GeneLists_by_minPCT/
    Untracked:  output/mergedObjects/
    Untracked:  output/sampleQCrds/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.5_minPCT0.2.Rmd) and HTML (docs/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.5_minPCT0.2.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 162da72 KLRhodes 2020-08-31 wflow_publish("analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.*")

library(Seurat)
library(Matrix)
library(dplyr)
library(edgeR)
library(limma)
library(reshape2)
library(ggplot2)
library(UpSetR)

choose parameters (integration type, clustering res, min pct threshold)

f<- 'Harmony.Batchindividual'
pct<-0.2
res<- 'SCT_snn_res.0.5'
path<- here::here("output/DGELists/")
dge<- readRDS(paste0(path,"Pseudobulk_dge_",f, "_", res,"_minPCT",pct,".rds"))
cpm<- cpmByGroup(dge, group=dge$samples$cluster)
lcpm<- cpmByGroup(dge, group=dge$samples$cluster, log=TRUE)
hist(lcpm)

L<- mean(dge$samples$lib.size) *1e-6
M<- median(dge$samples$lib.size) *1e-6
genes.ribo <- grep('^RP',rownames(dge),value=T)
genes.no.ribo <- rownames(dge)[which(!(rownames(dge) %in% genes.ribo))]
dge$counts <- dge$counts[which(rownames(dge$counts) %in% genes.no.ribo),] #remove ribosomal genes
dge<- calcNormFactors(dge, method="TMM")

summary(dge$samples$norm.factors)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.7736  0.8998  0.9755  1.0174  1.0565  2.1383 
design<- model.matrix(~0+ dge$samples$cluster + dge$samples$batch + dge$samples$ind)
v<- voom(dge, design, plot=TRUE)

v
An object of class "EList"
$targets
                     group   lib.size norm.factors cluster  batch     ind
0.Batch1.SNG-NA18511     1   624484.3    1.0373235       0 Batch1 NA18511
0.Batch1.SNG-NA18858     1 77077818.7    1.0417138       0 Batch1 NA18858
0.Batch1.SNG-NA19160     1   491756.2    1.0074803       0 Batch1 NA19160
0.Batch2.SNG-NA18511     1  1017488.0    0.9970768       0 Batch2 NA18511
0.Batch2.SNG-NA18858     1 71713598.7    1.0374122       0 Batch2 NA18858
                                    Group
0.Batch1.SNG-NA18511 0.Batch1.SNG-NA18511
0.Batch1.SNG-NA18858 0.Batch1.SNG-NA18858
0.Batch1.SNG-NA19160 0.Batch1.SNG-NA19160
0.Batch2.SNG-NA18511 0.Batch2.SNG-NA18511
0.Batch2.SNG-NA18858 0.Batch2.SNG-NA18858
153 more rows ...

$E
        0.Batch1.SNG-NA18511 0.Batch1.SNG-NA18858 0.Batch1.SNG-NA19160
SAMD11              3.138692             1.469848             2.345910
NOC2L               6.777293             6.599711             6.623895
PLEKHN1             1.264223             1.734571             2.345910
HES4                5.656540             4.876733             4.111445
ISG15               4.808543             5.517413             5.906625
        0.Batch2.SNG-NA18511 0.Batch2.SNG-NA18858 0.Batch2.SNG-NA19160
SAMD11              2.675427            0.8414497             2.125949
NOC2L               6.341309            6.1443064             6.086778
PLEKHN1             2.434418            1.8159647             2.125949
HES4                6.030269            4.5392962             4.873183
ISG15               5.716454            5.3916126             5.888449
        0.Batch3.SNG-NA18511 0.Batch3.SNG-NA18858 0.Batch3.SNG-NA19160
SAMD11              2.324023            0.8580432             3.446319
NOC2L               6.430052            6.0721084             6.277720
PLEKHN1             1.965230            1.2667834             2.081323
HES4                5.793049            4.8552128             4.716409
ISG15               6.128539            5.4187155             5.958769
        1.Batch1.SNG-NA18511 1.Batch1.SNG-NA18858 1.Batch1.SNG-NA19160
SAMD11              2.781860             3.747049             2.864050
NOC2L               6.405942             6.047444             6.273040
PLEKHN1            -1.988214            -1.007839            -2.539672
HES4                9.438874             7.989341             8.843852
ISG15               5.363041             5.980846             5.615146
        1.Batch2.SNG-NA18511 1.Batch2.SNG-NA18858 1.Batch2.SNG-NA19160
SAMD11              2.752753             2.951904            2.6216420
NOC2L               6.078731             5.861258            6.1130558
PLEKHN1            -5.207249            -2.333498           -0.7608277
HES4                9.275370             7.619243            8.5222607
ISG15               5.697386             5.759259            5.6191695
        1.Batch3.SNG-NA18511 1.Batch3.SNG-NA18858 1.Batch3.SNG-NA19160
SAMD11              1.961524            3.6595341             3.977466
NOC2L               5.910084            5.9561511             6.052904
PLEKHN1            -2.224342           -0.8640278            -3.371262
HES4                8.757368            7.2074345             7.668342
ISG15               5.803564            5.5789156             5.755442
        10.Batch1.SNG-NA18511 10.Batch1.SNG-NA18858 10.Batch1.SNG-NA19160
SAMD11               4.904920             1.3686231              1.611808
NOC2L                7.226848             6.5631454              6.004125
PLEKHN1              2.097565             0.1462306              1.611808
HES4                 2.097565             5.6237641              7.444698
ISG15                6.185028             5.2194796              5.518699
        10.Batch2.SNG-NA18511 10.Batch2.SNG-NA18858 10.Batch2.SNG-NA19160
SAMD11               3.555120           -0.31459966             3.4115716
NOC2L                5.939784            6.00896694             6.2640144
PLEKHN1              2.707123           -0.07359156             0.2416466
HES4                 6.315932            5.82773951             5.7962355
ISG15                5.339391            4.98419194             4.6339640
        10.Batch3.SNG-NA18511 10.Batch3.SNG-NA18858 10.Batch3.SNG-NA19160
SAMD11              3.4499162             -2.083251             4.7410919
NOC2L               6.4593765              6.278693             6.6004936
PLEKHN1             0.7869512              1.376181            -0.3881911
HES4                5.8884892              5.135918             3.6992718
ISG15               5.4308074              6.188212             5.7615560
        11.Batch1.SNG-NA18511 11.Batch1.SNG-NA18858 11.Batch1.SNG-NA19160
SAMD11              3.1760213              1.888963              3.184850
NOC2L               6.2557485              6.412525              5.850302
PLEKHN1            -0.2834103              1.888963             -1.160925
HES4                9.5636470              8.396757              9.303621
ISG15               6.7052744              5.795853              6.317508
        11.Batch2.SNG-NA18511 11.Batch2.SNG-NA18858 11.Batch2.SNG-NA19160
SAMD11               3.287500              3.749486              3.415984
NOC2L                6.175025              3.749486              5.665460
PLEKHN1              0.965572              3.749486             -2.198726
HES4                 8.512466              8.273048              8.915667
ISG15                5.357889              6.556841              5.749642
        11.Batch3.SNG-NA18511 11.Batch3.SNG-NA18858 11.Batch3.SNG-NA19160
SAMD11              3.0439263              3.400259              4.225455
NOC2L               5.5941234              5.722187              5.853294
PLEKHN1             0.2365714              3.400259             -1.240519
HES4                7.8439017              8.155146              8.056397
ISG15               6.0179311              6.570184              6.136257
        12.Batch1.SNG-NA18511 12.Batch1.SNG-NA18858 12.Batch1.SNG-NA19160
SAMD11               5.848751             4.5393720              5.853125
NOC2L                6.592653             6.6985706              6.265320
PLEKHN1             -2.111251             0.6324814             -1.135560
HES4                 8.198226             5.3873689              8.081186
ISG15                4.734239             5.3873689              6.140565
        12.Batch2.SNG-NA18511 12.Batch2.SNG-NA18858 12.Batch2.SNG-NA19160
SAMD11               5.167884              1.363631             4.7123906
NOC2L                6.177142              6.007487             6.2973531
PLEKHN1             -1.111340              1.363631            -0.1455904
HES4                 7.913800              6.007487             7.4764614
ISG15                4.896155              5.270521             5.2119616
        12.Batch3.SNG-NA18511 12.Batch3.SNG-NA18858 12.Batch3.SNG-NA19160
SAMD11               4.836266              3.315688              6.399018
NOC2L                6.003003              5.431165              5.892739
PLEKHN1             -2.402139              1.730725             -1.401882
HES4                 7.357750              5.190157              7.133394
ISG15                4.653144              5.190157              4.747865
        13.Batch1.SNG-NA18511 13.Batch1.SNG-NA18858 13.Batch1.SNG-NA19160
SAMD11               2.271123           3.067434361              1.742686
NOC2L                6.020061           6.185129403              6.102942
PLEKHN1             -2.483765           0.008540672             -1.957754
HES4                 9.330417           8.125750856              8.676150
ISG15                5.860531           5.623250516              5.881450
        13.Batch2.SNG-NA18511 13.Batch2.SNG-NA18858 13.Batch2.SNG-NA19160
SAMD11               4.081243             2.5387459              3.993239
NOC2L                5.666205             6.2391856              6.315167
PLEKHN1              4.081243             0.2168178              3.993239
HES4                 7.251168             8.1651851              6.315167
ISG15                4.081243             5.3461009              3.993239
        13.Batch3.SNG-NA18858 14.Batch1.SNG-NA18511 14.Batch1.SNG-NA18858
SAMD11              2.5322300              5.065982              4.327362
NOC2L               5.9916616              5.959067              5.912325
PLEKHN1             0.2103019              2.258627              4.327362
HES4                8.1818454              3.843589              4.327362
ISG15               5.7021550              5.065982              5.912325
        14.Batch1.SNG-NA19160 14.Batch2.SNG-NA18511 14.Batch2.SNG-NA18858
SAMD11                4.04968              2.987145              3.737233
NOC2L                 4.04968              6.260163              6.059161
PLEKHN1               4.04968              2.987145              3.737233
HES4                  4.04968              4.946503              6.544588
ISG15                 4.04968              5.545140              6.059161
        14.Batch2.SNG-NA19160 14.Batch3.SNG-NA18511 14.Batch3.SNG-NA18858
SAMD11               5.488174              3.216760              3.917588
NOC2L                6.550101              6.426520              5.502551
PLEKHN1              1.977212              1.513477              3.917588
HES4                 5.147137              5.799828              6.724943
ISG15                5.147137              5.753596              5.502551
        14.Batch3.SNG-NA19160 15.Batch1.SNG-NA18511 15.Batch1.SNG-NA18858
SAMD11               4.960079              5.705990             4.3190354
NOC2L                6.372644              6.238100             6.1850181
PLEKHN1              1.940180             -1.412951             0.9498016
HES4                 5.156836              8.271797             7.6048353
ISG15                5.590434              5.094843             4.8566922
        15.Batch1.SNG-NA19160 15.Batch2.SNG-NA18511 15.Batch2.SNG-NA18858
SAMD11               4.868455              4.964905              4.067750
NOC2L                5.520532              5.788027              5.931688
PLEKHN1              2.061100              1.264465             -1.313072
HES4                 6.453418              8.699093              7.227379
ISG15                3.646063              1.264465              5.734961
        15.Batch2.SNG-NA19160 15.Batch3.SNG-NA18511 15.Batch3.SNG-NA18858
SAMD11               3.647037              2.084104             0.7259728
NOC2L                4.869429              5.254029             6.0835248
PLEKHN1              2.062074              2.084104             0.7259728
HES4                 6.920055              7.756530             7.3258857
ISG15                5.231999              5.990995             6.7032527
        15.Batch3.SNG-NA19160 16.Batch1.SNG-NA18511 16.Batch1.SNG-NA18858
SAMD11               3.377015              2.761433              2.625863
NOC2L                4.599407              5.931358              5.224901
PLEKHN1              1.792052              5.083361              4.913440
HES4                 6.435908              8.071288              6.926417
ISG15                4.113980              5.017773              8.121483
        16.Batch1.SNG-NA19160 16.Batch2.SNG-NA18511 16.Batch2.SNG-NA18858
SAMD11               4.245240              5.889975              3.845817
NOC2L                5.623752              5.153009              5.743937
PLEKHN1              5.742072              4.416044              4.634313
HES4                 6.814083              6.104100              7.127852
ISG15                6.084304              6.455572              8.023010
        16.Batch2.SNG-NA19160 16.Batch3.SNG-NA18511 16.Batch3.SNG-NA18858
SAMD11               4.349821              4.928228              2.930750
NOC2L                5.907039              5.435188              5.904755
PLEKHN1              4.264932              4.139732              5.332848
HES4                 6.420211              4.928228              6.943574
ISG15                4.775127              4.380741              8.288302
        16.Batch3.SNG-NA19160 17.Batch1.SNG-NA18511 17.Batch1.SNG-NA18858
SAMD11               5.423176            2.33381637              3.100060
NOC2L                5.511985            6.03425609              5.421988
PLEKHN1              3.969458            0.01188828              3.100060
HES4                 6.015751            7.23105680              5.907415
ISG15                5.278786            9.65754671              5.421988
        17.Batch1.SNG-NA19160 17.Batch2.SNG-NA18511 17.Batch2.SNG-NA19160
SAMD11              1.6766868             0.2434696            -0.8078316
NOC2L               5.7297981             6.1261127             5.7920813
PLEKHN1            -0.6452413             0.2434696            -0.8078316
HES4                6.9472157             6.0763597             6.8575044
ISG15               8.1588897             8.0700181             7.5185979
        17.Batch3.SNG-NA18511 17.Batch3.SNG-NA19160 2.Batch1.SNG-NA18511
SAMD11            -0.03310476            0.79402418            2.2563784
NOC2L              5.58160508            5.71050082            6.4543889
PLEKHN1           -0.03310476            0.05705858           -0.9586345
HES4               7.02217767            6.45508966            9.1634539
ISG15              8.07018305            8.38648122            5.7789750
        2.Batch1.SNG-NA18858 2.Batch1.SNG-NA19160 2.Batch2.SNG-NA18511
SAMD11              3.371089             3.347964             1.689570
NOC2L               6.146383             6.216891             6.145876
PLEKHN1             1.255612            -1.442113            -2.702747
HES4                7.277980             8.816453             8.803891
ISG15               5.601387             6.054186             5.847999
        2.Batch2.SNG-NA18858 2.Batch2.SNG-NA19160 2.Batch3.SNG-NA18511
SAMD11              2.732835             2.168768             2.184671
NOC2L               5.786350             6.170406             6.126751
PLEKHN1            -0.371502            -2.027630            -1.833251
HES4                6.812381             8.443707             8.169846
ISG15               6.051404             5.688904             5.803374
        2.Batch3.SNG-NA18858 2.Batch3.SNG-NA19160 3.Batch1.SNG-NA18511
SAMD11             1.6522064             4.053993            2.8900071
NOC2L              6.0445238             6.321567            6.2101960
PLEKHN1           -0.6697217            -2.840825            0.4218583
HES4               6.7978838             7.646010            5.4836345
ISG15              6.2727928             6.361299            6.4263597
        3.Batch1.SNG-NA18858 3.Batch1.SNG-NA19160 3.Batch2.SNG-NA18511
SAMD11              3.314066             3.219328            3.2494233
NOC2L               6.519180             6.247685            5.7109353
PLEKHN1             1.729103            -1.185427           -0.4059285
HES4                5.925500             5.927842            4.9516235
ISG15               6.802352             6.621343            6.4545378
        3.Batch2.SNG-NA18858 3.Batch2.SNG-NA19160 3.Batch3.SNG-NA18511
SAMD11              4.442953             2.984379           2.97513203
NOC2L               5.580457             5.967890           6.02099904
PLEKHN1             2.121025            -0.234045          -0.04116978
HES4                3.705987             5.197372           3.81228156
ISG15               6.208488             6.316998           6.22901935
        3.Batch3.SNG-NA18858 3.Batch3.SNG-NA19160 4.Batch1.SNG-NA18511
SAMD11              2.342371             3.308837           4.64058645
NOC2L               5.801803             6.135238           6.43920657
PLEKHN1             2.342371            -1.269431           0.07580184
HES4                5.149726             4.920394           7.03387116
ISG15               6.865933             6.403780           6.03773380
        4.Batch1.SNG-NA18858 4.Batch1.SNG-NA19160 4.Batch2.SNG-NA18511
SAMD11             4.1871834             3.048785            5.1585532
NOC2L              6.5606418             6.254799            6.2580889
PLEKHN1            0.7277518            -1.373747           -0.4561566
HES4               6.8362763             6.582387            6.3120277
ISG15              4.8152147             5.112753            5.8836934
        4.Batch2.SNG-NA18858 4.Batch2.SNG-NA19160 4.Batch3.SNG-NA18511
SAMD11              2.596729             3.410961            2.4756421
NOC2L               5.766654             6.181896            6.0794637
PLEKHN1             2.596729            -1.486280           -0.1873229
HES4                5.404084             6.501269            4.4945012
ISG15               4.918657             4.943336            4.6706581
        4.Batch3.SNG-NA18858 4.Batch3.SNG-NA19160 5.Batch1.SNG-NA18511
SAMD11              1.904391             4.451682            3.9378483
NOC2L               6.659279             6.030057            6.2301309
PLEKHN1             1.904391            -2.741433            0.3771334
HES4                5.811282             5.590977            8.2413195
ISG15               5.074316             4.232026            5.5709051
        5.Batch1.SNG-NA18858 5.Batch1.SNG-NA19160 5.Batch2.SNG-NA18511
SAMD11              4.491454            1.8299187            2.9613083
NOC2L               6.055807            6.0645800            6.0063548
PLEKHN1             1.258794           -0.3717152            0.5956588
HES4                5.240646            6.6124184            6.6450885
ISG15               5.731281            5.6595036            5.2745975
        5.Batch2.SNG-NA18858 5.Batch2.SNG-NA19160 5.Batch3.SNG-NA18511
SAMD11              3.147236            3.0621076            2.2925337
NOC2L               5.639475            5.7920754            5.9991685
PLEKHN1             1.416052            0.6104116            0.4180646
HES4                5.523740            4.7756142            5.0289947
ISG15               6.136331            5.3715717            5.5704144
        5.Batch3.SNG-NA18858 5.Batch3.SNG-NA19160 6.Batch1.SNG-NA18511
SAMD11              2.512142            3.1373449            4.7206961
NOC2L               5.710922            6.0961633            6.0154881
PLEKHN1             2.222636            0.8453183            0.8492108
HES4                4.983448            5.2655485            7.0815227
ISG15               6.018495            5.7705874            6.9728620
        6.Batch1.SNG-NA18858 6.Batch1.SNG-NA19160 6.Batch2.SNG-NA18511
SAMD11              2.725273             4.488108             4.579490
NOC2L               5.760897             5.937718             5.942410
PLEKHN1             5.447739             3.376215             1.132604
HES4                6.812736             7.025645             7.144364
ISG15               6.778384             7.517415             6.783314
        6.Batch2.SNG-NA18858 6.Batch2.SNG-NA19160 6.Batch3.SNG-NA18511
SAMD11              4.369502             3.789253            4.9796225
NOC2L               5.287039             5.771975            6.0276697
PLEKHN1             3.521505             1.467325            0.7085187
HES4                6.625841             6.756246            5.7050465
ISG15               5.954464             7.131645            6.2678222
        6.Batch3.SNG-NA18858 6.Batch3.SNG-NA19160 7.Batch1.SNG-NA18511
SAMD11              3.334450            4.4266903             3.718819
NOC2L               5.812497            5.9923199             6.151778
PLEKHN1             2.112058            0.1496654             2.981853
HES4                7.213596            6.4079655             6.606344
ISG15               7.241341            7.0967132             5.303781
        7.Batch1.SNG-NA18858 7.Batch1.SNG-NA19160 7.Batch2.SNG-NA18511
SAMD11              1.860589             2.202334             3.227946
NOC2L               6.238745             5.661766             6.332282
PLEKHN1             1.098748             0.617372             2.490980
HES4                5.538082             4.076804             5.153945
ISG15               5.110462             6.109225             4.365449
        7.Batch2.SNG-NA18858 7.Batch2.SNG-NA19160 7.Batch3.SNG-NA18511
SAMD11              1.070192             3.885427             2.816636
NOC2L               5.884888             6.141767             6.316902
PLEKHN1             1.597821             0.715502             2.028141
HES4                5.643396             5.013183             5.708260
ISG15               5.347403             5.759896             5.666741
        7.Batch3.SNG-NA18858 7.Batch3.SNG-NA19160 8.Batch1.SNG-NA18511
SAMD11             0.9598028            2.8576628             2.707524
NOC2L              5.7741038            6.0609464             5.889967
PLEKHN1            1.3650593            0.1946978            -2.964902
HES4               5.2797800            4.7995599             9.128846
ISG15              5.5398831            5.7896444             4.935965
        8.Batch1.SNG-NA18858 8.Batch1.SNG-NA19160 8.Batch2.SNG-NA18511
SAMD11             2.5725796            3.0196698             2.910340
NOC2L              5.6478677            5.9582693             5.894180
PLEKHN1           -0.2347754           -0.8872208            -3.747871
HES4               7.7367682            8.6278219             8.975576
ISG15              4.8945077            4.8941389             5.209231
        8.Batch2.SNG-NA18858 8.Batch2.SNG-NA19160 8.Batch3.SNG-NA18511
SAMD11              2.352117             1.509119             2.128847
NOC2L               5.393145             5.583467             5.698313
PLEKHN1            -1.348322            -2.191320            -3.156555
HES4                7.065306             8.344927             8.441962
ISG15               4.801425             4.774464             5.741290
        8.Batch3.SNG-NA18858 8.Batch3.SNG-NA19160 9.Batch1.SNG-NA18511
SAMD11             3.4885531             3.896876            4.0997227
NOC2L              6.0387501             5.771345            6.5538986
PLEKHN1            0.6811981            -1.594977           -0.5441335
HES4               6.5140881             7.557308            6.6357756
ISG15              5.8906515             5.299841            3.9794285
        9.Batch1.SNG-NA18858 9.Batch1.SNG-NA19160 9.Batch2.SNG-NA18511
SAMD11              3.717622            3.1891642           0.01814573
NOC2L               6.440088            6.6459964           5.30354795
PLEKHN1             1.395694           -0.2991222           0.01814573
HES4                5.919256            6.7220120           6.73239125
ISG15               6.821959            2.7207773           4.10560857
        9.Batch2.SNG-NA18858 9.Batch2.SNG-NA19160 9.Batch3.SNG-NA18511
SAMD11              5.938852            2.7629643             3.440982
NOC2L               5.201886            6.1343611             5.969361
PLEKHN1             3.616923            0.7961311             1.325505
HES4                6.424278            6.2703902             5.295131
ISG15               3.616923            2.5461529             4.495430
        9.Batch3.SNG-NA18858 9.Batch3.SNG-NA19160
SAMD11              2.305067            3.9919915
NOC2L               5.764498            6.2076266
PLEKHN1             2.305067           -2.7494755
HES4                3.890029            5.5405434
ISG15               3.890029            0.9509643
10910 more rows ...

$weights
          [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
[1,] 0.6587441  8.587138 0.5843784 0.8252667  7.769479 0.7249437  3.799485
[2,] 4.3135933 25.043467 3.6375757 5.0410984 22.969680 4.2885870 13.012541
[3,] 0.4158378 10.831053 0.3324969 0.6074312 10.838554 0.4758115  2.950604
[4,] 3.0874766 18.280112 2.4908495 3.5619379 16.850399 2.8911868  9.222214
[5,] 3.0762373 22.334402 2.7058661 3.5541463 20.601241 3.1051165 10.839747
          [,8]     [,9]      [,10]     [,11]      [,12]      [,13]     [,14]
[1,]  7.869231 2.433157  6.5881252 1.1230348  5.5203708  6.8678532  2.092545
[2,] 24.204796 8.860101 13.7453542 4.6635647 11.4722013 14.2125769  6.577533
[3,] 10.461609 1.406987  0.4825516 0.2080015  0.3325939  0.6177012  0.301547
[4,] 15.878245 5.472454 25.3591693 9.1653480 20.0255896 26.3480912 11.909890
[5,] 22.633563 7.221276 11.8636018 4.4249882  9.8924002 12.3421086  6.338589
          [,15]      [,16]     [,17]      [,18]     [,19]    [,20]     [,21]
[1,]  4.1271560  5.4368576 0.8322290  3.6979367 0.2441284 2.303058 0.3081592
[2,]  9.3931155 12.4485151 4.1371662  9.1224045 1.7558841 9.271693 2.1270991
[3,]  0.2766965  0.3968922 0.2080015  0.2291551 0.2080015 2.134896 0.2080015
[4,] 16.6172590 20.5551341 7.4211944 14.4883886 1.1296832 6.909100 1.2389702
[5,]  8.0553047 11.2361737 4.2243646  8.1921537 0.8704064 7.814890 1.1010931
         [,22]     [,23]     [,24]     [,25]    [,26]     [,27]     [,28]
[1,] 0.4459915  2.734088 0.4990666 0.7552570 1.099570 0.6450228 1.2196079
[2,] 3.0859269 10.458252 3.1148382 4.7930294 6.828974 3.9599959 3.3343653
[3,] 0.2210935  2.906349 0.2188338 0.3140179 1.105092 0.2489624 0.2394964
[4,] 2.4858189  7.964700 2.3061704 3.1711667 4.079742 2.5151600 9.2129528
[5,] 2.0792385  8.935351 2.1343222 3.3994914 5.958126 2.9338926 3.5507134
         [,29]      [,30]     [,31]     [,32]      [,33]     [,34]     [,35]
[1,] 0.3037654  3.6588423 0.5343900 0.2080015  2.8387822 0.7300130 0.2080015
[2,] 1.1749407  7.3201048 1.9489119 0.3944973  5.7316445 2.7044948 0.4793473
[3,] 0.2080015  0.6524826 0.2080015 0.2080015  0.5272902 0.2080015 0.2080015
[4,] 3.9591241 15.2094495 6.0563773 1.8380514 12.6805498 6.6865864 1.7856515
[5,] 1.7947740  7.7732217 2.1570739 0.5451580  6.1697806 3.0393174 0.7369443
          [,36]     [,37]     [,38]     [,39]     [,40]     [,41]     [,42]
[1,]  4.3273543 4.6921055 1.1195769 3.4085503  5.225845 0.6428270 2.2589629
[2,]  8.6882836 7.1765901 2.7595744 5.1166806  7.851157 1.8274189 3.2724494
[3,]  0.9141361 0.3194983 0.2080015 0.2080015  0.431199 0.2080015 0.2080015
[4,] 15.8044594 9.7920693 3.5088251 6.8803173 10.632415 2.5971500 4.6191543
[5,]  9.6598469 4.8165233 2.0547341 3.2904803  5.412747 1.1516903 2.1839577
         [,43]     [,44]     [,45]      [,46]     [,47]      [,48]     [,49]
[1,] 4.5641440 0.5143735 3.3006544  2.9261643 1.4891881  2.5565736 0.2080015
[2,] 7.4013625 1.5444793 5.2624448  7.8033063 5.6499510  6.4867127 0.4359909
[3,] 0.3343099 0.2080015 0.2108786  0.5691947 0.6824614  0.4120908 0.2080015
[4,] 8.9417868 1.8710096 6.1320782 13.4532630 9.5033688 10.9997053 1.4556132
[5,] 5.3517147 1.0777190 3.6188554  5.5871602 4.5664421  4.5323694 0.2738797
         [,50]     [,51]     [,52]     [,53]     [,54]     [,55]    [,56]
[1,] 0.4793482 0.2080015 0.4600711 0.5121899 0.2080015 0.2487624 1.730523
[2,] 2.8241916 0.4314390 2.8993987 1.1815882 0.3757571 0.4376436 3.172458
[3,] 0.3156964 0.2080015 0.2813270 0.2246075 0.2080015 0.2080015 0.681648
[4,] 5.2890046 1.2384215 4.6159670 0.9407158 0.2744911 0.3360564 2.859136
[5,] 2.2844289 0.2740604 2.5290024 0.7670135 0.3374574 0.3202842 2.542607
         [,57]     [,58]    [,59]     [,60]    [,61]     [,62]    [,63]
[1,] 0.2080015 1.9929490 6.141099 0.2080015 4.624573 2.7303654 2.884054
[2,] 0.4339925 3.2197263 9.919958 0.4152339 7.505168 4.8505100 5.972016
[3,] 0.2167931 0.6784974 3.320939 0.2080015 2.308673 0.4373443 1.325870
[4,] 0.3153412 2.7067212 7.985575 0.2498984 5.422698 9.1714728 9.771311
[5,] 0.3921263 2.6108008 8.642884 0.4062111 6.446268 3.2541497 4.859487
         [,64]     [,65]     [,66]     [,67]     [,68]     [,69]     [,70]
[1,] 0.4786378 0.5848768  3.244416 0.4226024 0.3836692 0.5354967 0.4573445
[2,] 1.0407639 1.5614711  6.765571 0.8906886 0.9833042 2.0040299 1.0966775
[3,] 0.2080015 0.2080015  2.085504 0.2080015 0.2080015 0.2802513 0.2080015
[4,] 2.7764653 3.6544339 10.851010 2.5578589 2.4824552 3.1860434 2.4395324
[5,] 0.5805583 0.8036459  5.625121 0.5171138 0.6039863 1.5814490 0.6684977
        [,71]    [,72]    [,73]     [,74]     [,75]    [,76]    [,77]    [,78]
[1,] 2.141213 2.536088 2.981907 0.7054845 0.7972339 2.329382 0.909571 0.874213
[2,] 3.367408 4.630409 4.387778 1.5759442 2.2472641 3.361670 2.214840 2.564768
[3,] 2.024516 4.601827 2.642694 0.8080964 2.5738744 2.316917 0.943660 2.549410
[4,] 5.433527 6.350653 6.353622 2.8545938 3.1170374 5.051530 2.995236 2.995930
[5,] 3.907704 6.250236 5.127412 2.0167330 3.0755193 3.971508 2.774660 3.631510
        [,79]     [,80]     [,81]     [,82]     [,83]     [,84]     [,85]
[1,] 2.024206 0.3198359 0.2080015 0.4446973 0.2609945 0.4231984 0.2803674
[2,] 3.216193 3.0798894 0.6114562 3.6683070 2.6509157 3.5359717 2.9601297
[3,] 1.814655 0.2093324 0.2080015 0.2514421 0.2080015 0.2795738 0.2080015
[4,] 4.030213 4.5936682 0.9177950 5.1304646 3.8436653 4.9829980 3.6705814
[5,] 4.023942 6.0559021 2.3852717 7.1843735 5.1988330 7.0183933 6.1738920
         [,86]      [,87]     [,88]      [,89]      [,90]      [,91]      [,92]
[1,] 0.5655783  4.0358702 0.6122809  5.6255623  4.4301697  2.0270423  3.5762036
[2,] 4.7487802 11.0242631 3.7344984 13.0851404 11.7138590  7.4817829  9.6894290
[3,] 0.3335675  0.4688847 0.2080015  0.6470125  0.6323808  0.5423601  0.4247085
[4,] 5.5445755 18.2631591 6.8760549 20.5488384 19.4632939 11.8631233 15.3956433
[5,] 9.1531619  9.8483790 3.7738650 11.8200657 10.5466863  7.5897151  8.7138990
          [,93]     [,94]     [,95]      [,96]     [,97]     [,98]     [,99]
[1,]  4.0682805 0.6040924  2.743424  4.5187826 0.6469616  6.799996 3.1486342
[2,] 11.5757158 3.9615386  8.110215  9.9658911 3.0674144 12.781135 7.6409073
[3,]  0.5161951 0.2080015  0.271301  0.9506118 0.3086999  1.753181 0.6693673
[4,] 17.1966847 6.2684923 11.760628  8.4199874 2.1383248 10.362096 6.3275657
[5,] 10.8759919 4.3186180  7.600788 10.4964578 3.8707739 13.492559 8.1446330
        [,100]    [,101]     [,102]    [,103]    [,104]    [,105]    [,106]
[1,] 0.2418022  4.982213  3.9636269 0.2146084  5.707824 2.6302508 0.5771402
[2,] 1.0553311 10.147442  9.5588262 0.9710074 11.678328 6.1694818 2.7602555
[3,] 0.2080015  1.202271  0.8642126 0.2080015  1.380097 0.2945989 0.2080015
[4,] 0.6072277  8.118405  7.0688840 0.4527203  8.343652 6.4895819 2.5748142
[5,] 1.6672540 10.807187 10.5822239 1.7066073 12.926899 3.7742961 1.9004922
        [,107]    [,108]    [,109]     [,110]    [,111]    [,112]     [,113]
[1,]  7.313648 1.3674333 0.2304960  5.3724396 2.5363450 0.2910128  6.1449248
[2,] 13.152674 3.9201214 0.9108757 10.3972645 6.3215457 1.4712261 11.9920165
[3,]  1.210921 0.2080015 0.2080015  0.8335916 0.3044335 0.2080015  0.9487866
[4,] 12.969798 4.2031179 0.8170940 10.2863765 5.7646316 0.9633160 10.5832774
[5,]  9.433666 2.4947596 0.5705278  7.2714321 4.1974323 0.9375251  8.9659590
        [,114]    [,115]    [,116]   [,117]   [,118]   [,119]    [,120]
[1,] 2.5732660 1.1670013 3.3321101 3.372442 2.905708 3.996730  6.034138
[2,] 6.4419187 4.5523512 7.7542931 8.307511 8.190047 8.892964 13.029161
[3,] 0.5358885 0.6489274 0.7115043 1.044922 2.310630 1.183572  2.377239
[4,] 6.8600365 4.2800064 7.7152430 8.815727 7.863385 8.890306 12.283663
[5,] 5.4702103 4.5017429 6.7139683 7.239514 8.172758 7.844046 12.094490
        [,121]    [,122]    [,123]    [,124]    [,125]    [,126]    [,127]
[1,] 0.8746361  5.437274  4.667359 0.9436474 3.3321374  5.312832 0.5426446
[2,] 4.0759616 11.498286  7.566451 2.6869020 5.3439359  8.392817 1.6776752
[3,] 0.5611363  1.797855  1.589554 0.5881908 0.7695679  2.329926 0.4263396
[4,] 3.2584493 10.238616 10.487333 3.5207485 7.3429899 11.540733 2.5468104
[5,] 4.3438012 10.711149  9.282867 4.0505924 6.8489799 10.274224 2.8838701
       [,128]    [,129]    [,130]    [,131]    [,132]   [,133]    [,134]
[1,] 4.906621  4.690456 0.7208601  8.402172 0.3541681 2.854388 0.5264401
[2,] 7.436713  7.988575 2.4108431 12.185855 2.1437669 9.490563 2.7526030
[3,] 1.838781  1.786653 0.5083354  3.299111 0.2080015 2.952120 0.2210246
[4,] 9.808512  9.821654 2.7852738 13.894474 1.7503882 7.747257 2.1855487
[5,] 9.251173 10.255212 3.8924813 15.325287 1.3077562 8.623161 1.9743526
        [,135]    [,136]    [,137]    [,138]    [,139]    [,140]    [,141]
[1,] 0.3893749  4.735203 0.9900201 1.2410678  3.260434 1.2893143  3.194116
[2,] 2.3556930 13.570135 4.0969404 5.3533541 11.100627 5.0859999  8.164818
[3,] 0.2201520  5.595792 0.4245559 0.5206975  3.600769 0.4716777  0.276699
[4,] 1.9934519 11.382466 3.2993097 3.9330690  8.124000 3.4280556 15.364851
[5,] 1.5322707 12.523126 3.1001201 4.2384504 10.652753 4.0396019  6.398980
        [,142]     [,143]     [,144]    [,145]     [,146]     [,147]    [,148]
[1,] 0.6215747  2.8507008  3.7922673 0.9739062  2.3586125  3.0353457 0.3454113
[2,] 3.1769970  6.8903612  9.3386884 4.2766794  5.8384105  8.1830512 2.1983235
[3,] 0.2080015  0.2144732  0.4022401 0.2524875  0.2080015  0.2776995 0.2080015
[4,] 6.7875551 12.7021814 17.3764770 8.6299043 11.2267058 13.8394955 4.0259093
[5,] 2.8636735  5.3315572  7.5034786 3.7699647  4.4474726  6.8141108 2.0481007
        [,149]   [,150]    [,151]    [,152]    [,153]    [,154]    [,155]
[1,] 1.6834395 1.451467 0.3757177 4.7933313 0.8696654 0.2080015 3.2600460
[2,] 4.9254779 4.117287 1.9341539 9.6632011 3.1036773 0.4856851 7.2767409
[3,] 0.2080015 0.270927 0.2103745 0.9950778 0.2272734 0.2080015 0.6793922
[4,] 8.7711245 4.539112 1.8183528 9.7506262 3.3779583 0.4642358 7.3879275
[5,] 3.9212741 1.465926 0.5836596 4.5117504 0.8926882 0.2080015 3.1281272
        [,156]    [,157]    [,158]
[1,] 0.9652068 0.2243569 3.2504393
[2,] 3.4678662 0.9942515 7.6310988
[3,] 0.2262572 0.2080015 0.6142165
[4,] 3.2502862 0.7209098 6.7372140
[5,] 1.2356906 0.3870356 3.4842327
10910 more rows ...

$design
  dge$samples$cluster0 dge$samples$cluster1 dge$samples$cluster10
1                    1                    0                     0
2                    1                    0                     0
3                    1                    0                     0
4                    1                    0                     0
5                    1                    0                     0
  dge$samples$cluster11 dge$samples$cluster12 dge$samples$cluster13
1                     0                     0                     0
2                     0                     0                     0
3                     0                     0                     0
4                     0                     0                     0
5                     0                     0                     0
  dge$samples$cluster14 dge$samples$cluster15 dge$samples$cluster16
1                     0                     0                     0
2                     0                     0                     0
3                     0                     0                     0
4                     0                     0                     0
5                     0                     0                     0
  dge$samples$cluster17 dge$samples$cluster2 dge$samples$cluster3
1                     0                    0                    0
2                     0                    0                    0
3                     0                    0                    0
4                     0                    0                    0
5                     0                    0                    0
  dge$samples$cluster4 dge$samples$cluster5 dge$samples$cluster6
1                    0                    0                    0
2                    0                    0                    0
3                    0                    0                    0
4                    0                    0                    0
5                    0                    0                    0
  dge$samples$cluster7 dge$samples$cluster8 dge$samples$cluster9
1                    0                    0                    0
2                    0                    0                    0
3                    0                    0                    0
4                    0                    0                    0
5                    0                    0                    0
  dge$samples$batchBatch2 dge$samples$batchBatch3 dge$samples$indNA18858
1                       0                       0                      0
2                       0                       0                      1
3                       0                       0                      0
4                       1                       0                      0
5                       1                       0                      1
  dge$samples$indNA19160
1                      0
2                      0
3                      1
4                      0
5                      0
153 more rows ...
fit<- lmFit(v,design)
dim(fit)
[1] 10915    22
head(fit)
An object of class "MArrayLM"
$coefficients
        dge$samples$cluster0 dge$samples$cluster1 dge$samples$cluster10
SAMD11              2.039547             2.903009            1.68361012
NOC2L               6.601111             6.317593            6.59850892
PLEKHN1             1.366940            -2.569173            0.09687398
HES4                6.091080             9.327304            6.55930710
ISG15               5.516810             5.692514            5.35451655
AGRN                4.638427             5.196508            4.91542082
        dge$samples$cluster11 dge$samples$cluster12 dge$samples$cluster13
SAMD11              3.4308878             5.3386018             2.4901493
NOC2L               6.0467517             6.3992387             6.2339779
PLEKHN1            -0.1325727            -0.7095955            -0.3166955
HES4                9.4357719             8.0883432             9.1886717
ISG15               6.1381676             5.0606985             5.6324846
AGRN                4.8435596             5.5984149             4.9787540
        dge$samples$cluster14 dge$samples$cluster15 dge$samples$cluster16
SAMD11               4.092883             4.7559097              4.077276
NOC2L                6.568888             6.1465359              5.817145
PLEKHN1              2.350744            -0.2790673              4.743175
HES4                 6.201964             8.3902760              7.503147
ISG15                5.605723             5.1086110              6.361162
AGRN                 4.550076             5.0486762              5.581236
        dge$samples$cluster17 dge$samples$cluster2 dge$samples$cluster3
SAMD11              0.8967904             2.648612            3.0724273
NOC2L               5.9924455             6.391168            6.2698416
PLEKHN1             0.3427823            -1.419643           -0.1581311
HES4                7.3922018             8.973141            5.7856626
ISG15               8.1802810             5.959436            6.4758084
AGRN                6.0862275             5.173724            4.3579876
        dge$samples$cluster4 dge$samples$cluster5 dge$samples$cluster6
SAMD11              3.578533            2.9893043             4.415488
NOC2L               6.406420            6.2026735             6.135993
PLEKHN1            -0.851034            0.8743783             1.466009
HES4                6.879054            6.6115354             7.441633
ISG15               4.987376            5.6848112             6.937661
AGRN                5.489668            4.9059639             5.768351
        dge$samples$cluster7 dge$samples$cluster8 dge$samples$cluster9
SAMD11              2.317608             2.722964            3.1401664
NOC2L               6.305509             5.986355            6.4242972
PLEKHN1             1.076852            -1.943810            0.2048845
HES4                6.510843             9.029302            6.8856946
ISG15               5.393732             5.183517            2.8572391
AGRN                4.843317             5.201753            5.2229414
        dge$samples$batchBatch2 dge$samples$batchBatch3 dge$samples$indNA18858
SAMD11               -0.2548973             -0.05847588             -0.6346015
NOC2L                -0.2757671             -0.23017741             -0.1502711
PLEKHN1              -0.1105059             -0.30372459              0.5629640
HES4                 -0.3748454             -0.88895687             -0.9404706
ISG15                -0.1651807             -0.00497113              0.1605749
AGRN                 -0.2307388             -0.40896790             -0.0967634
        dge$samples$indNA19160
SAMD11             0.285904750
NOC2L             -0.043523959
PLEKHN1           -0.183604175
HES4              -0.402249461
ISG15             -0.003643458
AGRN              -0.104599642

$stdev.unscaled
        dge$samples$cluster0 dge$samples$cluster1 dge$samples$cluster10
SAMD11             0.2322535           0.18898937             0.3636159
NOC2L              0.1267344           0.12357008             0.1692158
PLEKHN1            0.2960554           0.59421904             0.4358723
HES4               0.1355938           0.09652449             0.1913966
ISG15              0.1366195           0.13099722             0.1908121
AGRN               0.1608399           0.14384702             0.2255630
        dge$samples$cluster11 dge$samples$cluster12 dge$samples$cluster13
SAMD11              0.2930570             0.2159402             0.3548537
NOC2L               0.1916652             0.1641372             0.2017703
PLEKHN1             0.5841662             0.6751429             0.6330931
HES4                0.1314009             0.1437320             0.1543271
ISG15               0.1844721             0.1952834             0.2314222
AGRN                0.2317738             0.1915827             0.2472419
        dge$samples$cluster14 dge$samples$cluster15 dge$samples$cluster16
SAMD11              0.2796605             0.3144652             0.2759645
NOC2L               0.2082347             0.2114792             0.2017567
PLEKHN1             0.4071854             0.4917892             0.2965377
HES4                0.2279887             0.1574974             0.1694633
ISG15               0.2260604             0.2455725             0.1840256
AGRN                0.2735778             0.2467756             0.2191045
        dge$samples$cluster17 dge$samples$cluster2 dge$samples$cluster3
SAMD11              0.6404207            0.2122587            0.2074759
NOC2L               0.2265150            0.1277402            0.1372941
PLEKHN1             0.7871239            0.5331781            0.4075145
HES4                0.1949124            0.1037864            0.1489913
ISG15               0.1664771            0.1331899            0.1340033
AGRN                0.2348244            0.1507746            0.1814178
        dge$samples$cluster4 dge$samples$cluster5 dge$samples$cluster6
SAMD11             0.2245118            0.2140278            0.2025002
NOC2L              0.1492784            0.1361666            0.1494785
PLEKHN1            0.5196002            0.3607772            0.3325962
HES4               0.1478987            0.1335288            0.1311130
ISG15              0.1755689            0.1428023            0.1371503
AGRN               0.1774187            0.1640277            0.1632010
        dge$samples$cluster7 dge$samples$cluster8 dge$samples$cluster9
SAMD11             0.2965805            0.2475024            0.2787242
NOC2L              0.1584611            0.1498020            0.1749093
PLEKHN1            0.3700782            0.6878972            0.5619642
HES4               0.1686929            0.1136341            0.1726474
ISG15              0.1717216            0.1650105            0.2620069
AGRN               0.1990146            0.1712245            0.2091758
        dge$samples$batchBatch2 dge$samples$batchBatch3 dge$samples$indNA18858
SAMD11               0.13040195              0.13064964             0.16958673
NOC2L                0.08250074              0.08151828             0.09260831
PLEKHN1              0.20401977              0.20754047             0.23890155
HES4                 0.07241979              0.07474088             0.08333524
ISG15                0.08686597              0.08491277             0.09687370
AGRN                 0.09747244              0.09904809             0.11437090
        dge$samples$indNA19160
SAMD11              0.12139635
NOC2L               0.07889245
PLEKHN1             0.23507541
HES4                0.06974736
ISG15               0.08316557
AGRN                0.09455957

$sigma
[1] 1.2252715 0.5038468 0.9030387 1.4842538 1.2917626 0.7213480

$df.residual
[1] 136 136 136 136 136 136

$cov.coefficients
                      dge$samples$cluster0 dge$samples$cluster1
dge$samples$cluster0            0.13640916           0.02529804
dge$samples$cluster1            0.02529804           0.13640916
dge$samples$cluster10           0.02529804           0.02529804
dge$samples$cluster11           0.02529804           0.02529804
dge$samples$cluster12           0.02529804           0.02529804
                      dge$samples$cluster10 dge$samples$cluster11
dge$samples$cluster0             0.02529804            0.02529804
dge$samples$cluster1             0.02529804            0.02529804
dge$samples$cluster10            0.13640916            0.02529804
dge$samples$cluster11            0.02529804            0.13640916
dge$samples$cluster12            0.02529804            0.02529804
                      dge$samples$cluster12 dge$samples$cluster13
dge$samples$cluster0             0.02529804            0.02440965
dge$samples$cluster1             0.02529804            0.02440965
dge$samples$cluster10            0.02529804            0.02440965
dge$samples$cluster11            0.02529804            0.02440965
dge$samples$cluster12            0.13640916            0.02440965
                      dge$samples$cluster14 dge$samples$cluster15
dge$samples$cluster0             0.02529804            0.02529804
dge$samples$cluster1             0.02529804            0.02529804
dge$samples$cluster10            0.02529804            0.02529804
dge$samples$cluster11            0.02529804            0.02529804
dge$samples$cluster12            0.02529804            0.02529804
                      dge$samples$cluster16 dge$samples$cluster17
dge$samples$cluster0             0.02529804            0.02163229
dge$samples$cluster1             0.02529804            0.02163229
dge$samples$cluster10            0.02529804            0.02163229
dge$samples$cluster11            0.02529804            0.02163229
dge$samples$cluster12            0.02529804            0.02163229
                      dge$samples$cluster2 dge$samples$cluster3
dge$samples$cluster0            0.02529804           0.02529804
dge$samples$cluster1            0.02529804           0.02529804
dge$samples$cluster10           0.02529804           0.02529804
dge$samples$cluster11           0.02529804           0.02529804
dge$samples$cluster12           0.02529804           0.02529804
                      dge$samples$cluster4 dge$samples$cluster5
dge$samples$cluster0            0.02529804           0.02529804
dge$samples$cluster1            0.02529804           0.02529804
dge$samples$cluster10           0.02529804           0.02529804
dge$samples$cluster11           0.02529804           0.02529804
dge$samples$cluster12           0.02529804           0.02529804
                      dge$samples$cluster6 dge$samples$cluster7
dge$samples$cluster0            0.02529804           0.02529804
dge$samples$cluster1            0.02529804           0.02529804
dge$samples$cluster10           0.02529804           0.02529804
dge$samples$cluster11           0.02529804           0.02529804
dge$samples$cluster12           0.02529804           0.02529804
                      dge$samples$cluster8 dge$samples$cluster9
dge$samples$cluster0            0.02529804           0.02529804
dge$samples$cluster1            0.02529804           0.02529804
dge$samples$cluster10           0.02529804           0.02529804
dge$samples$cluster11           0.02529804           0.02529804
dge$samples$cluster12           0.02529804           0.02529804
                      dge$samples$batchBatch2 dge$samples$batchBatch3
dge$samples$cluster0               -0.0188226             -0.01897346
dge$samples$cluster1               -0.0188226             -0.01897346
dge$samples$cluster10              -0.0188226             -0.01897346
dge$samples$cluster11              -0.0188226             -0.01897346
dge$samples$cluster12              -0.0188226             -0.01897346
                      dge$samples$indNA18858 dge$samples$indNA19160
dge$samples$cluster0             -0.01923015            -0.01886792
dge$samples$cluster1             -0.01923015            -0.01886792
dge$samples$cluster10            -0.01923015            -0.01886792
dge$samples$cluster11            -0.01923015            -0.01886792
dge$samples$cluster12            -0.01923015            -0.01886792
17 more rows ...

$pivot
[1] 1 2 3 4 5
17 more elements ...

$rank
[1] 22

$Amean
   SAMD11     NOC2L   PLEKHN1      HES4     ISG15      AGRN 
3.1654089 5.9847813 0.6963754 6.5936954 5.6389559 4.8249547 

$method
[1] "ls"

$design
  dge$samples$cluster0 dge$samples$cluster1 dge$samples$cluster10
1                    1                    0                     0
2                    1                    0                     0
3                    1                    0                     0
4                    1                    0                     0
5                    1                    0                     0
  dge$samples$cluster11 dge$samples$cluster12 dge$samples$cluster13
1                     0                     0                     0
2                     0                     0                     0
3                     0                     0                     0
4                     0                     0                     0
5                     0                     0                     0
  dge$samples$cluster14 dge$samples$cluster15 dge$samples$cluster16
1                     0                     0                     0
2                     0                     0                     0
3                     0                     0                     0
4                     0                     0                     0
5                     0                     0                     0
  dge$samples$cluster17 dge$samples$cluster2 dge$samples$cluster3
1                     0                    0                    0
2                     0                    0                    0
3                     0                    0                    0
4                     0                    0                    0
5                     0                    0                    0
  dge$samples$cluster4 dge$samples$cluster5 dge$samples$cluster6
1                    0                    0                    0
2                    0                    0                    0
3                    0                    0                    0
4                    0                    0                    0
5                    0                    0                    0
  dge$samples$cluster7 dge$samples$cluster8 dge$samples$cluster9
1                    0                    0                    0
2                    0                    0                    0
3                    0                    0                    0
4                    0                    0                    0
5                    0                    0                    0
  dge$samples$batchBatch2 dge$samples$batchBatch3 dge$samples$indNA18858
1                       0                       0                      0
2                       0                       0                      1
3                       0                       0                      0
4                       1                       0                      0
5                       1                       0                      1
  dge$samples$indNA19160
1                      0
2                      0
3                      1
4                      0
5                      0
153 more rows ...
#all pairwise cluster comparisons
nclust<- length(unique(dge$samples$cluster))
nterms<- ncol(fit)
contrasts<- NULL
for (b in 1:nclust){
for (i in 1:nclust){
    c<- rep(0,nterms)
    c[b]<- 1
    c[i]<- -1
    contrasts<- cbind(contrasts, c)
}
}

selfcols<- c()
el<- 1
while (length(selfcols) <= nclust){
  selfcols<- c(selfcols, el)
  el<- el + nclust + 1
}

contrasts<- contrasts[,-selfcols]
contrasts
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -1  0  0  0  0  0  0
 [2,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1
 [3,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
 [4,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
 [5,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
 [6,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
 [7,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
 [8,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
 [9,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[10,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[13,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[14,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
[15,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[16,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[17,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
 [2,]  1  1  1  1  1  1  1  1  1  1  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 [4,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
 [6,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
 [9,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[10,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[11,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[12,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[13,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[14,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[15,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
[16,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[17,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
 [2,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
 [3,]  1  1  1  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
 [4,]  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0 -1
 [5,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1
 [6,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [9,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[10,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[13,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[14,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[15,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[16,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[17,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[18,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
 [2,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
 [5,]  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0 -1  0  0  0  0  0  0
 [6,] -1  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1
 [7,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
 [8,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
 [9,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[10,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[11,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[12,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
[13,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[14,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[15,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[16,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[17,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
 [2,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
 [6,]  1  1  1  1  1  1  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0
 [8,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  1
 [9,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[10,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[13,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[14,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[15,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[16,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[17,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[18,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
 [2,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
 [3,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
 [4,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
 [5,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
 [6,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
 [7,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
 [8,]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0 -1
 [9,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1
[10,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[13,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[14,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[15,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
[16,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[17,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [2,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
 [6,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
 [9,]  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[10,] -1  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
[11,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[12,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[13,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[14,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[15,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[16,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
[17,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
 [2,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
 [3,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
 [4,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
 [5,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
 [6,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [9,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[10,]  1  1  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[11,]  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  1  1  1  1  1
[13,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[14,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[15,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[16,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[17,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[18,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
 [2,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
 [6,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
 [7,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
 [8,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
 [9,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[10,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[11,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[12,]  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0 -1
[13,]  0  0  0  0  0  0 -1  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1
[14,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[15,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[16,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[17,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
 [2,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
 [3,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [6,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
 [9,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[10,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[13,]  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[14,] -1  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0
[15,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  1  1
[16,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[17,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[18,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
 [2,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
 [3,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
 [4,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
 [5,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
 [6,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
 [7,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
 [8,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
 [9,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
[10,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[13,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
[14,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
[15,]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0
[16,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  1  1  1  1  1  1  1  1  1
[17,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
[18,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [2,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
 [6,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
 [9,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[10,] -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[11,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[12,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[13,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[14,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[15,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[16,]  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
[17,]  0  0  0  0  0  0 -1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
[18,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,]  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [2,]  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [3,]  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [4,]  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0  0
 [5,]  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0  0
 [6,]  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0  0
 [7,]  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0  0
 [8,]  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0  0
 [9,]  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0  0
[10,]  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0  0
[11,]  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0  0
[12,]  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0  0
[13,]  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0  0
[14,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0  0
[15,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0  0
[16,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1  0
[17,]  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 -1
[18,] -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
#first, testing all pairwise cluster comparisons. 
fit<- contrasts.fit(fit, contrasts= contrasts)
efit<- eBayes(fit)
plotSA(efit)

summary(decideTests(efit))
           c     c     c     c     c     c     c     c     c     c     c     c
Down    3765  1749  3385  3599  3353   735  3218  3395  3287  3722  3782  3513
NotSig  2792  7433  3500  2777  3632  9477  3883  4245  4351  2734  3210  3356
Up      4358  1733  4030  4539  3930   703  3814  3275  3277  4459  3923  4046
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2503  3610   976  3723  3518  4358  3375  1519  2940   192  4158  1005
NotSig  5923  3828  9088  3020  3380  2792  4252  7609  4448 10429  3251  8745
Up      2489  3477   851  4172  4017  3765  3288  1787  3527   294  3506  1165
           c     c     c     c     c     c     c     c     c     c     c     c
Down    3697  3202  1171  3496  1808  3498  3734  4072   880  2678  1733  3288
NotSig  3822  4679  8465  4161  6996  4390  3743  3314  8721  5299  7433  4252
Up      3396  3034  1279  3258  2111  3027  3438  3529  1314  2938  1749  3375
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2809  3155  2855  2505  2715  3352  3008  3182  3464  2957  2429  3466
NotSig  4969  3750  5080  6307  5226  4503  4996  4341  4197  4858  6460  4420
Up      3137  4010  2980  2103  2974  3060  2911  3392  3254  3100  2026  3029
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2002  3346  3055  4030  1787  3137  2303   892  3860   598  2789  2529
NotSig  7160  4170  4529  3500  7609  4969  5809  9244  3947  9710  5542  6165
Up      1753  3399  3331  3385  1519  2809  2803   779  3108   607  2584  2221
           c     c     c     c     c     c     c     c     c     c     c     c
Down     992  2599  1543  3075  3033  3825  1640  2181  4539  3527  4010  2803
NotSig  8903  6199  7803  5396  5357  4014  7637  6578  2777  4448  3750  5809
Up      1020  2117  1569  2444  2525  3076  1638  2156  3599  2940  3155  2303
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2886  4305  2748  3768  3463  3295  3946  3331  4148  4116  4361  3291
NotSig  5737  3261  5794  4061  4719  5266  4039  4940  3621  3645  3166  4809
Up      2292  3349  2373  3086  2733  2354  2930  2644  3146  3154  3388  2815
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2265  3930   294  2980   779  2292  3787   493  3023  2775   446  2786
NotSig  6853  3632 10429  5080  9244  5737  3930  9841  5012  5547  9951  5566
Up      1797  3353   192  2855   892  2886  3198   581  2880  2593   518  2563
           c     c     c     c     c     c     c     c     c     c     c     c
Down    1289  2883  3162  3696   758  2069   703  3506  2103  3108  3349  3198
NotSig  8194  5578  4982  4116  9418  6654  9477  3251  6307  3947  3261  3930
Up      1432  2454  2771  3103   739  2192   735  4158  2505  3860  4305  3787
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2966  2888  3016  3501  3337  3265  2281  3128  1316  3420  3295  3814
NotSig  4287  4980  4794  3140  4014  3815  6311  4581  8391  3523  3803  3883
Up      3662  3047  3105  4274  3564  3835  2323  3206  1208  3972  3817  3218
           c     c     c     c     c     c     c     c     c     c     c     c
Down    1165  2974   607  2373   581  3662  2591  2385  1096  2252  1106  2615
NotSig  8745  5226  9710  5794  9841  4287  5976  6512  8861  6872  8512  6277
Up      1005  2715   598  2748   493  2966  2348  2018   958  1791  1297  2023
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2612  3530  1112  1877  3275  3396  3060  2584  3086  2880  3047  2348
NotSig  6123  4540  8680  7144  4245  3822  4503  5542  4061  5012  4980  5976
Up      2180  2845  1123  1894  3395  3697  3352  2789  3768  3023  2888  2591
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2084  3273  2507  2912  2950  1926  3161  3176  2997  3277  3034  2911
NotSig  6971  4037  6172  5053  5155  7179  4649  4328  4898  4351  4679  4996
Up      1860  3605  2236  2950  2810  1810  3105  3411  3020  3287  3202  3008
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2221  2733  2593  3105  2018  1860  2973  1706  2335  2806  2211  3030
NotSig  6165  4719  5547  4794  6512  6971  4727  7370  6035  5458  6503  4893
Up      2529  3463  2775  3016  2385  2084  3215  1839  2545  2651  2201  2992
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2821  2381  4459  1279  3392  1020  2354   518  4274   958  3605  3215
NotSig  5063  5948  2734  8465  4341  8903  5266  9951  3140  8861  4037  4727
Up      3031  2586  3722  1171  3182   992  3295   446  3501  1096  3273  2973
           c     c     c     c     c     c     c     c     c     c     c     c
Down    3508  1940  3781  3835  4244  1399  2519  3923  3258  3254  2117  2930
NotSig  4233  6918  3987  3783  3210  7702  5708  3210  4161  4197  6199  4039
Up      3174  2057  3147  3297  3461  1814  2688  3782  3496  3464  2599  3946
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2563  3564  1791  2236  1839  3174  2325  3272  2381  3588  2893  2606
NotSig  5566  4014  6872  6172  7370  4233  6058  4709  6213  3909  4809  5405
Up      2786  3337  2252  2507  1706  3508  2532  2934  2321  3418  3213  2904
           c     c     c     c     c     c     c     c     c     c     c     c
Down    4046  2111  3100  1569  2644  1432  3835  1297  2950  2545  2057  2532
NotSig  3356  6996  4858  7803  4940  8194  3815  8512  5053  6035  6918  6058
Up      3513  1808  2957  1543  3331  1289  3265  1106  2912  2335  1940  2325
           c     c     c     c     c     c     c     c     c     c     c     c
Down    3064  3187  3751  2087  1747  2489  3027  2026  2444  3146  2454  2323
NotSig  5311  4795  3940  6821  7221  5923  4390  6460  5396  3621  5578  6311
Up      2540  2933  3224  2007  1947  2503  3498  2429  3075  4148  2883  2281
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2023  2810  2651  3147  2934  2540  2830  1961  2720  2763  3477  3438
NotSig  6277  5155  5458  3987  4709  5311  5148  7082  5065  4770  3828  3743
Up      2615  2950  2806  3781  3272  3064  2937  1872  3130  3382  3610  3734
           c     c     c     c     c     c     c     c     c     c     c     c
Down    3029  2525  3154  2771  3206  2180  1810  2201  3297  2321  2933  2937
NotSig  4420  5357  3645  4982  4581  6123  7179  6503  3783  6213  4795  5148
Up      3466  3033  4116  3162  3128  2612  1926  2211  3835  2381  3187  2830
           c     c     c     c     c     c     c     c     c     c     c     c
Down    3174  3096  2905   851  3529  1753  3076  3388  3103  1208  2845  3105
NotSig  4529  4293  4792  9088  3314  7160  4014  3166  4116  8391  4540  4649
Up      3212  3526  3218   976  4072  2002  3825  4361  3696  1316  3530  3161
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2992  3461  3418  3224  1872  3212  3397  3275  4172  1314  3399  1638
NotSig  4893  3210  3909  3940  7082  4529  3633  3861  3020  8721  4170  7637
Up      3030  4244  3588  3751  1961  3174  3885  3779  3723   880  3346  1640
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2815   739  3972  1123  3411  3031  1814  3213  2007  3130  3526  3885
NotSig  4809  9418  3523  8680  4328  5063  7702  4809  6821  5065  4293  3633
Up      3291   758  3420  1112  3176  2821  1399  2893  2087  2720  3096  3397
           c     c     c     c     c     c     c     c     c     c     c     c
Down    2592  4017  2938  3331  2156  1797  2192  3817  1894  3020  2586  2688
NotSig  5639  3380  5299  4529  6578  6853  6654  3803  7144  4898  5948  5708
Up      2684  3518  2678  3055  2181  2265  2069  3295  1877  2997  2381  2519
           c     c     c     c     c     c
Down    2904  1947  3382  3218  3779  2684
NotSig  5405  7221  4770  4792  3861  5639
Up      2606  1747  2763  2905  3275  2592
qqt(efit$t, df=efit$df.prior+efit$df.residual, pch=16, cex=0.2)
abline(0,1)

topTable(efit, coef=1, sort.by= "P")
           logFC  AveExpr         t      P.Value    adj.P.Val        B
FZD3   -3.404693 6.513489 -24.70435 1.299931e-53 1.300176e-49 111.6844
TTC3   -5.057673 6.918583 -24.57621 2.382366e-53 1.300176e-49 111.0577
PHC2   -5.154735 5.269648 -23.34270 8.981254e-51 3.267680e-47 104.9972
PRXL2A -3.136003 7.314321 -23.11730 2.709053e-50 6.845237e-47 104.0708
MAP2   -5.692043 4.260302 -23.05504 3.679043e-50 6.845237e-47 103.5493
PALLD  -4.300937 5.169170 -23.02776 4.207686e-50 6.845237e-47 103.5634
ZBTB16 -5.987047 3.883852 -23.01914 4.389983e-50 6.845237e-47 103.3315
ZNF428 -3.465697 7.012878 -22.81956 1.175760e-49 1.604177e-46 102.6136
GLI3   -4.484837 5.195618 -22.67594 2.396374e-49 2.906270e-46 101.8227
SDK2   -4.455940 3.877262 -22.53306 4.878435e-49 5.324812e-46 100.9614

Comparing the subclusters of the pluripotent blob

clust0 v clust14

topTable(efit, coef=14, sort.by= "P", n=20)
            logFC  AveExpr         t      P.Value    adj.P.Val         B
TTC3    -5.352604 6.918583 -25.07959 2.230402e-54 2.434483e-50 113.36131
PTGR1   -3.599433 6.780217 -24.83916 6.887584e-54 3.758899e-50 112.31318
CST3    -4.939164 7.495076 -22.43631 7.906047e-49 2.876484e-45 100.71467
FLRT3   -7.712076 4.311649 -22.28859 1.656019e-48 4.518863e-45  99.55888
CDH2    -5.448870 6.197210 -22.05197 5.443866e-48 1.188396e-44  98.72946
RHOBTB3 -5.878735 5.392051 -20.29636 4.636106e-44 8.433849e-41  89.65605
COL2A1  -5.611429 5.435774 -19.44717 4.244770e-42 6.618810e-39  85.21978
PHC2    -4.439581 5.269648 -19.03671 3.891777e-41 5.309844e-38  82.99682
MPC2    -2.143289 7.228280 -18.65724 3.075490e-40 3.640250e-37  80.97868
COL18A1 -3.730244 5.704533 -18.63466 3.480021e-40 3.640250e-37  80.90336
BCL7C   -2.461359 5.929437 -18.62502 3.668598e-40 3.640250e-37  80.85449
HK1      2.935070 5.689100  18.41009 1.193350e-39 1.021752e-36  79.66775
PCBD1   -2.740295 6.446632 -18.40654 1.216929e-39 1.021752e-36  79.63198
PRXL2A  -2.688058 7.314321 -18.38587 1.363497e-39 1.032295e-36  79.52085
FBN2    -5.060464 4.224214 -18.37867 1.418638e-39 1.032295e-36  79.42775
DPPA4    3.361593 7.359877  18.33871 1.767914e-39 1.206049e-36  79.26890
TERF1    3.552635 7.872473  18.30851 2.088087e-39 1.340675e-36  79.07947
ADD3    -2.339852 5.815396 -18.08948 7.006485e-39 4.248654e-36  77.91191
DERA    -3.014595 5.220743 -18.06398 8.070064e-39 4.636040e-36  77.77857
ADD2     3.546186 4.466847  18.00880 1.095976e-38 5.981290e-36  77.34588
vol<- topTable(efit, coef=14, n=nrow(fit))
labsig<- vol[(vol$logFC) >=3 & vol$adj.P.Val < 5e-30 | vol$logFC <=-5 & vol$adj.P.Val < 1e-35,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

some<-topTable(efit, coef=14, sort.by= "P", n=60)
up<- some[some$logFC>0,]
down<-some[some$logFC<0,]
head(up,10)
          logFC  AveExpr        t      P.Value    adj.P.Val        B
HK1    2.935070 5.689100 18.41009 1.193350e-39 1.021752e-36 79.66775
DPPA4  3.361593 7.359877 18.33871 1.767914e-39 1.206049e-36 79.26890
TERF1  3.552635 7.872473 18.30851 2.088087e-39 1.340675e-36 79.07947
ADD2   3.546186 4.466847 18.00880 1.095976e-38 5.981290e-36 77.34588
THY1   4.302143 6.547327 17.57590 1.225013e-37 5.571259e-35 75.07868
SEPHS1 2.591606 7.554782 17.28595 6.247399e-37 2.351392e-34 73.39475
DNMT3B 3.907227 6.674119 16.46802 6.519906e-35 1.779119e-32 68.81935
JARID2 2.057235 6.738158 16.13605 4.392113e-34 8.877762e-32 66.89643
MYC    5.228513 3.732291 16.04987 7.220768e-34 1.382714e-31 66.33822
POLR3G 4.707196 4.260883 16.03340 7.940930e-34 1.438252e-31 66.33874
head(down,10)
            logFC  AveExpr         t      P.Value    adj.P.Val         B
TTC3    -5.352604 6.918583 -25.07959 2.230402e-54 2.434483e-50 113.36131
PTGR1   -3.599433 6.780217 -24.83916 6.887584e-54 3.758899e-50 112.31318
CST3    -4.939164 7.495076 -22.43631 7.906047e-49 2.876484e-45 100.71467
FLRT3   -7.712076 4.311649 -22.28859 1.656019e-48 4.518863e-45  99.55888
CDH2    -5.448870 6.197210 -22.05197 5.443866e-48 1.188396e-44  98.72946
RHOBTB3 -5.878735 5.392051 -20.29636 4.636106e-44 8.433849e-41  89.65605
COL2A1  -5.611429 5.435774 -19.44717 4.244770e-42 6.618810e-39  85.21978
PHC2    -4.439581 5.269648 -19.03671 3.891777e-41 5.309844e-38  82.99682
MPC2    -2.143289 7.228280 -18.65724 3.075490e-40 3.640250e-37  80.97868
COL18A1 -3.730244 5.704533 -18.63466 3.480021e-40 3.640250e-37  80.90336

clust0 v clust10

vol<- topTable(efit, coef=10, n=nrow(fit))
labsig<-  vol[(vol$adj.P.Val < 5e-45) | (vol$logFC> 0 & vol$adj.P.Val < 1e-30) |vol$logFC> 7 |vol$logFC < -7,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

some<-topTable(efit, coef=10, sort.by= "P", n=200)
up<- some[some$logFC>0,]
down<-some[some$logFC<0,]
head(up,10)
          logFC  AveExpr        t      P.Value    adj.P.Val        B
SKA3   4.000412 4.683639 20.67823 6.264567e-45 2.442063e-42 91.69270
POLR3G 4.512689 4.260883 16.69633 1.768181e-35 1.754518e-33 70.13741
ESCO2  3.238793 4.228161 16.53727 4.386124e-35 3.956574e-33 69.19999
PKMYT1 2.958103 3.972926 16.32128 1.512901e-34 1.260559e-32 67.99548
ARRB1  3.886548 3.638653 16.26005 2.150960e-34 1.726303e-32 67.62550
SOCS1  3.969757 4.318091 16.08709 5.824945e-34 4.415227e-32 66.66986
PIF1   4.457772 4.732559 15.95008 1.285305e-33 9.169350e-32 65.87761
MYC    4.447913 3.732291 15.83589 2.489411e-33 1.666989e-31 65.22051
TEAD4  3.850521 3.667473 15.60049 9.766757e-33 5.988998e-31 63.86067
AUNIP  2.755692 3.310330 15.46787 2.114846e-32 1.227848e-30 63.06869
head(down,10)
           logFC  AveExpr         t      P.Value    adj.P.Val        B
TTC3   -5.079898 6.918583 -24.46025 4.128689e-53 4.506464e-49 110.5114
MAPK10 -5.344690 4.486971 -24.03208 3.188848e-52 1.740314e-48 108.2798
PHC2   -5.310932 5.269648 -23.93672 5.042892e-52 1.834772e-48 107.8429
FZD3   -3.332954 6.513489 -23.86247 7.210753e-52 1.967634e-48 107.6864
ZNF428 -3.626402 7.012878 -23.73323 1.345891e-51 2.938080e-48 107.0666
MAP2   -5.829260 4.260302 -23.48411 4.507438e-51 8.199781e-48 105.6220
SDK2   -4.655060 3.877262 -23.44048 5.574245e-51 8.691841e-48 105.3686
CDH2   -5.556189 6.197210 -23.16302 2.164450e-50 2.953121e-47 104.2561
TLE4   -3.916044 6.198220 -22.99731 4.888275e-50 5.928392e-47 103.4821
KMT2E  -2.641580 6.699401 -22.97569 5.437974e-50 5.935549e-47 103.3818

clust0 v clust7

vol<- topTable(efit, coef=7, n=nrow(fit))
labsig<-  vol[(vol$adj.P.Val < 5e-37) | (vol$logFC> 0 & vol$adj.P.Val < 1e-21) |vol$logFC> 6 |vol$logFC < -7,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

some<-topTable(efit, coef=7, sort.by= "P", n=300)
up<- some[some$logFC>0,]
down<-some[some$logFC<0,]
head(up,10)
           logFC  AveExpr        t      P.Value    adj.P.Val        B
L1TD1   4.078318 7.936582 12.90836 8.383958e-26 6.354655e-24 47.93565
TERF1   2.808480 7.872473 12.58365 5.924013e-25 4.066705e-23 45.93276
JARID2  2.082664 6.738158 12.49413 1.016141e-24 6.672461e-23 45.52516
ESRP1   6.151823 3.313360 12.39767 1.817980e-24 1.140417e-22 44.91822
UGP2    2.569624 7.611443 12.35363 2.371135e-24 1.478911e-22 44.58794
CYCS    1.511861 8.549251 11.98598 2.180865e-23 1.144430e-21 42.27029
DPPA4   2.522185 7.359877 11.93308 3.001498e-23 1.567529e-21 42.07324
PDLIM1  3.423607 6.674474 11.91445 3.358907e-23 1.721243e-21 42.09967
DNMT3B  3.501431 6.674119 11.86661 4.483610e-23 2.234639e-21 41.77162
HTATIP2 5.317395 4.378024 11.78004 7.562030e-23 3.652193e-21 41.22032
head(down, 10)
           logFC  AveExpr         t      P.Value    adj.P.Val         B
TTC3   -5.455607 6.918583 -23.37193 7.786981e-51 8.499490e-47 105.25649
COL2A1 -6.360132 5.435774 -20.97251 1.356663e-45 7.403986e-42  93.18050
PHC2   -5.203011 5.269648 -20.79681 3.377529e-45 1.228858e-41  92.21278
PALLD  -4.304422 5.169170 -19.74562 8.588625e-43 2.343621e-39  86.81091
SDK2   -4.557873 3.877262 -19.32911 8.011512e-42 1.748913e-38  84.40667
EFNA5  -5.100087 5.437646 -18.66424 2.959962e-40 4.661925e-37  81.06530
ZBTB16 -5.756527 3.883852 -18.66240 2.989783e-40 4.661925e-37  80.85787
VIM    -4.626255 9.934601 -18.56505 5.095523e-40 6.952204e-37  80.38134
CDH2   -5.034243 6.197210 -18.52564 6.324842e-40 7.078335e-37  80.30312
ZNF428 -3.342604 7.012878 -18.52109 6.484961e-40 7.078335e-37  80.28518

comparing the two mature neuron clusters

clust9 v clust12

vol<- topTable(efit, coef=165, n=nrow(fit))
labsig<-  vol[(vol$adj.P.Val < 5e-37) | (vol$logFC< 0 & vol$adj.P.Val < 1e-15) |vol$logFC> 9.5 |vol$logFC < -6,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

some<-topTable(efit, coef=165, sort.by= "P", n=400)
up<- some[some$logFC>0,]
down<-some[some$logFC<0,]
head(up,10)
            logFC  AveExpr        t      P.Value    adj.P.Val         B
EGFL7    5.013369 5.480814 29.21823 2.316511e-62 2.528471e-58 131.71827
IGFBP4   4.622808 4.468332 27.18708 1.514547e-58 8.265642e-55 122.93935
RAMP2    5.577156 4.671294 24.10036 2.298396e-52 8.362330e-49 108.81136
GNG11    4.952769 4.650268 20.90612 1.914072e-45 5.223024e-42  92.92592
SLC9A3R2 4.990341 4.042906 20.79781 3.359921e-45 7.334709e-42  92.35900
KDR      8.868834 2.717682 19.78715 6.882520e-43 1.252045e-39  86.73472
RGS5     6.667662 3.677650 18.84047 1.130997e-40 1.763548e-37  82.02311
FLT1     8.511865 2.096625 18.80700 1.357320e-40 1.851894e-37  81.56069
DOCK6    4.179149 2.976909 18.67041 2.861699e-40 3.470605e-37  81.00127
MAP4K2   3.851620 3.225441 18.50198 7.202053e-40 7.861041e-37  80.12463
head(down,10)
           logFC  AveExpr          t      P.Value    adj.P.Val        B
HDDC2  -2.150967 7.007206 -12.469897 1.176032e-24 9.438522e-23 45.25070
LMO4   -2.704546 6.830333 -11.486277 4.454955e-22 2.628423e-20 39.35081
METRN  -3.453564 7.392618 -11.182589 2.782654e-21 1.439463e-19 37.55896
FZD3   -2.656501 6.513489 -10.877425 1.748821e-20 8.054168e-19 35.83649
CRABP2 -3.970496 8.339630 -10.237889 8.109766e-19 3.031442e-17 31.81122
CDH6   -5.030988 4.838455 -10.143413 1.425929e-18 5.205356e-17 31.63891
COL2A1 -4.798300 5.435774  -9.920974 5.367535e-18 1.854008e-16 30.31351
TLE1   -2.256331 6.125347  -9.720027 1.769998e-17 5.718115e-16 28.94028
CNP    -1.907485 5.413204  -9.582488 3.994990e-17 1.231789e-15 28.12738
ATP1A2 -5.421017 4.104727  -9.505743 6.285654e-17 1.895246e-15 27.95163

cluster 4 v12

vol<- topTable(efit, coef=80, n=nrow(fit))
labsig<-  vol[(vol$adj.P.Val < 5e-40) |vol$logFC> 7 |vol$logFC < -6 | vol$adj.P.Val<1e-27 & vol$logFC<0,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

some<-topTable(efit, coef=80, sort.by= "P", n=400)
up<- some[some$logFC>0,]
down<-some[some$logFC<0,]
head(up,10)
           logFC  AveExpr        t      P.Value    adj.P.Val         B
RTN1    6.283233 3.322440 29.23024 2.202083e-62 2.403574e-58 131.43213
INA     6.968998 3.226732 25.01275 3.049435e-54 1.664229e-50 112.44418
STMN2   7.840766 4.084364 23.27740 1.235857e-50 4.496458e-47 104.83451
GNG3    5.999507 3.215638 21.30742 2.410473e-46 6.577577e-43  94.81926
FNDC5   5.667737 2.061072 20.59407 9.722261e-45 2.122369e-41  91.04387
KLHL35  5.894091 1.987637 20.54765 1.239471e-44 2.254804e-41  90.84930
IGFBPL1 5.737944 4.520933 20.50719 1.531928e-44 2.367077e-41  90.88251
MAP6    5.755501 3.308765 20.48345 1.734917e-44 2.367077e-41  90.65277
ELAVL3  7.351680 2.596420 20.36873 3.168151e-44 3.842263e-41  89.90741
TAGLN3  4.661624 3.936643 19.37929 6.114721e-42 6.674218e-39  84.91877
head(down,10)
           logFC  AveExpr         t      P.Value    adj.P.Val        B
GPX8   -3.296792 5.747707 -16.38695 1.037754e-34 3.236309e-32 68.38254
GINS4  -3.246664 4.658249 -16.10846 5.149545e-34 1.405182e-31 66.76782
ARPC1B -3.484451 4.736997 -15.34056 4.446607e-32 8.666914e-30 62.36856
DNAJC1 -2.796057 5.593647 -14.55309 4.558586e-30 6.219621e-28 57.67779
ATP1A2 -5.714578 4.104727 -14.53399 5.103827e-30 6.877564e-28 57.63630
YAP1   -2.825628 5.669665 -14.50000 6.240852e-30 8.279520e-28 57.46226
UACA   -3.979332 5.445227 -14.49649 6.371779e-30 8.279520e-28 57.44869
MDFI   -4.659454 5.432176 -14.42558 9.695961e-30 1.230598e-27 57.03341
CNP    -2.357814 5.413204 -14.06274 8.360898e-29 8.609358e-27 54.80104
MCM10  -4.400485 4.677969 -14.06063 8.466354e-29 8.636472e-27 54.84023

cluster2 v cluster13

vol<- topTable(efit, coef=47, n=nrow(fit))
labsig<-  vol[(vol$adj.P.Val < 5e-15) |vol$logFC> 3 |vol$logFC < -4,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

some<-topTable(efit, coef=47, sort.by= "P", n=400)
up<- some[some$logFC>0,]
down<-some[some$logFC<0,]
head(up,10)
             logFC   AveExpr         t      P.Value    adj.P.Val        B
MT-CO2   1.1583742 13.873780 12.501636 9.712033e-25 1.060068e-20 45.33755
MT-ND4   1.0221558 12.565437 11.255825 1.789275e-21 5.832717e-18 37.89834
EIF2S3   0.9893087  8.163179 10.444154 2.359706e-19 4.292699e-16 33.33784
MT-ND4L  1.1128059  7.687674 10.362095 3.857638e-19 4.678457e-16 32.88074
MT-ND5   0.9355394 10.245649  9.995515 3.444192e-18 3.132780e-15 30.53457
MT-ND2   0.8907165 10.782929  9.944795 4.658255e-18 3.389657e-15 30.19041
TOMM7    1.1603328  8.961618  9.845063 8.428573e-18 5.749867e-15 29.73764
SLC25A39 1.0181265  7.083068  9.702886 1.959231e-17 1.188056e-14 29.03117
LRRC75A  1.6189398  6.067424  9.677037 2.283408e-17 1.311758e-14 28.91758
USO1     1.1629757  6.410516  9.636840 2.896813e-17 1.437214e-14 28.67141
head(down,10)
            logFC  AveExpr          t      P.Value    adj.P.Val        B
MAPK10  -4.360461 4.486971 -11.943649 2.815950e-23 1.536805e-19 41.34367
PRTG    -4.224031 5.708449 -11.226336 2.137505e-21 5.832717e-18 37.91330
BOC     -3.423740 3.962865 -10.509912 1.590931e-19 3.473003e-16 33.28337
ZEB2    -3.968027 4.429497 -10.410542 2.886147e-19 4.500328e-16 32.83816
SDK2    -3.110266 3.877262 -10.384955 3.364141e-19 4.589950e-16 32.53557
MAP2    -4.200851 4.260302 -10.047809 2.522143e-18 2.733613e-15 30.45636
ZNF518B -2.408133 3.903056 -10.032998 2.754901e-18 2.733613e-15 30.59062
YAF2    -3.675311 4.041744  -9.969237 4.027572e-18 3.228978e-15 29.96532
FGFBP3  -2.771643 5.387173  -9.964547 4.141612e-18 3.228978e-15 30.61020
EPHA4   -2.993781 4.152873  -9.723684 1.732049e-17 1.112077e-14 29.03634

1 v all contrasts

fit<- lmFit(v,design)
contrasts<- NULL
for (i in 1:nclust){
    c<- c(rep(-1,nclust),0,0,0,0)
    c[i]<- nclust-1
    
    contrasts<- cbind(contrasts, c)
}
contrasts
       c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c  c
 [1,] 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [2,] -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [3,] -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [4,] -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [5,] -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [6,] -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [7,] -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [8,] -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [9,] -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1
[10,] -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1
[11,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1
[12,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1
[13,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1
[14,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1
[15,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1 -1
[16,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1 -1
[17,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17 -1
[18,] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 17
[19,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[20,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[21,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[22,]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
#first, testing all pairwise cluster comparisons. 
fit<- contrasts.fit(fit, contrasts= contrasts)
efit<- eBayes(fit)
plotSA(efit)

qqt(efit$t, df=efit$df.prior+efit$df.residual, pch=16, cex=0.2)
abline(0,1)

summary(decideTests(efit))
          c    c    c    c    c    c    c    c    c    c    c    c    c    c
Down   3750 3515 3003 2004 3949 2029 3079 1365 2784 2278 3530 2713 2403 2065
NotSig 2813 4002 4701 6910 3840 6607 3965 8035 5121 5996 4046 5138 5977 5783
Up     4352 3398 3211 2001 3126 2279 3871 1515 3010 2641 3339 3064 2535 3067
          c    c    c    c
Down   2889 3194 3141 2776
NotSig 4709 3841 4775 5519
Up     3317 3880 2999 2620
c16vall<- topTable(efit, coef=17, sort.by= "P", n=nrow(fit))

head(c16vall, n=30)
           logFC  AveExpr        t      P.Value    adj.P.Val         B
NEK2    52.63998 4.830189 27.61041 2.339853e-59 2.553949e-55  90.94901
CKAP2L  47.26989 4.411568 25.25623 9.783802e-55 5.339510e-51  81.08220
CENPF   46.46481 8.689377 24.93375 4.416354e-54 1.606817e-50 100.65144
ECT2    35.92285 5.452767 24.85592 6.365568e-54 1.737004e-50  84.92280
H2AFX   34.48278 6.793425 24.71820 1.217685e-53 2.658207e-50  91.99501
PSRC1   48.73518 5.034690 24.60589 2.070114e-53 3.765882e-50  83.68168
CENPE   46.59960 5.745943 24.55099 2.684582e-53 4.186031e-50  87.64523
HMGB2   34.61832 8.685212 24.41265 5.176596e-53 7.062818e-50  97.65636
BUB3    25.99295 7.111377 24.12989 1.995135e-52 2.419656e-49  89.77597
CCNB2   39.16759 6.823961 23.90708 5.816110e-52 6.348284e-49  89.44644
ARL6IP1 32.72680 7.250500 23.78154 1.065606e-51 1.057372e-48  90.03132
PBK     46.65631 4.455516 23.68767 1.677901e-51 1.526191e-48  77.65680
TOP2A   47.79335 7.630618 23.62612 2.261016e-51 1.898384e-48  92.60334
KPNA2   35.62962 8.432579 23.49655 4.242623e-51 3.307730e-48  93.37520
ASPM    47.38279 6.735890 23.44058 5.571612e-51 4.054276e-48  88.79310
MXD3    49.42145 3.792698 23.27443 1.253942e-50 8.554234e-48  72.19251
PRR11   44.06991 4.277712 23.11040 2.802465e-50 1.799347e-47  73.33055
CDCA8   46.52676 5.010388 23.02524 4.260111e-50 2.583284e-47  78.66194
KIFC1   41.47115 4.189600 22.92123 7.113761e-50 4.086669e-47  72.60899
KIF14   43.86825 4.675526 22.83414 1.093970e-49 5.970339e-47  75.65319
GPSM2   39.65333 4.276758 22.75962 1.582170e-49 8.223519e-47  72.50739
KNSTRN  37.12816 5.612926 22.53221 4.899035e-49 2.430589e-46  79.31939
KIF18A  43.77790 3.996648 22.49239 5.975223e-49 2.835633e-46  69.97055
NDC80   42.16411 5.204179 22.33322 1.324143e-48 5.884742e-46  77.21708
NUF2    40.30199 6.214613 22.31840 1.426144e-48 5.884742e-46  81.79203
GTSE1   42.70245 5.393118 22.31730 1.434054e-48 5.884742e-46  78.13370
CKAP2   33.83509 6.072220 22.31431 1.455685e-48 5.884742e-46  80.89015
FAM83D  45.23841 4.088318 22.17147 2.982018e-48 1.162454e-45  69.88796
TROAP   39.35532 4.986507 22.15790 3.192716e-48 1.201672e-45  75.42388
CDCA3   50.62851 5.039881 22.12639 3.741268e-48 1.361198e-45  76.90545
vol<- topTable(efit, coef=17, n=nrow(fit))
labsig<- vol[(vol$adj.P.Val < 5e-50) | (vol$logFC< 0 & vol$adj.P.Val < 5e-20) |vol$logFC> 65 |vol$logFC < -55,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
  geom_point(aes(colour=thresh), show.legend = FALSE) +
  scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
  geom_text(data=labsig, aes(label=labsiggenes))

c12vall<- topTable(efit, coef=13, sort.by="P",n=nrow(fit))

head(c12vall, n=40)
            logFC    AveExpr        t      P.Value    adj.P.Val        B
S100B    86.77566  2.1297724 23.59344 2.649432e-51 2.891855e-47 60.38339
NPR3    100.83128  1.3195987 22.46218 6.947619e-49 3.271570e-45 50.65431
EDNRA    86.05856  1.5675030 22.41055 8.991947e-49 3.271570e-45 50.60999
ERBB3    74.13220  3.4417554 21.84957 1.515032e-47 4.134145e-44 64.02814
SOX10   101.81566  1.1720426 21.75720 2.421158e-47 5.285388e-44 46.51703
DNAJC1   41.23444  5.5936472 21.49547 9.193175e-47 1.672392e-43 74.99844
PHACTR3  82.29166  1.3836614 21.27013 2.919713e-46 4.552666e-43 46.43938
MPZ     109.29321  1.7629100 21.14529 5.553749e-46 7.577396e-43 51.51075
ZEB2     57.91105  4.4294971 20.96913 1.380650e-45 1.674422e-42 68.11718
SCRG1    94.21982  2.4322644 20.93373 1.658689e-45 1.810459e-42 56.21624
ATP1A2   56.35268  4.1047267 20.32266 4.036653e-44 4.005461e-41 64.47439
PRELP    80.64422  1.3023938 19.67936 1.223389e-42 1.112774e-39 44.16888
KANK4    83.96534  1.9754425 19.56751 2.225701e-42 1.868733e-39 49.89094
CNP      33.74355  5.4132040 19.33849 7.616532e-42 5.938174e-39 64.95289
MOXD1    91.94808  1.2674002 18.60692 4.050861e-40 2.947676e-37 41.39881
CDH6     52.33876  4.8384554 18.28204 2.416229e-39 1.648322e-36 61.54456
LMO4     35.53733  6.8303330 18.17881 4.273225e-39 2.743662e-36 66.19360
TFAP2B   95.18319  2.3665878 18.04160 9.135990e-39 5.539963e-36 51.05426
PLEKHA4  39.80359  4.1138458 17.60786 1.024229e-37 5.883925e-35 53.41998
PRSS56  111.56675  0.4937154 17.59039 1.129537e-37 6.164448e-35 34.80450
NR2F1    64.62671  5.4087644 17.03619 2.561962e-36 1.331610e-33 59.50517
TFAP2A   74.10051  3.2682912 16.73238 1.439645e-35 7.142604e-33 50.88564
ITGA4    83.30224  0.8937784 16.38121 1.072449e-34 5.089468e-32 31.86468
RHOB     32.31834  5.7224898 16.30481 1.662998e-34 7.563175e-32 55.89868
BCHE     68.33868  2.0975778 16.24588 2.333595e-34 1.018847e-31 40.28551
SNAI2    65.81066  1.7635782 16.23643 2.464005e-34 1.034408e-31 39.71319
ABCC2    81.47828  0.6166620 15.97622 1.104975e-33 4.466963e-31 28.77660
SMOC1    59.95529  2.9949411 15.59847 9.882470e-33 3.852399e-30 42.91014
ADAMTS4  50.73641  2.0053885 15.54126 1.378839e-32 5.189665e-30 35.52102
ROPN1   101.34272 -0.2122844 15.44117 2.471229e-32 8.991154e-30 23.60729
MEF2C    61.10032  1.7901830 15.41274 2.917140e-32 1.027115e-29 36.18023
PLAT     66.65920  2.4173335 15.23226 8.377905e-32 2.828164e-29 39.66642
COL2A1   41.71693  5.4357744 15.22878 8.550565e-32 2.828164e-29 51.13801
PRDM12   81.75199  0.5413568 15.22295 8.847577e-32 2.840332e-29 27.59441
CMTM5    57.73733  1.3880257 14.68747 2.060778e-30 6.426682e-28 30.70686
LSAMP    42.83652  4.1862570 14.67433 2.227030e-30 6.752232e-28 43.68183
RFTN2    47.05674  2.2719455 14.66626 2.335711e-30 6.890347e-28 35.40663
S100A1   58.44306  2.0321371 14.64483 2.650882e-30 7.614311e-28 32.91760
CUEDC2   25.17400  6.6188366 14.63521 2.805784e-30 7.852599e-28 50.04919
OAF      42.78513  2.7984324 14.56259 4.309601e-30 1.175982e-27 38.86536

batch + ind comparisons

fit<- lmFit(v,design)
fit<-contrasts.fit(fit, coefficients = (nclust+1):(nclust+4))
efit<- eBayes(fit)
plotSA(efit)

qqt(efit$t, df=efit$df.prior+efit$df.residual, pch=16, cex=0.2)
abline(0,1)

topsBatch<- topTable(efit, coef=c(1:2),n=nrow(fit))

head(topsBatch, n=40)
           dge.samples.batchBatch2 dge.samples.batchBatch3   AveExpr        F
EEF1A1                  -1.4306147              -1.0525243  9.730178 579.4724
PPP1CB                   1.2935540               1.2786922  7.003696 475.8166
CLIC1                   -2.0033220              -1.3258816  4.937045 434.9431
AP001267.5              -2.3869624              -1.5947683  3.336455 431.5869
MRPL42                   0.8772992               1.0076378  7.310103 394.4952
SMARCB1                 -1.5068365              -1.1857060  4.862201 390.5907
LRRC75A                  2.1737607               1.4443018  6.067424 385.9050
SF3A2                   -0.9778686              -1.4569135  5.324960 381.1228
CAPZA1                   1.0209149               1.0578690  6.715245 380.1256
TBL1XR1                  1.0696723               1.1951648  6.236839 340.5775
GPBP1                    0.8186246               0.8675824  6.945178 340.5608
H3F3A                   -1.3164993              -0.9010471  6.185463 335.1198
EIF3E                    0.8194785               0.7601219  9.223865 334.4057
TRA2A                    1.0150333               0.9439583  6.162212 319.3388
N4BP2L2                  0.8283410               0.8872747  6.970941 305.5450
NME2                    -1.6074268              -1.2508633  3.912930 301.2705
PGAM1                   -0.9598645              -0.7759151  6.859031 297.9188
SLC25A6                 -1.5197161              -1.3622162  4.555480 290.5582
MED21                    0.9763726               1.1246960  5.653105 288.3694
DNAJA2                   0.5822158               0.8000127  7.104472 266.8075
PRPF31                  -1.6766705              -1.0900384  3.254492 265.2866
EIF4E                    1.0612566               0.8219131  5.676749 264.6764
MT-ND1                  -0.7769798              -0.8078985 11.390268 259.2355
RSL24D1                  0.6786157               0.7681192  7.681722 255.6105
YWHAG                    0.6674777               0.9599464  6.694974 238.3306
TMEM167A                 0.6064178               0.8207721  7.355623 237.5583
CMTM6                    0.7656784               0.8676582  6.715668 235.5807
TMED2                    0.9196650               0.9181669  6.787542 232.4091
BZW1                     0.5689984               0.8313351  7.002194 232.1843
MTX1                    -1.1896438              -1.0046155  4.560252 229.7192
CAPZA2                   0.7409954               0.7839070  6.718293 228.0493
LYPLA2                  -1.0300137              -1.0242190  4.859538 225.5143
ZFAND6                   0.7986269               0.8499418  6.782021 225.0197
BTF3L4                   0.7078889               0.7197503  7.468313 219.7953
HNRNPH1                  0.8324717               0.7110226  8.237763 218.6944
SKIL                     1.0342334               1.3569664  6.659637 216.6658
ACTR2                    0.6112190               0.8560656  7.072977 216.4177
C6orf62                  0.9176043               0.9107224  5.519504 213.5445
MOB4                     0.7597861               0.6440750  6.320181 213.3128
SYNC                     1.3706567               1.3937707  4.325719 211.3674
                P.Value    adj.P.Val
EEF1A1     1.480432e-69 1.615891e-65
PPP1CB     3.838659e-64 2.094948e-60
CLIC1      1.015459e-61 3.694578e-58
AP001267.5 1.637488e-61 4.468294e-58
MRPL42     4.021745e-59 8.779470e-56
SMARCB1    7.362015e-59 1.339273e-55
LRRC75A    1.531336e-58 2.387791e-55
SF3A2      3.258819e-58 4.446251e-55
CAPZA1     3.818456e-58 4.630939e-55
TBL1XR1    2.764705e-55 2.751336e-52
GPBP1      2.772762e-55 2.751336e-52
H3F3A      7.205907e-55 6.554373e-52
EIF3E      8.175899e-55 6.864611e-52
TRA2A      1.238292e-53 9.654254e-51
N4BP2L2    1.636557e-52 1.190868e-49
NME2       3.712529e-52 2.532641e-49
PGAM1      7.103619e-52 4.560941e-49
SLC25A6    3.015867e-51 1.828788e-48
MED21      4.662299e-51 2.678368e-48
DNAJA2     3.946716e-49 2.153920e-46
PRPF31     5.455084e-49 2.835345e-46
EIF4E      6.213982e-49 3.082982e-46
MT-ND1     2.006403e-48 9.521692e-46
RSL24D1    4.428213e-48 2.013914e-45
YWHAG      2.183968e-46 9.535204e-44
TMEM167A   2.612714e-46 1.096838e-43
CMTM6      4.143245e-46 1.674945e-43
TMED2      8.733381e-46 3.404459e-43
BZW1       9.210209e-46 3.466532e-43
MTX1       1.653865e-45 6.017312e-43
CAPZA2     2.465526e-45 8.681037e-43
LYPLA2     4.539335e-45 1.548339e-42
ZFAND6     5.116664e-45 1.692375e-42
BTF3L4     1.834197e-44 5.888310e-42
HNRNPH1    2.407388e-44 7.507612e-42
SKIL       3.984293e-44 1.208015e-41
ACTR2      4.238569e-44 1.250378e-41
C6orf62    8.710304e-44 2.501920e-41
MOB4       9.234317e-44 2.584425e-41
SYNC       1.510670e-43 4.122240e-41
topsInd<- topTable(efit, coef=c(3:4),n=nrow(fit))

head(topsInd, n=40)
           dge.samples.indNA18858 dge.samples.indNA19160   AveExpr         F
TYW3                   0.26928141            -5.55543495  4.113800 1525.8094
EIF1AY                 0.20508973             6.93681076  2.326674 1048.0792
CRYZ                   0.17882404            -4.81958907  2.839771  690.2228
AC004556.3            -5.75534452            -6.17888060  1.835405  656.6054
CAT                   -0.73782305            -5.07969345  2.867017  585.1321
DDX3Y                  0.56220247             6.34465982  1.945796  513.0746
IAH1                   2.86642172             3.50414363  4.724134  461.5977
MAGEH1                -4.21921787             0.08695672  3.723956  439.4305
USP9Y                  0.30535465             6.70590345  1.684035  411.8934
USP51                 -4.63927891             0.02424610  2.975420  348.2111
THOC3                 -0.07080983            -1.56049342  4.320177  334.3516
ZNF280D                2.84062273             3.51733872  2.725728  328.2798
SNRPE                 -0.93855774             0.02260109  8.972366  325.5767
RRAGB                 -3.48527180             0.15316671  2.720922  321.5495
TOMM20                -0.73295274             0.15607105  8.609516  314.5744
TAF9B                 -0.07278787            -3.59417724  3.157304  312.6982
NUCKS1                -0.71312420             0.16623544 10.180196  310.5760
FDPS                  -1.21877291            -0.02684859  8.334725  297.3570
RNF187                -1.03317535            -0.02179477  7.155469  293.5132
TIMM17B                0.95128537            -0.01098697  7.209957  293.1374
KRTCAP2               -0.91311441             0.06066995  7.057066  288.3349
QPCT                   0.13830166            -3.76249787  3.000958  284.8849
TPR                   -0.93976183             0.06625741  8.182364  282.8973
SP5                   -3.11295951             1.40660934  3.943575  273.6559
TRIM61                 1.61407622            -3.62478665  1.202615  271.3424
ILF2                  -0.89329881            -0.15709871  8.864239  265.5155
NDUFS2                -1.05704830            -0.14211365  7.471435  262.9533
HAX1                  -0.73733217             0.16587815  6.932201  253.0943
HCCS                   1.16016653            -0.01690698  5.092590  249.0936
UBA1                   0.20645551            -0.77137417  6.782157  245.0465
TCEAL5                 1.58799720            -2.89834113  3.157009  244.2397
NXT2                   1.43401585             0.02192887  3.535435  239.9512
RAB4A                 -1.01107992             0.11777263  6.862365  237.8658
USP9X                  0.71474988            -0.50252712  6.863537  236.8376
CHCHD2                 0.70387819            -2.35692826  7.107940  234.0863
MRPS21                -0.81878449             0.02949131  8.499517  233.0113
UBLCP1                 0.35068073            -0.87261236  5.383690  232.8228
ZNF717                 0.81324572            -3.22149694  1.204613  232.5085
ZNF300                 2.57911387            -1.77563074  1.358216  232.4810
IRX2                   4.05239853             4.61757793  3.704031  225.9666
                P.Value    adj.P.Val
TYW3       1.394143e-97 1.521707e-93
EIF1AY     1.742628e-86 9.510390e-83
CRYZ       1.843357e-74 6.706745e-71
AC004556.3 4.728545e-73 1.290302e-69
CAT        7.946161e-70 1.734647e-66
DDX3Y      3.377413e-66 6.144077e-63
IAH1       2.545447e-63 3.969079e-60
MAGEH1     5.386846e-62 7.349679e-59
USP9Y      2.886984e-60 3.501270e-57
USP51      7.394120e-56 8.070682e-53
THOC3      8.254718e-55 8.190932e-52
ZNF280D    2.438121e-54 2.217674e-51
SNRPE      3.969633e-54 3.332965e-51
RRAGB      8.257078e-54 6.437572e-51
TOMM20     2.988980e-53 2.174981e-50
TAF9B      4.241582e-53 2.893554e-50
NUCKS1     6.314727e-53 4.054426e-50
FDPS       7.924399e-52 4.805267e-49
RNF187     1.681918e-51 9.662179e-49
TIMM17B    1.811086e-51 9.884003e-49
KRTCAP2    4.694532e-51 2.440039e-48
QPCT       9.379221e-51 4.653373e-48
TPR        1.401716e-50 6.652056e-48
SP5        9.354124e-50 4.254178e-47
TRIM61     1.516399e-49 6.620598e-47
ILF2       5.195226e-49 2.180996e-46
NDUFS2     8.988518e-49 3.633691e-46
HAX1       7.711098e-48 3.005951e-45
HCCS       1.879321e-47 7.073376e-45
UBA1       4.680632e-47 1.702970e-44
TCEAL5     5.622262e-47 1.979580e-44
NXT2       1.501420e-46 5.121249e-44
RAB4A      2.432635e-46 8.046124e-44
USP9X      3.089731e-46 9.918947e-44
CHCHD2     5.881745e-46 1.834264e-43
MRPS21     7.575898e-46 2.296970e-43
UBLCP1     7.920531e-46 2.336557e-43
ZNF717     8.530743e-46 2.403061e-43
ZNF300     8.586293e-46 2.403061e-43
IRX2       4.069474e-45 1.110458e-42
"UTF1" %in% rownames(topsInd)
[1] TRUE
topsInd[rownames(topsInd)== "UTF1",]
     dge.samples.indNA18858 dge.samples.indNA19160  AveExpr        F
UTF1               0.122897             -0.5988935 5.844886 11.48102
         P.Value    adj.P.Val
UTF1 2.36572e-05 6.909775e-05
plot(density(topsBatch$adj.P.Val))
lines(density(topsInd$adj.P.Val), col= "red")

boxplot(-log10(topsBatch$adj.P.Val), -log10(topsInd$adj.P.Val), names= c("Batch", "Individual"), main="Distribution of p values from F tests", ylab="-log10(adjusted.p.val)")

median(topsBatch$F)
[1] 8.997543
median(topsInd$F)
[1] 6.817397

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
[1] C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] UpSetR_1.4.0    ggplot2_3.3.2   reshape2_1.4.4  edgeR_3.28.1   
[5] limma_3.42.2    dplyr_1.0.0     Matrix_1.2-18   Seurat_3.2.0   
[9] workflowr_1.6.2

loaded via a namespace (and not attached):
  [1] Rtsne_0.15            colorspace_1.4-1      deldir_0.1-28        
  [4] ellipsis_0.3.1        ggridges_0.5.2        rprojroot_1.3-2      
  [7] fs_1.4.2              spatstat.data_1.4-3   farver_2.0.3         
 [10] leiden_0.3.3          listenv_0.8.0         npsurv_0.4-0         
 [13] ggrepel_0.8.2         codetools_0.2-16      splines_3.6.1        
 [16] lsei_1.2-0            knitr_1.29            polyclip_1.10-0      
 [19] jsonlite_1.7.0        ica_1.0-2             cluster_2.1.0        
 [22] png_0.1-7             uwot_0.1.8            shiny_1.5.0          
 [25] sctransform_0.2.1     compiler_3.6.1        httr_1.4.2           
 [28] backports_1.1.8       fastmap_1.0.1         lazyeval_0.2.2       
 [31] later_1.1.0.1         htmltools_0.5.0       tools_3.6.1          
 [34] rsvd_1.0.3            igraph_1.2.5          gtable_0.3.0         
 [37] glue_1.4.1            RANN_2.6.1            rappdirs_0.3.1       
 [40] Rcpp_1.0.5            spatstat_1.64-1       vctrs_0.3.2          
 [43] gdata_2.18.0          ape_5.3               nlme_3.1-140         
 [46] lmtest_0.9-37         xfun_0.16             stringr_1.4.0        
 [49] globals_0.12.5        mime_0.9              miniUI_0.1.1.1       
 [52] lifecycle_0.2.0       irlba_2.3.3           gtools_3.8.2         
 [55] goftest_1.2-2         future_1.18.0         MASS_7.3-51.4        
 [58] zoo_1.8-8             scales_1.1.1          promises_1.1.1       
 [61] spatstat.utils_1.17-0 parallel_3.6.1        RColorBrewer_1.1-2   
 [64] yaml_2.2.1            reticulate_1.16       pbapply_1.4-2        
 [67] gridExtra_2.3         rpart_4.1-15          stringi_1.4.6        
 [70] caTools_1.18.0        rlang_0.4.7           pkgconfig_2.0.3      
 [73] bitops_1.0-6          evaluate_0.14         lattice_0.20-38      
 [76] ROCR_1.0-7            purrr_0.3.4           tensor_1.5           
 [79] labeling_0.3          patchwork_1.0.1       htmlwidgets_1.5.1    
 [82] cowplot_1.0.0         tidyselect_1.1.0      here_0.1-11          
 [85] RcppAnnoy_0.0.16      plyr_1.8.6            magrittr_1.5         
 [88] R6_2.4.1              gplots_3.0.4          generics_0.0.2       
 [91] withr_2.2.0           pillar_1.4.6          whisker_0.4          
 [94] mgcv_1.8-28           fitdistrplus_1.0-14   survival_3.2-3       
 [97] abind_1.4-5           tibble_3.0.3          future.apply_1.6.0   
[100] crayon_1.3.4          KernSmooth_2.23-15    plotly_4.9.2.1       
[103] rmarkdown_2.3         locfit_1.5-9.4        grid_3.6.1           
[106] data.table_1.13.0     git2r_0.26.1          digest_0.6.25        
[109] xtable_1.8-4          tidyr_1.1.0           httpuv_1.5.4         
[112] munsell_0.5.0         viridisLite_0.3.0