1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use self::super::super::super::{ReadWriteMarker, ReadWritable};
use self::super::super::super::util::limit_to_width;
use self::super::GeneralPurposeRegisterBank;
use std::ops::{DerefMut, Deref};
use std::fmt;


/// There are eight 8-bit General Purpose registers, each has an internal address for use within the CPU, instructions like
/// MOVE and LOAD can use these addresses.
///
/// All the registers will start with an initial value of `0`.
///
/// There are eight 8-bit General Purpose registers, each has an internal address for use within the CPU, instructions like
/// MOVE and LOAD can use these addresses. The first five registers have some special functionality, as described, the last
/// three have no special functionality.
/// The last four registers can also be used with the stack.
///
/// Address | Letter | Description
/// --------|--------|------------
/// 000     | F      | Flag register (can also be used to get a zero value)
/// 001     | S      | Output of the ALU - ALU operations will overwrite any value stored
/// 010     | X      | Input to ALU (Only input for unary operations)
/// 011     | Y      | Second input for ALU
/// 100     | A      | Port number for PORT instruction
/// 101     | B      |
/// 110     | C      |
/// 111     | D      |
///
/// ## Flag register
///
/// The flag register can be be read and written to as a general purpose register, though keep in mind that ALU and Compare
/// instructions can effect the value of the flags.
///
/// Not all of the bits have a specified role (yet), though the CLRF operation will still clear them.
///
/// A value of `1` denotes the flag as 'set', whilst a value of `0` denotes  the flag is 'unset'.
///
/// Below is a description of what each bit in the flag register denotes.
///
/// Bit | Letter | Description
/// ----|--------|------------
/// 0   | Z      | Zero flag
/// 1   | C      | Carry flag
/// 2   | P      | Parity (even number of set bits)
/// 3   | E      | Equals flag
/// 4   | G      | Greater than
/// 5   |        |
/// 6   |        |
/// 7   |        |
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct GeneralPurposeRegister {
    data: u8,
    /// Verified to 3 bits at construction time
    address: u8,
    letter: char,
    rw: ReadWriteMarker,
}

impl GeneralPurposeRegister {
    /// Create a new, empty register named as specified.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pir_8_emu::isa::GeneralPurposeRegister;
    /// let x = GeneralPurposeRegister::new(0b010, 'X').unwrap();
    /// assert_eq!(*x, 0);
    /// assert_eq!(x.address(), 0b010);
    /// assert_eq!(x.letter(), 'X');
    ///
    /// assert_eq!(GeneralPurposeRegister::new(0b1000, 'Q'), None);
    /// ```
    pub fn new(address: u8, letter: char) -> Option<GeneralPurposeRegister> {
        Some(GeneralPurposeRegister {
            data: 0,
            address: limit_to_width(address, 3)?,
            letter: if letter.is_ascii() {
                Some(letter)
            } else {
                None
            }?,
            rw: ReadWriteMarker::new(),
        })
    }

    /// The address for this register
    ///
    /// Limited to 3 bits' width
    #[inline]
    pub fn address(self) -> u8 {
        self.address
    }

    /// The letter/mnemonic for this register
    ///
    /// E.g. "X"
    #[inline]
    pub fn letter(self) -> char {
        self.letter
    }

    /// Change this register's letter to the specified one
    ///
    /// Will return `Err(())` if the letter isn't ASCII
    pub fn relabel(&mut self, to_letter: char) -> Result<(), ()> {
        if to_letter.is_ascii() {
            self.letter = to_letter;
            Ok(())
        } else {
            Err(())
        }
    }
}

impl GeneralPurposeRegister {
    /// Get the default 8 GP registers specified in the ISA
    pub fn defaults() -> GeneralPurposeRegisterBank {
        [GeneralPurposeRegister::new(0b000, 'F').expect("F register"), // Flag register (can also be used to get a zero value)
         GeneralPurposeRegister::new(0b001, 'S').expect("S register"), // Output of the ALU - ALU operations will overwrite any value stored
         GeneralPurposeRegister::new(0b010, 'X').expect("X register"), // Input to ALU (Only input for unary operations)
         GeneralPurposeRegister::new(0b011, 'Y').expect("Y register"), // Second input for ALU
         GeneralPurposeRegister::new(0b100, 'A').expect("A register"),
         GeneralPurposeRegister::new(0b101, 'B').expect("B register"),
         GeneralPurposeRegister::new(0b110, 'C').expect("C register"),
         GeneralPurposeRegister::new(0b111, 'D').expect("D register")]
    }

    /// Create a GP register bank from letters contained within the specified string
    ///
    /// The string must be 8-ASCII-characters-long.
    ///
    /// If it's shorter, `Err(-1)` is returned,
    /// if it's longer, `Err(8)` is returned,
    /// if character for register at address `AAA` is non-ASCII, `Err(AAA)` is returned,
    ///
    /// # Examples
    ///
    /// ```
    /// # use pir_8_emu::isa::GeneralPurposeRegister;
    /// assert_eq!(GeneralPurposeRegister::from_letters("FSXYABCD"), Ok(GeneralPurposeRegister::defaults()));
    /// ```
    pub fn from_letters(s: &str) -> Result<GeneralPurposeRegisterBank, i8> {
        let mut cc = s.chars();

        let ret = [GeneralPurposeRegister::new(0b000, cc.next().ok_or(-1)?).ok_or(0b000)?,
                   GeneralPurposeRegister::new(0b001, cc.next().ok_or(-1)?).ok_or(0b001)?,
                   GeneralPurposeRegister::new(0b010, cc.next().ok_or(-1)?).ok_or(0b010)?,
                   GeneralPurposeRegister::new(0b011, cc.next().ok_or(-1)?).ok_or(0b011)?,
                   GeneralPurposeRegister::new(0b100, cc.next().ok_or(-1)?).ok_or(0b100)?,
                   GeneralPurposeRegister::new(0b101, cc.next().ok_or(-1)?).ok_or(0b101)?,
                   GeneralPurposeRegister::new(0b110, cc.next().ok_or(-1)?).ok_or(0b110)?,
                   GeneralPurposeRegister::new(0b111, cc.next().ok_or(-1)?).ok_or(0b111)?];

        if cc.next().is_some() { Err(8) } else { Ok(ret) }
    }
}

impl ReadWritable for GeneralPurposeRegister {
    #[inline]
    fn was_read(&self) -> bool {
        self.rw.was_read()
    }

    #[inline]
    fn was_written(&self) -> bool {
        self.rw.was_written()
    }

    #[inline]
    fn reset_rw(&mut self) {
        self.rw.reset()
    }
}

impl Deref for GeneralPurposeRegister {
    type Target = u8;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.rw.read();
        &self.data
    }
}

impl DerefMut for GeneralPurposeRegister {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.rw.written();
        &mut self.data
    }
}

impl fmt::Display for GeneralPurposeRegister {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}({:02X})", self.letter, self.data)
    }
}