Last updated: 2025-07-11

Checks: 6 1

Knit directory: LNdevMouse24.2/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250625) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e2b9f79. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store

Untracked files:
    Untracked:  analysis/adult_mLN_iLN.Rmd

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


preprocessing

load packages

library(ExploreSCdataSeurat3)
library(runSeurat3)
library(Seurat)
library(ggpubr)
library(pheatmap)
library(SingleCellExperiment)
library(dplyr)
library(tidyverse)
library(viridis)
library(here)
library(muscat)
library(circlize)
library(destiny)
library(scater)
library(metap)
library(multtest)
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(DOSE)
library(grid)
library(gridExtra)
library(ggupset)
library(NCmisc)

load object all

basedir <- here()
fileNam <- paste0(basedir, "/data/LNmLToRev_allmerged_seurat.rds")
seuratM <- readRDS(fileNam)
table(seuratM$orig.ident)

       
140291 

subset adult

seuratA <- subset(seuratM, timepoint == "8w")
table(seuratM$timepoint)

  E18    P7    3w    8w 
42711 44836 29577 23167 
table(seuratA$timepoint)

   8w 
23167 
#rerun seurat
seuratA <- NormalizeData (object = seuratA)
seuratA <- FindVariableFeatures(object = seuratA)
seuratA <- ScaleData(object = seuratA, verbose = TRUE)
seuratA <- RunPCA(object=seuratA, npcs = 30, verbose = FALSE)
seuratA <- RunTSNE(object=seuratA, reduction="pca", dims = 1:20)
seuratA <- RunUMAP(object=seuratA, reduction="pca", dims = 1:20)
seuratA <- FindNeighbors(object = seuratA, reduction = "pca", dims= 1:20)

res <- c(0.25, 0.6, 0.8, 0.4)
for (i in 1:length(res)) {
  seuratA <- FindClusters(object = seuratA, resolution = res[i], random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 23167
Number of edges: 747906

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9267
Number of communities: 12
Elapsed time: 5 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 23167
Number of edges: 747906

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8790
Number of communities: 17
Elapsed time: 4 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 23167
Number of edges: 747906

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8611
Number of communities: 20
Elapsed time: 4 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 23167
Number of edges: 747906

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9025
Number of communities: 15
Elapsed time: 5 seconds

plot umaps

clustering

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seuratM$RNA_snn_res.0.25))]
names(colPal) <- unique(seuratM$RNA_snn_res.0.25)

DimPlot(seuratA, reduction = "umap", group.by = "RNA_snn_res.0.25" ,
        pt.size = 0.1, label = T, shuffle = T, cols = colPal) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

location

collocation <- c("#61baba", "#ba6161")
names(collocation) <- c("iLN", "mLN")
DimPlot(seuratA, reduction = "umap", group.by = "location", cols = collocation,
        pt.size = 0.1, label = T, shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

calculate cluster marker genes pre filter

Idents(seuratA) <- seuratA$RNA_snn_res.0.25
levels(seuratA)

markerGenes <- FindAllMarkers(seuratA, only.pos=T) %>% 
  dplyr::filter(p_val_adj < 0.01) 

features pre filter

selGenesViolin <- c("ENSMUSG00000020717.Pecam1", "ENSMUSG00000026395.Ptprc", "ENSMUSG00000031004.Mki67")

pList <- sapply(selGenesViolin, function(x){
  p <- FeaturePlot(seuratA, reduction = "umap", 
            features = x, 
            cols=c("lightgrey", "darkred"),
            order = T)+
  theme(legend.position="right")
  plot(p)
})

filter object

## filter Pecam1 (cluster #6) and Ptprc (cluster #9 and #10) Mki67 (#8) and pancreatic cells (#11)
table(seuratA$RNA_snn_res.0.25)
seuratF <- subset(seuratA, RNA_snn_res.0.25 %in% c("6", "8" ,"9", "10", "11"), invert = TRUE)
table(seuratF$RNA_snn_res.0.25)

seuratA <- seuratF
remove(seuratF)

rerun seurat after filter

seuratA <- NormalizeData (object = seuratA)
seuratA <- FindVariableFeatures(object = seuratA)
seuratA <- ScaleData(object = seuratA, verbose = TRUE)
seuratA <- RunPCA(object=seuratA, npcs = 30, verbose = FALSE)
seuratA <- RunTSNE(object=seuratA, reduction="pca", dims = 1:20)
seuratA <- RunUMAP(object=seuratA, reduction="pca", dims = 1:20)
seuratA <- FindNeighbors(object = seuratA, reduction = "pca", dims= 1:20)

res <- c(0.25, 0.6, 0.8, 0.4)
for (i in 1:length(res)) {
  seuratA <- FindClusters(object = seuratA, resolution = res[i], random.seed = 1234)
}
## save object
saveRDS(seuratA, file=paste0(basedir,"/data/LNmLToRev_adultonly_seurat.rds"))

load object adult

## load object adult only
fileNam <- paste0(basedir, "/data/LNmLToRev_adultonly_seurat.rds")
seuratA <- readRDS(fileNam)
table(seuratA$dataset)

380131_11-11_20250305_Mu_Cxcl13EYFP_Adult_pLN_FRC 380131_12-12_20250305_Mu_Cxcl13EYFP_Adult_mLN_FRC 
                                             5253                                              6419 
 382581_08-8_20250320_Mu_Cxcl13EYFP_Adult_pLN_FRC  382581_09-9_20250320_Mu_Cxcl13EYFP_Adult_mLN_FRC 
                                             7094                                              3522 

set color vectors

colLoc <- c("#61baba", "#ba6161")
names(colLoc) <- unique(seuratA$location)

colLab <- c("#42a071", "#900C3F","#b66e8d", "#8F7700FF", "#61a4ba","#003C67FF",
            "#e3953d","#ab5711", "#714542", "#b6856e", "#FFC300")

names(colLab) <- c("FDC", "TRC", "TBRC", "IFRC", "medRC1" , "medRC2",
                   "PRC1", "PRC2", "Pi16+RC", "PRC3", "VSMC")

coltimepoint <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF")
names(coltimepoint) <- c("E18", "P7", "3w", "8w")

collocation <- c("#61baba", "#ba6161")
names(collocation) <- c("iLN", "mLN")

plot umaps

clustering

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seuratA$RNA_snn_res.0.25))]
names(colPal) <- unique(seuratA$RNA_snn_res.0.25)
DimPlot(seuratA, reduction = "umap", group.by = "RNA_snn_res.0.25", cols = colPal,
        pt.size = 0.1, label = T, shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

location

DimPlot(seuratA, reduction = "umap", group.by = "location", cols = collocation,
        pt.size = 0.1, label = T, shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

plot features

selGenesViolin <- c("ENSMUSG00000022037.Clu", "ENSMUSG00000094686.Ccl21a",
                    "ENSMUSG00000074934.Grem1", "ENSMUSG00000050069.Grem2",
                    "ENSMUSG00000042436.Mfap4", "ENSMUSG00000071005.Ccl19",
                    "ENSMUSG00000016494.Cd34", "ENSMUSG00000001119.Col6a1",
                    "ENSMUSG00000020241.Col6a2","Rosa26eyfp.Rosa26eyfp", 
                    "ENSMUSG00000023078.Cxcl13", "ENSMUSG00000032135.Mcam")

pList <- sapply(selGenesViolin, function(x){
  p <- FeaturePlot(seuratA, reduction = "umap", 
            features = x, 
            cols=c("lightgrey", "darkred"),
            order = T)+
  theme(legend.position="right")
  plot(p)
})

integrate data across location

Idents(seuratA) <- seuratA$location

seurat.list <- SplitObject(object = seuratA, split.by = "location")
for (i in 1:length(x = seurat.list)) {
    seurat.list[[i]] <- NormalizeData(object = seurat.list[[i]],
                                      verbose = FALSE)
    seurat.list[[i]] <- FindVariableFeatures(object = seurat.list[[i]], 
        selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}

seurat.anchors <- FindIntegrationAnchors(object.list = seurat.list, dims = 1:20)
seuratA.int <- IntegrateData(anchorset = seurat.anchors, dims = 1:20)
DefaultAssay(object = seuratA.int) <- "integrated"

## rerun seurat
seuratA.int <- ScaleData(object = seuratA.int, verbose = FALSE,
                         features = rownames(seuratA.int))
seuratA.int <- RunPCA(object = seuratA.int, npcs = 20, verbose = FALSE)
seuratA.int <- RunTSNE(object = seuratA.int, recuction = "pca", dims = 1:20)
seuratA.int <- RunUMAP(object = seuratA.int, recuction = "pca", dims = 1:20)

seuratA.int <- FindNeighbors(object = seuratA.int, reduction = "pca", dims = 1:20)
res <- c(0.6, 0.8, 0.4, 0.25)
for (i in 1:length(res)){
  seuratA.int <- FindClusters(object = seuratA.int, resolution = res[i],
                              random.seed = 1234)
}
saveRDS(seuratA.int, file=paste0(basedir,"/data/LNmLToRev_adultonly_seurat.integrated.rds"))

load integrated object adult

fileNam <- paste0(basedir, "/data/LNmLToRev_adultonly_seurat.integrated.rds")
seuratA.int <- readRDS(fileNam)
DefaultAssay(object = seuratA.int) <- "RNA"
seuratA.int$intCluster <- seuratA.int$integrated_snn_res.0.4
Idents(seuratA.int) <- seuratA.int$intCluster

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seuratA.int$intCluster))]
names(colPal) <- unique(seuratA.int$intCluster)

assign label

seuratA.int$label <- "label"
seuratA.int$label[which(seuratA.int$intCluster == "0")] <- "MedRC/IFRC"
seuratA.int$label[which(seuratA.int$intCluster == "1")] <- "actMedRC"
seuratA.int$label[which(seuratA.int$intCluster == "2")] <- "TBRC"
seuratA.int$label[which(seuratA.int$intCluster == "3")] <- "TRC"
seuratA.int$label[which(seuratA.int$intCluster == "4")] <- "MedRC"
seuratA.int$label[which(seuratA.int$intCluster == "5")] <- "PRC"
seuratA.int$label[which(seuratA.int$intCluster == "6")] <- "FDC/MRC" 
seuratA.int$label[which(seuratA.int$intCluster == "7")] <- "Pi16+RC"
seuratA.int$label[which(seuratA.int$intCluster == "8")] <- "VSMC"

table(seuratA.int$label)

  actMedRC    FDC/MRC      MedRC MedRC/IFRC    Pi16+RC        PRC       TBRC        TRC       VSMC 
      4020       1292       2371       4868        600       2192       3841       2839        265 
colLab2 <- colLab
colLab <- c("#42a071", "#900C3F","#b66e8d", "#61a4ba", "#424671", "#003C67FF",
            "#e3953d", "#714542", "#b6856e", "#FFC300")

names(colLab) <- c("FDC/MRC", "TRC", "TBRC", "MedRC/IFRC", "MedRC" , "actMedRC",
                   "PRC", "Pi16+RC", "VSMC")

Dimplot int data

clustering

DimPlot(seuratA.int, reduction = "umap",
        pt.size = 0.1, label = T, shuffle = T, cols = colPal) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

label

DimPlot(seuratA.int, reduction = "umap", group.by = "label", cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seuratA.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

DimPlot(seuratA.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void() + 
  theme(legend.position = "none") 

label mLN iLN sep

mLN

seuratA.intmLN <- subset(seuratA.int, location == "mLN")

DimPlot(seuratA.intmLN, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

DimPlot(seuratA.intmLN, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void() + 
  theme(legend.position = "none") 

iLN

seuratA.intiLN <- subset(seuratA.int, location == "iLN")

DimPlot(seuratA.intiLN, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

DimPlot(seuratA.intiLN, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void() + 
  theme(legend.position = "none") 

label split by location

DimPlot(seuratA.int, reduction = "umap", group.by = "label", cols = colLab,
        split.by = "location")+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seuratA.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, split.by = "location", shuffle = T)+
  theme_void()

location

DimPlot(seuratA.int, reduction = "umap", group.by = "location", cols = colLoc,
        pt.size = 0.1, shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

DimPlot(seuratA.int, reduction = "umap", group.by = "location", pt.size=0.5,
        cols = colLoc, split.by = "location", shuffle = T)+
  theme_void()

plot features int

selGenesViolin <- c("ENSMUSG00000022037.Clu", "ENSMUSG00000094686.Ccl21a",
                    "ENSMUSG00000074934.Grem1", "ENSMUSG00000050069.Grem2",
                    "ENSMUSG00000042436.Mfap4", "ENSMUSG00000071005.Ccl19",
                    "ENSMUSG00000016494.Cd34", "ENSMUSG00000024011.Pi16", 
                    "ENSMUSG00000001119.Col6a1", "ENSMUSG00000020241.Col6a2",
                    "Rosa26eyfp.Rosa26eyfp", "ENSMUSG00000023078.Cxcl13",
                    "ENSMUSG00000032135.Mcam", "ENSMUSG00000023034.Nr4a1")

pList <- sapply(selGenesViolin, function(x){
  p <- FeaturePlot(seuratA.int, reduction = "umap", 
            features = x, 
            cols=c("lightgrey", "darkred"),
            order = F)+
  theme(legend.position="right")
  plot(p)
})

cluster characterization

heatmap function

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc,
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

heatmap

seuratA.int <- JoinLayers(seuratA.int)
Idents(seuratA.int) <- seuratA.int$intCluster

seuratAint_markers <- FindAllMarkers(seuratA.int, only.pos = T, logfc.threshold = 0.25)

### plot DE genes top 10 avg logFC
markerAll <- seuratAint_markers %>% group_by(cluster) %>% 
  mutate(geneID = gene) %>% top_n(10, avg_log2FC) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) %>% 
  filter(nchar(gene)>1)

grpCnt <- markerAll %>% group_by(cluster) %>% summarise(cnt=n())
gapR <- data.frame(cluster=unique(markerAll$cluster)) %>% 
  left_join(.,grpCnt, by="cluster") %>% mutate(cumSum=cumsum(cnt)) 
ordVec <- levels(seuratA.int)

pOut <- avgHeatmap(seurat = seuratA.int, selGenes = markerAll,
                  colVecIdent = colPal, 
                  ordVec=ordVec,
                  gapVecR=gapR$cumSum, gapVecC=NULL,cc=T,
                  cr=F, condCol=F)

session info

date()
[1] "Fri Jul 11 16:38:30 2025"
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] future_1.58.0               NCmisc_1.2.0                ggupset_0.4.1              
 [4] gridExtra_2.3               DOSE_3.30.5                 enrichplot_1.24.4          
 [7] msigdbr_24.1.0              org.Hs.eg.db_3.19.1         AnnotationDbi_1.66.0       
[10] clusterProfiler_4.12.6      multtest_2.60.0             metap_1.12                 
[13] scater_1.32.1               scuttle_1.14.0              destiny_3.18.0             
[16] circlize_0.4.16             muscat_1.18.0               here_1.0.1                 
[19] viridis_0.6.5               viridisLite_0.4.2           lubridate_1.9.4            
[22] forcats_1.0.0               stringr_1.5.1               purrr_1.0.4                
[25] readr_2.1.5                 tidyr_1.3.1                 tibble_3.2.1               
[28] tidyverse_2.0.0             dplyr_1.1.4                 SingleCellExperiment_1.26.0
[31] SummarizedExperiment_1.34.0 Biobase_2.64.0              GenomicRanges_1.56.2       
[34] GenomeInfoDb_1.40.1         IRanges_2.38.1              S4Vectors_0.42.1           
[37] BiocGenerics_0.50.0         MatrixGenerics_1.16.0       matrixStats_1.5.0          
[40] pheatmap_1.0.13             ggpubr_0.6.0                ggplot2_3.5.2              
[43] Seurat_5.3.0                SeuratObject_5.1.0          sp_2.2-0                   
[46] runSeurat3_0.1.0            ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] S4Arrays_1.4.1            pbkrtest_0.5.4            parallel_4.4.0           
 [16] png_0.1-8                 plotrix_3.8-4             cli_3.6.5                
 [19] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [22] variancePartition_1.34.0  BiocNeighbors_1.22.0      shadowtext_0.1.4         
 [25] uwot_0.2.3                curl_6.2.3                tidytree_0.4.6           
 [28] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [31] stringi_1.8.7             backports_1.5.0           lmerTest_3.1-3           
 [34] qqconf_1.3.2              httpuv_1.6.16             magrittr_2.0.3           
 [37] rappdirs_0.3.3            splines_4.4.0             ggraph_2.2.1             
 [40] sctransform_0.4.2         ggbeeswarm_0.7.2          DBI_1.2.3                
 [43] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [46] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [49] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [52] tidygraph_1.3.1           colourpicker_1.3.0        htmlwidgets_1.6.4        
 [55] fs_1.6.6                  ggrepel_0.9.6             labeling_0.4.3           
 [58] fANCOVA_0.6-1             SparseArray_1.4.8         DESeq2_1.44.0            
 [61] ranger_0.17.0             DEoptimR_1.1-3-1          reticulate_1.42.0        
 [64] hexbin_1.28.5             zoo_1.8-14                XVector_0.44.0           
 [67] knitr_1.50                ggplot.multistats_1.0.1   UCSC.utils_1.0.0         
 [70] RhpcBLASctl_0.23-42       timechange_0.3.0          foreach_1.5.2            
 [73] patchwork_1.3.0           caTools_1.18.3            ggtree_3.12.0            
 [76] data.table_1.17.4         R.oo_1.27.1               RSpectra_0.16-2          
 [79] irlba_2.3.5.1             fastDummies_1.7.5         gridGraphics_0.5-1       
 [82] lazyeval_0.2.2            yaml_2.3.10               survival_3.8-3           
 [85] scattermore_1.2           crayon_1.5.3              RcppAnnoy_0.0.22         
 [88] RColorBrewer_1.1-3        progressr_0.15.1          tweenr_2.0.3             
 [91] later_1.4.2               ggridges_0.5.6            codetools_0.2-20         
 [94] GlobalOptions_0.1.2       aod_1.3.3                 KEGGREST_1.44.1          
 [97] Rtsne_0.17                shape_1.4.6.1             limma_3.60.6             
[100] pkgconfig_2.0.3           TMB_1.9.17                spatstat.univar_3.1-3    
[103] mathjaxr_1.8-0            EnvStats_3.1.0            aplot_0.2.5              
[106] scatterplot3d_0.3-44      ape_5.8-1                 spatstat.sparse_3.1-0    
[109] xtable_1.8-4              car_3.1-3                 plyr_1.8.9               
[112] httr_1.4.7                rbibutils_2.3             tools_4.4.0              
[115] globals_0.18.0            beeswarm_0.4.0            broom_1.0.8              
[118] nlme_3.1-168              assertthat_0.2.1          lme4_1.1-37              
[121] digest_0.6.37             numDeriv_2016.8-1.1       Matrix_1.7-3             
[124] farver_2.1.2              tzdb_0.5.0                remaCor_0.0.18           
[127] reshape2_1.4.4            yulab.utils_0.2.0         glue_1.8.0               
[130] cachem_1.1.0              polyclip_1.10-7           generics_0.1.4           
[133] Biostrings_2.72.1         mvtnorm_1.3-3             presto_1.0.0             
[136] parallelly_1.45.0         mnormt_2.1.1              statmod_1.5.0            
[139] RcppHNSW_0.6.0            ScaledMatrix_1.12.0       carData_3.0-5            
[142] minqa_1.2.8               pbapply_1.7-2             httr2_1.1.2              
[145] spam_2.11-1               gson_0.1.0                graphlayouts_1.2.2       
[148] gtools_3.9.5              ggsignif_0.6.4            RcppEigen_0.3.4.0.2      
[151] shiny_1.10.0              GenomeInfoDbData_1.2.12   glmmTMB_1.1.11           
[154] R.utils_2.13.0            memoise_2.0.1             rmarkdown_2.29           
[157] scales_1.4.0              R.methodsS3_1.8.2         RANN_2.6.2               
[160] Cairo_1.6-2               spatstat.data_3.1-6       rstudioapi_0.17.1        
[163] cluster_2.1.8.1           mutoss_0.1-13             spatstat.utils_3.1-4     
[166] hms_1.1.3                 fitdistrplus_1.2-2        cowplot_1.1.3            
[169] colorspace_2.1-1          rlang_1.1.6               DelayedMatrixStats_1.26.0
[172] sparseMatrixStats_1.16.0  xts_0.14.1                dotCall64_1.2            
[175] shinydashboard_0.7.3      ggforce_0.4.2             laeken_0.5.3             
[178] mgcv_1.9-3                xfun_0.52                 e1071_1.7-16             
[181] TH.data_1.1-3             iterators_1.0.14          abind_1.4-8              
[184] GOSemSim_2.30.2           treeio_1.28.0             bitops_1.0-9             
[187] Rdpack_2.6.4              promises_1.3.3            scatterpie_0.2.4         
[190] RSQLite_2.4.0             qvalue_2.36.0             sandwich_3.1-1           
[193] fgsea_1.30.0              DelayedArray_0.30.1       proxy_0.4-27             
[196] GO.db_3.19.1              compiler_4.4.0            prettyunits_1.2.0        
[199] boot_1.3-31               beachmat_2.20.0           listenv_0.9.1            
[202] Rcpp_1.0.14               edgeR_4.2.2               workflowr_1.7.1          
[205] BiocSingular_1.20.0       tensor_1.5                MASS_7.3-65              
[208] progress_1.2.3            BiocParallel_1.38.0       babelgene_22.9           
[211] spatstat.random_3.4-1     R6_2.6.1                  fastmap_1.2.0            
[214] multcomp_1.4-28           fastmatch_1.1-6           rstatix_0.7.2            
[217] vipor_0.4.7               TTR_0.24.4                ROCR_1.0-11              
[220] TFisher_0.2.0             rsvd_1.0.5                vcd_1.4-13               
[223] nnet_7.3-20               gtable_0.3.6              KernSmooth_2.23-26       
[226] miniUI_0.1.2              deldir_2.0-4              htmltools_0.5.8.1        
[229] ggthemes_5.1.0            bit64_4.6.0-1             spatstat.explore_3.4-3   
[232] lifecycle_1.0.4           blme_1.0-6                nloptr_2.2.1             
[235] sass_0.4.10               vctrs_0.6.5               robustbase_0.99-4-1      
[238] spatstat.geom_3.4-1       sn_2.1.1                  ggfun_0.1.8              
[241] future.apply_1.11.3       bslib_0.9.0               pillar_1.10.2            
[244] gplots_3.2.0              pcaMethods_1.96.0         locfit_1.5-9.12          
[247] jsonlite_2.0.0            GetoptLong_1.0.5         

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] future_1.58.0               NCmisc_1.2.0                ggupset_0.4.1              
 [4] gridExtra_2.3               DOSE_3.30.5                 enrichplot_1.24.4          
 [7] msigdbr_24.1.0              org.Hs.eg.db_3.19.1         AnnotationDbi_1.66.0       
[10] clusterProfiler_4.12.6      multtest_2.60.0             metap_1.12                 
[13] scater_1.32.1               scuttle_1.14.0              destiny_3.18.0             
[16] circlize_0.4.16             muscat_1.18.0               here_1.0.1                 
[19] viridis_0.6.5               viridisLite_0.4.2           lubridate_1.9.4            
[22] forcats_1.0.0               stringr_1.5.1               purrr_1.0.4                
[25] readr_2.1.5                 tidyr_1.3.1                 tibble_3.2.1               
[28] tidyverse_2.0.0             dplyr_1.1.4                 SingleCellExperiment_1.26.0
[31] SummarizedExperiment_1.34.0 Biobase_2.64.0              GenomicRanges_1.56.2       
[34] GenomeInfoDb_1.40.1         IRanges_2.38.1              S4Vectors_0.42.1           
[37] BiocGenerics_0.50.0         MatrixGenerics_1.16.0       matrixStats_1.5.0          
[40] pheatmap_1.0.13             ggpubr_0.6.0                ggplot2_3.5.2              
[43] Seurat_5.3.0                SeuratObject_5.1.0          sp_2.2-0                   
[46] runSeurat3_0.1.0            ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] S4Arrays_1.4.1            pbkrtest_0.5.4            parallel_4.4.0           
 [16] png_0.1-8                 plotrix_3.8-4             cli_3.6.5                
 [19] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [22] variancePartition_1.34.0  BiocNeighbors_1.22.0      shadowtext_0.1.4         
 [25] uwot_0.2.3                curl_6.2.3                tidytree_0.4.6           
 [28] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [31] stringi_1.8.7             backports_1.5.0           lmerTest_3.1-3           
 [34] qqconf_1.3.2              httpuv_1.6.16             magrittr_2.0.3           
 [37] rappdirs_0.3.3            splines_4.4.0             ggraph_2.2.1             
 [40] sctransform_0.4.2         ggbeeswarm_0.7.2          DBI_1.2.3                
 [43] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [46] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [49] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [52] tidygraph_1.3.1           colourpicker_1.3.0        htmlwidgets_1.6.4        
 [55] fs_1.6.6                  ggrepel_0.9.6             labeling_0.4.3           
 [58] fANCOVA_0.6-1             SparseArray_1.4.8         DESeq2_1.44.0            
 [61] ranger_0.17.0             DEoptimR_1.1-3-1          reticulate_1.42.0        
 [64] hexbin_1.28.5             zoo_1.8-14                XVector_0.44.0           
 [67] knitr_1.50                ggplot.multistats_1.0.1   UCSC.utils_1.0.0         
 [70] RhpcBLASctl_0.23-42       timechange_0.3.0          foreach_1.5.2            
 [73] patchwork_1.3.0           caTools_1.18.3            ggtree_3.12.0            
 [76] data.table_1.17.4         R.oo_1.27.1               RSpectra_0.16-2          
 [79] irlba_2.3.5.1             fastDummies_1.7.5         gridGraphics_0.5-1       
 [82] lazyeval_0.2.2            yaml_2.3.10               survival_3.8-3           
 [85] scattermore_1.2           crayon_1.5.3              RcppAnnoy_0.0.22         
 [88] RColorBrewer_1.1-3        progressr_0.15.1          tweenr_2.0.3             
 [91] later_1.4.2               ggridges_0.5.6            codetools_0.2-20         
 [94] GlobalOptions_0.1.2       aod_1.3.3                 KEGGREST_1.44.1          
 [97] Rtsne_0.17                shape_1.4.6.1             limma_3.60.6             
[100] pkgconfig_2.0.3           TMB_1.9.17                spatstat.univar_3.1-3    
[103] mathjaxr_1.8-0            EnvStats_3.1.0            aplot_0.2.5              
[106] scatterplot3d_0.3-44      ape_5.8-1                 spatstat.sparse_3.1-0    
[109] xtable_1.8-4              car_3.1-3                 plyr_1.8.9               
[112] httr_1.4.7                rbibutils_2.3             tools_4.4.0              
[115] globals_0.18.0            beeswarm_0.4.0            broom_1.0.8              
[118] nlme_3.1-168              assertthat_0.2.1          lme4_1.1-37              
[121] digest_0.6.37             numDeriv_2016.8-1.1       Matrix_1.7-3             
[124] farver_2.1.2              tzdb_0.5.0                remaCor_0.0.18           
[127] reshape2_1.4.4            yulab.utils_0.2.0         glue_1.8.0               
[130] cachem_1.1.0              polyclip_1.10-7           generics_0.1.4           
[133] Biostrings_2.72.1         mvtnorm_1.3-3             presto_1.0.0             
[136] parallelly_1.45.0         mnormt_2.1.1              statmod_1.5.0            
[139] RcppHNSW_0.6.0            ScaledMatrix_1.12.0       carData_3.0-5            
[142] minqa_1.2.8               pbapply_1.7-2             httr2_1.1.2              
[145] spam_2.11-1               gson_0.1.0                graphlayouts_1.2.2       
[148] gtools_3.9.5              ggsignif_0.6.4            RcppEigen_0.3.4.0.2      
[151] shiny_1.10.0              GenomeInfoDbData_1.2.12   glmmTMB_1.1.11           
[154] R.utils_2.13.0            memoise_2.0.1             rmarkdown_2.29           
[157] scales_1.4.0              R.methodsS3_1.8.2         RANN_2.6.2               
[160] Cairo_1.6-2               spatstat.data_3.1-6       rstudioapi_0.17.1        
[163] cluster_2.1.8.1           mutoss_0.1-13             spatstat.utils_3.1-4     
[166] hms_1.1.3                 fitdistrplus_1.2-2        cowplot_1.1.3            
[169] colorspace_2.1-1          rlang_1.1.6               DelayedMatrixStats_1.26.0
[172] sparseMatrixStats_1.16.0  xts_0.14.1                dotCall64_1.2            
[175] shinydashboard_0.7.3      ggforce_0.4.2             laeken_0.5.3             
[178] mgcv_1.9-3                xfun_0.52                 e1071_1.7-16             
[181] TH.data_1.1-3             iterators_1.0.14          abind_1.4-8              
[184] GOSemSim_2.30.2           treeio_1.28.0             bitops_1.0-9             
[187] Rdpack_2.6.4              promises_1.3.3            scatterpie_0.2.4         
[190] RSQLite_2.4.0             qvalue_2.36.0             sandwich_3.1-1           
[193] fgsea_1.30.0              DelayedArray_0.30.1       proxy_0.4-27             
[196] GO.db_3.19.1              compiler_4.4.0            prettyunits_1.2.0        
[199] boot_1.3-31               beachmat_2.20.0           listenv_0.9.1            
[202] Rcpp_1.0.14               edgeR_4.2.2               workflowr_1.7.1          
[205] BiocSingular_1.20.0       tensor_1.5                MASS_7.3-65              
[208] progress_1.2.3            BiocParallel_1.38.0       babelgene_22.9           
[211] spatstat.random_3.4-1     R6_2.6.1                  fastmap_1.2.0            
[214] multcomp_1.4-28           fastmatch_1.1-6           rstatix_0.7.2            
[217] vipor_0.4.7               TTR_0.24.4                ROCR_1.0-11              
[220] TFisher_0.2.0             rsvd_1.0.5                vcd_1.4-13               
[223] nnet_7.3-20               gtable_0.3.6              KernSmooth_2.23-26       
[226] miniUI_0.1.2              deldir_2.0-4              htmltools_0.5.8.1        
[229] ggthemes_5.1.0            bit64_4.6.0-1             spatstat.explore_3.4-3   
[232] lifecycle_1.0.4           blme_1.0-6                nloptr_2.2.1             
[235] sass_0.4.10               vctrs_0.6.5               robustbase_0.99-4-1      
[238] spatstat.geom_3.4-1       sn_2.1.1                  ggfun_0.1.8              
[241] future.apply_1.11.3       bslib_0.9.0               pillar_1.10.2            
[244] gplots_3.2.0              pcaMethods_1.96.0         locfit_1.5-9.12          
[247] jsonlite_2.0.0            GetoptLong_1.0.5