Last updated: 2025-07-15

Checks: 6 1

Knit directory: LNdevMouse24.2/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250625) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a9ff376. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/to figshare/
    Ignored:    data/tradeSEQ/

Untracked files:
    Untracked:  analysis/E18_mLN_iLN_EYFPonly_marker.Rmd

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


reprocess

load packages

set color vectors

coltimepoint <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF")
names(coltimepoint) <- c("E18", "P7", "3w", "8w")

collocation <- c("#61baba", "#ba6161")
names(collocation) <- c("iLN", "mLN")

load object all

basedir <- here()
fileNam <- paste0(basedir, "/data/LNmLToRev_allmerged_seurat.rds")
seuratM <- readRDS(fileNam)
table(seuratM$timepoint)

  E18    P7    3w    8w 
42711 44836 29577 23167 
table(seuratM$orig.ident)

       
140291 

subset E18

seuratA <- subset(seuratM, timepoint == "E18")
table(seuratA$timepoint)

  E18 
42711 
seuratA <- JoinLayers(seuratA)

#rerun seurat
seuratA <- NormalizeData (object = seuratA)
seuratA <- FindVariableFeatures(object = seuratA)
seuratA <- ScaleData(object = seuratA, verbose = TRUE)
seuratA <- RunPCA(object=seuratA, npcs = 30, verbose = FALSE)
seuratA <- RunTSNE(object=seuratA, reduction="pca", dims = 1:20)
seuratA <- RunUMAP(object=seuratA, reduction="pca", dims = 1:20)
seuratA <- FindNeighbors(object = seuratA, reduction = "pca", dims= 1:20)

res <- c(0.25, 0.6, 0.8, 0.4)
for (i in 1:length(res)) {
  seuratA <- FindClusters(object = seuratA, resolution = res[i], random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42711
Number of edges: 1412581

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9485
Number of communities: 15
Elapsed time: 7 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42711
Number of edges: 1412581

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9170
Number of communities: 21
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42711
Number of edges: 1412581

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9042
Number of communities: 25
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42711
Number of edges: 1412581

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9329
Number of communities: 17
Elapsed time: 8 seconds

dimplot all

clustering

Idents(seuratA) <- seuratA$RNA_snn_res.0.25
DimPlot(seuratA, reduction = "umap", group.by = "RNA_snn_res.0.25" ,
        pt.size = 0.1, label = T, shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

location

DimPlot(seuratA, reduction = "umap", group.by = "location" ,
        pt.size = 0.1, label = T, shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

features

genes <- data.frame(gene=rownames(seuratA)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenes <- data.frame(geneID=c("Ptprc", "Msln", "Mki67", "Kcnn3", "Tcf21", "Pecam1", "Lyve1", "Ccl21a", "Icam1", "Cd34")) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenes$gene, function(x){
  p <- FeaturePlot(seuratA, reduction = "umap", 
            features = x, 
            cols=c("lightgrey","darkred"),
            order = T)+
  theme(legend.position="right")
  plot(p)
})

filter

## filter Ptprc+ cells (cluster #7 and #14)
table(seuratA$RNA_snn_res.0.25)
seuratF <- subset(seuratA, RNA_snn_res.0.25 %in% c("7", "14"), invert = TRUE)
table(seuratF$RNA_snn_res.0.25)

seuratE18fil <- seuratF
remove(seuratF)

rerun after fil

#rerun seurat
seuratE18fil <- NormalizeData (object = seuratE18fil)
seuratE18fil <- FindVariableFeatures(object = seuratE18fil)
seuratE18fil <- ScaleData(object = seuratE18fil, verbose = TRUE)
seuratE18fil <- RunPCA(object=seuratE18fil, npcs = 30, verbose = FALSE)
seuratE18fil <- RunTSNE(object=seuratE18fil, reduction="pca", dims = 1:20)
seuratE18fil <- RunUMAP(object=seuratE18fil, reduction="pca", dims = 1:20)
seuratE18fil <- FindNeighbors(object = seuratE18fil, reduction = "pca", dims= 1:20)

res <- c(0.25, 0.6, 0.8, 0.4)
for (i in 1:length(res)) {
  seuratE18fil <- FindClusters(object = seuratE18fil, resolution = res[i], random.seed = 1234)
}

load object fil

fileNam <- paste0(basedir, "/data/LNmLToRev_E18fil_seurat.rds")
seuratE18fil <- readRDS(fileNam)

dimplot E18 fil

clustering

Idents(seuratE18fil) <- seuratE18fil$RNA_snn_res.0.25
colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f",  "#25328a",
            "#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF", 
            "#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
            "#4A6990FF")[1:length(unique(seuratE18fil$RNA_snn_res.0.25))]
names(colPal) <- unique(seuratE18fil$RNA_snn_res.0.25)

DimPlot(seuratE18fil, reduction = "umap", group.by = "RNA_snn_res.0.25",
        cols = colPal, label = TRUE)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

location

DimPlot(seuratE18fil, reduction = "umap", group.by = "location",
        cols = collocation)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

saveRDS(seuratE18fil, file=paste0(basedir,"/data/LNmLToRev_E18fil_seurat.rds"))

subset EYFP expressing cells

seuratSub <- subset(seuratE18fil, Rosa26eyfp.Rosa26eyfp>0)
eyfpPos <- colnames(seuratSub)

seuratE18fil$EYFP <- "neg"
seuratE18fil$EYFP[which(colnames(seuratE18fil)%in%eyfpPos)] <- "pos"
table(seuratE18fil$dataset, seuratE18fil$EYFP)

table(seuratE18fil$EYFP)
seuratE18EYFPv2 <- subset(seuratE18fil, EYFP == "pos")
table(seuratE18EYFPv2$EYFP)

DimPlot(seuratE18EYFPv2, reduction = "umap", group.by = "RNA_snn_res.0.25",
        cols = colPal, label = TRUE)

#rerun seurat
seuratE18EYFPv2 <- NormalizeData (object = seuratE18EYFPv2)
seuratE18EYFPv2<- FindVariableFeatures(object = seuratE18EYFPv2)
seuratE18EYFPv2 <- ScaleData(object = seuratE18EYFPv2, verbose = TRUE)
seuratE18EYFPv2 <- RunPCA(object=seuratE18EYFPv2, npcs = 30, verbose = FALSE)
seuratE18EYFPv2 <- RunTSNE(object=seuratE18EYFPv2, reduction="pca", dims = 1:20)
seuratE18EYFPv2 <- RunUMAP(object=seuratE18EYFPv2, reduction="pca", dims = 1:20)
seuratE18EYFPv2 <- FindNeighbors(object = seuratE18EYFPv2, reduction = "pca", dims= 1:20)

res <- c(0.25, 0.6, 0.8, 0.4)
for (i in 1:length(res)) {
  seuratE18EYFPv2 <- FindClusters(object = seuratE18EYFPv2, resolution = res[i], random.seed = 1234)
}
saveRDS(seuratE18EYFPv2, file=paste0(basedir,"/data/E18_EYFPv2_seurat.rds")

load object E18 EYFP+

fileNam <- paste0(basedir, "/data/E18_EYFPv2_seurat.rds")
seuratE18EYFPv2 <- readRDS(fileNam)

dimplot E18 EYFP+

clustering

Idents(seuratE18EYFPv2) <- seuratE18EYFPv2$RNA_snn_res.0.25
colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f",  "#25328a",
            "#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF", 
            "#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
            "#4A6990FF")[1:length(unique(seuratE18EYFPv2$RNA_snn_res.0.25))]
names(colPal) <- unique(seuratE18EYFPv2$RNA_snn_res.0.25)

DimPlot(seuratE18EYFPv2, reduction = "umap", group.by = "RNA_snn_res.0.25",
        cols = colPal, label = TRUE)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

location

DimPlot(seuratE18EYFPv2, reduction = "umap", group.by = "location",
        cols = collocation)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

features E18 EYFP+

genes <- data.frame(gene=rownames(seuratE18EYFPv2)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenes <- data.frame(geneID=c("Rosa26eyfp", "Mki67", "Acta2", "Myh11", "Ccl19", "Cxcl13", "Cd34", "Icam1","Vcam1", "Pi16")) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenes$gene, function(x){
  p <- FeaturePlot(seuratE18EYFPv2, reduction = "umap", 
            features = x, 
            cols=c("lightgrey","darkred"),
            order = T)+
  theme(legend.position="right")
  plot(p)
})

integrate data across location

Idents(seuratE18EYFPv2) <- seuratE18EYFPv2$location

seurat.list <- SplitObject(object = seuratE18EYFPv2, split.by = "location")
for (i in 1:length(x = seurat.list)) {
    seurat.list[[i]] <- NormalizeData(object = seurat.list[[i]],
                                      verbose = FALSE)
    seurat.list[[i]] <- FindVariableFeatures(object = seurat.list[[i]], 
        selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}

seurat.anchors <- FindIntegrationAnchors(object.list = seurat.list, dims = 1:20)
seuratE18EYFPv2.int <- IntegrateData(anchorset = seurat.anchors, dims = 1:20)
DefaultAssay(object = seuratE18EYFPv2.int) <- "integrated"

## rerun seurat
seuratE18EYFPv2.int <- ScaleData(object = seuratE18EYFPv2.int, verbose = FALSE,
                         features = rownames(seuratE18EYFPv2.int))
seuratE18EYFPv2.int <- RunPCA(object = seuratE18EYFPv2.int, npcs = 20, verbose = FALSE)
seuratE18EYFPv2.int <- RunTSNE(object = seuratE18EYFPv2.int, recuction = "pca", dims = 1:20)
seuratE18EYFPv2.int <- RunUMAP(object = seuratE18EYFPv2.int, recuction = "pca", dims = 1:20)

seuratE18EYFPv2.int <- FindNeighbors(object = seuratE18EYFPv2.int, reduction = "pca", dims = 1:20)
res <- c(0.6, 0.8, 0.4, 0.25)
for (i in 1:length(res)){
  seuratE18EYFPv2.int <- FindClusters(object = seuratE18EYFPv2.int, resolution = res[i],
                              random.seed = 1234)
}

load object E18 EYFP+ integrated

fileNam <- paste0(basedir, "/data/E18EYFPv2_integrated_seurat.rds")
seuratE18EYFPv2.int <- readRDS(fileNam)
DefaultAssay(object = seuratE18EYFPv2.int) <- "RNA"
seuratE18EYFPv2.int$intCluster <- seuratE18EYFPv2.int$integrated_snn_res.0.25
Idents(seuratE18EYFPv2.int) <- seuratE18EYFPv2.int$intCluster

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seuratE18EYFPv2.int$intCluster))]
names(colPal) <- unique(seuratE18EYFPv2.int$intCluster)

dimplot E18 EYFP+ int

clustering

DimPlot(seuratE18EYFPv2.int, reduction = "umap",
        label = T, shuffle = T, cols = colPal) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

location

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "location", cols = collocation,
        shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

features E18 EYFP int

genes <- data.frame(gene=rownames(seuratE18EYFPv2.int)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenes <- data.frame(geneID=c("Rosa26eyfp", "Mki67", "Acta2", "Myh11", "Mcam", "Ccl19", "Cxcl13", "Cd34", "Icam1","Vcam1", "Pi16", "Bmp4", "Fmod", "Adipoq", "Msln", "Kcnn3")) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenes$gene, function(x){
  p <- FeaturePlot(seuratE18EYFPv2.int, reduction = "umap", 
            features = x, 
            cols=c("lightgrey","darkred"),
            order = T)+
  theme(legend.position="right")
  plot(p)
})

assign label

seuratE18EYFPv2.int$label <- "label"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "0")] <- "cluster2"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "1")] <- "cluster3"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "2")] <- "Prolif"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "3")] <- "cluster1"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "4")] <- "cluster4"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "5")] <- "Neuronal1"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "6")] <- "Mesothelial"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "7")] <- "Neuronal2"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "8")] <- "cluster5"
table(seuratE18EYFPv2.int$label)

   cluster1    cluster2    cluster3    cluster4    cluster5 Mesothelial   Neuronal1   Neuronal2 
        846        3781        1768         709         126         504         613         235 
     Prolif 
       1557 
##order
seuratE18EYFPv2.int$label <- factor(seuratE18EYFPv2.int$label, levels = c("cluster1", "cluster2", "cluster3", "cluster4", "cluster5", "Neuronal1","Neuronal2", "Mesothelial", "Prolif"))
table(seuratE18EYFPv2.int$label)

   cluster1    cluster2    cluster3    cluster4    cluster5   Neuronal1   Neuronal2 Mesothelial 
        846        3781        1768         709         126         613         235         504 
     Prolif 
       1557 
colLab <- c("#900C3F","#b66e8d", "#003C67FF",
            "#e3953d", "#714542", "#b6856e", "lightblue","grey", "black")
names(colLab) <- c("cluster1", "cluster2", "cluster3", "cluster4", "cluster5", "Neuronal1","Neuronal2", "Mesothelial", "Prolif")

label

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "label", cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void() + 
  theme(legend.position = "none") 

dotplot FRC marker E18 EYFP+ int

seurat_markers <- data.frame(gene=c("Fcgr2b","Fcer2a","Cr2","Cxcl13",
                                    "Slc7a11", "Ccl19", 
                                    "Ccl21a", "Fmod", "Grem1", "Bmp4",
                                    "Tnfsf11", "Fbn2",
                                    "Pltp" ,"C1rb", "Lepr", "Ptn",
                                     "Nr4a1", "Cxcl10", "Cxcl9", 
                                    "F3", "Fbln1", "Gdf10", "Adamtsl1", 
                                    "Col15a1",  "Cd34",
                                    "Igfbp6", "Pi16", "Thy1", "Dpp4", "Sema3c", 
                                    "Acta2", "Myh11", "Mcam", "Itga7", "Esam", "Rgs4", "Adipoq", "Mki67", "Msln", "Kcnn3", "Tcf21"
                                    ))

genes <- data.frame(geneID=rownames(seuratE18EYFPv2.int)) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) 

markerAll <- seurat_markers %>% left_join(., genes, by="gene")


## Dotplot all
Idents(seuratE18EYFPv2.int) <- seuratE18EYFPv2.int$label

DotPlot(seuratE18EYFPv2.int, assay="RNA", features = rev(markerAll$geneID), scale =T,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

saveRDS(seuratE18EYFPv2.int, file=paste0(basedir,"/data/E18EYFPv2_integrated_seurat.rds")

subset FRCs and rerun

table(seuratE18EYFPv2.int$label)

   cluster1    cluster2    cluster3    cluster4    cluster5   Neuronal1   Neuronal2 Mesothelial 
        846        3781        1768         709         126         613         235         504 
     Prolif 
       1557 
seuratE18EYFPv2.int <- subset(seuratE18EYFPv2.int, label %in% c("Neuronal1", "Neuronal2", "Mesothelial"), invert = TRUE)
table(seuratE18EYFPv2.int$label)

cluster1 cluster2 cluster3 cluster4 cluster5   Prolif 
     846     3781     1768      709      126     1557 
## rerun seurat
DefaultAssay(object = seuratE18EYFPv2.int) <- "integrated"
seuratE18EYFPv2.int <- ScaleData(object = seuratE18EYFPv2.int, verbose = FALSE,
                         features = rownames(seuratE18EYFPv2.int))
seuratE18EYFPv2.int <- RunPCA(object = seuratE18EYFPv2.int, npcs = 20, verbose = FALSE)
seuratE18EYFPv2.int <- RunTSNE(object = seuratE18EYFPv2.int, recuction = "pca", dims = 1:20)
seuratE18EYFPv2.int <- RunUMAP(object = seuratE18EYFPv2.int, recuction = "pca", dims = 1:20)

seuratE18EYFPv2.int <- FindNeighbors(object = seuratE18EYFPv2.int, reduction = "pca", dims = 1:20)
res <- c(0.1, 0.6, 0.8, 0.4, 0.25)
for (i in 1:length(res)){
  seuratE18EYFPv2.int <- FindClusters(object = seuratE18EYFPv2.int, resolution = res[i],
                              random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8787
Number of edges: 284718

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9414
Number of communities: 5
Elapsed time: 1 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8787
Number of edges: 284718

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8396
Number of communities: 11
Elapsed time: 1 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8787
Number of edges: 284718

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8161
Number of communities: 13
Elapsed time: 1 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8787
Number of edges: 284718

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8664
Number of communities: 10
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 8787
Number of edges: 284718

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8921
Number of communities: 8
Elapsed time: 1 seconds
DefaultAssay(object = seuratE18EYFPv2.int) <- "RNA"
seuratE18EYFPv2.int$intCluster <- seuratE18EYFPv2.int$integrated_snn_res.0.1
Idents(seuratE18EYFPv2.int) <- seuratE18EYFPv2.int$intCluster

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seuratE18EYFPv2.int$intCluster))]
names(colPal) <- unique(seuratE18EYFPv2.int$intCluster)

dimplot E18 EYFP+ fil

clustering

DimPlot(seuratE18EYFPv2.int, reduction = "umap",
        label = T, shuffle = T, cols = colPal) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

location

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "location", cols = collocation,
        shuffle = T) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

assign label

seuratE18EYFPv2.int$label <- "label"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "0")] <- "cluster3"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "1")] <- "cluster1"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "2")] <- "cluster2"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "3")] <- "cluster4"
seuratE18EYFPv2.int$label[which(seuratE18EYFPv2.int$intCluster == "4")] <- "cluster5"
table(seuratE18EYFPv2.int$label)

cluster1 cluster2 cluster3 cluster4 cluster5 
    1523      843     5735      563      123 
##order
seuratE18EYFPv2.int$label <- factor(seuratE18EYFPv2.int$label, levels = c("cluster2", "cluster3", "cluster4", "cluster5", "cluster1"))
table(seuratE18EYFPv2.int$label)

cluster2 cluster3 cluster4 cluster5 cluster1 
     843     5735      563      123     1523 
colLab <- c("#900C3F","#b66e8d", "#003C67FF",
            "#e3953d", "#714542", "#b6856e")
names(colLab) <- c("cluster2", "cluster3", "cluster1", "cluster4", "cluster5")

label

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "label", cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

DimPlot(seuratE18EYFPv2.int, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void() + 
  theme(legend.position = "none") 

dotplot marker E18 EYFP+ fil

seurat_markers <- data.frame(gene=c("Vcam1", "Icam1",
                                    "Cxcl13", "Ccl19", "Ccl21a","Tnfsf11", "Grem1","Ifitm1","Cxcl1","Ifitm3","Ccl2","Nfkbia","Des",
                                    "Mfap5","Cdkn1c","Akap12","Anxa2","Lox","Gsn","Basp1","Fndc1","Sparc","Col1a1","Fbn2","Nr4a1","Fbln1","Cd34","Pi16",
                                    "Fbln5","Tm4sf1", "Ntrk3", "Fhl1", "Rgs7bp", "Adamts2", "Mpped2", "Ramp1", "Pdgfrl", "Eln", "Hspb2","Mgp", "Actg2","Acta2", "Myh11", "Mcam", "Mki67", "Ccna2", "Cdca8", "Prc1", "Aurkb"))

genes <- data.frame(geneID=rownames(seuratE18EYFPv2.int)) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) 

markerAll <- seurat_markers %>% left_join(., genes, by="gene")


## Dotplot all
Idents(seuratE18EYFPv2.int) <- seuratE18EYFPv2.int$label

DotPlot(seuratE18EYFPv2.int, assay="RNA", features = rev(markerAll$geneID), scale =T,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

###signatures #### convert to sce

## convert seurat object to sce object
## exteract logcounts
logcounts <- GetAssayData(seuratE18EYFPv2.int, assay = "RNA", slot = "data")
counts <- GetAssayData(seuratE18EYFPv2.int, assay = "RNA", slot = "counts")
## extract reduced dims from integrated assay
pca <- Embeddings(seuratE18EYFPv2.int, reduction = "pca")
umap <- Embeddings(seuratE18EYFPv2.int, reduction = "umap")
## create sce object
sce <- SingleCellExperiment(assays =list (
  counts = counts,
  logcounts = logcounts
),
colData = seuratE18EYFPv2.int@meta.data,
rowData = data.frame(gene_id = rownames(logcounts)),
reducedDims = SimpleList(
  PCA = pca,
  UMAP = umap
))

genes <- data.frame(geneID=rownames(sce)) %>% mutate(gene=gsub(".*\\.", "", geneID))
pal = colorRampPalette(c("#053061", "#2166ac", "#f7f7f7", "#f4a582", "#b2183c", "#85122d"))

signatures

selGenes <- data.frame(gene=c("Cxcl13", "Ccl19", "Ccl21a","Tnfsf11", "Grem1"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 3))
sceSub$sign2[which(sceSub$sign > 3)] <- 3
##check max and min values
max(sceSub$sign)
[1] 2.88562
min(sceSub$sign)
[1] 0
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

selGenes <- data.frame(gene=c("Mfap5","Gsn","Fndc1","Col1a1","Cd34"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 3))
sceSub$sign2[which(sceSub$sign > 3)] <- 3
##check max and min values
max(sceSub$sign)
[1] 3.469675
min(sceSub$sign)
[1] 0
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

selGenes <- data.frame(gene=c("Fbln5","Eln","Actg2","Acta2","Myh11"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 3))
sceSub$sign2[which(sceSub$sign > 3)] <- 3
##check max and min values
max(sceSub$sign)
[1] 4.23627
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

plot signature 3/4 combined

selGenes <- data.frame(gene=c("Fbln5","Eln","Actg2","Acta2","Myh11","Mfap5","Gsn","Fndc1","Col1a1","Cd34"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 2.5))
sceSub$sign2[which(sceSub$sign > 2.5)] <- 2.5
##check max and min values
max(sceSub$sign)
[1] 2.747664
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

selGenes <- data.frame(gene=c("Mki67", "Ccna2", "Cdca8", "Prc1", "Aurkb"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 2))
sceSub$sign2[which(sceSub$sign > 2)] <- 2
##check max and min values
max(sceSub$sign)
[1] 2.106508
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

featrue Ccl19

genes <- data.frame(gene=rownames(seuratE18EYFPv2.int)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenes <- data.frame(geneID=c("Ccl19")) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenes$gene, function(x){
  p <- FeaturePlot(seuratE18EYFPv2.int, reduction = "umap", 
            features = x, 
            cols=c("lightgrey","darkred"),
            order = FALSE)+
  theme(legend.position="right")
  plot(p)
})

subset Ccl19 positive cells

seuratCcl19 <- subset(seuratE18EYFPv2.int, ENSMUSG00000071005.Ccl19 > 0)
table(seuratE18EYFPv2.int$orig.ident)

     
8787 
table(seuratCcl19$orig.ident)

     
1023 

rerun Ccl19 positive only

## rerun seurat
DefaultAssay(object = seuratCcl19) <- "integrated"
seuratCcl19 <- ScaleData(object = seuratCcl19, verbose = FALSE,
                         features = rownames(seuratCcl19))
seuratCcl19 <- RunPCA(object = seuratCcl19, npcs = 20, verbose = FALSE)
seuratCcl19 <- RunTSNE(object = seuratCcl19, recuction = "pca", dims = 1:20)
seuratCcl19 <- RunUMAP(object = seuratCcl19, recuction = "pca", dims = 1:20)

seuratCcl19 <- FindNeighbors(object = seuratCcl19, reduction = "pca", dims = 1:20)
res <- c(0.1, 0.6, 0.8, 0.4, 0.25)
for (i in 1:length(res)){
  seuratCcl19 <- FindClusters(object = seuratCcl19, resolution = res[i],
                              random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1023
Number of edges: 35579

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9211
Number of communities: 2
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1023
Number of edges: 35579

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7329
Number of communities: 5
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1023
Number of edges: 35579

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.6914
Number of communities: 5
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1023
Number of edges: 35579

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7876
Number of communities: 4
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 1023
Number of edges: 35579

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8482
Number of communities: 3
Elapsed time: 0 seconds
DefaultAssay(object = seuratCcl19) <- "RNA"
Idents(seuratCcl19) <- seuratCcl19$integrated_snn_res.0.25

colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f", "#25328a", "#b6856e",
            "#ba6161", "#20714a", "#0073C2FF", "#EFC000FF", "#868686FF", 
            "#CD534CFF","#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF",
            "#A73030FF", "#4A6990FF")[1:length(unique(seuratCcl19$integrated_snn_res.0.25))]
names(colPal) <- unique(seuratCcl19$integrated_snn_res.0.25)

dimplots Ccl19+ cells

clustering

DimPlot(seuratCcl19, reduction = "umap",
        label = T, shuffle = T, cols = colPal) +
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("umap1") +
  ylab("umap2")

assign label Ccl19+ cells

seuratCcl19$label <- "label"
seuratCcl19$label[which(seuratCcl19$integrated_snn_res.0.25 == "0")] <- "cluster2"
seuratCcl19$label[which(seuratCcl19$integrated_snn_res.0.25 == "1")] <- "cluster1"
seuratCcl19$label[which(seuratCcl19$integrated_snn_res.0.25 == "2")] <- "cluster3"
table(seuratCcl19$label)

cluster1 cluster2 cluster3 
     266      597      160 
##order
seuratCcl19$label <- factor(seuratCcl19$label, levels = c("cluster2", "cluster3","cluster1"))
table(seuratCcl19$label)

cluster2 cluster3 cluster1 
     597      160      266 
colLab <- c("#900C3F","#b66e8d", "#003C67FF")
names(colLab) <- c("cluster2", "cluster3", "cluster1")

label

DimPlot(seuratCcl19, reduction = "umap", group.by = "label", cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DimPlot(seuratCcl19, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void()

DimPlot(seuratCcl19, reduction = "umap", group.by = "label", pt.size=0.5,
        cols = colLab, shuffle = T)+
  theme_void() + 
  theme(legend.position = "none") 

featrue plot Ccl19

genes <- data.frame(gene=rownames(seuratCcl19)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) 

selGenes <- data.frame(geneID=c("Ccl19")) %>% 
  left_join(., genes, by = "geneID") 

pList <- sapply(selGenes$gene, function(x){
  p <- FeaturePlot(seuratCcl19, reduction = "umap", 
            features = x, 
            cols=c("lightgrey","darkred"),
            order = FALSE)+
  theme(legend.position="right")
  plot(p)
})

signatures Ccl19+ cells

##convert seurat object to sce object
##exteract logcounts
logcounts <- GetAssayData(seuratCcl19, assay = "RNA", slot = "data")
counts <- GetAssayData(seuratCcl19, assay = "RNA", slot = "counts")
##extract reduced dims from integrated assay
pca <- Embeddings(seuratCcl19, reduction = "pca")
umap <- Embeddings(seuratCcl19, reduction = "umap")
##create sce object
sce <- SingleCellExperiment(assays =list (
  counts = counts,
  logcounts = logcounts
),
colData = seuratCcl19@meta.data,
rowData = data.frame(gene_id = rownames(logcounts)),
reducedDims = SimpleList(
  PCA = pca,
  UMAP = umap
))

genes <- data.frame(geneID=rownames(sce)) %>% mutate(gene=gsub(".*\\.", "", geneID))
pal = colorRampPalette(c("#053061", "#2166ac", "#f7f7f7", "#f4a582", "#b2183c", "#85122d"))
selGenes <- data.frame(gene=c("Cxcl13","Ccl19", "Ccl21a","Tnfsf11", "Grem1"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 2.5))
sceSub$sign2[which(sceSub$sign > 2.5)] <- 2.5
sceSub$sign2[which(sceSub$sign < 0)] <- 0
##check max and min values
max(sceSub$sign)
[1] 2.88562
min(sceSub$sign)
[1] 0.1052551
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

selGenes <- data.frame(gene=c("Fbln5","Eln","Actg2","Acta2","Myh11","Mfap5","Gsn","Fndc1","Col1a1","Cd34"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 2.5))
sceSub$sign2[which(sceSub$sign > 2.5)] <- 2.5
sceSub$sign2[which(sceSub$sign < 0)] <- 0
##check max and min values
max(sceSub$sign)
[1] 2.532537
min(sceSub$sign)
[1] 0
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

selGenes <- data.frame(gene=c("Mki67", "Ccna2", "Cdca8", "Prc1", "Aurkb"))
signGenes <- genes %>% dplyr::filter(gene %in% selGenes$gene)

##make a count matrix of signature genes
sceSub <- sce[which(rownames(sce) %in% signGenes$geneID),]
cntMat <- rowSums(t(as.matrix(
    sceSub@assays@data$logcounts)))/nrow(signGenes)
sceSub$sign <- cntMat
sceSub$sign2 <- sceSub$sign
sc <- scale_colour_gradientn(colours = pal(100), limits=c(0, 2))
sceSub$sign2[which(sceSub$sign > 2)] <- 2
sceSub$sign2[which(sceSub$sign < 0)] <- 0
##check max and min values
max(sceSub$sign)
[1] 1.967789
min(sceSub$sign)
[1] 0
plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc +
  theme(legend.position = "none")

plotUMAP(sceSub, colour_by = "sign2", point_size = 1) + sc

session info

date()
[1] "Tue Jul 15 14:49:20 2025"
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] future_1.58.0               here_1.0.1                  slingshot_2.12.0           
 [4] TrajectoryUtils_1.12.0      princurve_2.1.6             NCmisc_1.2.0               
 [7] VennDiagram_1.7.3           futile.logger_1.4.3         ggupset_0.4.1              
[10] gridExtra_2.3               DOSE_3.30.5                 enrichplot_1.24.4          
[13] msigdbr_24.1.0              org.Mm.eg.db_3.19.1         AnnotationDbi_1.66.0       
[16] clusterProfiler_4.12.6      multtest_2.60.0             metap_1.12                 
[19] scater_1.32.1               scuttle_1.14.0              destiny_3.18.0             
[22] circlize_0.4.16             muscat_1.18.0               viridis_0.6.5              
[25] viridisLite_0.4.2           lubridate_1.9.4             forcats_1.0.0              
[28] stringr_1.5.1               purrr_1.0.4                 readr_2.1.5                
[31] tidyr_1.3.1                 tibble_3.2.1                tidyverse_2.0.0            
[34] dplyr_1.1.4                 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[37] Biobase_2.64.0              GenomicRanges_1.56.2        GenomeInfoDb_1.40.1        
[40] IRanges_2.38.1              S4Vectors_0.42.1            BiocGenerics_0.50.0        
[43] MatrixGenerics_1.16.0       matrixStats_1.5.0           pheatmap_1.0.13            
[46] ggpubr_0.6.0                ggplot2_3.5.2               Seurat_5.3.0               
[49] SeuratObject_5.1.0          sp_2.2-0                    runSeurat3_0.1.0           
[52] ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] S4Arrays_1.4.1            pbkrtest_0.5.4            parallel_4.4.0           
 [16] png_0.1-8                 plotrix_3.8-4             cli_3.6.5                
 [19] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [22] variancePartition_1.34.0  BiocNeighbors_1.22.0      shadowtext_0.1.4         
 [25] uwot_0.2.3                curl_6.2.3                tidytree_0.4.6           
 [28] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [31] stringi_1.8.7             backports_1.5.0           lmerTest_3.1-3           
 [34] qqconf_1.3.2              httpuv_1.6.16             magrittr_2.0.3           
 [37] rappdirs_0.3.3            splines_4.4.0             ggraph_2.2.1             
 [40] sctransform_0.4.2         ggbeeswarm_0.7.2          DBI_1.2.3                
 [43] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [46] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [49] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [52] tidygraph_1.3.1           formatR_1.14              colourpicker_1.3.0       
 [55] htmlwidgets_1.6.4         fs_1.6.6                  ggrepel_0.9.6            
 [58] labeling_0.4.3            fANCOVA_0.6-1             SparseArray_1.4.8        
 [61] DESeq2_1.44.0             ranger_0.17.0             DEoptimR_1.1-3-1         
 [64] reticulate_1.42.0         hexbin_1.28.5             zoo_1.8-14               
 [67] XVector_0.44.0            knitr_1.50                ggplot.multistats_1.0.1  
 [70] UCSC.utils_1.0.0          RhpcBLASctl_0.23-42       timechange_0.3.0         
 [73] foreach_1.5.2             patchwork_1.3.0           caTools_1.18.3           
 [76] data.table_1.17.4         ggtree_3.12.0             R.oo_1.27.1              
 [79] RSpectra_0.16-2           irlba_2.3.5.1             fastDummies_1.7.5        
 [82] gridGraphics_0.5-1        lazyeval_0.2.2            yaml_2.3.10              
 [85] survival_3.8-3            scattermore_1.2           crayon_1.5.3             
 [88] RcppAnnoy_0.0.22          RColorBrewer_1.1-3        progressr_0.15.1         
 [91] tweenr_2.0.3              later_1.4.2               ggridges_0.5.6           
 [94] codetools_0.2-20          GlobalOptions_0.1.2       aod_1.3.3                
 [97] KEGGREST_1.44.1           Rtsne_0.17                shape_1.4.6.1            
[100] limma_3.60.6              pkgconfig_2.0.3           TMB_1.9.17               
[103] spatstat.univar_3.1-3     mathjaxr_1.8-0            EnvStats_3.1.0           
[106] aplot_0.2.5               scatterplot3d_0.3-44      ape_5.8-1                
[109] spatstat.sparse_3.1-0     xtable_1.8-4              car_3.1-3                
[112] plyr_1.8.9                httr_1.4.7                rbibutils_2.3            
[115] tools_4.4.0               globals_0.18.0            beeswarm_0.4.0           
[118] broom_1.0.8               nlme_3.1-168              lambda.r_1.2.4           
[121] assertthat_0.2.1          lme4_1.1-37               digest_0.6.37            
[124] numDeriv_2016.8-1.1       Matrix_1.7-3              farver_2.1.2             
[127] tzdb_0.5.0                remaCor_0.0.18            reshape2_1.4.4           
[130] yulab.utils_0.2.0         glue_1.8.0                cachem_1.1.0             
[133] polyclip_1.10-7           generics_0.1.4            Biostrings_2.72.1        
[136] mvtnorm_1.3-3             parallelly_1.45.0         mnormt_2.1.1             
[139] statmod_1.5.0             RcppHNSW_0.6.0            ScaledMatrix_1.12.0      
[142] carData_3.0-5             minqa_1.2.8               pbapply_1.7-2            
[145] httr2_1.1.2               spam_2.11-1               gson_0.1.0               
[148] graphlayouts_1.2.2        gtools_3.9.5              ggsignif_0.6.4           
[151] RcppEigen_0.3.4.0.2       shiny_1.10.0              GenomeInfoDbData_1.2.12  
[154] glmmTMB_1.1.11            R.utils_2.13.0            memoise_2.0.1            
[157] rmarkdown_2.29            scales_1.4.0              R.methodsS3_1.8.2        
[160] RANN_2.6.2                Cairo_1.6-2               spatstat.data_3.1-6      
[163] rstudioapi_0.17.1         cluster_2.1.8.1           mutoss_0.1-13            
[166] spatstat.utils_3.1-4      hms_1.1.3                 fitdistrplus_1.2-2       
[169] cowplot_1.1.3             colorspace_2.1-1          rlang_1.1.6              
[172] DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0  xts_0.14.1               
[175] dotCall64_1.2             shinydashboard_0.7.3      ggforce_0.4.2            
[178] laeken_0.5.3              mgcv_1.9-3                xfun_0.52                
[181] e1071_1.7-16              TH.data_1.1-3             iterators_1.0.14         
[184] abind_1.4-8               GOSemSim_2.30.2           treeio_1.28.0            
[187] futile.options_1.0.1      bitops_1.0-9              Rdpack_2.6.4             
[190] promises_1.3.3            scatterpie_0.2.4          RSQLite_2.4.0            
[193] qvalue_2.36.0             sandwich_3.1-1            fgsea_1.30.0             
[196] DelayedArray_0.30.1       proxy_0.4-27              GO.db_3.19.1             
[199] compiler_4.4.0            prettyunits_1.2.0         boot_1.3-31              
[202] beachmat_2.20.0           listenv_0.9.1             Rcpp_1.0.14              
[205] edgeR_4.2.2               workflowr_1.7.1           BiocSingular_1.20.0      
[208] tensor_1.5                MASS_7.3-65               progress_1.2.3           
[211] BiocParallel_1.38.0       babelgene_22.9            spatstat.random_3.4-1    
[214] R6_2.6.1                  fastmap_1.2.0             multcomp_1.4-28          
[217] fastmatch_1.1-6           rstatix_0.7.2             vipor_0.4.7              
[220] TTR_0.24.4                ROCR_1.0-11               TFisher_0.2.0            
[223] rsvd_1.0.5                vcd_1.4-13                nnet_7.3-20              
[226] gtable_0.3.6              KernSmooth_2.23-26        miniUI_0.1.2             
[229] deldir_2.0-4              htmltools_0.5.8.1         ggthemes_5.1.0           
[232] bit64_4.6.0-1             spatstat.explore_3.4-3    lifecycle_1.0.4          
[235] blme_1.0-6                nloptr_2.2.1              sass_0.4.10              
[238] vctrs_0.6.5               robustbase_0.99-4-1       spatstat.geom_3.4-1      
[241] sn_2.1.1                  ggfun_0.1.8               future.apply_1.11.3      
[244] bslib_0.9.0               pillar_1.10.2             gplots_3.2.0             
[247] pcaMethods_1.96.0         locfit_1.5-9.12           jsonlite_2.0.0           
[250] GetoptLong_1.0.5         

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] future_1.58.0               here_1.0.1                  slingshot_2.12.0           
 [4] TrajectoryUtils_1.12.0      princurve_2.1.6             NCmisc_1.2.0               
 [7] VennDiagram_1.7.3           futile.logger_1.4.3         ggupset_0.4.1              
[10] gridExtra_2.3               DOSE_3.30.5                 enrichplot_1.24.4          
[13] msigdbr_24.1.0              org.Mm.eg.db_3.19.1         AnnotationDbi_1.66.0       
[16] clusterProfiler_4.12.6      multtest_2.60.0             metap_1.12                 
[19] scater_1.32.1               scuttle_1.14.0              destiny_3.18.0             
[22] circlize_0.4.16             muscat_1.18.0               viridis_0.6.5              
[25] viridisLite_0.4.2           lubridate_1.9.4             forcats_1.0.0              
[28] stringr_1.5.1               purrr_1.0.4                 readr_2.1.5                
[31] tidyr_1.3.1                 tibble_3.2.1                tidyverse_2.0.0            
[34] dplyr_1.1.4                 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[37] Biobase_2.64.0              GenomicRanges_1.56.2        GenomeInfoDb_1.40.1        
[40] IRanges_2.38.1              S4Vectors_0.42.1            BiocGenerics_0.50.0        
[43] MatrixGenerics_1.16.0       matrixStats_1.5.0           pheatmap_1.0.13            
[46] ggpubr_0.6.0                ggplot2_3.5.2               Seurat_5.3.0               
[49] SeuratObject_5.1.0          sp_2.2-0                    runSeurat3_0.1.0           
[52] ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] S4Arrays_1.4.1            pbkrtest_0.5.4            parallel_4.4.0           
 [16] png_0.1-8                 plotrix_3.8-4             cli_3.6.5                
 [19] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [22] variancePartition_1.34.0  BiocNeighbors_1.22.0      shadowtext_0.1.4         
 [25] uwot_0.2.3                curl_6.2.3                tidytree_0.4.6           
 [28] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [31] stringi_1.8.7             backports_1.5.0           lmerTest_3.1-3           
 [34] qqconf_1.3.2              httpuv_1.6.16             magrittr_2.0.3           
 [37] rappdirs_0.3.3            splines_4.4.0             ggraph_2.2.1             
 [40] sctransform_0.4.2         ggbeeswarm_0.7.2          DBI_1.2.3                
 [43] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [46] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [49] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [52] tidygraph_1.3.1           formatR_1.14              colourpicker_1.3.0       
 [55] htmlwidgets_1.6.4         fs_1.6.6                  ggrepel_0.9.6            
 [58] labeling_0.4.3            fANCOVA_0.6-1             SparseArray_1.4.8        
 [61] DESeq2_1.44.0             ranger_0.17.0             DEoptimR_1.1-3-1         
 [64] reticulate_1.42.0         hexbin_1.28.5             zoo_1.8-14               
 [67] XVector_0.44.0            knitr_1.50                ggplot.multistats_1.0.1  
 [70] UCSC.utils_1.0.0          RhpcBLASctl_0.23-42       timechange_0.3.0         
 [73] foreach_1.5.2             patchwork_1.3.0           caTools_1.18.3           
 [76] data.table_1.17.4         ggtree_3.12.0             R.oo_1.27.1              
 [79] RSpectra_0.16-2           irlba_2.3.5.1             fastDummies_1.7.5        
 [82] gridGraphics_0.5-1        lazyeval_0.2.2            yaml_2.3.10              
 [85] survival_3.8-3            scattermore_1.2           crayon_1.5.3             
 [88] RcppAnnoy_0.0.22          RColorBrewer_1.1-3        progressr_0.15.1         
 [91] tweenr_2.0.3              later_1.4.2               ggridges_0.5.6           
 [94] codetools_0.2-20          GlobalOptions_0.1.2       aod_1.3.3                
 [97] KEGGREST_1.44.1           Rtsne_0.17                shape_1.4.6.1            
[100] limma_3.60.6              pkgconfig_2.0.3           TMB_1.9.17               
[103] spatstat.univar_3.1-3     mathjaxr_1.8-0            EnvStats_3.1.0           
[106] aplot_0.2.5               scatterplot3d_0.3-44      ape_5.8-1                
[109] spatstat.sparse_3.1-0     xtable_1.8-4              car_3.1-3                
[112] plyr_1.8.9                httr_1.4.7                rbibutils_2.3            
[115] tools_4.4.0               globals_0.18.0            beeswarm_0.4.0           
[118] broom_1.0.8               nlme_3.1-168              lambda.r_1.2.4           
[121] assertthat_0.2.1          lme4_1.1-37               digest_0.6.37            
[124] numDeriv_2016.8-1.1       Matrix_1.7-3              farver_2.1.2             
[127] tzdb_0.5.0                remaCor_0.0.18            reshape2_1.4.4           
[130] yulab.utils_0.2.0         glue_1.8.0                cachem_1.1.0             
[133] polyclip_1.10-7           generics_0.1.4            Biostrings_2.72.1        
[136] mvtnorm_1.3-3             parallelly_1.45.0         mnormt_2.1.1             
[139] statmod_1.5.0             RcppHNSW_0.6.0            ScaledMatrix_1.12.0      
[142] carData_3.0-5             minqa_1.2.8               pbapply_1.7-2            
[145] httr2_1.1.2               spam_2.11-1               gson_0.1.0               
[148] graphlayouts_1.2.2        gtools_3.9.5              ggsignif_0.6.4           
[151] RcppEigen_0.3.4.0.2       shiny_1.10.0              GenomeInfoDbData_1.2.12  
[154] glmmTMB_1.1.11            R.utils_2.13.0            memoise_2.0.1            
[157] rmarkdown_2.29            scales_1.4.0              R.methodsS3_1.8.2        
[160] RANN_2.6.2                Cairo_1.6-2               spatstat.data_3.1-6      
[163] rstudioapi_0.17.1         cluster_2.1.8.1           mutoss_0.1-13            
[166] spatstat.utils_3.1-4      hms_1.1.3                 fitdistrplus_1.2-2       
[169] cowplot_1.1.3             colorspace_2.1-1          rlang_1.1.6              
[172] DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0  xts_0.14.1               
[175] dotCall64_1.2             shinydashboard_0.7.3      ggforce_0.4.2            
[178] laeken_0.5.3              mgcv_1.9-3                xfun_0.52                
[181] e1071_1.7-16              TH.data_1.1-3             iterators_1.0.14         
[184] abind_1.4-8               GOSemSim_2.30.2           treeio_1.28.0            
[187] futile.options_1.0.1      bitops_1.0-9              Rdpack_2.6.4             
[190] promises_1.3.3            scatterpie_0.2.4          RSQLite_2.4.0            
[193] qvalue_2.36.0             sandwich_3.1-1            fgsea_1.30.0             
[196] DelayedArray_0.30.1       proxy_0.4-27              GO.db_3.19.1             
[199] compiler_4.4.0            prettyunits_1.2.0         boot_1.3-31              
[202] beachmat_2.20.0           listenv_0.9.1             Rcpp_1.0.14              
[205] edgeR_4.2.2               workflowr_1.7.1           BiocSingular_1.20.0      
[208] tensor_1.5                MASS_7.3-65               progress_1.2.3           
[211] BiocParallel_1.38.0       babelgene_22.9            spatstat.random_3.4-1    
[214] R6_2.6.1                  fastmap_1.2.0             multcomp_1.4-28          
[217] fastmatch_1.1-6           rstatix_0.7.2             vipor_0.4.7              
[220] TTR_0.24.4                ROCR_1.0-11               TFisher_0.2.0            
[223] rsvd_1.0.5                vcd_1.4-13                nnet_7.3-20              
[226] gtable_0.3.6              KernSmooth_2.23-26        miniUI_0.1.2             
[229] deldir_2.0-4              htmltools_0.5.8.1         ggthemes_5.1.0           
[232] bit64_4.6.0-1             spatstat.explore_3.4-3    lifecycle_1.0.4          
[235] blme_1.0-6                nloptr_2.2.1              sass_0.4.10              
[238] vctrs_0.6.5               robustbase_0.99-4-1       spatstat.geom_3.4-1      
[241] sn_2.1.1                  ggfun_0.1.8               future.apply_1.11.3      
[244] bslib_0.9.0               pillar_1.10.2             gplots_3.2.0             
[247] pcaMethods_1.96.0         locfit_1.5-9.12           jsonlite_2.0.0           
[250] GetoptLong_1.0.5