Last updated: 2025-07-15
Checks: 6 1
Knit directory: LNdevMouse24.2/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20250625) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 4f4cced. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: data/tradeSEQ/
Unstaged changes:
Modified: analysis/tradeSeq.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/tradeSeq.Rmd) and HTML
(docs/tradeSeq.html) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote), click on the
hyperlinks in the table below to view the files as they were in that
past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | 4f4cced | angeldemartin | 2025-07-15 | july15 |
library(ExploreSCdataSeurat3)
library(runSeurat3)
library(Seurat)
library(ggpubr)
library(pheatmap)
library(SingleCellExperiment)
library(dplyr)
library(tidyverse)
library(viridis)
library(muscat)
library(circlize)
library(destiny)
library(scater)
library(metap)
library(multtest)
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(DOSE)
library(grid)
library(gridExtra)
library(ggupset)
library(VennDiagram)
library(NCmisc)
library(slingshot)
library(RColorBrewer)
library(tradeSeq)
library(scran)
library(clusterExperiment)
library(here)
basedir <- here()
fileNam <- paste0(basedir, "/data/LNmLToRev_EYFP_mLNf3_slingshot_v2_sce.rds")
scemLNf3v2<- readRDS(fileNam)
fileNam <- paste0(basedir, "/data/LNmLToRev_EYFP_mLNf3_seurat.rds")
seuratmLNf3 <- readRDS(fileNam)
table(seuratmLNf3$dataset)
380131_04-4_20250224_Cxcl13EYFP_P7_mLN_YFPpos 380131_05-5_20250224_Cxcl13EYFP_P7_mLN_YFPneg
3922 12
380131_07-7_20250225_Cxcl13EYFP_E18_mLN_YFPpos 380131_08-8_20250225_Cxcl13EYFP_E18_mLN_YFPneg
2392 5
380131_12-12_20250305_Mu_Cxcl13EYFP_Adult_mLN_FRC 382581_02-2_20250311_Mu_Cxcl13EYFP_E18_mLN_YFPpos
3798 3617
382581_03-3_20250311_Mu_Cxcl13EYFP_E18_mLN_YFPneg 382581_06-6_20250319_Mu_Cxcl13EYFP_P7_mLN_YFPpos
15 4274
382581_07-7_20250319_Mu_Cxcl13EYFP_P7_mLN_YFPneg 382581_09-9_20250320_Mu_Cxcl13EYFP_Adult_mLN_FRC
11 2711
382581_14-14_20250402_Mu_Cxcl13EYFP_3wk_mLN_fib1 382581_15-15_20250402_Mu_Cxcl13EYFP_3wk_mLN_fib2
3223 4289
colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
"#61a4ba", "#6178ba", "#54a87f", "#25328a",
"#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF",
"#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
"#4A6990FF")[1:length(unique(seuratmLNf3$RNA_snn_res.0.4))]
names(colPal) <- unique(seuratmLNf3$RNA_snn_res.0.4)
coltimepoint <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF")
names(coltimepoint) <- c("E18", "P7", "3w", "8w")
collocation <- c("#61baba", "#ba6161")
names(collocation) <- c("iLN", "mLN")
clustDat <- data.frame(clustCol=colPal) %>% rownames_to_column(., "cluster")
timepointDat <- data.frame(ageCol=coltimepoint) %>% rownames_to_column(., "timepoint")
colDat <- data.frame(cluster=scemLNf3v2$RNA_snn_res.0.4) %>%
mutate(timepoint=scemLNf3v2$timepoint) %>% left_join(., clustDat, by="cluster") %>%
left_join(., timepointDat, by="timepoint")
plot(reducedDims(scemLNf3v2)$UMAP, col = colDat$clustCol, pch=16, asp = 1)
lines(SlingshotDataSet(scemLNf3v2), lwd=2, col='black')

icMat <- evaluateK(counts = counts(scemLNf3v2), sds = SlingshotDataSet(scemLNf3v2), k = 3:10,
nGenes = 200, verbose = T)
write.table(icMat, file=paste0(basedir,"/data/icMat.txt", sep = "\t", quote = FALSE, row.names = TRUE)
icMat_clean <- icMat[complete.cases(icMat), ]
## Convert to data frame
avg_df <- data.frame(
k = colnames(icMat_clean),
AvgAIC = colMeans(icMat_clean)
)
## Preserve gene order if needed
avg_df$k <- factor(avg_df$k, levels = avg_df$k)
ggplot(avg_df, aes(x = k, y = AvgAIC, group = 1)) +
geom_line(color = "steelblue") +
geom_point(color = "darkred", size = 1.5) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 6)
) +
labs(x = "k", y = "Average AIC")
dim(scemLNf3v2)
cellSub <- data.frame(cell=colnames(scemLNf3v2)) %>% sample_n(5000)
sceSub <- scemLNf3v2[,cellSub$cell]
dim(sceSub)
fileNam <- paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sce.rds")
sceSub <- readRDS(fileNam)
colDat <- data.frame(cluster=sceSub$RNA_snn_res.0.4) %>%
mutate(timepoint=sceSub$timepoint) %>% left_join(., clustDat, by="cluster") %>%
left_join(., timepointDat, by="timepoint")
plot(reducedDims(sceSub)$UMAP, col = colDat$clustCol, pch=16, asp = 1)
lines(SlingshotDataSet(sceSub), lwd=2, col='black')

plot(reducedDims(sceSub)$UMAP, col = colDat$ageCol, pch=16, asp = 1)
lines(SlingshotDataSet(sceSub), lwd=2, col='black')

## only hvg
dec.sceSub <- modelGeneVar(sceSub)
topHVG <- getTopHVGs(dec.sceSub, n=2000)
pseudotime <- slingPseudotime(SlingshotDataSet(scemLNf3v2), na = FALSE)
pseudotimeSub <- pseudotime[cellSub$cell,]
cellWeights <- slingCurveWeights(SlingshotDataSet(scemLNf3v2))
cellWeightsSub <- cellWeights[cellSub$cell,]
sceGAM <- fitGAM(counts = counts(sceSub), pseudotime = pseudotimeSub,
cellWeights = cellWeightsSub,
nknots = 8, verbose = T, parallel=T, genes=topHVG)
## save
saveRDS(sceGAM, file = paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sceGAM.rds"))
saveRDS(sceSub, file = paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sce.rds"))
saveRDS(pseudotimeSub, file = paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_pseudotime.rds"))
saveRDS(cellWeightsSub, file = paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_cellweights.rds"))
saveRDS(topHVG, file = paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_topHVG.rds"))
fileNam <- paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sceGAM.rds")
sceGAM <- readRDS(fileNam)
table(rowData(sceGAM)$tradeSeq$converged)
TRUE
2000
patternRes <- patternTest(sceGAM, l2fc = log2(2))
oPat <- order(patternRes$waldStat, decreasing = TRUE)
head(rownames(patternRes)[oPat])
[1] "ENSMUSG00000029675.Eln" "ENSMUSG00000022037.Clu" "ENSMUSG00000030605.Mfge8"
[4] "ENSMUSG00000060924.Csmd1" "ENSMUSG00000020186.Csrp2" "ENSMUSG00000002985.Apoe"
colLin <- c("#42a071","#900C3F","#424671","#e3953d","#b6856e")
names(colLin) <- c("1", "2", "3", "4", "5")
rankGene <- rownames(patternRes)[oPat]
lapply(rankGene[1:50], function(selGene){
plotSmoothers(sceGAM, counts(sceGAM), gene = selGene, curvesCols=colLin) +
ggtitle(selGene) +
scale_color_manual(values=colLin)
})
[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

[[9]]

[[10]]

[[11]]

[[12]]

[[13]]

[[14]]

[[15]]

[[16]]

[[17]]

[[18]]

[[19]]

[[20]]

[[21]]

[[22]]

[[23]]

[[24]]

[[25]]

[[26]]

[[27]]

[[28]]

[[29]]

[[30]]

[[31]]

[[32]]

[[33]]

[[34]]

[[35]]

[[36]]

[[37]]

[[38]]

[[39]]

[[40]]

[[41]]

[[42]]

[[43]]

[[44]]

[[45]]

[[46]]

[[47]]

[[48]]

[[49]]

[[50]]

nPointsClus <- 100
clusPat <- clusterExpressionPatterns(sceGAM, nPoints = nPointsClus,
genes = rankGene[1:500], nReducedDims=20)
saveRDS(clusPat, file = paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_clusPat.rds")
fileNam <- paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_clusPat.rds")
clusPat <- readRDS(fileNam)
clusterLabels <- primaryCluster(clusPat$rsec)
cUniq <- unique(clusterLabels)
cUniq <- cUniq[!cUniq == -1] ## remove unclustered genes
for (xx in cUniq) {
cId <- which(clusterLabels == xx)
p <- ggplot(data = data.frame(x = 1:nPointsClus,
y = rep(range(clusPat$yhatScaled[cId, ]),
nPointsClus / 2)),
aes(x = x, y = y)) +
geom_point(alpha = 0) +
labs(title = paste0("Cluster ", xx), x = "Pseudotime", y = "Normalized expression") +
theme_classic() +
theme(plot.title = element_text(hjust = 0.5))
for (ii in 1:length(cId)) {
geneId <- rownames(clusPat$yhatScaled)[cId[ii]]
p <- p +
geom_line(data = data.frame(x = rep(1:nPointsClus, 5),
y = clusPat$yhatScaled[geneId, ],
lineage = rep(1:5, each = nPointsClus)),
aes(col = as.character(lineage), group = lineage), lwd = 1.5)
}
p <- p + guides(color = FALSE) +
scale_color_manual(values = colLin,
breaks = c("1", "2", "3", "4", "5"))
print(p)
}




































clusterLabels <- primaryCluster(clusPat$rsec)
cUniq <- unique(clusterLabels)
cUniq <- cUniq[!cUniq == -1] ## remove unclustered genes
for (xx in cUniq) {
cId <- which(clusterLabels == xx)
p <- ggplot(data = data.frame(x = 1:nPointsClus,
y = rep(range(clusPat$yhatScaled[cId, ]),
nPointsClus / 2)),
aes(x = x, y = y)) +
geom_point(alpha = 0) +
labs(title = paste0("Cluster ", xx), x = "Pseudotime", y = "Normalized expression") +
theme_classic() +
theme(plot.title = element_text(hjust = 0.5))
for (ii in 1:length(cId)) {
geneId <- rownames(clusPat$yhatScaled)[cId[ii]]
p <- p +
geom_line(data = data.frame(x = rep(1:nPointsClus, 5),
y = clusPat$yhatScaled[geneId, ],
lineage = rep(1:5, each = nPointsClus)),
aes(col = as.character(lineage), group = lineage), lwd = 0.5)
}
p <- p + guides(color = FALSE) +
scale_color_manual(values = colLin,
breaks = c("1", "2", "3", "4", "5"))
print(p)
}




































clustList <- lapply(cUniq, function(cl){
cId <- which(clusterLabels == cl)
genes <- rownames(clusPat$yhatScaled)[cId]
})
names(clustList) <- cUniq
## save
saveRDS(clustList, file=paste0(basedir,"/data/tradeSEQ/diffLinGeneCluster.rds"))
date()
[1] "Tue Jul 15 12:24:22 2025"
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Zurich
tzcode source: internal
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] here_1.0.1 clusterExperiment_2.24.0 scran_1.32.0
[4] tradeSeq_1.18.0 RColorBrewer_1.1-3 slingshot_2.12.0
[7] TrajectoryUtils_1.12.0 princurve_2.1.6 NCmisc_1.2.0
[10] VennDiagram_1.7.3 futile.logger_1.4.3 ggupset_0.4.1
[13] gridExtra_2.3 DOSE_3.30.5 enrichplot_1.24.4
[16] msigdbr_24.1.0 org.Hs.eg.db_3.19.1 AnnotationDbi_1.66.0
[19] clusterProfiler_4.12.6 multtest_2.60.0 metap_1.12
[22] scater_1.32.1 scuttle_1.14.0 destiny_3.18.0
[25] circlize_0.4.16 muscat_1.18.0 viridis_0.6.5
[28] viridisLite_0.4.2 lubridate_1.9.4 forcats_1.0.0
[31] stringr_1.5.1 purrr_1.0.4 readr_2.1.5
[34] tidyr_1.3.1 tibble_3.2.1 tidyverse_2.0.0
[37] dplyr_1.1.4 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[40] Biobase_2.64.0 GenomicRanges_1.56.2 GenomeInfoDb_1.40.1
[43] IRanges_2.38.1 S4Vectors_0.42.1 BiocGenerics_0.50.0
[46] MatrixGenerics_1.16.0 matrixStats_1.5.0 pheatmap_1.0.13
[49] ggpubr_0.6.0 ggplot2_3.5.2 Seurat_5.3.0
[52] SeuratObject_5.1.0 sp_2.2-0 runSeurat3_0.1.0
[55] ExploreSCdataSeurat3_0.1.0
loaded via a namespace (and not attached):
[1] igraph_2.1.4 ica_1.0-3 plotly_4.10.4
[4] Formula_1.2-5 zlibbioc_1.50.0 tidyselect_1.2.1
[7] bit_4.6.0 doParallel_1.0.17 clue_0.3-66
[10] lattice_0.22-7 rjson_0.2.23 blob_1.2.4
[13] rngtools_1.5.2 S4Arrays_1.4.1 RNeXML_2.4.11
[16] pbkrtest_0.5.4 parallel_4.4.0 png_0.1-8
[19] plotrix_3.8-4 registry_0.5-1 cli_3.6.5
[22] ggplotify_0.1.2 goftest_1.2-3 VIM_6.2.2
[25] variancePartition_1.34.0 kernlab_0.9-33 bluster_1.14.0
[28] BiocNeighbors_1.22.0 shadowtext_0.1.4 uwot_0.2.3
[31] curl_6.2.3 zinbwave_1.26.0 tidytree_0.4.6
[34] mime_0.13 evaluate_1.0.3 ComplexHeatmap_2.20.0
[37] stringi_1.8.7 backports_1.5.0 XML_3.99-0.18
[40] lmerTest_3.1-3 qqconf_1.3.2 httpuv_1.6.16
[43] magrittr_2.0.3 rappdirs_0.3.3 splines_4.4.0
[46] ggraph_2.2.1 sctransform_0.4.2 ggbeeswarm_0.7.2
[49] HDF5Array_1.32.1 DBI_1.2.3 genefilter_1.86.0
[52] jquerylib_0.1.4 smoother_1.3 withr_3.0.2
[55] git2r_0.36.2 corpcor_1.6.10 reformulas_0.4.1
[58] class_7.3-23 rprojroot_2.0.4 lmtest_0.9-40
[61] tidygraph_1.3.1 BiocManager_1.30.25 formatR_1.14
[64] colourpicker_1.3.0 htmlwidgets_1.6.4 fs_1.6.6
[67] ggrepel_0.9.6 labeling_0.4.3 fANCOVA_0.6-1
[70] SparseArray_1.4.8 DESeq2_1.44.0 ranger_0.17.0
[73] DEoptimR_1.1-3-1 rncl_0.8.7 annotate_1.82.0
[76] reticulate_1.42.0 hexbin_1.28.5 zoo_1.8-14
[79] XVector_0.44.0 knitr_1.50 ggplot.multistats_1.0.1
[82] UCSC.utils_1.0.0 RhpcBLASctl_0.23-42 timechange_0.3.0
[85] foreach_1.5.2 patchwork_1.3.0 caTools_1.18.3
[88] rhdf5_2.48.0 ggtree_3.12.0 data.table_1.17.4
[91] R.oo_1.27.1 RSpectra_0.16-2 irlba_2.3.5.1
[94] gridGraphics_0.5-1 fastDummies_1.7.5 ade4_1.7-23
[97] lazyeval_0.2.2 yaml_2.3.10 survival_3.8-3
[100] scattermore_1.2 crayon_1.5.3 RcppAnnoy_0.0.22
[103] progressr_0.15.1 tweenr_2.0.3 later_1.4.2
[106] ggridges_0.5.6 codetools_0.2-20 GlobalOptions_0.1.2
[109] aod_1.3.3 KEGGREST_1.44.1 Rtsne_0.17
[112] shape_1.4.6.1 limma_3.60.6 pkgconfig_2.0.3
[115] xml2_1.3.8 TMB_1.9.17 spatstat.univar_3.1-3
[118] mathjaxr_1.8-0 EnvStats_3.1.0 aplot_0.2.5
[121] scatterplot3d_0.3-44 gridBase_0.4-7 ape_5.8-1
[124] spatstat.sparse_3.1-0 xtable_1.8-4 car_3.1-3
[127] plyr_1.8.9 httr_1.4.7 rbibutils_2.3
[130] tools_4.4.0 globals_0.18.0 beeswarm_0.4.0
[133] broom_1.0.8 nlme_3.1-168 lambda.r_1.2.4
[136] assertthat_0.2.1 lme4_1.1-37 digest_0.6.37
[139] numDeriv_2016.8-1.1 Matrix_1.7-3 farver_2.1.2
[142] tzdb_0.5.0 remaCor_0.0.18 reshape2_1.4.4
[145] yulab.utils_0.2.0 glue_1.8.0 cachem_1.1.0
[148] polyclip_1.10-7 generics_0.1.4 Biostrings_2.72.1
[151] mvtnorm_1.3-3 parallelly_1.45.0 mnormt_2.1.1
[154] statmod_1.5.0 RcppHNSW_0.6.0 ScaledMatrix_1.12.0
[157] carData_3.0-5 minqa_1.2.8 pbapply_1.7-2
[160] httr2_1.1.2 spam_2.11-1 gson_0.1.0
[163] dqrng_0.4.1 graphlayouts_1.2.2 gtools_3.9.5
[166] softImpute_1.4-3 ggsignif_0.6.4 RcppEigen_0.3.4.0.2
[169] shiny_1.10.0 GenomeInfoDbData_1.2.12 glmmTMB_1.1.11
[172] rhdf5filters_1.16.0 R.utils_2.13.0 memoise_2.0.1
[175] rmarkdown_2.29 locfdr_1.1-8 scales_1.4.0
[178] R.methodsS3_1.8.2 phylobase_0.8.12 future_1.58.0
[181] RANN_2.6.2 Cairo_1.6-2 spatstat.data_3.1-6
[184] rstudioapi_0.17.1 cluster_2.1.8.1 whisker_0.4.1
[187] mutoss_0.1-13 spatstat.utils_3.1-4 hms_1.1.3
[190] fitdistrplus_1.2-2 cowplot_1.1.3 colorspace_2.1-1
[193] rlang_1.1.6 DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0
[196] xts_0.14.1 dotCall64_1.2 shinydashboard_0.7.3
[199] ggforce_0.4.2 laeken_0.5.3 mgcv_1.9-3
[202] xfun_0.52 e1071_1.7-16 TH.data_1.1-3
[205] iterators_1.0.14 abind_1.4-8 GOSemSim_2.30.2
[208] treeio_1.28.0 Rhdf5lib_1.26.0 futile.options_1.0.1
[211] bitops_1.0-9 Rdpack_2.6.4 promises_1.3.3
[214] scatterpie_0.2.4 RSQLite_2.4.0 qvalue_2.36.0
[217] sandwich_3.1-1 fgsea_1.30.0 DelayedArray_0.30.1
[220] proxy_0.4-27 GO.db_3.19.1 compiler_4.4.0
[223] prettyunits_1.2.0 boot_1.3-31 beachmat_2.20.0
[226] listenv_0.9.1 Rcpp_1.0.14 edgeR_4.2.2
[229] workflowr_1.7.1 BiocSingular_1.20.0 tensor_1.5
[232] MASS_7.3-65 progress_1.2.3 uuid_1.2-1
[235] BiocParallel_1.38.0 babelgene_22.9 spatstat.random_3.4-1
[238] R6_2.6.1 fastmap_1.2.0 multcomp_1.4-28
[241] fastmatch_1.1-6 rstatix_0.7.2 vipor_0.4.7
[244] TTR_0.24.4 ROCR_1.0-11 TFisher_0.2.0
[247] rsvd_1.0.5 vcd_1.4-13 nnet_7.3-20
[250] gtable_0.3.6 KernSmooth_2.23-26 miniUI_0.1.2
[253] deldir_2.0-4 htmltools_0.5.8.1 ggthemes_5.1.0
[256] bit64_4.6.0-1 spatstat.explore_3.4-3 lifecycle_1.0.4
[259] blme_1.0-6 nloptr_2.2.1 sass_0.4.10
[262] vctrs_0.6.5 robustbase_0.99-4-1 spatstat.geom_3.4-1
[265] NMF_0.28 sn_2.1.1 ggfun_0.1.8
[268] future.apply_1.11.3 bslib_0.9.0 pillar_1.10.2
[271] gplots_3.2.0 pcaMethods_1.96.0 metapod_1.12.0
[274] locfit_1.5-9.12 jsonlite_2.0.0 GetoptLong_1.0.5
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Zurich
tzcode source: internal
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] here_1.0.1 clusterExperiment_2.24.0 scran_1.32.0
[4] tradeSeq_1.18.0 RColorBrewer_1.1-3 slingshot_2.12.0
[7] TrajectoryUtils_1.12.0 princurve_2.1.6 NCmisc_1.2.0
[10] VennDiagram_1.7.3 futile.logger_1.4.3 ggupset_0.4.1
[13] gridExtra_2.3 DOSE_3.30.5 enrichplot_1.24.4
[16] msigdbr_24.1.0 org.Hs.eg.db_3.19.1 AnnotationDbi_1.66.0
[19] clusterProfiler_4.12.6 multtest_2.60.0 metap_1.12
[22] scater_1.32.1 scuttle_1.14.0 destiny_3.18.0
[25] circlize_0.4.16 muscat_1.18.0 viridis_0.6.5
[28] viridisLite_0.4.2 lubridate_1.9.4 forcats_1.0.0
[31] stringr_1.5.1 purrr_1.0.4 readr_2.1.5
[34] tidyr_1.3.1 tibble_3.2.1 tidyverse_2.0.0
[37] dplyr_1.1.4 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[40] Biobase_2.64.0 GenomicRanges_1.56.2 GenomeInfoDb_1.40.1
[43] IRanges_2.38.1 S4Vectors_0.42.1 BiocGenerics_0.50.0
[46] MatrixGenerics_1.16.0 matrixStats_1.5.0 pheatmap_1.0.13
[49] ggpubr_0.6.0 ggplot2_3.5.2 Seurat_5.3.0
[52] SeuratObject_5.1.0 sp_2.2-0 runSeurat3_0.1.0
[55] ExploreSCdataSeurat3_0.1.0
loaded via a namespace (and not attached):
[1] igraph_2.1.4 ica_1.0-3 plotly_4.10.4
[4] Formula_1.2-5 zlibbioc_1.50.0 tidyselect_1.2.1
[7] bit_4.6.0 doParallel_1.0.17 clue_0.3-66
[10] lattice_0.22-7 rjson_0.2.23 blob_1.2.4
[13] rngtools_1.5.2 S4Arrays_1.4.1 RNeXML_2.4.11
[16] pbkrtest_0.5.4 parallel_4.4.0 png_0.1-8
[19] plotrix_3.8-4 registry_0.5-1 cli_3.6.5
[22] ggplotify_0.1.2 goftest_1.2-3 VIM_6.2.2
[25] variancePartition_1.34.0 kernlab_0.9-33 bluster_1.14.0
[28] BiocNeighbors_1.22.0 shadowtext_0.1.4 uwot_0.2.3
[31] curl_6.2.3 zinbwave_1.26.0 tidytree_0.4.6
[34] mime_0.13 evaluate_1.0.3 ComplexHeatmap_2.20.0
[37] stringi_1.8.7 backports_1.5.0 XML_3.99-0.18
[40] lmerTest_3.1-3 qqconf_1.3.2 httpuv_1.6.16
[43] magrittr_2.0.3 rappdirs_0.3.3 splines_4.4.0
[46] ggraph_2.2.1 sctransform_0.4.2 ggbeeswarm_0.7.2
[49] HDF5Array_1.32.1 DBI_1.2.3 genefilter_1.86.0
[52] jquerylib_0.1.4 smoother_1.3 withr_3.0.2
[55] git2r_0.36.2 corpcor_1.6.10 reformulas_0.4.1
[58] class_7.3-23 rprojroot_2.0.4 lmtest_0.9-40
[61] tidygraph_1.3.1 BiocManager_1.30.25 formatR_1.14
[64] colourpicker_1.3.0 htmlwidgets_1.6.4 fs_1.6.6
[67] ggrepel_0.9.6 labeling_0.4.3 fANCOVA_0.6-1
[70] SparseArray_1.4.8 DESeq2_1.44.0 ranger_0.17.0
[73] DEoptimR_1.1-3-1 rncl_0.8.7 annotate_1.82.0
[76] reticulate_1.42.0 hexbin_1.28.5 zoo_1.8-14
[79] XVector_0.44.0 knitr_1.50 ggplot.multistats_1.0.1
[82] UCSC.utils_1.0.0 RhpcBLASctl_0.23-42 timechange_0.3.0
[85] foreach_1.5.2 patchwork_1.3.0 caTools_1.18.3
[88] rhdf5_2.48.0 ggtree_3.12.0 data.table_1.17.4
[91] R.oo_1.27.1 RSpectra_0.16-2 irlba_2.3.5.1
[94] gridGraphics_0.5-1 fastDummies_1.7.5 ade4_1.7-23
[97] lazyeval_0.2.2 yaml_2.3.10 survival_3.8-3
[100] scattermore_1.2 crayon_1.5.3 RcppAnnoy_0.0.22
[103] progressr_0.15.1 tweenr_2.0.3 later_1.4.2
[106] ggridges_0.5.6 codetools_0.2-20 GlobalOptions_0.1.2
[109] aod_1.3.3 KEGGREST_1.44.1 Rtsne_0.17
[112] shape_1.4.6.1 limma_3.60.6 pkgconfig_2.0.3
[115] xml2_1.3.8 TMB_1.9.17 spatstat.univar_3.1-3
[118] mathjaxr_1.8-0 EnvStats_3.1.0 aplot_0.2.5
[121] scatterplot3d_0.3-44 gridBase_0.4-7 ape_5.8-1
[124] spatstat.sparse_3.1-0 xtable_1.8-4 car_3.1-3
[127] plyr_1.8.9 httr_1.4.7 rbibutils_2.3
[130] tools_4.4.0 globals_0.18.0 beeswarm_0.4.0
[133] broom_1.0.8 nlme_3.1-168 lambda.r_1.2.4
[136] assertthat_0.2.1 lme4_1.1-37 digest_0.6.37
[139] numDeriv_2016.8-1.1 Matrix_1.7-3 farver_2.1.2
[142] tzdb_0.5.0 remaCor_0.0.18 reshape2_1.4.4
[145] yulab.utils_0.2.0 glue_1.8.0 cachem_1.1.0
[148] polyclip_1.10-7 generics_0.1.4 Biostrings_2.72.1
[151] mvtnorm_1.3-3 parallelly_1.45.0 mnormt_2.1.1
[154] statmod_1.5.0 RcppHNSW_0.6.0 ScaledMatrix_1.12.0
[157] carData_3.0-5 minqa_1.2.8 pbapply_1.7-2
[160] httr2_1.1.2 spam_2.11-1 gson_0.1.0
[163] dqrng_0.4.1 graphlayouts_1.2.2 gtools_3.9.5
[166] softImpute_1.4-3 ggsignif_0.6.4 RcppEigen_0.3.4.0.2
[169] shiny_1.10.0 GenomeInfoDbData_1.2.12 glmmTMB_1.1.11
[172] rhdf5filters_1.16.0 R.utils_2.13.0 memoise_2.0.1
[175] rmarkdown_2.29 locfdr_1.1-8 scales_1.4.0
[178] R.methodsS3_1.8.2 phylobase_0.8.12 future_1.58.0
[181] RANN_2.6.2 Cairo_1.6-2 spatstat.data_3.1-6
[184] rstudioapi_0.17.1 cluster_2.1.8.1 whisker_0.4.1
[187] mutoss_0.1-13 spatstat.utils_3.1-4 hms_1.1.3
[190] fitdistrplus_1.2-2 cowplot_1.1.3 colorspace_2.1-1
[193] rlang_1.1.6 DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0
[196] xts_0.14.1 dotCall64_1.2 shinydashboard_0.7.3
[199] ggforce_0.4.2 laeken_0.5.3 mgcv_1.9-3
[202] xfun_0.52 e1071_1.7-16 TH.data_1.1-3
[205] iterators_1.0.14 abind_1.4-8 GOSemSim_2.30.2
[208] treeio_1.28.0 Rhdf5lib_1.26.0 futile.options_1.0.1
[211] bitops_1.0-9 Rdpack_2.6.4 promises_1.3.3
[214] scatterpie_0.2.4 RSQLite_2.4.0 qvalue_2.36.0
[217] sandwich_3.1-1 fgsea_1.30.0 DelayedArray_0.30.1
[220] proxy_0.4-27 GO.db_3.19.1 compiler_4.4.0
[223] prettyunits_1.2.0 boot_1.3-31 beachmat_2.20.0
[226] listenv_0.9.1 Rcpp_1.0.14 edgeR_4.2.2
[229] workflowr_1.7.1 BiocSingular_1.20.0 tensor_1.5
[232] MASS_7.3-65 progress_1.2.3 uuid_1.2-1
[235] BiocParallel_1.38.0 babelgene_22.9 spatstat.random_3.4-1
[238] R6_2.6.1 fastmap_1.2.0 multcomp_1.4-28
[241] fastmatch_1.1-6 rstatix_0.7.2 vipor_0.4.7
[244] TTR_0.24.4 ROCR_1.0-11 TFisher_0.2.0
[247] rsvd_1.0.5 vcd_1.4-13 nnet_7.3-20
[250] gtable_0.3.6 KernSmooth_2.23-26 miniUI_0.1.2
[253] deldir_2.0-4 htmltools_0.5.8.1 ggthemes_5.1.0
[256] bit64_4.6.0-1 spatstat.explore_3.4-3 lifecycle_1.0.4
[259] blme_1.0-6 nloptr_2.2.1 sass_0.4.10
[262] vctrs_0.6.5 robustbase_0.99-4-1 spatstat.geom_3.4-1
[265] NMF_0.28 sn_2.1.1 ggfun_0.1.8
[268] future.apply_1.11.3 bslib_0.9.0 pillar_1.10.2
[271] gplots_3.2.0 pcaMethods_1.96.0 metapod_1.12.0
[274] locfit_1.5-9.12 jsonlite_2.0.0 GetoptLong_1.0.5