Last updated: 2025-07-15

Checks: 6 1

Knit directory: LNdevMouse24.2/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250625) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4f4cced. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/tradeSEQ/

Unstaged changes:
    Modified:   analysis/tradeSeq.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tradeSeq.Rmd) and HTML (docs/tradeSeq.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4f4cced angeldemartin 2025-07-15 july15

load packages

library(ExploreSCdataSeurat3)
library(runSeurat3)
library(Seurat)
library(ggpubr)
library(pheatmap)
library(SingleCellExperiment)
library(dplyr)
library(tidyverse)
library(viridis)
library(muscat)
library(circlize)
library(destiny)
library(scater)
library(metap)
library(multtest)
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(DOSE)
library(grid)
library(gridExtra)
library(ggupset)
library(VennDiagram)
library(NCmisc)
library(slingshot)
library(RColorBrewer)
library(tradeSeq)
library(scran)
library(clusterExperiment)
library(here)

load sce slingshot mLN EYFP+

basedir <- here()
fileNam <- paste0(basedir, "/data/LNmLToRev_EYFP_mLNf3_slingshot_v2_sce.rds")
scemLNf3v2<- readRDS(fileNam)

load object mLN EYFP+ fil

fileNam <- paste0(basedir, "/data/LNmLToRev_EYFP_mLNf3_seurat.rds")
seuratmLNf3 <- readRDS(fileNam)
table(seuratmLNf3$dataset)

    380131_04-4_20250224_Cxcl13EYFP_P7_mLN_YFPpos     380131_05-5_20250224_Cxcl13EYFP_P7_mLN_YFPneg 
                                             3922                                                12 
   380131_07-7_20250225_Cxcl13EYFP_E18_mLN_YFPpos    380131_08-8_20250225_Cxcl13EYFP_E18_mLN_YFPneg 
                                             2392                                                 5 
380131_12-12_20250305_Mu_Cxcl13EYFP_Adult_mLN_FRC 382581_02-2_20250311_Mu_Cxcl13EYFP_E18_mLN_YFPpos 
                                             3798                                              3617 
382581_03-3_20250311_Mu_Cxcl13EYFP_E18_mLN_YFPneg  382581_06-6_20250319_Mu_Cxcl13EYFP_P7_mLN_YFPpos 
                                               15                                              4274 
 382581_07-7_20250319_Mu_Cxcl13EYFP_P7_mLN_YFPneg  382581_09-9_20250320_Mu_Cxcl13EYFP_Adult_mLN_FRC 
                                               11                                              2711 
 382581_14-14_20250402_Mu_Cxcl13EYFP_3wk_mLN_fib1  382581_15-15_20250402_Mu_Cxcl13EYFP_3wk_mLN_fib2 
                                             3223                                              4289 
colPal <- c("#DAF7A6", "#FFC300", "#FF5733", "#C70039", "#900C3F", "#b66e8d",
            "#61a4ba", "#6178ba", "#54a87f",  "#25328a",
            "#b6856e", "#0073C2FF", "#EFC000FF", "#868686FF", "#CD534CFF", 
            "#7AA6DCFF", "#003C67FF", "#8F7700FF", "#3B3B3BFF", "#A73030FF",
            "#4A6990FF")[1:length(unique(seuratmLNf3$RNA_snn_res.0.4))]
names(colPal) <- unique(seuratmLNf3$RNA_snn_res.0.4)

coltimepoint <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF")
names(coltimepoint) <- c("E18", "P7", "3w", "8w")

collocation <- c("#61baba", "#ba6161")
names(collocation) <- c("iLN", "mLN")
clustDat <- data.frame(clustCol=colPal) %>% rownames_to_column(., "cluster")
timepointDat <- data.frame(ageCol=coltimepoint) %>% rownames_to_column(., "timepoint")
colDat <- data.frame(cluster=scemLNf3v2$RNA_snn_res.0.4) %>%
  mutate(timepoint=scemLNf3v2$timepoint) %>% left_join(., clustDat, by="cluster") %>% 
  left_join(., timepointDat, by="timepoint")
plot(reducedDims(scemLNf3v2)$UMAP, col = colDat$clustCol, pch=16, asp = 1)
lines(SlingshotDataSet(scemLNf3v2), lwd=2, col='black')

tradeSeq

evaluate k

icMat <- evaluateK(counts = counts(scemLNf3v2), sds = SlingshotDataSet(scemLNf3v2), k = 3:10, 
                   nGenes = 200, verbose = T)

plot results from icMat

write.table(icMat, file=paste0(basedir,"/data/icMat.txt", sep = "\t", quote = FALSE, row.names = TRUE)

icMat_clean <- icMat[complete.cases(icMat), ]
## Convert to data frame
avg_df <- data.frame(
  k = colnames(icMat_clean),
  AvgAIC = colMeans(icMat_clean)
)

## Preserve gene order if needed
avg_df$k <- factor(avg_df$k, levels = avg_df$k)

ggplot(avg_df, aes(x = k, y = AvgAIC, group = 1)) +
  geom_line(color = "steelblue") +
  geom_point(color = "darkred", size = 1.5) +
  theme_minimal() +
  theme(
    axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 6)
  ) +
  labs(x = "k", y = "Average AIC")

subsample sce

dim(scemLNf3v2)
cellSub <- data.frame(cell=colnames(scemLNf3v2)) %>% sample_n(5000)
sceSub <- scemLNf3v2[,cellSub$cell]
dim(sceSub)

load sce sub

fileNam <- paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sce.rds")
sceSub <- readRDS(fileNam)
colDat <- data.frame(cluster=sceSub$RNA_snn_res.0.4) %>%
  mutate(timepoint=sceSub$timepoint) %>% left_join(., clustDat, by="cluster") %>% 
  left_join(., timepointDat, by="timepoint")
 
plot(reducedDims(sceSub)$UMAP, col = colDat$clustCol, pch=16, asp = 1)
lines(SlingshotDataSet(sceSub), lwd=2, col='black')

plot(reducedDims(sceSub)$UMAP, col = colDat$ageCol, pch=16, asp = 1)
lines(SlingshotDataSet(sceSub), lwd=2, col='black')

fitGAM

## only hvg
dec.sceSub <- modelGeneVar(sceSub)
topHVG <- getTopHVGs(dec.sceSub, n=2000)

pseudotime <- slingPseudotime(SlingshotDataSet(scemLNf3v2), na = FALSE) 
pseudotimeSub <- pseudotime[cellSub$cell,]
cellWeights <- slingCurveWeights(SlingshotDataSet(scemLNf3v2))
cellWeightsSub <- cellWeights[cellSub$cell,]

sceGAM <- fitGAM(counts = counts(sceSub), pseudotime = pseudotimeSub, 
                cellWeights = cellWeightsSub,
                nknots = 8, verbose = T, parallel=T, genes=topHVG)
## save
saveRDS(sceGAM, file =  paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sceGAM.rds"))

saveRDS(sceSub, file =  paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sce.rds"))

saveRDS(pseudotimeSub, file = paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_pseudotime.rds"))

saveRDS(cellWeightsSub, file =  paste0(basedir,"/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_cellweights.rds"))

saveRDS(topHVG, file =  paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_topHVG.rds"))

load GAM

fileNam <- paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_sceGAM.rds")
sceGAM <- readRDS(fileNam)

table(rowData(sceGAM)$tradeSeq$converged)

TRUE 
2000 

Between lineage comparison

patternRes <- patternTest(sceGAM, l2fc = log2(2))
oPat <- order(patternRes$waldStat, decreasing = TRUE)
head(rownames(patternRes)[oPat])
[1] "ENSMUSG00000029675.Eln"   "ENSMUSG00000022037.Clu"   "ENSMUSG00000030605.Mfge8"
[4] "ENSMUSG00000060924.Csmd1" "ENSMUSG00000020186.Csrp2" "ENSMUSG00000002985.Apoe" 
colLin <- c("#42a071","#900C3F","#424671","#e3953d","#b6856e")
names(colLin) <- c("1", "2", "3", "4", "5")

rankGene <- rownames(patternRes)[oPat]
lapply(rankGene[1:50], function(selGene){
  plotSmoothers(sceGAM, counts(sceGAM), gene = selGene, curvesCols=colLin) +
    ggtitle(selGene) +
    scale_color_manual(values=colLin)
})
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]


[[9]]


[[10]]


[[11]]


[[12]]


[[13]]


[[14]]


[[15]]


[[16]]


[[17]]


[[18]]


[[19]]


[[20]]


[[21]]


[[22]]


[[23]]


[[24]]


[[25]]


[[26]]


[[27]]


[[28]]


[[29]]


[[30]]


[[31]]


[[32]]


[[33]]


[[34]]


[[35]]


[[36]]


[[37]]


[[38]]


[[39]]


[[40]]


[[41]]


[[42]]


[[43]]


[[44]]


[[45]]


[[46]]


[[47]]


[[48]]


[[49]]


[[50]]

cluster genes betweeen lineages

nPointsClus <- 100
clusPat <- clusterExpressionPatterns(sceGAM, nPoints = nPointsClus,
                                     genes = rankGene[1:500], nReducedDims=20)
saveRDS(clusPat, file =  paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_clusPat.rds")

load clusPat

fileNam <- paste0(basedir, "/data/tradeSEQ/LNmLToRev_EYFP_mLNf3_slingshot_v2_TSsub5000_clusPat.rds")
clusPat <- readRDS(fileNam)
clusterLabels <- primaryCluster(clusPat$rsec)

cUniq <- unique(clusterLabels)
cUniq <- cUniq[!cUniq == -1] ## remove unclustered genes

for (xx in cUniq) {
  cId <- which(clusterLabels == xx)
  p <- ggplot(data = data.frame(x = 1:nPointsClus,
                                y = rep(range(clusPat$yhatScaled[cId, ]),
                                        nPointsClus / 2)),
              aes(x = x, y = y)) +
    geom_point(alpha = 0) +
    labs(title = paste0("Cluster ", xx),  x = "Pseudotime", y = "Normalized expression") +
    theme_classic() +
    theme(plot.title = element_text(hjust = 0.5))
  for (ii in 1:length(cId)) {
    geneId <- rownames(clusPat$yhatScaled)[cId[ii]]
    p <- p +
      geom_line(data = data.frame(x = rep(1:nPointsClus, 5),
                                  y = clusPat$yhatScaled[geneId, ],
                                  lineage = rep(1:5, each = nPointsClus)),
                aes(col = as.character(lineage), group = lineage), lwd = 1.5)
  }
  p <- p + guides(color = FALSE) +
    scale_color_manual(values = colLin,
                       breaks = c("1", "2", "3", "4", "5"))  
  print(p)
}

clusterLabels <- primaryCluster(clusPat$rsec)

cUniq <- unique(clusterLabels)
cUniq <- cUniq[!cUniq == -1] ## remove unclustered genes

for (xx in cUniq) {
  cId <- which(clusterLabels == xx)
  p <- ggplot(data = data.frame(x = 1:nPointsClus,
                                y = rep(range(clusPat$yhatScaled[cId, ]),
                                        nPointsClus / 2)),
              aes(x = x, y = y)) +
    geom_point(alpha = 0) +
    labs(title = paste0("Cluster ", xx),  x = "Pseudotime", y = "Normalized expression") +
    theme_classic() +
    theme(plot.title = element_text(hjust = 0.5))
  for (ii in 1:length(cId)) {
    geneId <- rownames(clusPat$yhatScaled)[cId[ii]]
    p <- p +
      geom_line(data = data.frame(x = rep(1:nPointsClus, 5),
                                  y = clusPat$yhatScaled[geneId, ],
                                  lineage = rep(1:5, each = nPointsClus)),
                aes(col = as.character(lineage), group = lineage), lwd = 0.5)
  }
  p <- p + guides(color = FALSE) +
    scale_color_manual(values = colLin,
                       breaks = c("1", "2", "3", "4", "5"))  
  print(p)
}

clustList <- lapply(cUniq, function(cl){
  cId <- which(clusterLabels == cl)
  genes <- rownames(clusPat$yhatScaled)[cId]
}) 
names(clustList) <- cUniq

## save
saveRDS(clustList, file=paste0(basedir,"/data/tradeSEQ/diffLinGeneCluster.rds"))

session info

date()
[1] "Tue Jul 15 12:24:22 2025"
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_1.0.1                  clusterExperiment_2.24.0    scran_1.32.0               
 [4] tradeSeq_1.18.0             RColorBrewer_1.1-3          slingshot_2.12.0           
 [7] TrajectoryUtils_1.12.0      princurve_2.1.6             NCmisc_1.2.0               
[10] VennDiagram_1.7.3           futile.logger_1.4.3         ggupset_0.4.1              
[13] gridExtra_2.3               DOSE_3.30.5                 enrichplot_1.24.4          
[16] msigdbr_24.1.0              org.Hs.eg.db_3.19.1         AnnotationDbi_1.66.0       
[19] clusterProfiler_4.12.6      multtest_2.60.0             metap_1.12                 
[22] scater_1.32.1               scuttle_1.14.0              destiny_3.18.0             
[25] circlize_0.4.16             muscat_1.18.0               viridis_0.6.5              
[28] viridisLite_0.4.2           lubridate_1.9.4             forcats_1.0.0              
[31] stringr_1.5.1               purrr_1.0.4                 readr_2.1.5                
[34] tidyr_1.3.1                 tibble_3.2.1                tidyverse_2.0.0            
[37] dplyr_1.1.4                 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[40] Biobase_2.64.0              GenomicRanges_1.56.2        GenomeInfoDb_1.40.1        
[43] IRanges_2.38.1              S4Vectors_0.42.1            BiocGenerics_0.50.0        
[46] MatrixGenerics_1.16.0       matrixStats_1.5.0           pheatmap_1.0.13            
[49] ggpubr_0.6.0                ggplot2_3.5.2               Seurat_5.3.0               
[52] SeuratObject_5.1.0          sp_2.2-0                    runSeurat3_0.1.0           
[55] ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] rngtools_1.5.2            S4Arrays_1.4.1            RNeXML_2.4.11            
 [16] pbkrtest_0.5.4            parallel_4.4.0            png_0.1-8                
 [19] plotrix_3.8-4             registry_0.5-1            cli_3.6.5                
 [22] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [25] variancePartition_1.34.0  kernlab_0.9-33            bluster_1.14.0           
 [28] BiocNeighbors_1.22.0      shadowtext_0.1.4          uwot_0.2.3               
 [31] curl_6.2.3                zinbwave_1.26.0           tidytree_0.4.6           
 [34] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [37] stringi_1.8.7             backports_1.5.0           XML_3.99-0.18            
 [40] lmerTest_3.1-3            qqconf_1.3.2              httpuv_1.6.16            
 [43] magrittr_2.0.3            rappdirs_0.3.3            splines_4.4.0            
 [46] ggraph_2.2.1              sctransform_0.4.2         ggbeeswarm_0.7.2         
 [49] HDF5Array_1.32.1          DBI_1.2.3                 genefilter_1.86.0        
 [52] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [55] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [58] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [61] tidygraph_1.3.1           BiocManager_1.30.25       formatR_1.14             
 [64] colourpicker_1.3.0        htmlwidgets_1.6.4         fs_1.6.6                 
 [67] ggrepel_0.9.6             labeling_0.4.3            fANCOVA_0.6-1            
 [70] SparseArray_1.4.8         DESeq2_1.44.0             ranger_0.17.0            
 [73] DEoptimR_1.1-3-1          rncl_0.8.7                annotate_1.82.0          
 [76] reticulate_1.42.0         hexbin_1.28.5             zoo_1.8-14               
 [79] XVector_0.44.0            knitr_1.50                ggplot.multistats_1.0.1  
 [82] UCSC.utils_1.0.0          RhpcBLASctl_0.23-42       timechange_0.3.0         
 [85] foreach_1.5.2             patchwork_1.3.0           caTools_1.18.3           
 [88] rhdf5_2.48.0              ggtree_3.12.0             data.table_1.17.4        
 [91] R.oo_1.27.1               RSpectra_0.16-2           irlba_2.3.5.1            
 [94] gridGraphics_0.5-1        fastDummies_1.7.5         ade4_1.7-23              
 [97] lazyeval_0.2.2            yaml_2.3.10               survival_3.8-3           
[100] scattermore_1.2           crayon_1.5.3              RcppAnnoy_0.0.22         
[103] progressr_0.15.1          tweenr_2.0.3              later_1.4.2              
[106] ggridges_0.5.6            codetools_0.2-20          GlobalOptions_0.1.2      
[109] aod_1.3.3                 KEGGREST_1.44.1           Rtsne_0.17               
[112] shape_1.4.6.1             limma_3.60.6              pkgconfig_2.0.3          
[115] xml2_1.3.8                TMB_1.9.17                spatstat.univar_3.1-3    
[118] mathjaxr_1.8-0            EnvStats_3.1.0            aplot_0.2.5              
[121] scatterplot3d_0.3-44      gridBase_0.4-7            ape_5.8-1                
[124] spatstat.sparse_3.1-0     xtable_1.8-4              car_3.1-3                
[127] plyr_1.8.9                httr_1.4.7                rbibutils_2.3            
[130] tools_4.4.0               globals_0.18.0            beeswarm_0.4.0           
[133] broom_1.0.8               nlme_3.1-168              lambda.r_1.2.4           
[136] assertthat_0.2.1          lme4_1.1-37               digest_0.6.37            
[139] numDeriv_2016.8-1.1       Matrix_1.7-3              farver_2.1.2             
[142] tzdb_0.5.0                remaCor_0.0.18            reshape2_1.4.4           
[145] yulab.utils_0.2.0         glue_1.8.0                cachem_1.1.0             
[148] polyclip_1.10-7           generics_0.1.4            Biostrings_2.72.1        
[151] mvtnorm_1.3-3             parallelly_1.45.0         mnormt_2.1.1             
[154] statmod_1.5.0             RcppHNSW_0.6.0            ScaledMatrix_1.12.0      
[157] carData_3.0-5             minqa_1.2.8               pbapply_1.7-2            
[160] httr2_1.1.2               spam_2.11-1               gson_0.1.0               
[163] dqrng_0.4.1               graphlayouts_1.2.2        gtools_3.9.5             
[166] softImpute_1.4-3          ggsignif_0.6.4            RcppEigen_0.3.4.0.2      
[169] shiny_1.10.0              GenomeInfoDbData_1.2.12   glmmTMB_1.1.11           
[172] rhdf5filters_1.16.0       R.utils_2.13.0            memoise_2.0.1            
[175] rmarkdown_2.29            locfdr_1.1-8              scales_1.4.0             
[178] R.methodsS3_1.8.2         phylobase_0.8.12          future_1.58.0            
[181] RANN_2.6.2                Cairo_1.6-2               spatstat.data_3.1-6      
[184] rstudioapi_0.17.1         cluster_2.1.8.1           whisker_0.4.1            
[187] mutoss_0.1-13             spatstat.utils_3.1-4      hms_1.1.3                
[190] fitdistrplus_1.2-2        cowplot_1.1.3             colorspace_2.1-1         
[193] rlang_1.1.6               DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0 
[196] xts_0.14.1                dotCall64_1.2             shinydashboard_0.7.3     
[199] ggforce_0.4.2             laeken_0.5.3              mgcv_1.9-3               
[202] xfun_0.52                 e1071_1.7-16              TH.data_1.1-3            
[205] iterators_1.0.14          abind_1.4-8               GOSemSim_2.30.2          
[208] treeio_1.28.0             Rhdf5lib_1.26.0           futile.options_1.0.1     
[211] bitops_1.0-9              Rdpack_2.6.4              promises_1.3.3           
[214] scatterpie_0.2.4          RSQLite_2.4.0             qvalue_2.36.0            
[217] sandwich_3.1-1            fgsea_1.30.0              DelayedArray_0.30.1      
[220] proxy_0.4-27              GO.db_3.19.1              compiler_4.4.0           
[223] prettyunits_1.2.0         boot_1.3-31               beachmat_2.20.0          
[226] listenv_0.9.1             Rcpp_1.0.14               edgeR_4.2.2              
[229] workflowr_1.7.1           BiocSingular_1.20.0       tensor_1.5               
[232] MASS_7.3-65               progress_1.2.3            uuid_1.2-1               
[235] BiocParallel_1.38.0       babelgene_22.9            spatstat.random_3.4-1    
[238] R6_2.6.1                  fastmap_1.2.0             multcomp_1.4-28          
[241] fastmatch_1.1-6           rstatix_0.7.2             vipor_0.4.7              
[244] TTR_0.24.4                ROCR_1.0-11               TFisher_0.2.0            
[247] rsvd_1.0.5                vcd_1.4-13                nnet_7.3-20              
[250] gtable_0.3.6              KernSmooth_2.23-26        miniUI_0.1.2             
[253] deldir_2.0-4              htmltools_0.5.8.1         ggthemes_5.1.0           
[256] bit64_4.6.0-1             spatstat.explore_3.4-3    lifecycle_1.0.4          
[259] blme_1.0-6                nloptr_2.2.1              sass_0.4.10              
[262] vctrs_0.6.5               robustbase_0.99-4-1       spatstat.geom_3.4-1      
[265] NMF_0.28                  sn_2.1.1                  ggfun_0.1.8              
[268] future.apply_1.11.3       bslib_0.9.0               pillar_1.10.2            
[271] gplots_3.2.0              pcaMethods_1.96.0         metapod_1.12.0           
[274] locfit_1.5-9.12           jsonlite_2.0.0            GetoptLong_1.0.5         

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_1.0.1                  clusterExperiment_2.24.0    scran_1.32.0               
 [4] tradeSeq_1.18.0             RColorBrewer_1.1-3          slingshot_2.12.0           
 [7] TrajectoryUtils_1.12.0      princurve_2.1.6             NCmisc_1.2.0               
[10] VennDiagram_1.7.3           futile.logger_1.4.3         ggupset_0.4.1              
[13] gridExtra_2.3               DOSE_3.30.5                 enrichplot_1.24.4          
[16] msigdbr_24.1.0              org.Hs.eg.db_3.19.1         AnnotationDbi_1.66.0       
[19] clusterProfiler_4.12.6      multtest_2.60.0             metap_1.12                 
[22] scater_1.32.1               scuttle_1.14.0              destiny_3.18.0             
[25] circlize_0.4.16             muscat_1.18.0               viridis_0.6.5              
[28] viridisLite_0.4.2           lubridate_1.9.4             forcats_1.0.0              
[31] stringr_1.5.1               purrr_1.0.4                 readr_2.1.5                
[34] tidyr_1.3.1                 tibble_3.2.1                tidyverse_2.0.0            
[37] dplyr_1.1.4                 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0
[40] Biobase_2.64.0              GenomicRanges_1.56.2        GenomeInfoDb_1.40.1        
[43] IRanges_2.38.1              S4Vectors_0.42.1            BiocGenerics_0.50.0        
[46] MatrixGenerics_1.16.0       matrixStats_1.5.0           pheatmap_1.0.13            
[49] ggpubr_0.6.0                ggplot2_3.5.2               Seurat_5.3.0               
[52] SeuratObject_5.1.0          sp_2.2-0                    runSeurat3_0.1.0           
[55] ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] rngtools_1.5.2            S4Arrays_1.4.1            RNeXML_2.4.11            
 [16] pbkrtest_0.5.4            parallel_4.4.0            png_0.1-8                
 [19] plotrix_3.8-4             registry_0.5-1            cli_3.6.5                
 [22] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [25] variancePartition_1.34.0  kernlab_0.9-33            bluster_1.14.0           
 [28] BiocNeighbors_1.22.0      shadowtext_0.1.4          uwot_0.2.3               
 [31] curl_6.2.3                zinbwave_1.26.0           tidytree_0.4.6           
 [34] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [37] stringi_1.8.7             backports_1.5.0           XML_3.99-0.18            
 [40] lmerTest_3.1-3            qqconf_1.3.2              httpuv_1.6.16            
 [43] magrittr_2.0.3            rappdirs_0.3.3            splines_4.4.0            
 [46] ggraph_2.2.1              sctransform_0.4.2         ggbeeswarm_0.7.2         
 [49] HDF5Array_1.32.1          DBI_1.2.3                 genefilter_1.86.0        
 [52] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [55] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [58] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [61] tidygraph_1.3.1           BiocManager_1.30.25       formatR_1.14             
 [64] colourpicker_1.3.0        htmlwidgets_1.6.4         fs_1.6.6                 
 [67] ggrepel_0.9.6             labeling_0.4.3            fANCOVA_0.6-1            
 [70] SparseArray_1.4.8         DESeq2_1.44.0             ranger_0.17.0            
 [73] DEoptimR_1.1-3-1          rncl_0.8.7                annotate_1.82.0          
 [76] reticulate_1.42.0         hexbin_1.28.5             zoo_1.8-14               
 [79] XVector_0.44.0            knitr_1.50                ggplot.multistats_1.0.1  
 [82] UCSC.utils_1.0.0          RhpcBLASctl_0.23-42       timechange_0.3.0         
 [85] foreach_1.5.2             patchwork_1.3.0           caTools_1.18.3           
 [88] rhdf5_2.48.0              ggtree_3.12.0             data.table_1.17.4        
 [91] R.oo_1.27.1               RSpectra_0.16-2           irlba_2.3.5.1            
 [94] gridGraphics_0.5-1        fastDummies_1.7.5         ade4_1.7-23              
 [97] lazyeval_0.2.2            yaml_2.3.10               survival_3.8-3           
[100] scattermore_1.2           crayon_1.5.3              RcppAnnoy_0.0.22         
[103] progressr_0.15.1          tweenr_2.0.3              later_1.4.2              
[106] ggridges_0.5.6            codetools_0.2-20          GlobalOptions_0.1.2      
[109] aod_1.3.3                 KEGGREST_1.44.1           Rtsne_0.17               
[112] shape_1.4.6.1             limma_3.60.6              pkgconfig_2.0.3          
[115] xml2_1.3.8                TMB_1.9.17                spatstat.univar_3.1-3    
[118] mathjaxr_1.8-0            EnvStats_3.1.0            aplot_0.2.5              
[121] scatterplot3d_0.3-44      gridBase_0.4-7            ape_5.8-1                
[124] spatstat.sparse_3.1-0     xtable_1.8-4              car_3.1-3                
[127] plyr_1.8.9                httr_1.4.7                rbibutils_2.3            
[130] tools_4.4.0               globals_0.18.0            beeswarm_0.4.0           
[133] broom_1.0.8               nlme_3.1-168              lambda.r_1.2.4           
[136] assertthat_0.2.1          lme4_1.1-37               digest_0.6.37            
[139] numDeriv_2016.8-1.1       Matrix_1.7-3              farver_2.1.2             
[142] tzdb_0.5.0                remaCor_0.0.18            reshape2_1.4.4           
[145] yulab.utils_0.2.0         glue_1.8.0                cachem_1.1.0             
[148] polyclip_1.10-7           generics_0.1.4            Biostrings_2.72.1        
[151] mvtnorm_1.3-3             parallelly_1.45.0         mnormt_2.1.1             
[154] statmod_1.5.0             RcppHNSW_0.6.0            ScaledMatrix_1.12.0      
[157] carData_3.0-5             minqa_1.2.8               pbapply_1.7-2            
[160] httr2_1.1.2               spam_2.11-1               gson_0.1.0               
[163] dqrng_0.4.1               graphlayouts_1.2.2        gtools_3.9.5             
[166] softImpute_1.4-3          ggsignif_0.6.4            RcppEigen_0.3.4.0.2      
[169] shiny_1.10.0              GenomeInfoDbData_1.2.12   glmmTMB_1.1.11           
[172] rhdf5filters_1.16.0       R.utils_2.13.0            memoise_2.0.1            
[175] rmarkdown_2.29            locfdr_1.1-8              scales_1.4.0             
[178] R.methodsS3_1.8.2         phylobase_0.8.12          future_1.58.0            
[181] RANN_2.6.2                Cairo_1.6-2               spatstat.data_3.1-6      
[184] rstudioapi_0.17.1         cluster_2.1.8.1           whisker_0.4.1            
[187] mutoss_0.1-13             spatstat.utils_3.1-4      hms_1.1.3                
[190] fitdistrplus_1.2-2        cowplot_1.1.3             colorspace_2.1-1         
[193] rlang_1.1.6               DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0 
[196] xts_0.14.1                dotCall64_1.2             shinydashboard_0.7.3     
[199] ggforce_0.4.2             laeken_0.5.3              mgcv_1.9-3               
[202] xfun_0.52                 e1071_1.7-16              TH.data_1.1-3            
[205] iterators_1.0.14          abind_1.4-8               GOSemSim_2.30.2          
[208] treeio_1.28.0             Rhdf5lib_1.26.0           futile.options_1.0.1     
[211] bitops_1.0-9              Rdpack_2.6.4              promises_1.3.3           
[214] scatterpie_0.2.4          RSQLite_2.4.0             qvalue_2.36.0            
[217] sandwich_3.1-1            fgsea_1.30.0              DelayedArray_0.30.1      
[220] proxy_0.4-27              GO.db_3.19.1              compiler_4.4.0           
[223] prettyunits_1.2.0         boot_1.3-31               beachmat_2.20.0          
[226] listenv_0.9.1             Rcpp_1.0.14               edgeR_4.2.2              
[229] workflowr_1.7.1           BiocSingular_1.20.0       tensor_1.5               
[232] MASS_7.3-65               progress_1.2.3            uuid_1.2-1               
[235] BiocParallel_1.38.0       babelgene_22.9            spatstat.random_3.4-1    
[238] R6_2.6.1                  fastmap_1.2.0             multcomp_1.4-28          
[241] fastmatch_1.1-6           rstatix_0.7.2             vipor_0.4.7              
[244] TTR_0.24.4                ROCR_1.0-11               TFisher_0.2.0            
[247] rsvd_1.0.5                vcd_1.4-13                nnet_7.3-20              
[250] gtable_0.3.6              KernSmooth_2.23-26        miniUI_0.1.2             
[253] deldir_2.0-4              htmltools_0.5.8.1         ggthemes_5.1.0           
[256] bit64_4.6.0-1             spatstat.explore_3.4-3    lifecycle_1.0.4          
[259] blme_1.0-6                nloptr_2.2.1              sass_0.4.10              
[262] vctrs_0.6.5               robustbase_0.99-4-1       spatstat.geom_3.4-1      
[265] NMF_0.28                  sn_2.1.1                  ggfun_0.1.8              
[268] future.apply_1.11.3       bslib_0.9.0               pillar_1.10.2            
[271] gplots_3.2.0              pcaMethods_1.96.0         metapod_1.12.0           
[274] locfit_1.5-9.12           jsonlite_2.0.0            GetoptLong_1.0.5