Last updated: 2020-07-20

Checks: 7 0

Knit directory: methyl-geneset-testing/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200302) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c4d9af. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figures.nb.html
    Ignored:    code/.job/
    Ignored:    code/old/
    Ignored:    data/
    Ignored:    output/.DS_Store
    Ignored:    output/450K.rds
    Ignored:    output/CD4vCD8.GO.csv
    Ignored:    output/CD4vCD8.KEGG.csv
    Ignored:    output/EPIC.rds
    Ignored:    output/FDR-analysis/
    Ignored:    output/compare-methods/
    Ignored:    output/figures/
    Ignored:    output/random-cpg-sims/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/regionAnalysis.Rmd) and HTML (docs/regionAnalysis.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4c4d9af JovMaksimovic 2020-07-20 wflow_publish("analysis/regionAnalysis.Rmd")
html 976b2b5 JovMaksimovic 2020-07-17 Build site.
Rmd 2be6153 JovMaksimovic 2020-07-14 Updated code for generating manuscript figures.
Rmd cfcac1b Jovana Maksimovic 2020-07-09 Updated paper figures.
Rmd 823b793 Jovana Maksimovic 2020-06-16 UPdated analyses with label translation and new colour palette.
html d2556a6 Jovana Maksimovic 2020-06-01 Build site.
Rmd ff61acb Jovana Maksimovic 2020-06-01 wflow_publish("analysis/regionAnalysis.Rmd")
html 8f23ae2 Jovana Maksimovic 2020-05-25 Build site.
Rmd 272459f Jovana Maksimovic 2020-05-25 wflow_publish("analysis/regionAnalysis.Rmd")
html c826896 Jovana Maksimovic 2020-05-25 Build site.
Rmd a956a38 Jovana Maksimovic 2020-05-25 wflow_publish("analysis/regionAnalysis.Rmd")
html 010478e Jovana Maksimovic 2020-05-22 Build site.
Rmd 38aae5b Jovana Maksimovic 2020-05-22 wflow_publish("analysis/regionAnalysis.Rmd")
html 22f00e9 Jovana Maksimovic 2020-05-19 Build site.
Rmd 63b0011 Jovana Maksimovic 2020-05-19 wflow_publish(c("analysis/exploreArrayBias450.Rmd", "analysis/exploreArrayBiasEPIC.Rmd",
html afc650b JovMaksimovic 2020-05-11 Build site.
Rmd 25e58bc JovMaksimovic 2020-05-11 Added BH to pdjust calls, added methylation vs expression plot.
html 9d793dc JovMaksimovic 2020-04-28 Build site.
Rmd 10ef7d4 JovMaksimovic 2020-04-28 wflow_publish("analysis/regionAnalysis.Rmd")
html d930b45 JovMaksimovic 2020-04-27 Build site.
Rmd bd39053 JovMaksimovic 2020-04-27 wflow_publish(c("analysis/exploreData.Rmd", "analysis/regionAnalysis.Rmd"))
Rmd cc2c73c Jovana Maksimovic 2020-04-21 Updated region analysis using tidyverse functions.
Rmd d7cd66e Jovana Maksimovic 2020-03-02 Initial Commit

library(here)
library(ChAMP)
library(minfi)
library(paletteer)
library(limma)
library(BiocParallel)
library(reshape2)
library(DMRcate)
library(missMethyl)
library(ggplot2)
library(glue)
library(UpSetR)
library(dplyr)
library(patchwork)
library(tibble)
library(grid)
library(ggupset)
library(ggpubr)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
source(here("code/utility.R"))

Load data

We are using publicly available EPIC data GSE110554 generated from flow sorted blood cells. The data is normalised and filtered (bad probes, multi-mapping probes, SNP probes, sex chromosomes).

# load data
dataFile <- here("data/GSE110554-data.RData")
if(file.exists(dataFile)){
  # load processed data and sample information
  load(dataFile)
} else {
  # get data from experiment hub, normalise, filter and save objects
  readData(dataFile)
  # load processed data and sample information
  load(dataFile)
}

Statistical analysis

Compare several sets of sorted immune cells. Consider results significant at FDR < 0.05 and delta beta ~ 10% (~ lfc = 0.5).

mVals <- getM(fltGr)
bVals <- getBeta(fltGr)
design <- model.matrix(~0+targets$CellType)
colnames(design) <- levels(factor(targets$CellType))
fit <- lmFit(mVals, design)
cont.matrix <- makeContrasts(CD4vCD8=CD4T-CD8T,
                             MonovNeu=Mono-Neu,
                             BcellvNK=Bcell-NK,
                             levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
tfit <- eBayes(fit2, robust=TRUE, trend=TRUE)
tfit <- treat(tfit, lfc = 0.5)
pval <- 0.05
fitSum <- summary(decideTests(tfit, p.value = pval))
fitSum
       CD4vCD8 MonovNeu BcellvNK
Down      5072     9324    34803
NotSig  725611   712480   667559
Up        3202    12081    31523

Find differentially methylated regions

Identify differentially methylated regions using the DMRcate package.

outFile <- here("data/dmrcate-results.rds")

if(!file.exists(outFile)){
  dmrList <- vector("list", ncol(cont.matrix))

  for(i in 1:ncol(cont.matrix)){
    cpgAnn <- cpg.annotate("array", mVals, what = "M", arraytype = "EPIC",
                           analysis.type = "differential", design = design, 
                           contrasts = TRUE, cont.matrix = cont.matrix, 
                           coef = colnames(fitSum)[i])
    dmrList[[i]] <- extractRanges(dmrcate(cpgAnn))

  }
  
  names(dmrList) <- colnames(cont.matrix)
  saveRDS(dmrList, file = outFile)
  
} else {
  dmrList <- readRDS(outFile)
  
}
dat <- rownames_to_column(melt(sapply(dmrList, length)), var = "contrast")
dat$filtering = "before"

for(i in 1:length(dmrList)){
    keep <- (abs(dmrList[[i]]$meandiff) > 0.1 & dmrList[[i]]$no.cpgs >=3)
    dat <- bind_rows(dat, data.frame(contrast = names(dmrList)[i],
                                value = length(dmrList[[i]][keep, ]),
                                filtering = "after", 
                                stringsAsFactors = FALSE))
}

p <- ggplot(dat, aes(x = contrast, y = value, fill = filtering)) +
    geom_bar(stat = "identity", position = "dodge") +
    labs(x = "Contrast", y = "No. DMRs", fill = "Filtering")
p

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
22f00e9 Jovana Maksimovic 2020-05-19
d930b45 JovMaksimovic 2020-04-27
fig <- here("output/figures/Fig-5B.rds")
saveRDS(p, fig, compress = FALSE)

GO analysis of DMRs

Run GO analysis on the differentially methylated regions (DMRs) identified by DMRcate for each of the contrasts.

outFile <- here("data/dmrcate-go.rds")
anno <- loadAnnotation(arrayType = "EPIC")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
hg19Genes <- GenomicFeatures::genes(txdb)
dmrGo <- NULL

if(!file.exists(outFile)){
    for(i in 1:length(dmrList)){
        
        keep <- (abs(dmrList[[i]]$meandiff) > 0.1 & dmrList[[i]]$no.cpgs >=3)
        
        overlaps <- findOverlaps(hg19Genes, dmrList[[i]][keep, ], 
                                 minoverlap = 1)
        sigGenes <- hg19Genes$gene_id[from(overlaps)]
        tmp <- topGO(goana(sigGenes, universe = hg19Genes$gene_id), 
                     number = Inf)
        tmp <- rownames_to_column(tmp, var = "GO")[, c("GO", "P.DE")]
        tmp$method <- "goana"
        tmp$contrast <- colnames(cont.matrix)[i]
        dmrGo <- bind_rows(dmrGo, tmp)
  
        tmp <- topGSA(goregion(dmrList[[i]][keep, ], anno = anno, 
                               prior.prob = FALSE, array.type = "EPIC"), 
                      number = Inf)
        tmp <- rownames_to_column(tmp, var = "GO")[, c("GO", "P.DE")]
        tmp$method <- "goregion-hgt"
        tmp$contrast <- colnames(cont.matrix)[i]
        dmrGo <- bind_rows(dmrGo, tmp)
        
        tmp <- topGSA(goregion(dmrList[[i]][keep, ], anno = anno, 
                               array.type = "EPIC", plot.bias = TRUE), 
                      number = Inf)
        tmp <- rownames_to_column(tmp, var = "GO")[, c("GO", "P.DE")]
        tmp$method <- "goregion-gometh"
        tmp$contrast <- colnames(cont.matrix)[i]
        dmrGo <- bind_rows(dmrGo, tmp)
        
        tmp <- topGSA(gometh(rownames(topTreat(tfit, coef = i, num = 5000)), 
                             anno = anno, array.type = "EPIC"), number = Inf)
        tmp <- rownames_to_column(tmp, var = "GO")[, c("GO", "P.DE")]
        tmp$method <- "gometh-probe-top"
        tmp$contrast <- colnames(cont.matrix)[i]
        dmrGo <- bind_rows(dmrGo, tmp)
        
        tmp <- topGSA(gometh(rownames(topTreat(tfit, coef = i, num = Inf, 
                                               p.value = pval)), anno = anno, 
                             array.type = "EPIC"), number = Inf)
        tmp <- rownames_to_column(tmp, var = "GO")[, c("GO", "P.DE")]
        tmp$method <- "gometh-probe-fdr"
        tmp$contrast <- colnames(cont.matrix)[i]
        dmrGo <- bind_rows(dmrGo, tmp)
    }
    
    saveRDS(dmrGo, file = outFile)
    
} else {
    dmrGo <- readRDS(outFile)
    
}

Probe bias in DMRs

bDat <- vector("list", length(dmrList))
cpgs <- GRanges(seqnames = anno$chr, 
                ranges = IRanges(start = anno$pos, end = anno$pos), 
                strand = anno$strand, 
                name = anno$Name)

for(i in 1:length(dmrList)){
    keep <- (abs(dmrList[[i]]$meandiff) > 0.1 & dmrList[[i]]$no.cpgs >=3)
    overlaps <- findOverlaps(cpgs, dmrList[[i]][keep, ])
    dmrCpgs <- cpgs$name[from(overlaps)]
    bDat[[i]] <- getBiasDat(dmrCpgs, array.type = "EPIC",
                            anno = anno)
    
}
p <- vector("list", length(bDat))

for(i in 1:length(p)){
p[[i]] <- ggplot(bDat[[i]], aes(x = avgbias, y = propDM)) +
    geom_point(shape = 1, size = 2) +
    geom_smooth() +
    labs(x = "No. CpGs per gene (binned)",
         y = "Prop. differential methylation") +
    theme_minimal() +
    theme(panel.grid = element_blank(),
          axis.line = element_line(colour = "black"))
}

(p[[1]] + labs(title = names(dmrList)[1]) | 
        p[[2]] + labs(title = names(dmrList)[2])) / 
    (p[[3]] + labs(title = names(dmrList)[3])| plot_spacer())
`geom_smooth()` using method = 'loess' and formula 'y ~ x'
`geom_smooth()` using method = 'loess' and formula 'y ~ x'
`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
8f23ae2 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
22f00e9 Jovana Maksimovic 2020-05-19
d930b45 JovMaksimovic 2020-04-27
fig <- here("output/figures/Fig-5A.rds")
saveRDS(p[[3]], fig, compress = FALSE)

fig <- here("output/figures/SFig-11A.rds")
saveRDS(p[[1]], fig, compress = FALSE)

fig <- here("output/figures/SFig-12A.rds")
saveRDS(p[[2]], fig, compress = FALSE)

Compare GOregion with other approaches

immuneGO <- unique(read.csv(here("data/GO-immune-system-process.txt"), 
                            stringsAsFactors = FALSE, header = FALSE, 
                            col.names = "GOID"))

rnaseqGO <- readRDS(here("data/RNAseq-GO.rds"))
rnaseqGO %>% group_by(contrast) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 100) -> topGOSets

dmrGo %>% arrange(contrast, method, P.DE) %>%
    filter(method %in% c("goana", "goregion-gometh")) %>%
    mutate(method = unname((dict[method]))) %>%
    group_by(contrast, method) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 100) -> dat

p <- vector("list", length(unique(dat$contrast)))

for(i in 1:length(p)){
    cont <- sort(unique(dat$contrast))[i]
    
    dat %>% filter(contrast == cont) %>%
        arrange(method, P.DE) %>%
        group_by(method) %>%
        mutate(csum = cumsum(GO %in% immuneGO$GOID)) %>%
        mutate(truth = "ISP Terms") -> immuneSum
    
    dat %>% filter(contrast == cont) %>%
        arrange(method, P.DE) %>%
        group_by(method) %>%
        mutate(csum = cumsum(GO %in% topGOSets$ID[topGOSets$contrast %in% 
                                                      contrast])) %>%
        mutate(truth = "RNAseq Terms") -> rnaseqSum
    
    truthSum <- bind_rows(immuneSum, rnaseqSum)
    
    p[[i]] <- ggplot(truthSum, aes(x = rank, y = csum, colour = method)) +
    geom_line() +
        facet_wrap(vars(truth)) +
    geom_vline(xintercept = 10, linetype = "dotted") +
    labs(colour = "Method", x = "Rank", 
         y = glue("Cumulative no. RNAseq sets")) +
    theme(legend.position = "bottom") +
    scale_color_manual(values = methodCols) +
        ggtitle(cont)
}

p[[1]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
8f23ae2 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
22f00e9 Jovana Maksimovic 2020-05-19
d930b45 JovMaksimovic 2020-04-27
p[[2]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
8f23ae2 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
p[[3]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
8f23ae2 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
fig <- here("output/figures/Fig-5C.rds")
saveRDS(p[[1]], fig, compress = FALSE)

fig <- here("output/figures/SFig-11B.rds")
saveRDS(p[[2]], fig, compress = FALSE)

fig <- here("output/figures/SFig-12B.rds")
saveRDS(p[[3]], fig, compress = FALSE)

Examine what the top 10 ranked gene sets are and how many genes they contain, for each method and comparison.

terms <- missMethyl:::.getGO()$idTable
nGenes <- rownames_to_column(data.frame(n = sapply(missMethyl:::.getGO()$idList, 
                                                   length)), 
                             var = "ID")

dat %>% arrange(contrast, method, P.DE) %>%
    group_by(contrast, method) %>%
    mutate(FDR = p.adjust(P.DE, method = "BH")) %>%
    filter(rank <= 10) %>% 
    inner_join(terms, by = c("GO" = "GOID")) %>%
    inner_join(nGenes, by = c("GO" = "ID")) -> sub
p <- vector("list", length(unique(sub$contrast)))
truthPal <- scales::hue_pal()(4)
names(truthPal) <- c("Both", "ISP", "Neither", "RNAseq")

for(i in 1:length(p)){
    cont <- sort(unique(sub$contrast))[i]
    sub %>% filter(contrast == cont) %>%
        arrange(method, -rank) %>%
        ungroup() %>%
        mutate(idx = as.factor(1:n())) -> tmp
    
    setLabs <- substr(tmp$TERM, 1, 40)
    names(setLabs) <- tmp$idx
    
    tmp %>% mutate(rna = GO %in% topGOSets$ID[topGOSets$contrast %in% cont],
                   isp = GO %in% immuneGO$GOID,
                   both = rna + isp,
                   col = ifelse(both == 2, "Both", 
                                ifelse(both == 1 & rna == 1, "RNAseq",
                                       ifelse(both == 1 & isp == 1, 
                                              "ISP", "Neither")))) %>%
        mutate(col = factor(col, 
                            levels = c("Both", "ISP", "RNAseq", 
                                       "Neither"))) -> tmp
    
    p[[i]] <- ggplot(tmp, aes(x = -log10(FDR), y = idx, colour = col)) +
        geom_point(aes(size = n), alpha = 0.7) +
        scale_size(limits = c(min(sub$n), max(sub$n))) +
        facet_wrap(vars(method), ncol = 2, scales = "free") +
        scale_y_discrete(labels = setLabs) +
        scale_colour_manual(values = truthPal) +
        labs(y = "", size = "No. genes", colour = "In truth set") +
        theme(axis.text = element_text(size = 8),
              legend.box = "vertical",
              legend.position = "bottom",
              legend.margin = margin(0, 0, 0, 0, unit = "lines"),
              panel.spacing.x = unit(1, "lines")) +
        coord_cartesian(xlim = c(-log10(0.99), -log10(10^-80))) +
        geom_vline(xintercept = -log10(0.05), linetype = "dashed") +
        ggtitle(cont)
}

shift_legend(p[[1]], plot = TRUE, pos = "left")

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
8f23ae2 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
22f00e9 Jovana Maksimovic 2020-05-19
shift_legend(p[[2]], plot = TRUE, pos = "left")

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
010478e Jovana Maksimovic 2020-05-22
22f00e9 Jovana Maksimovic 2020-05-19
shift_legend(p[[3]], plot = TRUE, pos = "left")

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
010478e Jovana Maksimovic 2020-05-22
22f00e9 Jovana Maksimovic 2020-05-19
fig <- here("output/figures/Fig-5D.rds")
saveRDS(p[[1]], fig, compress = FALSE)

fig <- here("output/figures/SFig-11C.rds")
saveRDS(p[[2]], fig, compress = FALSE)

fig <- here("output/figures/SFig-12C.rds")
saveRDS(p[[3]], fig, compress = FALSE)

Compare GOregion with probe-wise analysis

dmrGo %>% filter(method %in% c("goregion-gometh", "gometh-probe-top", 
                         "gometh-probe-fdr")) %>%
    mutate(method = unname((dict[method]))) %>% 
    arrange(contrast, method, P.DE) %>%
    group_by(contrast, method) %>%
    mutate(csum = cumsum(GO %in% immuneGO$GOID)) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 100) -> sub

p1 <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
    geom_line() +
    facet_wrap(vars(contrast), ncol=3) +
    geom_vline(xintercept = 10, linetype = "dotted") +
    labs(colour = "Method", x = "Rank", y = "Cumulative no. immune sets") +
    theme(legend.position = "bottom") +
    scale_color_manual(values = methodCols)
dmrGo %>% filter(method %in% c("goregion-gometh", "gometh-probe-top", 
                         "gometh-probe-fdr")) %>%
    mutate(method = unname((dict[method]))) %>% 
    arrange(contrast, method, P.DE) %>%
    group_by(contrast, method) %>%
    mutate(csum = cumsum(GO %in% topGOSets$ID[topGOSets$contrast %in% 
                                                  contrast])) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 100) -> sub

p2 <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
    geom_line() +
    facet_wrap(vars(contrast), ncol=3, scales = "free_y") +
    geom_vline(xintercept = 10, linetype = "dotted") +
    labs(colour = "Method", x = "Rank", y = "Cumulative no. RNAseq sets") +
    theme(legend.position = "bottom") + 
    scale_color_manual(values = methodCols)

p3 <- p1 / p2 + 
    plot_layout(guides = "collect") & 
    theme(legend.position = "bottom")
p3

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
8f23ae2 Jovana Maksimovic 2020-05-25
c826896 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
22f00e9 Jovana Maksimovic 2020-05-19
fig <- here("output/figures/SFig-13A.rds")
saveRDS(p1, fig, compress = FALSE)

fig <- here("output/figures/SFig-13B.rds")
saveRDS(p2, fig, compress = FALSE)

Examine what the top 10 ranked gene sets are and how many genes they contain, for each method and comparison.

terms <- missMethyl:::.getGO()$idTable
nGenes <- rownames_to_column(data.frame(n = sapply(missMethyl:::.getGO()$idList, 
                                                   length)), 
                             var = "ID")

dmrGo %>% filter(method %in% c("goregion-gometh", "gometh-probe-top", 
                         "gometh-probe-fdr")) %>%
    mutate(method = unname((dict[method]))) %>% 
    arrange(contrast, method, P.DE) %>%
    group_by(contrast, method) %>%
    mutate(FDR = p.adjust(P.DE, method = "BH")) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 10) %>% 
    inner_join(terms, by = c("GO" = "GOID")) %>%
    inner_join(nGenes, by = c("GO" = "ID")) -> sub
p <- vector("list", length(unique(sub$contrast)))
for(i in 1:length(p)){
    cont <- sort(unique(sub$contrast))[i]
    sub %>% filter(contrast == cont) %>%
        arrange(method, -rank) %>%
        ungroup() %>%
        mutate(idx = as.factor(1:n())) -> tmp
    
    setLabs <- substr(tmp$TERM, 1, 40)
    names(setLabs) <- tmp$idx
    
    tmp %>% mutate(rna = GO %in% topGOSets$ID[topGOSets$contrast %in% cont],
                   isp = GO %in% immuneGO$GOID,
                   both = rna + isp,
                   col = ifelse(both == 2, "Both", 
                                ifelse(both == 1 & rna == 1, "RNAseq",
                                       ifelse(both == 1 & isp == 1, 
                                              "ISP", "Neither")))) %>%
        mutate(col = factor(col, 
                            levels = c("Both", "ISP", "RNAseq", 
                                       "Neither"))) -> tmp
    
    p[[i]] <- ggplot(tmp, aes(x = -log10(FDR), y = idx, colour = col)) +
        geom_point(aes(size = n), alpha = 0.7) +
        scale_size(limits = c(min(sub$n), max(sub$n))) +
        facet_wrap(vars(method), ncol = 2, scales = "free") +
        scale_y_discrete(labels = setLabs) +
        scale_color_manual(values = truthPal) +
        labs(y = "", size = "No. genes", colour = "In truth set") +
        theme(axis.text = element_text(size = 7),
              legend.margin = margin(0, 0, 0, 0, unit = "lines"),
              legend.box = "horizontal",
              panel.spacing.x = unit(1, "lines")) +
        coord_cartesian(xlim = c(-log10(0.99), -log10(10^-80))) +
        geom_vline(xintercept = -log10(0.05), linetype = "dashed") +
        ggtitle(cont)
}

shift_legend(p[[1]], plot = TRUE, pos = "left")

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
d2556a6 Jovana Maksimovic 2020-06-01
8f23ae2 Jovana Maksimovic 2020-05-25
010478e Jovana Maksimovic 2020-05-22
shift_legend(p[[2]], plot = TRUE, pos = "left")

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
shift_legend(p[[3]], plot = TRUE, pos = "left")

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
fig <- here("output/figures/SFig-13C.rds")
saveRDS(shift_legend(p[[1]] + theme(plot.title = element_blank()),
                     pos = "left"), 
        fig, compress = FALSE)

fig <- here("output/figures/SFig-13D.rds")
saveRDS(shift_legend(p[[2]] + theme(plot.title = element_blank()),
                     pos = "left"), 
        fig, compress = FALSE)

fig <- here("output/figures/SFig-13E.rds")
saveRDS(shift_legend(p[[3]] + theme(plot.title = element_blank()),
                     pos = "left"), 
        fig, compress = FALSE)

Compare characteristics of region-wise and probe-wise results

cpgs <- GRanges(seqnames = anno$chr, 
                ranges = IRanges(start = anno$pos, 
                                 end = anno$pos),
                strand = anno$strand,
                name = anno$Name)
dat <- NULL

for(i in 1:ncol(cont.matrix)){
    keep <- (abs(dmrList[[i]]$meandiff) > 0.1 & dmrList[[i]]$no.cpgs >=3)
    
    overlaps <- findOverlaps(cpgs, dmrList[[i]][keep,])
    tmp <- data.frame(cpgs = cpgs$name[from(overlaps)],
                      method = "DMRcate", 
                      contrast = colnames(cont.matrix)[i],
                      stringsAsFactors = FALSE)
    dat <- bind_rows(dat, tmp)
    
    tmp <- data.frame(cpgs = rownames(topTreat(tfit, coef = i, num = 5000)),
                      method = "Top 5000",
                      contrast = colnames(cont.matrix)[i],
                      stringsAsFactors = FALSE)
    dat <- bind_rows(dat, tmp)
    
    tmp <- data.frame(cpgs = rownames(topTreat(tfit, coef = i, num = Inf, 
                                               p.value = pval)),
                      method = "FDR < 0.05",
                      contrast = colnames(cont.matrix)[i],
                      stringsAsFactors = FALSE)
    dat <- bind_rows(dat, tmp)
    
}

dat %>% group_by(contrast, method) %>% 
    tally() -> sub

selectCols <- c("#ff6b97", "#48bf8e", "#a41415")
names(selectCols) <- unique(dat$method)
    
ggplot(sub, aes(x = method, y = n, fill = method)) +
    geom_bar(stat = "identity", show.legend = FALSE) +
    facet_wrap(vars(contrast)) + 
    labs(y = "No. significant CpGs", x = "Sig. CpGs selected using") + 
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
    scale_fill_manual(values = selectCols)

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
d2556a6 Jovana Maksimovic 2020-06-01
flatAnn <- loadFlatAnnotation(anno)

dat %>% group_by(contrast, method) %>%
    inner_join(flatAnn, by = c("cpgs" = "cpg")) %>% 
    group_by(contrast, method) %>%
    dplyr::select(group_cols(), entrezid) %>%
    distinct() %>%
    tally() -> sub

ggplot(sub, aes(x = method, y = n, fill = method)) +
    geom_bar(stat = "identity", show.legend = FALSE) +
    facet_wrap(vars(contrast)) + 
    labs(y = "No. genes with sig. CpGs", x = "Sig. CpGs selected using") + 
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    scale_fill_manual(values = selectCols)

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
dat %>% group_by(contrast, method) %>%
    left_join(flatAnn, by = c("cpgs" = "cpg")) %>% 
    group_by(contrast, method) %>%
    dplyr::select(group_cols(), entrezid, cpgs) %>%
    summarise(prop = sum(!is.na(entrezid[!duplicated(cpgs)]))/
                  length(unique(cpgs))) -> sub
`summarise()` regrouping output by 'contrast' (override with `.groups` argument)
p <- vector("list", length(unique(sub$contrast)))

for(i in 1:length(p)){
    cont <- sort(unique(sub$contrast))[i]
    p[[i]] <- ggplot(sub[sub$contrast == cont,], 
                     aes(x = method, y = prop)) +
        geom_bar(stat = "identity", 
                 show.legend = FALSE, 
                 fill="black") +
        labs(y = "Prop. sig. CpGs mapped to genes", 
             x = "Sig. CpGs selected using") + 
        theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
        scale_x_discrete(limits = c("FDR < 0.05", "DMRcate", "Top 5000"))
}

p[[1]] + ggtitle(sort(unique(sub$contrast))[1]) | 
    p[[2]] + ggtitle(sort(unique(sub$contrast))[2]) | 
    p[[3]] + ggtitle(sort(unique(sub$contrast))[3])

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
fig <- here("output/figures/Fig-5F.rds")
saveRDS(p[[1]], fig, compress = FALSE)

fig <- here("output/figures/SFig-11E.rds")
saveRDS(p[[2]], fig, compress = FALSE)

fig <- here("output/figures/SFig-12E.rds")
saveRDS(p[[3]], fig, compress = FALSE)
dat %>% group_by(contrast, method) %>%
    left_join(flatAnn, by = c("cpgs" = "cpg")) %>% 
    group_by(contrast, method) %>%
    dplyr::select(group_cols(), group, cpgs) %>%
    group_by(contrast, method, group) %>%
    tally() -> sub

ggplot(sub, aes(x = group, y = n, fill = method)) +
    geom_bar(stat = "identity", position = "dodge") +
    facet_wrap(vars(contrast), nrow = 3, ncol = 1, scales = "free_y") + 
    labs(fill = "Sig. CpGs selected using", y = "No. sig. CpGs mapped to genomic features", 
         x = "Feature") + 
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

Version Author Date
976b2b5 JovMaksimovic 2020-07-17

CpG overlap between region-wise and probe-wise approaches

Compare the CpGs covered by the different approaches, for the three contrasts.

p <- vector("list", ncol(cont.matrix))
d <- vector("list", length(p))

for(i in 1:length(p)){
    cont <- sort(colnames(cont.matrix))[i]
    dat %>% filter(contrast == cont) %>%
        dplyr::select(-contrast) %>%
        group_by(cpgs) %>%
        summarize(meth = list(method)) %>%
        ggplot(aes(x = meth)) +
        geom_bar() +
        labs(y = "Intersection size", x = "") +
        scale_x_upset(sets = c("FDR < 0.05", "DMRcate", "Top 5000")) +
        theme(axis.title.y = element_text(size = 10)) -> int
    
    dat %>% filter(contrast == cont) %>%
        group_by(contrast, method) %>% 
        tally() %>%
        ggplot(aes(x = method, y = n)) +
        geom_col(fill="black", position = "dodge") +
        geom_text(aes(label = n),
                  position = position_dodge(0.9),
                  size = 1.5, hjust = 1.1, vjust = 0.5) +
        labs(y = "Set size") +
        scale_x_discrete(position = "top",
                         limits = c("Top 5000", "DMRcate", "FDR < 0.05")) +
        scale_y_reverse(labels = scales::format_format(big.mark = " ", 
                                                       decimal.mark = ".", 
                                                       scientific = FALSE, 
                                                       digits = 0),
                        expand = expansion(mult = c(0.6, 0))) +
        coord_flip() +
        theme_minimal() +
        theme(legend.position = "none",
              axis.title.y = element_blank(),
              axis.title.x = element_text(size = 8),
              axis.text.x = element_blank(),
              axis.text.y = element_blank(),
              panel.grid = element_blank(),
              plot.margin = margin(0, 0, 0, 0,"cm")) -> sets
    
    p[[i]] <- ggarrange(ggarrange(plotlist = list(NULL, sets, NULL), 
                                  nrow = 3, heights = c(2.5, 1, 0.1)), int, 
                        ncol = 2,
                        widths = c(1, 3.5))
    d[[i]] <- ggarrange(ggarrange(plotlist = list(NULL, sets, NULL), 
                                  nrow = 3, heights = c(4.75, 1, 0.1)), int, 
                        ncol = 2,
                        widths = c(1, 3.5))
        
}
`summarise()` ungrouping output (override with `.groups` argument)
`summarise()` ungrouping output (override with `.groups` argument)
`summarise()` ungrouping output (override with `.groups` argument)
d[[1]] 

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
d[[2]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
d[[3]] 

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
fig <- here("output/figures/Fig-5E.rds")
saveRDS(p[[1]], fig, compress = FALSE)

fig <- here("output/figures/SFig-11D.rds")
saveRDS(p[[2]], fig, compress = FALSE)

fig <- here("output/figures/SFig-12D.rds")
saveRDS(p[[3]], fig, compress = FALSE)

Gene overlap between region-wise and probe-wise approaches

Compare the genes covered by the different approaches, for the three contrasts.

p <- vector("list", ncol(cont.matrix))
d <- vector("list", length(p))

for(i in 1:length(p)){
    cont <- sort(colnames(cont.matrix))[i]
    dat %>% filter(contrast == cont) %>%
        left_join(flatAnn, by = c("cpgs" = "cpg")) %>%
        dplyr::select(method, entrezid) %>%
        distinct() %>%
        group_by(entrezid) %>%
        summarize(meth = list(method)) %>%
        ggplot(aes(x = meth)) +
        geom_bar() +
        labs(y = "Intersection size", x = "") +
        scale_x_upset(sets = c("FDR < 0.05", "DMRcate", "Top 5000")) +
        theme(axis.title.y = element_text(size = 10)) -> int
    
    dat %>% group_by(contrast, method) %>%
        inner_join(flatAnn, by = c("cpgs" = "cpg")) %>%
        group_by(contrast, method) %>%
        dplyr::select(group_cols(), entrezid) %>%
        distinct() %>%
        filter(contrast == cont) %>%
        tally() %>%
        ggplot(aes(x = method, y = n)) +
        geom_col(fill="black", position = "dodge") +
        geom_text(aes(label = n),
                  position = position_dodge(0.9),
                  size = 1.5, hjust = 1.1, vjust = 0.5) +
        labs(y = "Set size") +
        scale_x_discrete(position = "top",
                         limits = c("Top 5000", "DMRcate", "FDR < 0.05")) +
        scale_y_reverse(labels = scales::format_format(big.mark = " ",
                                                       decimal.mark = ".",
                                                       scientific = FALSE,
                                                       digits = 0),
                        expand = expansion(mult = c(0.6, 0))) +
        coord_flip() +
        theme_minimal() +
        theme(legend.position = "none",
              axis.title.y = element_blank(),
              axis.title.x = element_text(size = 9),
              axis.text.x = element_blank(),
              axis.text.y = element_blank(),
              panel.grid = element_blank(),
              plot.margin = margin(0, 0, 0, 0,"cm")) -> sets
    
    p[[i]] <- ggarrange(ggarrange(plotlist = list(NULL, sets, NULL),
                                  nrow = 3, heights = c(2.5, 1, 0.1)), int,
                        ncol = 2,
                        widths = c(1, 3.5))
    d[[i]] <- ggarrange(ggarrange(plotlist = list(NULL, sets, NULL),
                                  nrow = 3, heights = c(4.75, 1, 0.1)), int,
                        ncol = 2,
                        widths = c(1, 3.5))
    
}
`summarise()` ungrouping output (override with `.groups` argument)
`summarise()` ungrouping output (override with `.groups` argument)
`summarise()` ungrouping output (override with `.groups` argument)
d[[1]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
d[[2]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
d[[3]]

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
fig <- here("output/figures/Fig-5G.rds")
saveRDS(p[[1]], fig, compress = FALSE)

fig <- here("output/figures/SFig-11F.rds")
saveRDS(p[[2]], fig, compress = FALSE)

fig <- here("output/figures/SFig-12F.rds")
saveRDS(p[[3]], fig, compress = FALSE)

Effect of DMR cut offs i.e. num probes in region and absolute delta beta

outFile <- here("data/dmrcate-params.rds")
dmrParams <- NULL

meanDiffs <- seq(0, 0.2, by = 0.1)
noCpgs <- 2:4

if(!file.exists(outFile)){
    for(i in 1:length(dmrList)){
        for(j in meanDiffs){
            for(k in noCpgs){
                keep <- (abs(dmrList[[i]]$meandiff) > j & 
                             dmrList[[i]]$no.cpgs >= k)
                
                tmp <- topGSA(goregion(dmrList[[i]][keep, ], anno = anno, 
                                       array.type = "EPIC"), 
                              number = Inf)
                tmp <- rownames_to_column(tmp, var = "GO")[, c("GO", "P.DE")]
                tmp$params <- glue("|\u0394\u03B2| = {j}; #CpGs = {k}")
                tmp$contrast <- colnames(cont.matrix)[i]
                dmrParams <- bind_rows(dmrParams, tmp)
            }
        }
    }
    
    saveRDS(dmrParams, file = outFile)
    
} else {
    dmrParams <- readRDS(outFile)
    
}

Examine effect of changing DMR parameter cut offs on gene set rankings of GO categories in "immune system process".

dmrParams %>% arrange(contrast, params, P.DE) %>%
    group_by(contrast, params) %>%
    mutate(csum = cumsum(GO %in% immuneGO$GOID)) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 100) -> dat

p1 <- ggplot(dat, aes(x = rank, y = csum, colour = params)) +
    geom_line() +
    facet_wrap(vars(contrast), ncol=3) +
    geom_vline(xintercept = 10, linetype = "dotted") +
    labs(colour = "Parameters", x = "Rank", y = "Cumulative no. immune sets")
p1

Version Author Date
976b2b5 JovMaksimovic 2020-07-17

Examine effect of changing DMR parameter cut offs on gene set rankings on GO categories derived from RNAseq analysis.

dmrParams %>% arrange(contrast, params, P.DE) %>%
    group_by(contrast, params) %>%
    mutate(csum = cumsum(GO %in% topGOSets$ID[topGOSets$contrast %in% contrast])) %>%
    mutate(rank = 1:n()) %>%
    filter(rank <= 100) -> sub

p2 <- ggplot(sub, aes(x = rank, y = csum, colour = params)) +
    geom_line() +
    facet_wrap(vars(contrast), ncol=3) +
    geom_vline(xintercept = 10, linetype = "dotted") +
    labs(colour = "Parameters", x = "Rank", 
         y = glue("Cumulative no. RNAseq sets"))
p2

Version Author Date
976b2b5 JovMaksimovic 2020-07-17
fig <- here("output/figures/SFig-14A.rds")
saveRDS(p1, fig, compress = FALSE)

fig <- here("output/figures/SFig-14B.rds")
saveRDS(p2, fig, compress = FALSE)

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
 [1] grid      stats4    parallel  stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2   
 [2] GenomicFeatures_1.38.2                    
 [3] ggpubr_0.4.0                              
 [4] ggupset_0.3.0                             
 [5] tibble_3.0.3                              
 [6] patchwork_1.0.1                           
 [7] dplyr_1.0.0                               
 [8] UpSetR_1.4.0                              
 [9] glue_1.4.1                                
[10] ggplot2_3.3.2                             
[11] missMethyl_1.20.4                         
[12] reshape2_1.4.4                            
[13] paletteer_1.2.0                           
[14] ChAMP_2.16.2                              
[15] DT_0.14                                   
[16] IlluminaHumanMethylationEPICmanifest_0.3.0
[17] Illumina450ProbeVariants.db_1.22.0        
[18] DMRcate_2.0.7                             
[19] FEM_3.14.0                                
[20] graph_1.64.0                              
[21] org.Hs.eg.db_3.10.0                       
[22] impute_1.60.0                             
[23] igraph_1.2.5                              
[24] corrplot_0.84                             
[25] marray_1.64.0                             
[26] limma_3.42.2                              
[27] Matrix_1.2-18                             
[28] AnnotationDbi_1.48.0                      
[29] ChAMPdata_2.18.0                          
[30] minfi_1.32.0                              
[31] bumphunter_1.28.0                         
[32] locfit_1.5-9.4                            
[33] iterators_1.0.12                          
[34] foreach_1.5.0                             
[35] Biostrings_2.54.0                         
[36] XVector_0.26.0                            
[37] SummarizedExperiment_1.16.1               
[38] DelayedArray_0.12.3                       
[39] BiocParallel_1.20.1                       
[40] matrixStats_0.56.0                        
[41] Biobase_2.46.0                            
[42] GenomicRanges_1.38.0                      
[43] GenomeInfoDb_1.22.1                       
[44] IRanges_2.20.2                            
[45] S4Vectors_0.24.4                          
[46] BiocGenerics_0.32.0                       
[47] here_0.1                                  
[48] workflowr_1.6.2                           

loaded via a namespace (and not attached):
  [1] Hmisc_4.4-0                                        
  [2] Rsamtools_2.2.3                                    
  [3] rprojroot_1.3-2                                    
  [4] crayon_1.3.4                                       
  [5] MASS_7.3-51.6                                      
  [6] nlme_3.1-148                                       
  [7] backports_1.1.8                                    
  [8] sva_3.34.0                                         
  [9] rlang_0.4.7                                        
 [10] readxl_1.3.1                                       
 [11] DSS_2.34.0                                         
 [12] globaltest_5.40.0                                  
 [13] bit64_0.9-7.1                                      
 [14] isva_1.9                                           
 [15] rngtools_1.5                                       
 [16] methylumi_2.32.0                                   
 [17] haven_2.3.1                                        
 [18] tidyselect_1.1.0                                   
 [19] rio_0.5.16                                         
 [20] XML_3.99-0.3                                       
 [21] nleqslv_3.3.2                                      
 [22] tidyr_1.1.0                                        
 [23] GenomicAlignments_1.22.1                           
 [24] xtable_1.8-4                                       
 [25] magrittr_1.5                                       
 [26] evaluate_0.14                                      
 [27] zlibbioc_1.32.0                                    
 [28] rstudioapi_0.11                                    
 [29] doRNG_1.8.2                                        
 [30] whisker_0.4                                        
 [31] rpart_4.1-15                                       
 [32] ensembldb_2.10.2                                   
 [33] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
 [34] shiny_1.5.0                                        
 [35] xfun_0.15                                          
 [36] askpass_1.1                                        
 [37] clue_0.3-57                                        
 [38] multtest_2.42.0                                    
 [39] cluster_2.1.0                                      
 [40] interactiveDisplayBase_1.24.0                      
 [41] base64_2.0                                         
 [42] biovizBase_1.34.1                                  
 [43] scrime_1.3.5                                       
 [44] dendextend_1.13.4                                  
 [45] png_0.1-7                                          
 [46] permute_0.9-5                                      
 [47] reshape_0.8.8                                      
 [48] withr_2.2.0                                        
 [49] lumi_2.38.0                                        
 [50] bitops_1.0-6                                       
 [51] plyr_1.8.6                                         
 [52] cellranger_1.1.0                                   
 [53] AnnotationFilter_1.10.0                            
 [54] JADE_2.0-3                                         
 [55] pillar_1.4.6                                       
 [56] fs_1.4.2                                           
 [57] DelayedMatrixStats_1.8.0                           
 [58] vctrs_0.3.2                                        
 [59] ellipsis_0.3.1                                     
 [60] generics_0.0.2                                     
 [61] tools_3.6.3                                        
 [62] foreign_0.8-76                                     
 [63] munsell_0.5.0                                      
 [64] fastmap_1.0.1                                      
 [65] compiler_3.6.3                                     
 [66] abind_1.4-5                                        
 [67] httpuv_1.5.4                                       
 [68] rtracklayer_1.46.0                                 
 [69] geneLenDataBase_1.22.0                             
 [70] ExperimentHub_1.12.0                               
 [71] lemon_0.4.5                                        
 [72] beanplot_1.2                                       
 [73] Gviz_1.30.3                                        
 [74] plotly_4.9.2.1                                     
 [75] GenomeInfoDbData_1.2.2                             
 [76] gridExtra_2.3                                      
 [77] DNAcopy_1.60.0                                     
 [78] edgeR_3.28.1                                       
 [79] lattice_0.20-41                                    
 [80] later_1.1.0.1                                      
 [81] BiocFileCache_1.10.2                               
 [82] jsonlite_1.7.0                                     
 [83] affy_1.64.0                                        
 [84] scales_1.1.1                                       
 [85] carData_3.0-4                                      
 [86] genefilter_1.68.0                                  
 [87] lazyeval_0.2.2                                     
 [88] promises_1.1.1                                     
 [89] car_3.0-8                                          
 [90] doParallel_1.0.15                                  
 [91] latticeExtra_0.6-29                                
 [92] R.utils_2.9.2                                      
 [93] goseq_1.38.0                                       
 [94] checkmate_2.0.0                                    
 [95] rmarkdown_2.3                                      
 [96] openxlsx_4.1.5                                     
 [97] nor1mix_1.3-0                                      
 [98] cowplot_1.0.0                                      
 [99] statmod_1.4.34                                     
[100] siggenes_1.60.0                                    
[101] forcats_0.5.0                                      
[102] dichromat_2.0-0                                    
[103] BSgenome_1.54.0                                    
[104] HDF5Array_1.14.4                                   
[105] bsseq_1.22.0                                       
[106] survival_3.2-3                                     
[107] yaml_2.2.1                                         
[108] htmltools_0.5.0                                    
[109] memoise_1.1.0                                      
[110] VariantAnnotation_1.32.0                           
[111] quadprog_1.5-8                                     
[112] viridisLite_0.3.0                                  
[113] digest_0.6.25                                      
[114] assertthat_0.2.1                                   
[115] mime_0.9                                           
[116] rappdirs_0.3.1                                     
[117] BiasedUrn_1.07                                     
[118] RSQLite_2.2.0                                      
[119] data.table_1.12.8                                  
[120] blob_1.2.1                                         
[121] R.oo_1.23.0                                        
[122] preprocessCore_1.48.0                              
[123] fastICA_1.2-2                                      
[124] shinythemes_1.1.2                                  
[125] splines_3.6.3                                      
[126] Formula_1.2-3                                      
[127] labeling_0.3                                       
[128] rematch2_2.1.2                                     
[129] Rhdf5lib_1.8.0                                     
[130] illuminaio_0.28.0                                  
[131] AnnotationHub_2.18.0                               
[132] ProtGenerics_1.18.0                                
[133] RCurl_1.98-1.2                                     
[134] broom_0.7.0                                        
[135] hms_0.5.3                                          
[136] rhdf5_2.30.1                                       
[137] colorspace_1.4-1                                   
[138] base64enc_0.1-3                                    
[139] BiocManager_1.30.10                                
[140] nnet_7.3-14                                        
[141] GEOquery_2.54.1                                    
[142] Rcpp_1.0.5                                         
[143] mclust_5.4.6                                       
[144] R6_2.4.1                                           
[145] lifecycle_0.2.0                                    
[146] acepack_1.4.1                                      
[147] zip_2.0.4                                          
[148] curl_4.3                                           
[149] kpmt_0.1.0                                         
[150] ggsignif_0.6.0                                     
[151] affyio_1.56.0                                      
[152] RPMM_1.25                                          
[153] qvalue_2.18.0                                      
[154] ROC_1.62.0                                         
[155] RColorBrewer_1.1-2                                 
[156] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0
[157] stringr_1.4.0                                      
[158] IlluminaHumanMethylation450kmanifest_0.4.0         
[159] htmlwidgets_1.5.1                                  
[160] biomaRt_2.42.1                                     
[161] purrr_0.3.4                                        
[162] mgcv_1.8-31                                        
[163] openssl_1.4.2                                      
[164] htmlTable_2.0.1                                    
[165] codetools_0.2-16                                   
[166] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0 
[167] GO.db_3.10.0                                       
[168] gtools_3.8.2                                       
[169] prettyunits_1.1.1                                  
[170] dbplyr_1.4.4                                       
[171] R.methodsS3_1.8.0                                  
[172] gtable_0.3.0                                       
[173] DBI_1.1.0                                          
[174] git2r_0.27.1                                       
[175] wateRmelon_1.30.0                                  
[176] httr_1.4.1                                         
[177] KernSmooth_2.23-17                                 
[178] stringi_1.4.6                                      
[179] progress_1.2.2                                     
[180] farver_2.0.3                                       
[181] annotate_1.64.0                                    
[182] viridis_0.5.1                                      
[183] xml2_1.3.2                                         
[184] combinat_0.0-8                                     
[185] readr_1.3.1                                        
[186] BiocVersion_3.10.1                                 
[187] bit_1.1-15.2                                       
[188] jpeg_0.1-8.1                                       
[189] pkgconfig_2.0.3                                    
[190] ruv_0.9.7.1                                        
[191] rstatix_0.6.0                                      
[192] knitr_1.29