Last updated: 2020-05-19
Checks: 7 0
Knit directory: methyl-geneset-testing/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200302)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 63b0011. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: code/.job/
Ignored: code/old/
Ignored: data/
Ignored: output/FDR-analysis/
Ignored: output/compare-methods/
Ignored: output/random-cpg-sims/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/exploreData.Rmd
) and HTML (docs/exploreData.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 63b0011 | Jovana Maksimovic | 2020-05-19 | wflow_publish(c(“analysis/exploreArrayBias450.Rmd”, “analysis/exploreArrayBiasEPIC.Rmd”, |
html | afc650b | JovMaksimovic | 2020-05-11 | Build site. |
Rmd | 25e58bc | JovMaksimovic | 2020-05-11 | Added BH to pdjust calls, added methylation vs expression plot. |
Rmd | cb5e0b1 | JovMaksimovic | 2020-05-08 | Added delta M vs. log FC plot for methylation vs. RNAseq data for each contrast. |
html | da4f010 | JovMaksimovic | 2020-05-08 | Build site. |
Rmd | c70ec78 | JovMaksimovic | 2020-05-08 | wflow_publish(c(“analysis/expressionGenesets.Rmd”, “analysis/exploreData.Rmd”)) |
html | 23cb749 | JovMaksimovic | 2020-04-28 | Build site. |
Rmd | 81c97a7 | JovMaksimovic | 2020-04-28 | wflow_publish(c(“analysis/expressionGenesets.Rmd”, “analysis/exploreData.Rmd”)) |
html | d930b45 | JovMaksimovic | 2020-04-27 | Build site. |
Rmd | bd39053 | JovMaksimovic | 2020-04-27 | wflow_publish(c(“analysis/exploreData.Rmd”, “analysis/regionAnalysis.Rmd”)) |
html | 06648a4 | JovMaksimovic | 2020-04-27 | Build site. |
Rmd | 89af323 | JovMaksimovic | 2020-04-27 | wflow_publish(c(“analysis/index.Rmd”, “analysis/exploreData.Rmd”, |
html | 8dc1e0f | Jovana Maksimovic | 2020-04-24 | Build site. |
Rmd | f98b245 | Jovana Maksimovic | 2020-04-24 | wflow_publish(“analysis/exploreData.Rmd”) |
html | caa373d | Jovana Maksimovic | 2020-04-24 | Build site. |
Rmd | 9373b7c | Jovana Maksimovic | 2020-04-24 | wflow_publish(“analysis/exploreData.Rmd”) |
Rmd | 3ae5062 | Jovana Maksimovic | 2020-04-21 | Updated code to reverse bubble plot y-axis |
html | e82bc51 | Jovana Maksimovic | 2020-04-03 | Build site. |
Rmd | f7696d6 | Jovana Maksimovic | 2020-04-03 | wflow_publish(“analysis/exploreData.Rmd”) |
html | 76dacfc | Jovana Maksimovic | 2020-03-31 | Build site. |
Rmd | 43ca6b6 | Jovana Maksimovic | 2020-03-31 | wflow_publish(“analysis/exploreData.Rmd”) |
Rmd | 2bcb4c9 | JovMaksimovic | 2020-03-23 | New script and modifications for methylGSA analysis. |
Rmd | 250d8ae | JovMaksimovic | 2020-03-16 | Comitting local changes. |
Rmd | 24fb166 | Jovana Maksimovic | 2020-03-16 | Adding Rmd file changes. |
Rmd | d7cd66e | Jovana Maksimovic | 2020-03-02 | Initial Commit |
library(here)
library(minfi)
library(paletteer)
library(limma)
library(BiocParallel)
library(reshape2)
library(gridExtra)
library(missMethyl)
library(ggplot2)
library(glue)
library(tidyverse)
library(rbin)
library(patchwork)
library(ChAMPdata)
source(here("code/utility.R"))
We are using publicly available EPIC data GSE110554 generated from flow sorted blood cells. The data is normalised and filtered (bad probes, multi-mapping probes, SNP probes, sex chromosomes).
# load data
dataFile <- here("data/GSE110554-data.RData")
if(file.exists(dataFile)){
# load processed data and sample information
load(dataFile)
} else {
# get data from experiment hub, normalise, filter and save objects
readData(dataFile)
# load processed data and sample information
load(dataFile)
}
# plot mean detection p-values across all samples
dat <- tibble::tibble(mean = colMeans(detP), cellType = targets$CellType)
ggplot(dat, aes(y = mean, x = cellType, fill = cellType)) +
geom_bar(stat = "identity") +
labs(fill = "Cell Type")
# plot normalised beta value distribution
bVals <- getBeta(normGr)
dat <- data.frame(reshape2::melt(bVals))
colnames(dat) <- c("cpg", "sample", "bVal")
dat <- dplyr::bind_cols(dat, cellType = rep(targets$CellType,
each = nrow(bVals)))
ggplot(dat, aes(x = bVal, colour = cellType)) +
geom_density() +
labs(colour = "Cell Type")
# MDS plots to look at largest sources of variation
p <- plotMDS(getM(fltGr), top=1000, gene.selection="common", plot = FALSE)
dat <- tibble::tibble(x = p$x, y = p$y, cellType = targets$CellType)
ggplot(dat, aes(x = x, y = y, colour = cellType)) +
geom_point() +
labs(colour = "Cell Type")
Version | Author | Date |
---|---|---|
da4f010 | JovMaksimovic | 2020-05-08 |
MDS plots using only the CpGs that map to genes.
ann <- loadAnnotation("EPIC")
flatAnn <- missMethyl:::.getFlatAnnotation("EPIC", anno = ann)
geneM <- getM(fltGr[rownames(fltGr) %in% flatAnn$cpg,])
p <- plotMDS(geneM, top=1000, gene.selection="common", plot = FALSE)
dat <- tibble::tibble(x = p$x, y = p$y, cellType = targets$CellType)
ggplot(dat, aes(x = x, y = y, colour = cellType)) +
geom_point() +
labs(colour = "Cell Type")
Compare several sets of sorted immune cells. Consider results significant at FDR < 0.05 and delta beta ~ 10% (~ lfc = 0.5).
mVals <- getM(fltGr)
bVals <- getBeta(fltGr)
design <- model.matrix(~0+targets$CellType)
colnames(design) <- levels(factor(targets$CellType))
fit <- lmFit(mVals, design)
cont.matrix <- makeContrasts(CD4vCD8=CD4T-CD8T,
#BcellvMono=Bcell-Mono,
MonovNeu=Mono-Neu,
BcellvNK=Bcell-NK,
#NeuvNK=Neu-NK,
#MonovNK=Mono-NK,
levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
tfit <- eBayes(fit2, robust=TRUE, trend=TRUE)
tfit <- treat(tfit, lfc = 0.5)
pval <- 0.05
fitSum <- summary(decideTests(tfit, p.value = pval))
fitSum
CD4vCD8 MonovNeu BcellvNK
Down 5072 9324 34803
NotSig 725611 712480 667559
Up 3202 12081 31523
rfit <- readRDS(here("data/rnaseq-fit.rds"))
rdat <- rownames_to_column(data.frame(rfit$coefficients), var = "gene_id")
rdat %>% inner_join(data.frame(rfit$genes)) %>%
mutate(entrezid = as.character(entrezid)) %>%
dplyr::select(-length) -> rdat
Joining, by = "gene_id"
rdat <- reshape2::melt(rdat, value.name = "coefficient")
Using gene_id, symbol, entrezid as id variables
reshape2::melt(rfit$p.value, value.name = "p.value") %>%
group_by(Contrasts) %>%
mutate(FDR = p.adjust(p.value, method = "BH")) -> rfdr
rdat %>% inner_join(rfdr,
by = c("gene_id" = "Var1", "variable" = "Contrasts")) -> rdat
Warning: Column `gene_id`/`Var1` joining character vector and factor, coercing
into character vector
mdat <- rownames_to_column(data.frame(tfit$coefficients), var = "cpg")
mdat %>% inner_join(flatAnn) %>%
dplyr::select(-symbol, -alias) -> mdat
Joining, by = "cpg"
mdat <- reshape2::melt(mdat, value.name = "coefficient") -> mdat
Using cpg, group, entrezid as id variables
mdat %>% dplyr::select(-cpg) %>%
mutate(promoter = ifelse(group %in% c("TSS1500", "TSS200", "1stExon"),
"prom", "other")) %>%
group_by(variable, entrezid, promoter) %>%
#summarise(coef = coefficient[which.max(abs(coefficient))]) -> mdat
summarise(coef = median(coefficient)) %>%
filter(promoter == "prom") -> mdat
mdat %>% inner_join(rdat, by = c("entrezid", "variable")) %>%
mutate(colour = ifelse(FDR < 0.05, "Sig.", "Not sig.")) -> dat
ggplot(dat, aes(x = coef, y = coefficient, colour = colour)) +
geom_point(data = dat[dat$colour == 'Not sig.',], alpha = 0.25,
size = 1) +
geom_point(data = dat[dat$colour == 'Sig.',], size = 0.75, alpha = 0.5) +
facet_wrap(vars(variable), ncol = 2, scales = "free") +
labs(x = "Median logFC for CpGs in gene promoter",
y = "Gene expression Log FC", color = "Diff. Gene Exp.")
Version | Author | Date |
---|---|---|
afc650b | JovMaksimovic | 2020-05-11 |
Examine only the independent contrasts.
dat <- melt(fitSum[rownames(fitSum) != "NotSig", ])
colnames(dat) <- c("dir","comp","num")
ggplot(dat, aes(x = comp, y = num, fill = dir)) +
geom_bar(stat = "identity", position = "dodge") +
labs(x = "Comparison", y = "No. DM CpGs (FDR < 0.05)", fill = "Direction")
Compare the gene set testing methods available for methylation arrays; hypergeometric test (HGT), gometh (best), methylRRA (GLM), methylRRA (ORA) and methylRRA (GSEA). As methylRRA does not work well with sets that only contain very few genes or very large sets, we will only test sets with at least 5 genes and maximum of 5000 genes.
minsize <- 5
maxsize <- 5000
outFile <- here("data/blood.contrasts.rds")
if(!file.exists(outFile)){
obj <- NULL
obj$tfit <- tfit
obj$maxsize <- maxsize
obj$minsize <- minsize
obj$mVals <- mVals
obj$targets <- targets
saveRDS(obj, file = outFile)
}
inFiles <- list.files(here("output/compare-methods"), pattern = "rds",
full.names = TRUE)
res <- lapply(inFiles, function(file){
readRDS(file)
})
dat <- as_tibble(dplyr::bind_rows(res))
sub <- dat %>% filter(method %in% c("mmethyl.hgt", "mmethyl.gometh"))
ggplot(sub, aes(x = pvalue, colour = sub)) +
geom_density() +
facet_grid(cols = vars(contrast), rows = vars(method)) +
labs(colour = "Sig. CpG Selection", x = "P-value", y = "Density") +
scale_color_hue(labels = c("Top 5000", "Top 10000", "FDR < 0.01",
"FDR < 0.05")) +
theme(legend.position = "bottom", legend.text = element_text(size=6))
cpgEgGo <- cpgsEgGoFreqs(flatAnn)
cpgEgGo %>%
group_by(GO) %>%
summarise(med = median(Freq)) -> medCpgEgGo
dat %>% filter(set == "GO") %>%
filter(sub %in% c("n","c1")) %>%
inner_join(medCpgEgGo, by = c("ID" = "GO")) -> sub
bins <- rbin_quantiles(sub, ID, med, bins = 12)
sub$bin <- as.factor(findInterval(sub$med, bins$upper_cut))
binLabs <- paste0("<", bins$upper_cut)
names(binLabs) <- levels(sub$bin)
binLabs[length(binLabs)] <- gsub("<", "\u2265", binLabs[length(binLabs) - 1])
sub %>% group_by(contrast, method, bin) %>%
summarise(prop = sum(pvalue < 0.05)/n()) -> pdat
p <- ggplot(pdat, aes(x = as.numeric(bin), y = prop, color = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol = 3) +
scale_x_continuous(breaks = as.numeric(levels(pdat$bin)), labels = binLabs) +
theme(axis.text.x = element_text(angle=45, hjust = 1, vjust = 1,
size = 7),
legend.position = "bottom") +
labs(x = "Med. No. CpGs per Gene per GO Cat. (binned)",
y = "Prop. GO Cat. with p-value < 0.05")
p
As we are comparing immune cells, we expect GO categories related to the immune system and its processes to be highly ranked. To evalue this, we downloaded all of the child terms for the GO category “immune system process” (GO:002376) from AminGO 2; http://amigo.geneontology.org/amigo/term/GO:0002376.
immuneGO <- unique(read.csv(here("data/GO-immune-system-process.txt"),
stringsAsFactors = FALSE, header = FALSE,
col.names = "GOID"))
dat %>% filter(set == "GO") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(csum = cumsum(ID %in% immuneGO$GOID)) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol=3) +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Method", x = "Rank", y = "Cumulative no. immune sets") +
theme(legend.position = "bottom")
p
Examine results when top ranked 100 GO terms from RNA-seq analysis of the same cell type comparisons is used as “truth”.
immuneGO <- readRDS(here("data/RNAseq-GO.rds"))
immuneGO %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "GO") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(csum = cumsum(ID %in% topSets$ID[topSets$contrast %in% contrast])) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol=3) +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Method", x = "Rank",
y = glue("Cumulative no. RNAseq sets")) +
theme(legend.position = "bottom")
p
Examine what the top 10 ranked gene sets are and how many genes they contain, for each method and comparison.
terms <- missMethyl:::.getGO()$idTable
nGenes <- rownames_to_column(data.frame(n = sapply(missMethyl:::.getGO()$idList,
length)),
var = "ID")
dat %>% filter(set == "GO") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(FDR = p.adjust(pvalue, method = "BH")) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 10) %>%
inner_join(terms, by = c("ID" = "GOID")) %>%
inner_join(nGenes) -> sub
Joining, by = "ID"
p <- vector("list", length(unique(sub$contrast)) * length(unique(sub$method)))
i = 1
for(cont in unique(sub$contrast)){
c = 1
for(meth in unique(sub$method)){
tmp <- sub %>% filter(contrast == cont & method == meth) %>%
mutate(rank = factor(rank),
rank = factor(rank, levels = rev(levels(rank))))
p[[i]] <- ggplot(tmp, aes(x = -log10(FDR), y = rank)) +
geom_point(aes(size = n), alpha = 0.5,
colour = scales::hue_pal()(length(unique(sub$method)))[c]) +
scale_y_discrete(labels = rev(tmp$TERM)) +
labs(y = "", size = "No. genes", title = meth) +
theme(axis.text.y = element_text(size = 6),
plot.title = element_text(size = 8),
legend.position = "right",
legend.key.size = unit(0.25, "cm"),
legend.text = element_text(size = 6),
legend.title = element_text(size = 8),
axis.text.x = element_text(size = 6),
axis.title.x = element_text(size = 8)) +
coord_cartesian(xlim = c(-log10(0.99), -log10(10^-100))) +
geom_vline(xintercept = -log10(0.05), linetype = "dashed")
i = i + 1
c = c + 1
}
}
(p[[1]] / p[[2]] / p[[3]] / p[[4]] / p[[5]]) +
plot_annotation(title = unique(sub$contrast)[1],
theme = theme(plot.title = element_text(size = 10)))
(p[[6]] / p[[7]] / p[[8]] / p[[9]] / p[[10]]) +
plot_annotation(title = unique(sub$contrast)[2],
theme = theme(plot.title = element_text(size = 10)))
(p[[11]] / p[[12]] / p[[13]] / p[[14]] / p[[15]]) +
plot_annotation(title = unique(sub$contrast)[3],
theme = theme(plot.title = element_text(size = 10)))
P-value histograms for the different methods for all contrasts on GO categories.
dat %>% filter(set == "GO") %>%
filter(sub %in% c("n","c1")) -> sub
ggplot(sub, aes(pvalue, fill = method)) +
geom_histogram(binwidth = 0.025) +
facet_grid(cols = vars(contrast), rows = vars(method)) +
theme(legend.position = "bottom") +
labs(x = "P-value", y = "Frequency", fill = "Method")
immuneGO <- unique(read.csv(here("data/GO-immune-system-process.txt"),
stringsAsFactors = FALSE, header = FALSE,
col.names = "GOID"))
dat %>% filter(set == "GO") %>%
filter(grepl("mmethyl", method)) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method, sub) %>%
mutate(csum = cumsum(ID %in% immuneGO$GOID)) %>%
mutate(rank = 1:n()) %>%
mutate(cut = ifelse(sub == "c1", "Top 5000",
ifelse(sub == "c2", "Top 10000",
ifelse(sub == "p1", "FDR < 0.01", "FDR < 0.05")))) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = cut)) +
geom_line() +
facet_wrap(vars(contrast, method), ncol=2, nrow = 3, scales = "free") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Sig. select", x = "Rank", y = "Cumulative no. immune sets") +
theme(legend.position = "bottom")
p
immuneGO <- readRDS(here("data/RNAseq-GO.rds"))
immuneGO %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "GO") %>%
filter(grepl("mmethyl", method)) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method, sub) %>%
mutate(csum = cumsum(ID %in% topSets$ID[topSets$contrast %in% contrast])) %>%
mutate(rank = 1:n()) %>%
mutate(cut = ifelse(sub == "c1", "Top 5000",
ifelse(sub == "c2", "Top 10000",
ifelse(sub == "p1", "FDR < 0.01", "FDR < 0.05")))) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = cut)) +
geom_line() +
facet_wrap(vars(contrast, method), ncol=2, nrow = 3, scales = "free") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Sig. select", x = "Rank",
y = glue("Cumulative no. RNAseq sets")) +
theme(legend.position = "bottom")
p
Now test KEGG pathways with at least 5 genes and 5000 at most.
Again, as we are comparing immune cells we expecte pathways from the following categories to be highly ranked: Immune system, Immune disease, Signal transduction, Signaling molecules and interaction; https://www.genome.jp/kegg/pathway.html.
immuneKEGG <- read.csv(here("data/kegg-immune-related-pathways.csv"),
stringsAsFactors = FALSE, header = FALSE,
col.names = c("ID","pathway"))
immuneKEGG$PID <- paste0("path:hsa0",immuneKEGG$ID)
dat %>% filter(set == "KEGG") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(csum = cumsum(ID %in% immuneKEGG$PID)) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol=3) +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Method", x = "Rank", y = "Cumulative no. immune sets") +
theme(legend.position = "bottom")
p
Examine results when top ranked 100 KEGG pathways from RNA-seq analysis of the same cell type comparisons is used as “truth”.
immuneKEGG <- readRDS(here("data/RNAseq-KEGG.rds"))
immuneKEGG %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "KEGG") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(csum = cumsum(ID %in% topSets$PID[topSets$contrast %in% contrast])) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol=3, scales = "free_y") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Method", x = "Rank", y = "Cumulative no. RNAseq sets") +
theme(legend.position = "bottom")
p
Examine what the top 10 ranked gene sets are and how many genes they contain, for each method and comparison.
terms <- missMethyl:::.getKEGG()$idTable
nGenes <- rownames_to_column(data.frame(n = sapply(missMethyl:::.getKEGG()$idList,
length)),
var = "ID")
dat %>% filter(set == "KEGG") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(FDR = p.adjust(pvalue, method = "BH")) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 10) %>%
inner_join(terms, by = c("ID" = "PathwayID")) %>%
inner_join(nGenes) -> sub
Joining, by = "ID"
p <- vector("list", length(unique(sub$contrast)) * length(unique(sub$method)))
i = 1
for(cont in unique(sub$contrast)){
c = 1
for(meth in unique(sub$method)){
tmp <- sub %>% filter(contrast == cont & method == meth) %>%
mutate(rank = factor(rank),
rank = factor(rank, levels = rev(levels(rank))))
p[[i]] <- ggplot(tmp, aes(x = -log10(FDR), y = rank)) +
geom_point(aes(size = n), alpha = 0.5,
colour = scales::hue_pal()(length(unique(sub$method)))[c]) +
scale_y_discrete(labels = rev(tmp$Description)) +
labs(y = "", size = "No. genes", title = meth) +
theme(axis.text.y = element_text(size = 6),
plot.title = element_text(size = 8),
legend.position = "right",
legend.key.size = unit(0.25, "cm"),
legend.text = element_text(size = 6),
legend.title = element_text(size = 8),
axis.text.x = element_text(size = 6),
axis.title.x = element_text(size = 8)) +
coord_cartesian(xlim = c(-log10(0.99), -log10(10^-15))) +
geom_vline(xintercept = -log10(0.05), linetype = "dashed")
i = i + 1
c = c + 1
}
}
(p[[1]] / p[[2]] / p[[3]] / p[[4]] / p[[5]]) +
plot_annotation(title = unique(sub$contrast)[1],
theme = theme(plot.title = element_text(size = 10)))
(p[[6]] / p[[7]] / p[[8]] / p[[9]] / p[[10]]) +
plot_annotation(title = unique(sub$contrast)[2],
theme = theme(plot.title = element_text(size = 10)))
(p[[11]] / p[[12]] / p[[13]] / p[[14]] / p[[15]]) +
plot_annotation(title = unique(sub$contrast)[3],
theme = theme(plot.title = element_text(size = 10)))
P-value histograms for the different methods for all contrasts on KEGG pathways.
dat %>% filter(set == "KEGG") %>%
filter(sub %in% c("n","c1")) -> sub
ggplot(sub, aes(pvalue, fill = method)) +
geom_histogram(binwidth = 0.025) +
facet_grid(cols = vars(contrast), rows = vars(method)) +
theme(legend.position = "bottom") +
labs(x = "P-value", y = "Frequency", fill = "Method")
immuneKEGG <- read.csv(here("data/kegg-immune-related-pathways.csv"),
stringsAsFactors = FALSE, header = FALSE,
col.names = c("ID","pathway"))
immuneKEGG$PID <- paste0("path:hsa0",immuneKEGG$ID)
dat %>% filter(set == "KEGG") %>%
filter(grepl("mmethyl", method)) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method, sub) %>%
mutate(csum = cumsum(ID %in% immuneKEGG$PID)) %>%
mutate(rank = 1:n()) %>%
mutate(cut = ifelse(sub == "c1", "Top 5000",
ifelse(sub == "c2", "Top 10000",
ifelse(sub == "p1", "FDR < 0.01", "FDR < 0.05")))) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = cut)) +
geom_line() +
facet_wrap(vars(contrast, method), ncol=2, nrow = 3, scales = "free") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Sig. select", x = "Rank", y = "Cumulative no. immune sets") +
theme(legend.position = "bottom")
p
Version | Author | Date |
---|---|---|
afc650b | JovMaksimovic | 2020-05-11 |
immuneKEGG <- readRDS(here("data/RNAseq-KEGG.rds"))
immuneKEGG %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "KEGG") %>%
filter(grepl("mmethyl", method)) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method, sub) %>%
mutate(csum = cumsum(ID %in% topSets$PID[topSets$contrast %in% contrast])) %>%
mutate(rank = 1:n()) %>%
mutate(cut = ifelse(sub == "c1", "Top 5000",
ifelse(sub == "c2", "Top 10000",
ifelse(sub == "p1", "FDR < 0.01", "FDR < 0.05")))) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = cut)) +
geom_line() +
facet_wrap(vars(contrast, method), ncol=2, nrow = 3, scales = "free") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Sig. select", x = "Rank",
y = glue("Cumulative no. RNAseq sets")) +
theme(legend.position = "bottom")
p
As the ebGSEA method from the ChAMP package only allows testing of their in-built database of Broad Institute gene sets, we will compare to other methods by testing these same gene sets. We are using the top 100 ranked gene sets as identified by camera
analysis of the corresponding RNAseq data as “truth”.
immuneBROAD <- readRDS(here("data/RNAseq-BROAD.rds"))
immuneBROAD %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "BROAD") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(csum = cumsum(ID %in% topSets$ID[topSets$contrast %in% contrast])) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol=3, scales = "free_y") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Method", x = "Rank", y = "Cumulative no. RNAseq sets") +
theme(legend.position = "bottom")
p
Using the top 100 ranked gene sets as identified by Belinda’s gsaseq
analysis of the corresponding RNAseq data as “truth”.
immuneBROAD <- readRDS(here("data/RNAseq-BROAD-GSA.rds"))
immuneBROAD %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "BROAD") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(csum = cumsum(ID %in% topSets$ID[topSets$contrast %in% contrast])) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = method)) +
geom_line() +
facet_wrap(vars(contrast), ncol=3, scales = "free_y") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Method", x = "Rank", y = "Cumulative no. RNAseq sets") +
theme(legend.position = "bottom")
p
data(PathwayList)
nGenes <- rownames_to_column(data.frame(n = sapply(PathwayList,
length)),
var = "ID")
dat %>% filter(set == "BROAD") %>%
filter(sub %in% c("n","c1")) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method) %>%
mutate(FDR = p.adjust(pvalue, method = "BH")) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 10) %>%
inner_join(nGenes) -> sub
Joining, by = "ID"
p <- vector("list", length(unique(sub$contrast)) * length(unique(sub$method)))
i = 1
for(cont in unique(sub$contrast)){
c = 1
for(meth in unique(sub$method)){
tmp <- sub %>% filter(contrast == cont & method == meth) %>%
mutate(rank = factor(rank),
rank = factor(rank, levels = rev(levels(rank))))
p[[i]] <- ggplot(tmp, aes(x = -log10(FDR), y = rank)) +
geom_point(aes(size = n), alpha = 0.5,
colour = scales::hue_pal()(length(unique(sub$method)))[c]) +
scale_y_discrete(labels = rev(tmp$ID)) +
labs(y = "", size = "No. genes", title = meth) +
theme(axis.text.y = element_text(size = 6),
plot.title = element_text(size = 8),
legend.position = "right",
legend.key.size = unit(0.25, "cm"),
legend.text = element_text(size = 6),
legend.title = element_text(size = 8),
axis.text.x = element_text(size = 6),
axis.title.x = element_text(size = 8)) +
coord_cartesian(xlim = c(-log10(0.99), -log10(10^-100))) +
geom_vline(xintercept = -log10(0.05), linetype = "dashed")
i = i + 1
c = c + 1
}
}
(p[[1]] / p[[2]] / p[[3]] / p[[4]] / p[[5]] / p[[6]] / p[[7]]) +
plot_annotation(title = unique(sub$contrast)[1],
theme = theme(plot.title = element_text(size = 10)))
(p[[8]] / p[[9]] / p[[10]] / p[[11]] / p[[12]] / p[[13]] / p[[14]]) +
plot_annotation(title = unique(sub$contrast)[2],
theme = theme(plot.title = element_text(size = 10)))
(p[[15]] / p[[16]] / p[[17]] / p[[18]] / p[[19]] / p[[20]] / p[[21]]) +
plot_annotation(title = unique(sub$contrast)[3],
theme = theme(plot.title = element_text(size = 10)))
P-value histograms for the different methods for all contrasts on BROAD gene sets.
dat %>% filter(set == "BROAD") %>%
filter(sub %in% c("n","c1")) -> sub
ggplot(sub, aes(pvalue, fill = method)) +
geom_histogram(binwidth = 0.025) +
facet_grid(cols = vars(contrast), rows = vars(method)) +
theme(legend.position = "bottom") +
labs(x = "P-value", y = "Frequency", fill = "Method")
immuneBROAD <- readRDS(here("data/RNAseq-BROAD.rds"))
immuneBROAD %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "BROAD") %>%
filter(grepl("mmethyl", method)) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method, sub) %>%
mutate(csum = cumsum(ID %in% topSets$ID)) %>%
mutate(rank = 1:n()) %>%
mutate(cut = ifelse(sub == "c1", "Top 5000",
ifelse(sub == "c2", "Top 10000",
ifelse(sub == "p1", "FDR < 0.01", "FDR < 0.05")))) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = cut)) +
geom_line() +
facet_wrap(vars(contrast, method), ncol=2, nrow = 3, scales = "free") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Sig. select", x = "Rank", y = "Cumulative no. immune sets") +
theme(legend.position = "bottom")
p
immuneBROAD <- readRDS(here("data/RNAseq-BROAD-GSA.rds"))
immuneBROAD %>% group_by(contrast) %>%
mutate(rank = 1:n()) %>%
filter(rank <= 100) -> topSets
dat %>% filter(set == "BROAD") %>%
filter(grepl("mmethyl", method)) %>%
arrange(contrast, method, pvalue) %>%
group_by(contrast, method, sub) %>%
mutate(csum = cumsum(ID %in% topSets$ID)) %>%
mutate(rank = 1:n()) %>%
mutate(cut = ifelse(sub == "c1", "Top 5000",
ifelse(sub == "c2", "Top 10000",
ifelse(sub == "p1", "FDR < 0.01", "FDR < 0.05")))) %>%
filter(rank <= 100) -> sub
p <- ggplot(sub, aes(x = rank, y = csum, colour = cut)) +
geom_line() +
facet_wrap(vars(contrast, method), ncol=2, nrow = 3, scales = "free") +
geom_vline(xintercept = 10, linetype = "dotted") +
labs(colour = "Sig. select", x = "Rank", y = "Cumulative no. immune sets") +
theme(legend.position = "bottom")
p
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /config/RStudio/R/3.6.1/lib64/R/lib/libRblas.so
LAPACK: /config/RStudio/R/3.6.1/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] ChAMPdata_2.18.0 patchwork_1.0.0
[3] rbin_0.2.0 forcats_0.4.0
[5] stringr_1.4.0 dplyr_0.8.5
[7] purrr_0.3.4 readr_1.3.1
[9] tidyr_1.0.3 tibble_2.1.3
[11] tidyverse_1.3.0 glue_1.4.1
[13] ggplot2_3.3.0 missMethyl_1.20.4
[15] gridExtra_2.3 reshape2_1.4.3
[17] limma_3.42.2 paletteer_1.1.0
[19] minfi_1.32.0 bumphunter_1.26.0
[21] locfit_1.5-9.1 iterators_1.0.12
[23] foreach_1.5.0 Biostrings_2.54.0
[25] XVector_0.24.0 SummarizedExperiment_1.16.1
[27] DelayedArray_0.12.3 BiocParallel_1.20.1
[29] matrixStats_0.56.0 Biobase_2.46.0
[31] GenomicRanges_1.38.0 GenomeInfoDb_1.22.1
[33] IRanges_2.20.2 S4Vectors_0.24.4
[35] BiocGenerics_0.32.0 here_0.1
[37] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] tidyselect_0.2.5
[2] RSQLite_2.1.2
[3] AnnotationDbi_1.46.1
[4] grid_3.6.1
[5] munsell_0.5.0
[6] codetools_0.2-16
[7] preprocessCore_1.48.0
[8] statmod_1.4.32
[9] withr_2.1.2
[10] colorspace_1.4-1
[11] knitr_1.28
[12] rstudioapi_0.11
[13] labeling_0.3
[14] git2r_0.27.1
[15] GenomeInfoDbData_1.2.1
[16] farver_2.0.3
[17] bit64_0.9-7
[18] rhdf5_2.30.1
[19] rprojroot_1.3-2
[20] vctrs_0.3.0
[21] generics_0.0.2
[22] xfun_0.13
[23] BiocFileCache_1.10.2
[24] R6_2.4.1
[25] illuminaio_0.28.0
[26] palr_0.2.0
[27] pals_1.6
[28] bitops_1.0-6
[29] reshape_0.8.8
[30] assertthat_0.2.1
[31] promises_1.1.0
[32] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
[33] scales_1.1.1
[34] gtable_0.3.0
[35] methylumi_2.30.0
[36] rlang_0.4.6
[37] genefilter_1.68.0
[38] splines_3.6.1
[39] rtracklayer_1.44.4
[40] GEOquery_2.54.1
[41] dichromat_2.0-0
[42] broom_0.5.2
[43] scico_1.1.0
[44] yaml_2.2.1
[45] modelr_0.1.7
[46] GenomicFeatures_1.36.4
[47] backports_1.1.7
[48] httpuv_1.5.2
[49] tools_3.6.1
[50] nor1mix_1.3-0
[51] RColorBrewer_1.1-2
[52] siggenes_1.60.0
[53] Rcpp_1.0.4.6
[54] plyr_1.8.6
[55] progress_1.2.2
[56] zlibbioc_1.30.0
[57] RCurl_1.95-4.12
[58] BiasedUrn_1.07
[59] prettyunits_1.0.2
[60] openssl_1.4.1
[61] IlluminaHumanMethylationEPICmanifest_0.3.0
[62] haven_2.2.0
[63] cluster_2.1.0
[64] fs_1.4.1
[65] magrittr_1.5
[66] data.table_1.12.8
[67] reprex_0.3.0
[68] whisker_0.4
[69] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
[70] hms_0.5.3
[71] evaluate_0.14
[72] xtable_1.8-4
[73] XML_3.98-1.20
[74] mclust_5.4.6
[75] readxl_1.3.1
[76] compiler_3.6.1
[77] biomaRt_2.42.1
[78] maps_3.3.0
[79] crayon_1.3.4
[80] htmltools_0.4.0
[81] later_1.0.0
[82] jcolors_0.0.4
[83] lubridate_1.7.4
[84] DBI_1.0.0
[85] dbplyr_1.4.2
[86] MASS_7.3-51.6
[87] rappdirs_0.3.1
[88] Matrix_1.2-18
[89] cli_2.0.2
[90] quadprog_1.5-8
[91] pkgconfig_2.0.3
[92] GenomicAlignments_1.20.1
[93] registry_0.5-1
[94] IlluminaHumanMethylation450kmanifest_0.4.0
[95] oompaBase_3.2.9
[96] xml2_1.3.2
[97] annotate_1.62.0
[98] rngtools_1.4
[99] pkgmaker_0.27
[100] multtest_2.40.0
[101] beanplot_1.2
[102] ruv_0.9.7.1
[103] rvest_0.3.5
[104] bibtex_0.4.2
[105] doRNG_1.7.1
[106] scrime_1.3.5
[107] digest_0.6.25
[108] rmarkdown_2.1
[109] base64_2.0
[110] cellranger_1.1.0
[111] DelayedMatrixStats_1.8.0
[112] curl_4.3
[113] Rsamtools_2.0.1
[114] lifecycle_0.2.0
[115] nlme_3.1-147
[116] jsonlite_1.6.1
[117] Rhdf5lib_1.6.1
[118] mapproj_1.2.6
[119] fansi_0.4.1
[120] viridisLite_0.3.0
[121] askpass_1.1
[122] pillar_1.4.4
[123] lattice_0.20-41
[124] httr_1.4.1
[125] survival_2.44-1.1
[126] GO.db_3.8.2
[127] bit_1.1-14
[128] stringi_1.4.6
[129] HDF5Array_1.14.4
[130] rematch2_2.1.0
[131] blob_1.2.0
[132] org.Hs.eg.db_3.8.2
[133] memoise_1.1.0