• Load data
  • Macrophage cells figure panels
  • T/NK cells figure panels
  • Rare cells figure panels
  • Session info

Last updated: 2024-11-12

Checks: 7 0

Knit directory: paed-inflammation-CITEseq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 1301a0f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/obsolete/
    Ignored:    data/C133_Neeland_batch1/
    Ignored:    data/C133_Neeland_merged/
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  code/background_job.R
    Untracked:  code/reverse_modifier_severity_comparisons.sh
    Untracked:  data/Proteins_T-NK_07.10.24.csv
    Untracked:  data/Proteins_macs_07.10.24.csv
    Untracked:  data/cluster_annotations/marker_genes_TNK_figure_2.xlsx
    Untracked:  data/cluster_annotations/marker_genes_macrophages_figure_2.xlsx
    Untracked:  data/cluster_annotations/marker_genes_other_figure_2.xlsx
    Untracked:  data/cluster_annotations/marker_proteins_TNK_supp.xlsx
    Untracked:  data/cluster_annotations/marker_proteins_macrophages_supp.xlsx
    Untracked:  data/cluster_annotations/marker_proteins_other_supp.xlsx
    Untracked:  data/main_marker_genes.xlsx
    Untracked:  data/main_proteins.xlsx
    Untracked:  data/marker_genes_fig_2.xlsx

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/09.0_integrate_cluster_macro_cells.Rmd
    Modified:   analysis/14.0_proportions_analysis_ann_level_1.Rmd
    Modified:   analysis/15.0_Figure_1.Rmd
    Modified:   code/utility.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/16.0_Figure_2.Rmd) and HTML (docs/16.0_Figure_2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 1301a0f Jovana Maksimovic 2024-11-12 wflow_publish("analysis/16.0_Figure_2.Rmd")
html 30e844f Jovana Maksimovic 2024-10-07 Build site.
Rmd 88f931c Jovana Maksimovic 2024-10-07 wflow_publish("analysis/16.0_Figure_2.Rmd")
Rmd 50ee332 Jovana Maksimovic 2024-09-20 Started work on panel figures

Load libraries.

suppressPackageStartupMessages({
 library(SingleCellExperiment)
 library(edgeR)
 library(tidyverse)
 library(ggplot2)
 library(Seurat)
 library(glmGamPoi)
 library(dittoSeq)
 library(here)
 library(clustree)
 library(patchwork)
 library(AnnotationDbi)
 library(org.Hs.eg.db)
 library(glue)
 library(speckle)
 library(tidyHeatmap)
 library(paletteer)
 library(dsb)
 library(ggh4x)
  library(readxl)
})

source(here("code/utility.R"))

Load data

files <- list.files(here("data/C133_Neeland_merged"),
                    pattern = "C133_Neeland_full_clean.*(macrophages|t_cells|other_cells)_annotated_full.SEU.rds",
                    full.names = TRUE)

seuLst <- lapply(files[2:4], function(f) readRDS(f))
seuLst
[[1]]
An object of class Seurat 
41892 features across 13687 samples within 5 assays 
Active assay: RNA (19973 features, 0 variable features)
 4 other assays present: ADT, SCT, integrated, ADT.dsb
 2 dimensional reductions calculated: pca, umap

[[2]]
An object of class Seurat 
38775 features across 15511 samples within 5 assays 
Active assay: RNA (19973 features, 0 variable features)
 4 other assays present: ADT, SCT, integrated, ADT.dsb
 2 dimensional reductions calculated: pca, umap

[[3]]
An object of class Seurat 
46108 features across 165209 samples within 5 assays 
Active assay: RNA (21568 features, 0 variable features)
 4 other assays present: ADT, SCT, integrated, ADT.dsb
 2 dimensional reductions calculated: pca, umap

Macrophage cells figure panels

options(ggrepel.max.overlaps = Inf)
cluster_pal <- "ggsci::category20_d3"

draw_umap_with_labels(seuLst[[3]], 
                      "ann_level_3", 
                      cluster_pal) -> f2a
f2a

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
# markers <- readRDS(here("data/cluster_annotations/seurat_markers_macrophages.rds"))
# 
# draw_marker_gene_dotplot(seuLst[[3]],
#                          markers,
#                          "ann_level_3",
#                          cluster_pal)

labels <- read_excel(here("data",
                          "cluster_annotations",
                          "marker_genes_macrophages_figure_2.xlsx"))
                          #"macrophages_26.06.24.xlsx"))
                          
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
                        labels$`cell label`),
               value = "gene",
               name = "cluster"),
       cols = gene) %>%
  arrange(cluster) %>%
  distinct() -> markers

markers <- markers[markers$gene %in% rownames(seuLst[[3]]),]

draw_marker_gene_dotplot(seuLst[[3]], 
                         markers, 
                         "ann_level_3", 
                         cluster_pal,
                         direction = -1,
                         num = 5) -> f2b

f2b

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
draw_cell_type_proportions_barplot(seuLst[[3]],
                                   "ann_level_3",
                                   cluster_pal) -> f2c

f2c

Version Author Date
30e844f Jovana Maksimovic 2024-10-07

T/NK cells figure panels

cluster_pal <- "ggsci::category20b_d3"

draw_umap_with_labels(seuLst[[2]], 
                      "ann_level_3", 
                      cluster_pal,
                      direction = -1) -> f2d

f2d

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
# markers <- readRDS(here("data/cluster_annotations/seurat_markers_TNK_cells.rds"))
# 
# draw_marker_gene_dotplot(seuLst[[2]],
#                          markers,
#                          "ann_level_3",
#                          cluster_pal,
#                          direction = -1) 
labels <- read_excel(here("data",
                          "cluster_annotations",
                          #"T-NK_ambientRNAremoval_21.03.24.xlsx"),
                          "marker_genes_TNK_figure_2.xlsx"))
                     #skip = 1)
  
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
                        labels$`cell label`),
               value = "gene",
               name = "cluster"),
       cols = gene) %>%
  arrange(cluster) %>%
  distinct() -> markers

markers <- markers[markers$gene %in% rownames(seuLst[[2]]),]

draw_marker_gene_dotplot(seuLst[[2]], 
                         markers, 
                         "ann_level_3", 
                         cluster_pal,
                         direction = -1,
                         num = 5) -> f2e

f2e

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
draw_cell_type_proportions_barplot(seuLst[[2]],
                                   "ann_level_3",
                                   cluster_pal,
                                   direction = -1) -> f2f

f2f

Version Author Date
30e844f Jovana Maksimovic 2024-10-07

Rare cells figure panels

cluster_pal <- "ggsci::category20c_d3"

draw_umap_with_labels(seuLst[[1]], 
                      "ann_level_3", 
                      cluster_pal) -> f2g

f2g

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
# markers <- readRDS(here("data/cluster_annotations/seurat_markers_other_cells.rds"))
# 
# draw_marker_gene_dotplot(seuLst[[1]],
#                          markers,
#                          "ann_level_3",
#                          cluster_pal) 

labels <- read_excel(here("data",
                          "cluster_annotations",
                          #"others_ambientRNAremoval_21.03.24.xlsx"),
                          "marker_genes_other_figure_2.xlsx"))
                     #skip = 1)
  
unnest(enframe(setNames(str_split(labels$`non-overlapping marker genes`, ", "),
                        labels$`cell label`),
               value = "gene",
               name = "cluster"),
       cols = gene) %>%
  arrange(cluster) %>%
  distinct() -> markers

markers <- markers[markers$gene %in% rownames(seuLst[[1]]),]

draw_marker_gene_dotplot(seuLst[[1]], 
                         markers, 
                         "ann_level_3", 
                         cluster_pal,
                         direction = -1,
                         num = 5) -> f2h

f2h

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
draw_cell_type_proportions_barplot(seuLst[[1]],
                                   "ann_level_3",
                                   cluster_pal) -> f2i

f2i

Version Author Date
30e844f Jovana Maksimovic 2024-10-07
layout = "
AAABBBBB
AAACCCCC
DDDEEEEE
DDDFFFFF
GGGHHHHH
GGGIIIII
"
(wrap_elements(f2a) +
    wrap_elements(f2b) +
    wrap_elements(f2c) +
    wrap_elements(f2d) +
    wrap_elements(f2e) +
    wrap_elements(f2f) +
    wrap_elements(f2g) +
    wrap_elements(f2h) +
    wrap_elements(f2i)) +
  plot_layout(design = layout) +
  plot_annotation(tag_levels = "A") &
  theme(plot.tag = element_text(size = 16,
                                face = "bold",
                                family = "arial"))

Version Author Date
30e844f Jovana Maksimovic 2024-10-07

Session info


sessionInfo()
R version 4.3.3 (2024-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] readxl_1.4.3                ggh4x_0.2.8                
 [3] dsb_1.0.3                   paletteer_1.6.0            
 [5] tidyHeatmap_1.8.1           speckle_1.2.0              
 [7] glue_1.7.0                  org.Hs.eg.db_3.18.0        
 [9] AnnotationDbi_1.64.1        patchwork_1.2.0            
[11] clustree_0.5.1              ggraph_2.2.0               
[13] here_1.0.1                  dittoSeq_1.14.2            
[15] glmGamPoi_1.14.3            SeuratObject_4.1.4         
[17] Seurat_4.4.0                lubridate_1.9.3            
[19] forcats_1.0.0               stringr_1.5.1              
[21] dplyr_1.1.4                 purrr_1.0.2                
[23] readr_2.1.5                 tidyr_1.3.1                
[25] tibble_3.2.1                ggplot2_3.5.0              
[27] tidyverse_2.0.0             edgeR_4.0.15               
[29] limma_3.58.1                SingleCellExperiment_1.24.0
[31] SummarizedExperiment_1.32.0 Biobase_2.62.0             
[33] GenomicRanges_1.54.1        GenomeInfoDb_1.38.6        
[35] IRanges_2.36.0              S4Vectors_0.40.2           
[37] BiocGenerics_0.48.1         MatrixGenerics_1.14.0      
[39] matrixStats_1.2.0           workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] fs_1.6.3                spatstat.sparse_3.0-3   bitops_1.0-7           
  [4] httr_1.4.7              RColorBrewer_1.1-3      doParallel_1.0.17      
  [7] tools_4.3.3             sctransform_0.4.1       utf8_1.2.4             
 [10] R6_2.5.1                lazyeval_0.2.2          uwot_0.1.16            
 [13] GetoptLong_1.0.5        withr_3.0.0             sp_2.1-3               
 [16] gridExtra_2.3           progressr_0.14.0        cli_3.6.2              
 [19] spatstat.explore_3.2-6  prismatic_1.1.1         labeling_0.4.3         
 [22] sass_0.4.8              spatstat.data_3.0-4     ggridges_0.5.6         
 [25] pbapply_1.7-2           parallelly_1.37.0       rstudioapi_0.15.0      
 [28] RSQLite_2.3.5           generics_0.1.3          shape_1.4.6            
 [31] ica_1.0-3               spatstat.random_3.2-2   dendextend_1.17.1      
 [34] Matrix_1.6-5            fansi_1.0.6             abind_1.4-5            
 [37] lifecycle_1.0.4         whisker_0.4.1           yaml_2.3.8             
 [40] SparseArray_1.2.4       Rtsne_0.17              grid_4.3.3             
 [43] blob_1.2.4              promises_1.2.1          crayon_1.5.2           
 [46] miniUI_0.1.1.1          lattice_0.22-5          cowplot_1.1.3          
 [49] KEGGREST_1.42.0         pillar_1.9.0            knitr_1.45             
 [52] ComplexHeatmap_2.18.0   rjson_0.2.21            future.apply_1.11.1    
 [55] codetools_0.2-19        leiden_0.4.3.1          getPass_0.2-4          
 [58] data.table_1.15.0       vctrs_0.6.5             png_0.1-8              
 [61] cellranger_1.1.0        gtable_0.3.4            rematch2_2.1.2         
 [64] cachem_1.0.8            xfun_0.42               S4Arrays_1.2.0         
 [67] mime_0.12               tidygraph_1.3.1         survival_3.7-0         
 [70] pheatmap_1.0.12         iterators_1.0.14        statmod_1.5.0          
 [73] ellipsis_0.3.2          fitdistrplus_1.1-11     ROCR_1.0-11            
 [76] nlme_3.1-164            bit64_4.0.5             RcppAnnoy_0.0.22       
 [79] rprojroot_2.0.4         bslib_0.6.1             irlba_2.3.5.1          
 [82] KernSmooth_2.23-24      colorspace_2.1-0        DBI_1.2.1              
 [85] tidyselect_1.2.0        processx_3.8.3          bit_4.0.5              
 [88] compiler_4.3.3          git2r_0.33.0            DelayedArray_0.28.0    
 [91] plotly_4.10.4           scales_1.3.0            lmtest_0.9-40          
 [94] callr_3.7.3             digest_0.6.34           goftest_1.2-3          
 [97] spatstat.utils_3.0-4    rmarkdown_2.25          XVector_0.42.0         
[100] htmltools_0.5.7         pkgconfig_2.0.3         highr_0.10             
[103] fastmap_1.1.1           rlang_1.1.3             GlobalOptions_0.1.2    
[106] htmlwidgets_1.6.4       shiny_1.8.0             farver_2.1.1           
[109] jquerylib_0.1.4         zoo_1.8-12              jsonlite_1.8.8         
[112] mclust_6.1              RCurl_1.98-1.14         magrittr_2.0.3         
[115] GenomeInfoDbData_1.2.11 munsell_0.5.0           Rcpp_1.0.12            
[118] viridis_0.6.5           reticulate_1.35.0       stringi_1.8.3          
[121] zlibbioc_1.48.0         MASS_7.3-60.0.1         plyr_1.8.9             
[124] parallel_4.3.3          listenv_0.9.1           ggrepel_0.9.5          
[127] deldir_2.0-2            Biostrings_2.70.2       graphlayouts_1.1.0     
[130] splines_4.3.3           tensor_1.5              hms_1.1.3              
[133] circlize_0.4.15         locfit_1.5-9.8          ps_1.7.6               
[136] igraph_2.0.1.1          spatstat.geom_3.2-8     reshape2_1.4.4         
[139] evaluate_0.23           renv_1.0.3              BiocManager_1.30.22    
[142] tzdb_0.4.0              foreach_1.5.2           tweenr_2.0.3           
[145] httpuv_1.6.14           RANN_2.6.1              polyclip_1.10-6        
[148] future_1.33.1           clue_0.3-65             scattermore_1.2        
[151] ggforce_0.4.2           xtable_1.8-4            later_1.3.2            
[154] viridisLite_0.4.2       memoise_2.0.1           cluster_2.1.6          
[157] timechange_0.3.0        globals_0.16.2