• Load libraries
  • Load Data
  • Analyse Cell type proportions
    • Cell type proportions by sample
    • No. cells per sample
    • Cell proportions by sample
    • Cell proportions by cell type
  • Explore sources of variation
    • Cell count data
    • Cell proportion data
  • Principal components versus traits
  • Statistical analysis using the propeller and limma approach
    • Results
  • Session info

Last updated: 2024-08-09

Checks: 7 0

Knit directory: paed-inflammation-CITEseq/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 01f0f43. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/voomByGroup/
    Ignored:    data/.DS_Store
    Ignored:    data/C133_Neeland/
    Ignored:    data/C133_Neeland_batch0/
    Ignored:    data/C133_Neeland_batch1/
    Ignored:    data/C133_Neeland_batch2/
    Ignored:    data/C133_Neeland_batch3/
    Ignored:    data/C133_Neeland_batch4/
    Ignored:    data/C133_Neeland_batch5/
    Ignored:    data/C133_Neeland_batch6/
    Ignored:    data/C133_Neeland_merged/
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/13.1_DGE_analysis_macro-alveolar_cells_decontx.Rmd
    Untracked:  code/cellbender.sh
    Untracked:  code/move_files.R
    Untracked:  data/heart10k_raw_feature_bc_matrix.h5
    Untracked:  data/oshlack_lab/
    Untracked:  data/output.log
    Untracked:  data/tiny_output.log
    Untracked:  data/tiny_raw_feature_bc_matrix.h5ad

Unstaged changes:
    Modified:   .DS_Store
    Modified:   analysis/06.1_azimuth_annotation_decontx.Rmd
    Modified:   code/run_cellbender.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/14.1_proportions_analysis_fine.Rmd) and HTML (docs/14.1_proportions_analysis_fine.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 01f0f43 Jovana Maksimovic 2024-08-09 wflow_publish("analysis/14.*")

Load libraries

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(edgeR)
  library(tidyverse)
  library(ggplot2)
  library(Seurat)
  library(glmGamPoi)
  library(dittoSeq)
  library(clustree)
  library(AnnotationDbi)
  library(org.Hs.eg.db)
  library(glue)
  library(speckle)
  library(patchwork)
  library(paletteer)
  library(tidyHeatmap)
  library(here)
})

set.seed(42)
options(scipen=999)
options(future.globals.maxSize = 6500 * 1024^2)

Load Data

files <- list.files(here("data/C133_Neeland_merged"),
                    pattern = "C133_Neeland_full_clean.*(macrophages|t_cells|other_cells)_annotated_diet.SEU.rds",
                    full.names = TRUE)

seuLst <- lapply(files[2:4], function(f) readRDS(f))

seu <- merge(seuLst[[1]], 
             y = c(seuLst[[2]], 
                   seuLst[[3]]))
seu
An object of class Seurat 
21568 features across 191521 samples within 1 assay 
Active assay: RNA (21568 features, 0 variable features)
             used    (Mb) gc trigger    (Mb) limit (Mb)   max used    (Mb)
Ncells   10361251   553.4   17390818   928.8         NA   11881777   634.6
Vcells 1328308325 10134.2 3629549058 27691.3      65536 3489907699 26625.9

Analyse Cell type proportions

# Differences in cell type proportions
props <- getTransformedProps(clusters = seu$Annotation,
                             sample = seu$sample.id, transform="asin")
props$Proportions %>% knitr::kable()
sample_1.1 sample_15.1 sample_16.1 sample_17.1 sample_18.1 sample_19.1 sample_2.1 sample_20.1 sample_21.1 sample_22.1 sample_23.1 sample_24.1 sample_25.1 sample_26.1 sample_27.1 sample_28.1 sample_29.1 sample_3.1 sample_30.1 sample_31.1 sample_32.1 sample_33.1 sample_34.1 sample_34.2 sample_34.3 sample_35.1 sample_35.2 sample_36.1 sample_36.2 sample_37.1 sample_37.2 sample_37.3 sample_38.1 sample_38.2 sample_38.3 sample_39.1 sample_39.2 sample_4.1 sample_40.1 sample_41.1 sample_42.1 sample_43.1 sample_5.1 sample_6.1 sample_7.1
B cells 0.0206838 0.0071704 0.0018883 0.0423365 0.0013711 0.0023866 0.0910706 0.0016652 0.0093304 0.0023447 0.1954813 0.0054013 0.0024450 0.0117647 0.0020268 0.0006984 0.0911990 0.0117371 0.0064935 0.0041667 0.0027000 0.0593735 0.0026738 0.0000000 0.0014215 0.0177419 0.0081239 0.0261132 0.0502624 0.0069589 0.0122811 0.0101543 0.0048374 0.0058787 0.0340689 0.0356179 0.0267338 0.0091732 0.0000000 0.0000000 0.0000000 0.0000000 0.0181922 0.0046205 0.0279341
CD4 T cells 0.0054875 0.0148924 0.0078230 0.0115220 0.0042657 0.0011933 0.0284318 0.0062764 0.0098793 0.0051290 0.0923379 0.0170682 0.0122249 0.0200980 0.0097284 0.0036318 0.0159439 0.0046948 0.1435786 0.0513889 0.0097874 0.0892941 0.0060160 0.0021946 0.0018953 0.0108871 0.0081239 0.0046870 0.0267882 0.0066110 0.0086571 0.0134037 0.0037624 0.0058787 0.0154859 0.0118726 0.0300271 0.0081815 0.1054745 0.0325397 0.0253611 0.0329297 0.0488914 0.0101839 0.0224110
CD4 T-IFN 0.0016885 0.0063431 0.0008093 0.0008039 0.0004570 0.0007955 0.0000000 0.0000000 0.0012806 0.0002931 0.0039293 0.0034568 0.0009169 0.0024510 0.0012161 0.0002794 0.0000000 0.0004268 0.0043290 0.0037037 0.0013500 0.0056101 0.0006684 0.0000000 0.0004738 0.0008065 0.0032118 0.0000000 0.0011047 0.0000000 0.0004027 0.0012185 0.0005375 0.0018564 0.0023229 0.0005397 0.0027121 0.0002479 0.0010949 0.0047619 0.0056863 0.0023132 0.0005685 0.0007544 0.0007435
CD4 T-naïve 0.0004221 0.0030336 0.0002698 0.0013398 0.0013711 0.0003978 0.0026655 0.0007685 0.0016465 0.0005862 0.0304519 0.0011883 0.0009169 0.0049020 0.0008107 0.0005587 0.0051020 0.0004268 0.0266955 0.0078704 0.0003375 0.0112202 0.0006684 0.0000000 0.0000000 0.0016129 0.0005668 0.0000000 0.0038663 0.0010438 0.0006040 0.0004062 0.0000000 0.0003094 0.0011614 0.0005397 0.0081364 0.0006198 0.0175182 0.0026455 0.0022745 0.0046265 0.0108016 0.0006601 0.0088157
CD4 T-NFKB 0.0000000 0.0011031 0.0002698 0.0008039 0.0004570 0.0000000 0.0022212 0.0003843 0.0043908 0.0010258 0.0166994 0.0016204 0.0012225 0.0024510 0.0004054 0.0002794 0.0063776 0.0002134 0.0014430 0.0027778 0.0023625 0.0327256 0.0033422 0.0014631 0.0007107 0.0016129 0.0013225 0.0043522 0.0052472 0.0041754 0.0026173 0.0044679 0.0002687 0.0006188 0.0023229 0.0097140 0.0133669 0.0003719 0.0109489 0.0164021 0.0012510 0.0023132 0.0028425 0.0005658 0.0021243
CD4 T-reg 0.0012664 0.0008274 0.0029674 0.0024116 0.0010664 0.0000000 0.0022212 0.0008966 0.0014636 0.0008792 0.0157171 0.0020525 0.0018337 0.0019608 0.0004054 0.0005587 0.0012755 0.0002134 0.0140693 0.0050926 0.0016875 0.0130902 0.0006684 0.0014631 0.0004738 0.0022177 0.0030229 0.0023435 0.0049710 0.0017397 0.0028186 0.0060926 0.0005375 0.0012376 0.0042586 0.0018888 0.0025184 0.0006198 0.0083942 0.0021164 0.0028432 0.0040822 0.0045480 0.0007544 0.0027616
CD4 T-rm 0.0004221 0.0013789 0.0008093 0.0008039 0.0006094 0.0000000 0.0008885 0.0003843 0.0005488 0.0002931 0.0058939 0.0008642 0.0003056 0.0004902 0.0008107 0.0006984 0.0012755 0.0002134 0.0010823 0.0013889 0.0000000 0.0028050 0.0000000 0.0000000 0.0000000 0.0002016 0.0001889 0.0000000 0.0005523 0.0017397 0.0012080 0.0012185 0.0005375 0.0003094 0.0019357 0.0005397 0.0017435 0.0006198 0.0000000 0.0000000 0.0000000 0.0000000 0.0125071 0.0008487 0.0012746
CD8 T-GZMK 0.0008442 0.0041368 0.0056650 0.0093783 0.0028946 0.0000000 0.0066637 0.0007685 0.0025613 0.0004396 0.0039293 0.0018364 0.0045844 0.0068627 0.0016214 0.0009778 0.0063776 0.0006402 0.0281385 0.0115741 0.0013500 0.0056101 0.0006684 0.0000000 0.0000000 0.0048387 0.0015114 0.0000000 0.0008285 0.0013918 0.0008053 0.0016247 0.0002687 0.0006188 0.0011614 0.0002698 0.0034870 0.0035949 0.0510949 0.0029101 0.0052314 0.0161927 0.0045480 0.0011315 0.0031864
CD8 T-inflammasome 0.0033770 0.0107557 0.0059347 0.0085745 0.0097502 0.0007955 0.0084407 0.0067888 0.0065862 0.0045428 0.0127701 0.0136113 0.0051956 0.0107843 0.0072963 0.0046096 0.0051020 0.0029876 0.0497835 0.0375000 0.0057374 0.0640486 0.0046791 0.0007315 0.0016584 0.0064516 0.0058568 0.0023435 0.0127037 0.0038274 0.0028186 0.0044679 0.0018812 0.0024752 0.0081301 0.0040475 0.0116234 0.0086773 0.0160584 0.0251323 0.0461731 0.0874949 0.0403638 0.0164074 0.0165693
CD8 T-rm 0.0021106 0.0146167 0.0167251 0.0174169 0.0038087 0.0003978 0.0359840 0.0023056 0.0087816 0.0045428 0.1110020 0.0155558 0.0036675 0.0132353 0.0178354 0.0097779 0.0471939 0.0055484 0.0198413 0.0458333 0.0104624 0.0584385 0.0046791 0.0021946 0.0035537 0.0090726 0.0028339 0.0010044 0.0113228 0.0093946 0.0038252 0.0138099 0.0016125 0.0018564 0.0158730 0.0026983 0.0579233 0.0131400 0.0328467 0.0462963 0.0382122 0.1035515 0.0500284 0.0096181 0.0182687
cDC1 0.0008442 0.0002758 0.0002698 0.0008039 0.0001523 0.0000000 0.0000000 0.0007685 0.0009147 0.0004396 0.0039293 0.0011883 0.0003056 0.0019608 0.0000000 0.0000000 0.0006378 0.0000000 0.0137085 0.0004630 0.0003375 0.0060776 0.0000000 0.0000000 0.0007107 0.0006048 0.0007557 0.0000000 0.0030378 0.0000000 0.0006040 0.0000000 0.0000000 0.0000000 0.0007743 0.0005397 0.0013561 0.0011157 0.0000000 0.0000000 0.0000000 0.0000000 0.0028425 0.0005658 0.0012746
cDC2 0.0021106 0.0013789 0.0008093 0.0305466 0.0155393 0.0043755 0.0008885 0.0033303 0.0021954 0.0008792 0.0206287 0.0322999 0.0158924 0.0181373 0.0137819 0.0053080 0.0357143 0.0100299 0.0147908 0.0129630 0.0101249 0.0467508 0.0648396 0.0468178 0.0236911 0.0167339 0.0162479 0.0271175 0.0389395 0.0052192 0.0034226 0.0040617 0.0000000 0.0009282 0.0042586 0.0183486 0.0288648 0.0099169 0.0000000 0.0000000 0.0000000 0.0000000 0.0096646 0.0013201 0.0023367
ciliated epithelial cells 0.0375686 0.0057915 0.0000000 0.0026795 0.0042657 0.0007955 0.1110618 0.0037146 0.0087816 0.0030774 0.1699411 0.0024846 0.0006112 0.0019608 0.0202675 0.0006984 0.0414541 0.0012804 0.0010823 0.0018519 0.0000000 0.0191678 0.0060160 0.0051207 0.0021322 0.0040323 0.0064236 0.0056913 0.0027617 0.0052192 0.0014093 0.0036556 0.0005375 0.0006188 0.0100658 0.0029682 0.0060054 0.0019834 0.0000000 0.0000000 0.0000000 0.0000000 0.0034110 0.0009430 0.0008497
dividing innate cells 0.0000000 0.0002758 0.0002698 0.0024116 0.0006094 0.0003978 0.0093292 0.0002562 0.0000000 0.0000000 0.0108055 0.0012963 0.0006112 0.0000000 0.0000000 0.0001397 0.0031888 0.0006402 0.0003608 0.0000000 0.0003375 0.0032726 0.0013369 0.0000000 0.0002369 0.0002016 0.0001889 0.0016739 0.0008285 0.0000000 0.0000000 0.0004062 0.0000000 0.0003094 0.0011614 0.0035078 0.0017435 0.0006198 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0001062
gamma delta T cells 0.0000000 0.0005516 0.0008093 0.0008039 0.0003047 0.0000000 0.0000000 0.0003843 0.0007318 0.0000000 0.0000000 0.0003241 0.0006112 0.0004902 0.0012161 0.0001397 0.0000000 0.0000000 0.0223665 0.0064815 0.0003375 0.0014025 0.0000000 0.0000000 0.0000000 0.0002016 0.0000000 0.0003348 0.0000000 0.0010438 0.0000000 0.0000000 0.0000000 0.0003094 0.0038715 0.0002698 0.0027121 0.0000000 0.0171533 0.0029101 0.0028432 0.0017689 0.0005685 0.0000000 0.0009559
HSP+ B cells 0.0000000 0.0000000 0.0000000 0.0000000 0.0001523 0.0000000 0.0000000 0.0001281 0.0000000 0.0000000 0.0383104 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0002016 0.0000000 0.0043522 0.0000000 0.0000000 0.0000000 0.0004062 0.0000000 0.0000000 0.0000000 0.0056665 0.0001937 0.0002479 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
innate lymphocytes 0.0029548 0.0353006 0.0045859 0.0077706 0.0039610 0.0023866 0.0075522 0.0019214 0.0012806 0.0038101 0.0245580 0.0046451 0.0058068 0.0083333 0.0044589 0.0006984 0.0082908 0.0014938 0.0339105 0.0129630 0.0006750 0.0144928 0.0006684 0.0007315 0.0016584 0.0036290 0.0039675 0.0006696 0.0138083 0.0013918 0.0018120 0.0020309 0.0002687 0.0003094 0.0046458 0.0010793 0.0048431 0.0047105 0.0229927 0.0177249 0.0378710 0.0168730 0.0136441 0.0071664 0.0023367
macro-alveolar 0.4221190 0.3113624 0.2098732 0.2264202 0.2995125 0.5151154 0.1790315 0.2665557 0.2875960 0.2653869 0.0049116 0.3057146 0.2701711 0.3975490 0.3133360 0.3543791 0.1383929 0.3450704 0.0490620 0.1504630 0.3182585 0.0953717 0.1129679 0.2172641 0.2094290 0.3780242 0.3589647 0.4375628 0.2869373 0.2470424 0.4511778 0.3103168 0.4254233 0.3254950 0.2783585 0.2298975 0.2187137 0.0726416 0.2248175 0.2555556 0.2490618 0.1941761 0.2990335 0.2562942 0.3028147
macro-APOC2+ 0.0097087 0.0554330 0.1489075 0.1120043 0.0182815 0.1213206 0.0604176 0.1220699 0.0792170 0.0839683 0.0000000 0.0002161 0.1167482 0.0406863 0.0295906 0.1197095 0.0612245 0.1647461 0.0234488 0.1393519 0.1083361 0.0584385 0.1169786 0.2370154 0.2665245 0.0181452 0.0181372 0.0562437 0.0577189 0.0299235 0.0646265 0.0426483 0.1023918 0.1045792 0.0913666 0.0731247 0.0678032 0.0297508 0.0580292 0.0068783 0.0088707 0.0032658 0.1426947 0.0714757 0.0798725
macro-CCL 0.0320810 0.0242692 0.0126787 0.0383173 0.0449421 0.0135243 0.0377610 0.0203663 0.0611050 0.0279894 0.0058939 0.0229016 0.0168093 0.0200980 0.0145926 0.0198352 0.0752551 0.0599659 0.0624098 0.0347222 0.0354371 0.0257129 0.0748663 0.0117045 0.0293769 0.0161290 0.0432647 0.0150653 0.0215410 0.1249130 0.0366418 0.1149472 0.0091373 0.0278465 0.0224545 0.0742040 0.0565672 0.3805628 0.0686131 0.1812169 0.0219493 0.0970200 0.0147811 0.0320603 0.0298460
macro-CCL18 0.1291684 0.0565361 0.0666307 0.0259914 0.1250762 0.0497216 0.0346513 0.1132317 0.0285401 0.0156800 0.0009823 0.0589824 0.0663203 0.0161765 0.0295906 0.0219304 0.0325255 0.0341443 0.1028139 0.0217593 0.0958488 0.0271155 0.1403743 0.0987564 0.0713101 0.0391129 0.0255054 0.0385002 0.1198564 0.1203897 0.1050936 0.0999188 0.0491803 0.0148515 0.0301974 0.0599029 0.0325455 0.0137598 0.0364964 0.0870370 0.0434436 0.0390529 0.0358158 0.0743989 0.0431227
macro-IFI27 0.0329253 0.0959735 0.1642838 0.1197749 0.0382389 0.0652347 0.0417592 0.1243756 0.1030004 0.0939332 0.0000000 0.1306039 0.0773227 0.1058824 0.1998379 0.0814360 0.0440051 0.0973111 0.0303030 0.1055556 0.0573743 0.0271155 0.0220588 0.0614484 0.0488036 0.1066532 0.1112790 0.0204218 0.0292737 0.0508003 0.0318099 0.0174655 0.1128729 0.1612005 0.0658149 0.0410146 0.0780705 0.0769803 0.0375912 0.0449735 0.1482998 0.1469588 0.0142126 0.1585101 0.1742963
macro-IFI27+APOC2+ 0.0008442 0.0102041 0.0895603 0.0511790 0.0039610 0.0214797 0.0177699 0.0435507 0.0303696 0.0250586 0.0000000 0.0003241 0.0388142 0.0102941 0.0125659 0.0276575 0.0261480 0.0550576 0.0248918 0.0754630 0.0165373 0.0182328 0.0260695 0.0343819 0.0341151 0.0052419 0.0054789 0.0023435 0.0044187 0.0118302 0.0042279 0.0032494 0.0225746 0.0473391 0.0240031 0.0145710 0.0220845 0.0359489 0.0062044 0.0002646 0.0014784 0.0016329 0.0079591 0.0428100 0.0417419
macro-IFI27+CCL18+ 0.0101309 0.0066189 0.0353385 0.0085745 0.0088361 0.0019889 0.0039982 0.0243371 0.0021954 0.0010258 0.0000000 0.0122070 0.0088631 0.0009804 0.0101338 0.0027937 0.0025510 0.0046948 0.0779221 0.0050926 0.0118124 0.0037401 0.0187166 0.0095099 0.0056859 0.0070565 0.0039675 0.0016739 0.0071803 0.0170494 0.0054359 0.0036556 0.0134372 0.0046411 0.0030972 0.0051268 0.0091050 0.0070658 0.0018248 0.0119048 0.0175139 0.0163288 0.0011370 0.0322489 0.0175252
macro-IFN 0.0101309 0.0124104 0.0126787 0.0053591 0.0083790 0.0059666 0.0039982 0.0038427 0.0120746 0.0118699 0.0000000 0.0140434 0.0097800 0.0166667 0.0097284 0.0082414 0.0089286 0.0106701 0.0054113 0.0185185 0.0158623 0.0018700 0.0127005 0.0109729 0.0116086 0.0127016 0.0100132 0.0053565 0.0038663 0.0090466 0.0096638 0.0142161 0.0174684 0.0327970 0.0224545 0.0148408 0.0129795 0.0027272 0.0109489 0.0272487 0.0188787 0.0140155 0.0028425 0.0050919 0.0037175
macro-IGF1 0.0042212 0.0744622 0.0272458 0.0222401 0.0735832 0.0139220 0.0151044 0.0522608 0.0389682 0.1122509 0.0000000 0.0383494 0.0644866 0.0867647 0.0437779 0.0396703 0.0191327 0.0183525 0.0046898 0.0486111 0.0435370 0.0046751 0.0073529 0.0277981 0.0715470 0.0679435 0.1050444 0.0274523 0.0143607 0.0097425 0.0213408 0.0081235 0.0475679 0.0643564 0.0708479 0.0240151 0.0211158 0.0074377 0.0718978 0.0335979 0.1061071 0.0572867 0.0170551 0.0161245 0.0086033
macro-interstitial 0.0105530 0.0281302 0.0029674 0.0203644 0.0067032 0.0075577 0.0115504 0.0042270 0.0314673 0.0043962 0.0825147 0.0109107 0.0076406 0.0210784 0.0145926 0.0048890 0.0765306 0.0042680 0.0119048 0.0148148 0.0020250 0.0967742 0.1577540 0.0694952 0.0305615 0.0072581 0.0069904 0.0465350 0.0243027 0.0431454 0.0165090 0.1007311 0.0026874 0.0061881 0.0139373 0.0596330 0.0470748 0.0088013 0.0218978 0.0259259 0.0043216 0.0048986 0.0068221 0.0042433 0.0029740
macro-lipid 0.0371465 0.0325427 0.0153763 0.0345659 0.1627057 0.0190931 0.1101733 0.0078135 0.0611050 0.1727726 0.0009823 0.0593065 0.0669315 0.0441176 0.0672882 0.0730549 0.0771684 0.0106701 0.0064935 0.0203704 0.0519744 0.0257129 0.0280749 0.0168252 0.0298507 0.0344758 0.0920083 0.0261132 0.0190555 0.1196938 0.0243608 0.1035743 0.0206934 0.0396040 0.0820751 0.1100917 0.0647036 0.0101649 0.0200730 0.0523810 0.0640282 0.0185059 0.0130756 0.0698727 0.0063728
macro-lipid-APOC2+ 0.0004221 0.0049641 0.0091718 0.0206324 0.0097502 0.0051710 0.0248778 0.0048674 0.0197585 0.0359027 0.0000000 0.0001080 0.0336186 0.0029412 0.0028375 0.0257019 0.0357143 0.0051216 0.0043290 0.0171296 0.0188998 0.0182328 0.0728610 0.0175567 0.0305615 0.0018145 0.0041564 0.0036826 0.0035902 0.0236604 0.0054359 0.0211210 0.0037624 0.0055693 0.0185830 0.0447922 0.0232468 0.0101649 0.0065693 0.0026455 0.0011373 0.0002721 0.0073906 0.0215936 0.0020181
macro-monocyte-derived 0.1148164 0.0537783 0.0741840 0.0401929 0.0315356 0.0322196 0.0182141 0.0417574 0.0883644 0.0389801 0.0117878 0.1160203 0.0583741 0.0465686 0.0360762 0.1241794 0.0573980 0.0580452 0.1179654 0.0430556 0.0722241 0.0490884 0.0247326 0.0351134 0.0326937 0.1070565 0.0636690 0.0766656 0.1110191 0.0730689 0.0877793 0.0523964 0.0663800 0.0674505 0.0720093 0.0574744 0.0422317 0.1393331 0.1036496 0.0354497 0.0528830 0.0593278 0.0983513 0.0676096 0.0851832
macro-MT 0.0168848 0.0143409 0.0097114 0.0206324 0.0175198 0.0365951 0.0266548 0.0591777 0.0316502 0.0304807 0.0000000 0.0109107 0.0229218 0.0161765 0.0478314 0.0132700 0.0057398 0.0179257 0.0057720 0.0203704 0.0215997 0.0116877 0.0120321 0.0036576 0.0225065 0.0167339 0.0170036 0.0267827 0.0218172 0.0170494 0.0223475 0.0113729 0.0177372 0.0123762 0.0116144 0.0153805 0.0195661 0.0061981 0.0149635 0.0169312 0.0490163 0.0259899 0.0301308 0.0175389 0.0116835
macro-proliferating-G2M 0.0097087 0.0154440 0.0064742 0.0179528 0.0182815 0.0222753 0.0106619 0.0181888 0.0117087 0.0079132 0.0000000 0.0207411 0.0168093 0.0098039 0.0263478 0.0099176 0.0070153 0.0140845 0.0061328 0.0148148 0.0172123 0.0116877 0.0160428 0.0138990 0.0146885 0.0241935 0.0115247 0.0174088 0.0162938 0.0121781 0.0185222 0.0044679 0.0236496 0.0148515 0.0197445 0.0099838 0.0079427 0.0040907 0.0040146 0.0148148 0.0062550 0.0100694 0.0142126 0.0130127 0.0100903
macro-proliferating-S 0.0270156 0.0339217 0.0256272 0.0380493 0.0284887 0.0350040 0.0204354 0.0280517 0.0215880 0.0168523 0.0000000 0.0184725 0.0363692 0.0205882 0.0226996 0.0122922 0.0127551 0.0213402 0.0090188 0.0296296 0.0273372 0.0070126 0.0247326 0.0336503 0.0267709 0.0314516 0.0202154 0.0277871 0.0262358 0.0198330 0.0271794 0.0052803 0.0352056 0.0262995 0.0317460 0.0175391 0.0156916 0.0074377 0.0043796 0.0325397 0.0205846 0.0212274 0.0136441 0.0245167 0.0232608
macro-T 0.0206838 0.0209597 0.0285946 0.0144695 0.0249848 0.0151154 0.0151044 0.0242090 0.0186608 0.0225674 0.0000000 0.0175003 0.0131418 0.0142157 0.0162140 0.0185780 0.0089286 0.0166453 0.0039683 0.0125000 0.0178873 0.0046751 0.0013369 0.0065838 0.0049751 0.0068548 0.0075572 0.0093740 0.0071803 0.0086987 0.0104691 0.0064988 0.0067186 0.0117574 0.0112273 0.0105235 0.0110422 0.0083054 0.0021898 0.0058201 0.0069373 0.0084365 0.0159181 0.0239510 0.0228359
mast cells 0.0000000 0.0000000 0.0000000 0.0005359 0.0001523 0.0000000 0.0008885 0.0000000 0.0000000 0.0000000 0.0098232 0.0001080 0.0012225 0.0014706 0.0008107 0.0000000 0.0063776 0.0000000 0.0007215 0.0023148 0.0000000 0.0112202 0.0000000 0.0000000 0.0004738 0.0004032 0.0003779 0.0010044 0.0000000 0.0000000 0.0000000 0.0004062 0.0002687 0.0000000 0.0007743 0.0002698 0.0001937 0.0021074 0.0000000 0.0000000 0.0000000 0.0000000 0.0005685 0.0000000 0.0000000
migratory DC 0.0000000 0.0002758 0.0000000 0.0048232 0.0004570 0.0007955 0.0000000 0.0007685 0.0000000 0.0000000 0.0049116 0.0014043 0.0033619 0.0019608 0.0016214 0.0011175 0.0044643 0.0006402 0.0064935 0.0013889 0.0010125 0.0116877 0.0127005 0.0175567 0.0059228 0.0030242 0.0007557 0.0026783 0.0091135 0.0000000 0.0002013 0.0000000 0.0000000 0.0000000 0.0000000 0.0032380 0.0036807 0.0009917 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0003186
monocytes 0.0113972 0.0013789 0.0013488 0.0200965 0.0195003 0.0023866 0.0035540 0.0044832 0.0012806 0.0013189 0.0098232 0.0468834 0.0097800 0.0127451 0.0097284 0.0108954 0.0114796 0.0134443 0.0119048 0.0087963 0.0155248 0.0107527 0.0106952 0.0065838 0.0073442 0.0217742 0.0171925 0.0133914 0.0265120 0.0059151 0.0094625 0.0064988 0.0037624 0.0046411 0.0061943 0.0218564 0.0240217 0.1063592 0.0000000 0.0000000 0.0000000 0.0000000 0.0187607 0.0086752 0.0065852
neutrophil-like 0.0000000 0.0000000 0.0000000 0.0056270 0.0012188 0.0000000 0.0000000 0.0001281 0.0000000 0.0000000 0.0108055 0.0006482 0.0003056 0.0014706 0.0000000 0.0004191 0.0063776 0.0004268 0.0010823 0.0013889 0.0006750 0.0229079 0.0033422 0.0051207 0.0021322 0.0022177 0.0005668 0.0549046 0.0035902 0.0003479 0.0004027 0.0012185 0.0000000 0.0003094 0.0000000 0.0089045 0.0092987 0.0004958 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
NK cells 0.0046433 0.0085494 0.0051254 0.0058950 0.0036563 0.0000000 0.0026655 0.0014090 0.0020124 0.0011723 0.0157171 0.0016204 0.0015281 0.0014706 0.0008107 0.0000000 0.0044643 0.0014938 0.0266955 0.0060185 0.0016875 0.0079476 0.0020053 0.0000000 0.0002369 0.0020161 0.0011336 0.0010044 0.0033140 0.0003479 0.0004027 0.0012185 0.0013437 0.0006188 0.0011614 0.0000000 0.0019372 0.0019834 0.0175182 0.0100529 0.0068236 0.0073479 0.0068221 0.0005658 0.0098779
NK-T cells 0.0000000 0.0041368 0.0002698 0.0005359 0.0001523 0.0000000 0.0013327 0.0002562 0.0005488 0.0001465 0.0019646 0.0000000 0.0003056 0.0014706 0.0000000 0.0001397 0.0012755 0.0002134 0.0014430 0.0000000 0.0000000 0.0014025 0.0000000 0.0000000 0.0000000 0.0004032 0.0011336 0.0000000 0.0005523 0.0003479 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0007749 0.0000000 0.0025547 0.0002646 0.0004549 0.0010886 0.0005685 0.0000943 0.0009559
plasma B cells 0.0016885 0.0000000 0.0000000 0.0005359 0.0000000 0.0000000 0.0039982 0.0000000 0.0001829 0.0000000 0.0098232 0.0003241 0.0003056 0.0004902 0.0000000 0.0000000 0.0006378 0.0002134 0.0000000 0.0000000 0.0000000 0.0014025 0.0000000 0.0000000 0.0002369 0.0002016 0.0000000 0.0000000 0.0000000 0.0000000 0.0002013 0.0000000 0.0000000 0.0000000 0.0015486 0.0021587 0.0005812 0.0002479 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0003186
plasmacytoid DC 0.0067539 0.0165472 0.0026976 0.0029475 0.0012188 0.0003978 0.0008885 0.0019214 0.0049396 0.0002931 0.0333988 0.0049692 0.0006112 0.0009804 0.0008107 0.0001397 0.0031888 0.0040546 0.0147908 0.0009259 0.0006750 0.0074801 0.0013369 0.0000000 0.0018953 0.0016129 0.0073682 0.0050218 0.0033140 0.0020877 0.0020133 0.0008123 0.0010750 0.0015470 0.0030972 0.0010793 0.0011623 0.0006198 0.0000000 0.0000000 0.0000000 0.0000000 0.0079591 0.0026403 0.0020181
proliferating T/NK 0.0021106 0.0024821 0.0008093 0.0013398 0.0007617 0.0000000 0.0044425 0.0007685 0.0016465 0.0010258 0.0009823 0.0008642 0.0003056 0.0000000 0.0000000 0.0006984 0.0000000 0.0004268 0.0086580 0.0009259 0.0006750 0.0018700 0.0000000 0.0007315 0.0004738 0.0010081 0.0013225 0.0003348 0.0008285 0.0006959 0.0008053 0.0008123 0.0005375 0.0009282 0.0007743 0.0002698 0.0029059 0.0007438 0.0021898 0.0010582 0.0042079 0.0009525 0.0039795 0.0008487 0.0016994
secretory epithelial cells 0.0050654 0.0074462 0.0005395 0.0005359 0.0010664 0.0011933 0.0426477 0.0006405 0.0016465 0.0007327 0.0392927 0.0009722 0.0000000 0.0014706 0.0072963 0.0000000 0.0031888 0.0004268 0.0000000 0.0000000 0.0000000 0.0028050 0.0033422 0.0036576 0.0016584 0.0054435 0.0030229 0.0020087 0.0011047 0.0024356 0.0006040 0.0016247 0.0010750 0.0012376 0.0054201 0.0000000 0.0009686 0.0012396 0.0000000 0.0000000 0.0000000 0.0000000 0.0028425 0.0002829 0.0003186

Cell type proportions by sample

props$Proportions %>%
  data.frame %>%
  inner_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity,
                             Group,
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
  distinct()-> dat

ggplot(dat, aes(x = sample, y = Freq, fill = clusters)) +
  geom_bar(stat = "identity", color = "black", size = 0.1) +
  theme(axis.text.x = element_text(angle = 90,
                                   vjust = 0.5,
                                   hjust = 1),
        legend.text = element_text(size = 8),
        legend.position = "bottom") +
  labs(y = "Proportion", fill = "Cell Label") +
  #scale_fill_paletteer_d("miscpalettes::pastel", direction = 1) +
  facet_grid(~Group, scales = "free_x", space = "free_x")

No. cells per sample

props$Counts %>%
  data.frame %>%
  inner_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity, 
                             Group,
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
  distinct() -> dat

ggplot(dat, aes(x = sample, y = Freq, fill = Disease)) +
  geom_bar(stat = "identity") +
  theme(axis.text.x = element_text(angle = 90,
                                   vjust = 0.5,
                                   hjust = 1),
        legend.text = element_text(size = 8),
        legend.position = "bottom") +
  labs(y = "No. cells", fill = "Disease") +
  facet_grid(~Group, scales = "free_x", space = "free_x") +
  geom_hline(yintercept = 1000, linetype = "dashed")

Remove sample with too few cells.

seu <- subset(seu, cells = which(!seu$sample.id %in% c("sample_23.1")))

# Differences in cell type proportions
props <- getTransformedProps(clusters = seu$Annotation,
                             sample = seu$sample.id, transform="asin")
props$Proportions %>% knitr::kable()
sample_1.1 sample_15.1 sample_16.1 sample_17.1 sample_18.1 sample_19.1 sample_2.1 sample_20.1 sample_21.1 sample_22.1 sample_24.1 sample_25.1 sample_26.1 sample_27.1 sample_28.1 sample_29.1 sample_3.1 sample_30.1 sample_31.1 sample_32.1 sample_33.1 sample_34.1 sample_34.2 sample_34.3 sample_35.1 sample_35.2 sample_36.1 sample_36.2 sample_37.1 sample_37.2 sample_37.3 sample_38.1 sample_38.2 sample_38.3 sample_39.1 sample_39.2 sample_4.1 sample_40.1 sample_41.1 sample_42.1 sample_43.1 sample_5.1 sample_6.1 sample_7.1
B cells 0.0206838 0.0071704 0.0018883 0.0423365 0.0013711 0.0023866 0.0910706 0.0016652 0.0093304 0.0023447 0.0054013 0.0024450 0.0117647 0.0020268 0.0006984 0.0911990 0.0117371 0.0064935 0.0041667 0.0027000 0.0593735 0.0026738 0.0000000 0.0014215 0.0177419 0.0081239 0.0261132 0.0502624 0.0069589 0.0122811 0.0101543 0.0048374 0.0058787 0.0340689 0.0356179 0.0267338 0.0091732 0.0000000 0.0000000 0.0000000 0.0000000 0.0181922 0.0046205 0.0279341
CD4 T cells 0.0054875 0.0148924 0.0078230 0.0115220 0.0042657 0.0011933 0.0284318 0.0062764 0.0098793 0.0051290 0.0170682 0.0122249 0.0200980 0.0097284 0.0036318 0.0159439 0.0046948 0.1435786 0.0513889 0.0097874 0.0892941 0.0060160 0.0021946 0.0018953 0.0108871 0.0081239 0.0046870 0.0267882 0.0066110 0.0086571 0.0134037 0.0037624 0.0058787 0.0154859 0.0118726 0.0300271 0.0081815 0.1054745 0.0325397 0.0253611 0.0329297 0.0488914 0.0101839 0.0224110
CD4 T-IFN 0.0016885 0.0063431 0.0008093 0.0008039 0.0004570 0.0007955 0.0000000 0.0000000 0.0012806 0.0002931 0.0034568 0.0009169 0.0024510 0.0012161 0.0002794 0.0000000 0.0004268 0.0043290 0.0037037 0.0013500 0.0056101 0.0006684 0.0000000 0.0004738 0.0008065 0.0032118 0.0000000 0.0011047 0.0000000 0.0004027 0.0012185 0.0005375 0.0018564 0.0023229 0.0005397 0.0027121 0.0002479 0.0010949 0.0047619 0.0056863 0.0023132 0.0005685 0.0007544 0.0007435
CD4 T-naïve 0.0004221 0.0030336 0.0002698 0.0013398 0.0013711 0.0003978 0.0026655 0.0007685 0.0016465 0.0005862 0.0011883 0.0009169 0.0049020 0.0008107 0.0005587 0.0051020 0.0004268 0.0266955 0.0078704 0.0003375 0.0112202 0.0006684 0.0000000 0.0000000 0.0016129 0.0005668 0.0000000 0.0038663 0.0010438 0.0006040 0.0004062 0.0000000 0.0003094 0.0011614 0.0005397 0.0081364 0.0006198 0.0175182 0.0026455 0.0022745 0.0046265 0.0108016 0.0006601 0.0088157
CD4 T-NFKB 0.0000000 0.0011031 0.0002698 0.0008039 0.0004570 0.0000000 0.0022212 0.0003843 0.0043908 0.0010258 0.0016204 0.0012225 0.0024510 0.0004054 0.0002794 0.0063776 0.0002134 0.0014430 0.0027778 0.0023625 0.0327256 0.0033422 0.0014631 0.0007107 0.0016129 0.0013225 0.0043522 0.0052472 0.0041754 0.0026173 0.0044679 0.0002687 0.0006188 0.0023229 0.0097140 0.0133669 0.0003719 0.0109489 0.0164021 0.0012510 0.0023132 0.0028425 0.0005658 0.0021243
CD4 T-reg 0.0012664 0.0008274 0.0029674 0.0024116 0.0010664 0.0000000 0.0022212 0.0008966 0.0014636 0.0008792 0.0020525 0.0018337 0.0019608 0.0004054 0.0005587 0.0012755 0.0002134 0.0140693 0.0050926 0.0016875 0.0130902 0.0006684 0.0014631 0.0004738 0.0022177 0.0030229 0.0023435 0.0049710 0.0017397 0.0028186 0.0060926 0.0005375 0.0012376 0.0042586 0.0018888 0.0025184 0.0006198 0.0083942 0.0021164 0.0028432 0.0040822 0.0045480 0.0007544 0.0027616
CD4 T-rm 0.0004221 0.0013789 0.0008093 0.0008039 0.0006094 0.0000000 0.0008885 0.0003843 0.0005488 0.0002931 0.0008642 0.0003056 0.0004902 0.0008107 0.0006984 0.0012755 0.0002134 0.0010823 0.0013889 0.0000000 0.0028050 0.0000000 0.0000000 0.0000000 0.0002016 0.0001889 0.0000000 0.0005523 0.0017397 0.0012080 0.0012185 0.0005375 0.0003094 0.0019357 0.0005397 0.0017435 0.0006198 0.0000000 0.0000000 0.0000000 0.0000000 0.0125071 0.0008487 0.0012746
CD8 T-GZMK 0.0008442 0.0041368 0.0056650 0.0093783 0.0028946 0.0000000 0.0066637 0.0007685 0.0025613 0.0004396 0.0018364 0.0045844 0.0068627 0.0016214 0.0009778 0.0063776 0.0006402 0.0281385 0.0115741 0.0013500 0.0056101 0.0006684 0.0000000 0.0000000 0.0048387 0.0015114 0.0000000 0.0008285 0.0013918 0.0008053 0.0016247 0.0002687 0.0006188 0.0011614 0.0002698 0.0034870 0.0035949 0.0510949 0.0029101 0.0052314 0.0161927 0.0045480 0.0011315 0.0031864
CD8 T-inflammasome 0.0033770 0.0107557 0.0059347 0.0085745 0.0097502 0.0007955 0.0084407 0.0067888 0.0065862 0.0045428 0.0136113 0.0051956 0.0107843 0.0072963 0.0046096 0.0051020 0.0029876 0.0497835 0.0375000 0.0057374 0.0640486 0.0046791 0.0007315 0.0016584 0.0064516 0.0058568 0.0023435 0.0127037 0.0038274 0.0028186 0.0044679 0.0018812 0.0024752 0.0081301 0.0040475 0.0116234 0.0086773 0.0160584 0.0251323 0.0461731 0.0874949 0.0403638 0.0164074 0.0165693
CD8 T-rm 0.0021106 0.0146167 0.0167251 0.0174169 0.0038087 0.0003978 0.0359840 0.0023056 0.0087816 0.0045428 0.0155558 0.0036675 0.0132353 0.0178354 0.0097779 0.0471939 0.0055484 0.0198413 0.0458333 0.0104624 0.0584385 0.0046791 0.0021946 0.0035537 0.0090726 0.0028339 0.0010044 0.0113228 0.0093946 0.0038252 0.0138099 0.0016125 0.0018564 0.0158730 0.0026983 0.0579233 0.0131400 0.0328467 0.0462963 0.0382122 0.1035515 0.0500284 0.0096181 0.0182687
cDC1 0.0008442 0.0002758 0.0002698 0.0008039 0.0001523 0.0000000 0.0000000 0.0007685 0.0009147 0.0004396 0.0011883 0.0003056 0.0019608 0.0000000 0.0000000 0.0006378 0.0000000 0.0137085 0.0004630 0.0003375 0.0060776 0.0000000 0.0000000 0.0007107 0.0006048 0.0007557 0.0000000 0.0030378 0.0000000 0.0006040 0.0000000 0.0000000 0.0000000 0.0007743 0.0005397 0.0013561 0.0011157 0.0000000 0.0000000 0.0000000 0.0000000 0.0028425 0.0005658 0.0012746
cDC2 0.0021106 0.0013789 0.0008093 0.0305466 0.0155393 0.0043755 0.0008885 0.0033303 0.0021954 0.0008792 0.0322999 0.0158924 0.0181373 0.0137819 0.0053080 0.0357143 0.0100299 0.0147908 0.0129630 0.0101249 0.0467508 0.0648396 0.0468178 0.0236911 0.0167339 0.0162479 0.0271175 0.0389395 0.0052192 0.0034226 0.0040617 0.0000000 0.0009282 0.0042586 0.0183486 0.0288648 0.0099169 0.0000000 0.0000000 0.0000000 0.0000000 0.0096646 0.0013201 0.0023367
ciliated epithelial cells 0.0375686 0.0057915 0.0000000 0.0026795 0.0042657 0.0007955 0.1110618 0.0037146 0.0087816 0.0030774 0.0024846 0.0006112 0.0019608 0.0202675 0.0006984 0.0414541 0.0012804 0.0010823 0.0018519 0.0000000 0.0191678 0.0060160 0.0051207 0.0021322 0.0040323 0.0064236 0.0056913 0.0027617 0.0052192 0.0014093 0.0036556 0.0005375 0.0006188 0.0100658 0.0029682 0.0060054 0.0019834 0.0000000 0.0000000 0.0000000 0.0000000 0.0034110 0.0009430 0.0008497
dividing innate cells 0.0000000 0.0002758 0.0002698 0.0024116 0.0006094 0.0003978 0.0093292 0.0002562 0.0000000 0.0000000 0.0012963 0.0006112 0.0000000 0.0000000 0.0001397 0.0031888 0.0006402 0.0003608 0.0000000 0.0003375 0.0032726 0.0013369 0.0000000 0.0002369 0.0002016 0.0001889 0.0016739 0.0008285 0.0000000 0.0000000 0.0004062 0.0000000 0.0003094 0.0011614 0.0035078 0.0017435 0.0006198 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0001062
gamma delta T cells 0.0000000 0.0005516 0.0008093 0.0008039 0.0003047 0.0000000 0.0000000 0.0003843 0.0007318 0.0000000 0.0003241 0.0006112 0.0004902 0.0012161 0.0001397 0.0000000 0.0000000 0.0223665 0.0064815 0.0003375 0.0014025 0.0000000 0.0000000 0.0000000 0.0002016 0.0000000 0.0003348 0.0000000 0.0010438 0.0000000 0.0000000 0.0000000 0.0003094 0.0038715 0.0002698 0.0027121 0.0000000 0.0171533 0.0029101 0.0028432 0.0017689 0.0005685 0.0000000 0.0009559
HSP+ B cells 0.0000000 0.0000000 0.0000000 0.0000000 0.0001523 0.0000000 0.0000000 0.0001281 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0002016 0.0000000 0.0043522 0.0000000 0.0000000 0.0000000 0.0004062 0.0000000 0.0000000 0.0000000 0.0056665 0.0001937 0.0002479 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
innate lymphocytes 0.0029548 0.0353006 0.0045859 0.0077706 0.0039610 0.0023866 0.0075522 0.0019214 0.0012806 0.0038101 0.0046451 0.0058068 0.0083333 0.0044589 0.0006984 0.0082908 0.0014938 0.0339105 0.0129630 0.0006750 0.0144928 0.0006684 0.0007315 0.0016584 0.0036290 0.0039675 0.0006696 0.0138083 0.0013918 0.0018120 0.0020309 0.0002687 0.0003094 0.0046458 0.0010793 0.0048431 0.0047105 0.0229927 0.0177249 0.0378710 0.0168730 0.0136441 0.0071664 0.0023367
macro-alveolar 0.4221190 0.3113624 0.2098732 0.2264202 0.2995125 0.5151154 0.1790315 0.2665557 0.2875960 0.2653869 0.3057146 0.2701711 0.3975490 0.3133360 0.3543791 0.1383929 0.3450704 0.0490620 0.1504630 0.3182585 0.0953717 0.1129679 0.2172641 0.2094290 0.3780242 0.3589647 0.4375628 0.2869373 0.2470424 0.4511778 0.3103168 0.4254233 0.3254950 0.2783585 0.2298975 0.2187137 0.0726416 0.2248175 0.2555556 0.2490618 0.1941761 0.2990335 0.2562942 0.3028147
macro-APOC2+ 0.0097087 0.0554330 0.1489075 0.1120043 0.0182815 0.1213206 0.0604176 0.1220699 0.0792170 0.0839683 0.0002161 0.1167482 0.0406863 0.0295906 0.1197095 0.0612245 0.1647461 0.0234488 0.1393519 0.1083361 0.0584385 0.1169786 0.2370154 0.2665245 0.0181452 0.0181372 0.0562437 0.0577189 0.0299235 0.0646265 0.0426483 0.1023918 0.1045792 0.0913666 0.0731247 0.0678032 0.0297508 0.0580292 0.0068783 0.0088707 0.0032658 0.1426947 0.0714757 0.0798725
macro-CCL 0.0320810 0.0242692 0.0126787 0.0383173 0.0449421 0.0135243 0.0377610 0.0203663 0.0611050 0.0279894 0.0229016 0.0168093 0.0200980 0.0145926 0.0198352 0.0752551 0.0599659 0.0624098 0.0347222 0.0354371 0.0257129 0.0748663 0.0117045 0.0293769 0.0161290 0.0432647 0.0150653 0.0215410 0.1249130 0.0366418 0.1149472 0.0091373 0.0278465 0.0224545 0.0742040 0.0565672 0.3805628 0.0686131 0.1812169 0.0219493 0.0970200 0.0147811 0.0320603 0.0298460
macro-CCL18 0.1291684 0.0565361 0.0666307 0.0259914 0.1250762 0.0497216 0.0346513 0.1132317 0.0285401 0.0156800 0.0589824 0.0663203 0.0161765 0.0295906 0.0219304 0.0325255 0.0341443 0.1028139 0.0217593 0.0958488 0.0271155 0.1403743 0.0987564 0.0713101 0.0391129 0.0255054 0.0385002 0.1198564 0.1203897 0.1050936 0.0999188 0.0491803 0.0148515 0.0301974 0.0599029 0.0325455 0.0137598 0.0364964 0.0870370 0.0434436 0.0390529 0.0358158 0.0743989 0.0431227
macro-IFI27 0.0329253 0.0959735 0.1642838 0.1197749 0.0382389 0.0652347 0.0417592 0.1243756 0.1030004 0.0939332 0.1306039 0.0773227 0.1058824 0.1998379 0.0814360 0.0440051 0.0973111 0.0303030 0.1055556 0.0573743 0.0271155 0.0220588 0.0614484 0.0488036 0.1066532 0.1112790 0.0204218 0.0292737 0.0508003 0.0318099 0.0174655 0.1128729 0.1612005 0.0658149 0.0410146 0.0780705 0.0769803 0.0375912 0.0449735 0.1482998 0.1469588 0.0142126 0.1585101 0.1742963
macro-IFI27+APOC2+ 0.0008442 0.0102041 0.0895603 0.0511790 0.0039610 0.0214797 0.0177699 0.0435507 0.0303696 0.0250586 0.0003241 0.0388142 0.0102941 0.0125659 0.0276575 0.0261480 0.0550576 0.0248918 0.0754630 0.0165373 0.0182328 0.0260695 0.0343819 0.0341151 0.0052419 0.0054789 0.0023435 0.0044187 0.0118302 0.0042279 0.0032494 0.0225746 0.0473391 0.0240031 0.0145710 0.0220845 0.0359489 0.0062044 0.0002646 0.0014784 0.0016329 0.0079591 0.0428100 0.0417419
macro-IFI27+CCL18+ 0.0101309 0.0066189 0.0353385 0.0085745 0.0088361 0.0019889 0.0039982 0.0243371 0.0021954 0.0010258 0.0122070 0.0088631 0.0009804 0.0101338 0.0027937 0.0025510 0.0046948 0.0779221 0.0050926 0.0118124 0.0037401 0.0187166 0.0095099 0.0056859 0.0070565 0.0039675 0.0016739 0.0071803 0.0170494 0.0054359 0.0036556 0.0134372 0.0046411 0.0030972 0.0051268 0.0091050 0.0070658 0.0018248 0.0119048 0.0175139 0.0163288 0.0011370 0.0322489 0.0175252
macro-IFN 0.0101309 0.0124104 0.0126787 0.0053591 0.0083790 0.0059666 0.0039982 0.0038427 0.0120746 0.0118699 0.0140434 0.0097800 0.0166667 0.0097284 0.0082414 0.0089286 0.0106701 0.0054113 0.0185185 0.0158623 0.0018700 0.0127005 0.0109729 0.0116086 0.0127016 0.0100132 0.0053565 0.0038663 0.0090466 0.0096638 0.0142161 0.0174684 0.0327970 0.0224545 0.0148408 0.0129795 0.0027272 0.0109489 0.0272487 0.0188787 0.0140155 0.0028425 0.0050919 0.0037175
macro-IGF1 0.0042212 0.0744622 0.0272458 0.0222401 0.0735832 0.0139220 0.0151044 0.0522608 0.0389682 0.1122509 0.0383494 0.0644866 0.0867647 0.0437779 0.0396703 0.0191327 0.0183525 0.0046898 0.0486111 0.0435370 0.0046751 0.0073529 0.0277981 0.0715470 0.0679435 0.1050444 0.0274523 0.0143607 0.0097425 0.0213408 0.0081235 0.0475679 0.0643564 0.0708479 0.0240151 0.0211158 0.0074377 0.0718978 0.0335979 0.1061071 0.0572867 0.0170551 0.0161245 0.0086033
macro-interstitial 0.0105530 0.0281302 0.0029674 0.0203644 0.0067032 0.0075577 0.0115504 0.0042270 0.0314673 0.0043962 0.0109107 0.0076406 0.0210784 0.0145926 0.0048890 0.0765306 0.0042680 0.0119048 0.0148148 0.0020250 0.0967742 0.1577540 0.0694952 0.0305615 0.0072581 0.0069904 0.0465350 0.0243027 0.0431454 0.0165090 0.1007311 0.0026874 0.0061881 0.0139373 0.0596330 0.0470748 0.0088013 0.0218978 0.0259259 0.0043216 0.0048986 0.0068221 0.0042433 0.0029740
macro-lipid 0.0371465 0.0325427 0.0153763 0.0345659 0.1627057 0.0190931 0.1101733 0.0078135 0.0611050 0.1727726 0.0593065 0.0669315 0.0441176 0.0672882 0.0730549 0.0771684 0.0106701 0.0064935 0.0203704 0.0519744 0.0257129 0.0280749 0.0168252 0.0298507 0.0344758 0.0920083 0.0261132 0.0190555 0.1196938 0.0243608 0.1035743 0.0206934 0.0396040 0.0820751 0.1100917 0.0647036 0.0101649 0.0200730 0.0523810 0.0640282 0.0185059 0.0130756 0.0698727 0.0063728
macro-lipid-APOC2+ 0.0004221 0.0049641 0.0091718 0.0206324 0.0097502 0.0051710 0.0248778 0.0048674 0.0197585 0.0359027 0.0001080 0.0336186 0.0029412 0.0028375 0.0257019 0.0357143 0.0051216 0.0043290 0.0171296 0.0188998 0.0182328 0.0728610 0.0175567 0.0305615 0.0018145 0.0041564 0.0036826 0.0035902 0.0236604 0.0054359 0.0211210 0.0037624 0.0055693 0.0185830 0.0447922 0.0232468 0.0101649 0.0065693 0.0026455 0.0011373 0.0002721 0.0073906 0.0215936 0.0020181
macro-monocyte-derived 0.1148164 0.0537783 0.0741840 0.0401929 0.0315356 0.0322196 0.0182141 0.0417574 0.0883644 0.0389801 0.1160203 0.0583741 0.0465686 0.0360762 0.1241794 0.0573980 0.0580452 0.1179654 0.0430556 0.0722241 0.0490884 0.0247326 0.0351134 0.0326937 0.1070565 0.0636690 0.0766656 0.1110191 0.0730689 0.0877793 0.0523964 0.0663800 0.0674505 0.0720093 0.0574744 0.0422317 0.1393331 0.1036496 0.0354497 0.0528830 0.0593278 0.0983513 0.0676096 0.0851832
macro-MT 0.0168848 0.0143409 0.0097114 0.0206324 0.0175198 0.0365951 0.0266548 0.0591777 0.0316502 0.0304807 0.0109107 0.0229218 0.0161765 0.0478314 0.0132700 0.0057398 0.0179257 0.0057720 0.0203704 0.0215997 0.0116877 0.0120321 0.0036576 0.0225065 0.0167339 0.0170036 0.0267827 0.0218172 0.0170494 0.0223475 0.0113729 0.0177372 0.0123762 0.0116144 0.0153805 0.0195661 0.0061981 0.0149635 0.0169312 0.0490163 0.0259899 0.0301308 0.0175389 0.0116835
macro-proliferating-G2M 0.0097087 0.0154440 0.0064742 0.0179528 0.0182815 0.0222753 0.0106619 0.0181888 0.0117087 0.0079132 0.0207411 0.0168093 0.0098039 0.0263478 0.0099176 0.0070153 0.0140845 0.0061328 0.0148148 0.0172123 0.0116877 0.0160428 0.0138990 0.0146885 0.0241935 0.0115247 0.0174088 0.0162938 0.0121781 0.0185222 0.0044679 0.0236496 0.0148515 0.0197445 0.0099838 0.0079427 0.0040907 0.0040146 0.0148148 0.0062550 0.0100694 0.0142126 0.0130127 0.0100903
macro-proliferating-S 0.0270156 0.0339217 0.0256272 0.0380493 0.0284887 0.0350040 0.0204354 0.0280517 0.0215880 0.0168523 0.0184725 0.0363692 0.0205882 0.0226996 0.0122922 0.0127551 0.0213402 0.0090188 0.0296296 0.0273372 0.0070126 0.0247326 0.0336503 0.0267709 0.0314516 0.0202154 0.0277871 0.0262358 0.0198330 0.0271794 0.0052803 0.0352056 0.0262995 0.0317460 0.0175391 0.0156916 0.0074377 0.0043796 0.0325397 0.0205846 0.0212274 0.0136441 0.0245167 0.0232608
macro-T 0.0206838 0.0209597 0.0285946 0.0144695 0.0249848 0.0151154 0.0151044 0.0242090 0.0186608 0.0225674 0.0175003 0.0131418 0.0142157 0.0162140 0.0185780 0.0089286 0.0166453 0.0039683 0.0125000 0.0178873 0.0046751 0.0013369 0.0065838 0.0049751 0.0068548 0.0075572 0.0093740 0.0071803 0.0086987 0.0104691 0.0064988 0.0067186 0.0117574 0.0112273 0.0105235 0.0110422 0.0083054 0.0021898 0.0058201 0.0069373 0.0084365 0.0159181 0.0239510 0.0228359
mast cells 0.0000000 0.0000000 0.0000000 0.0005359 0.0001523 0.0000000 0.0008885 0.0000000 0.0000000 0.0000000 0.0001080 0.0012225 0.0014706 0.0008107 0.0000000 0.0063776 0.0000000 0.0007215 0.0023148 0.0000000 0.0112202 0.0000000 0.0000000 0.0004738 0.0004032 0.0003779 0.0010044 0.0000000 0.0000000 0.0000000 0.0004062 0.0002687 0.0000000 0.0007743 0.0002698 0.0001937 0.0021074 0.0000000 0.0000000 0.0000000 0.0000000 0.0005685 0.0000000 0.0000000
migratory DC 0.0000000 0.0002758 0.0000000 0.0048232 0.0004570 0.0007955 0.0000000 0.0007685 0.0000000 0.0000000 0.0014043 0.0033619 0.0019608 0.0016214 0.0011175 0.0044643 0.0006402 0.0064935 0.0013889 0.0010125 0.0116877 0.0127005 0.0175567 0.0059228 0.0030242 0.0007557 0.0026783 0.0091135 0.0000000 0.0002013 0.0000000 0.0000000 0.0000000 0.0000000 0.0032380 0.0036807 0.0009917 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0003186
monocytes 0.0113972 0.0013789 0.0013488 0.0200965 0.0195003 0.0023866 0.0035540 0.0044832 0.0012806 0.0013189 0.0468834 0.0097800 0.0127451 0.0097284 0.0108954 0.0114796 0.0134443 0.0119048 0.0087963 0.0155248 0.0107527 0.0106952 0.0065838 0.0073442 0.0217742 0.0171925 0.0133914 0.0265120 0.0059151 0.0094625 0.0064988 0.0037624 0.0046411 0.0061943 0.0218564 0.0240217 0.1063592 0.0000000 0.0000000 0.0000000 0.0000000 0.0187607 0.0086752 0.0065852
neutrophil-like 0.0000000 0.0000000 0.0000000 0.0056270 0.0012188 0.0000000 0.0000000 0.0001281 0.0000000 0.0000000 0.0006482 0.0003056 0.0014706 0.0000000 0.0004191 0.0063776 0.0004268 0.0010823 0.0013889 0.0006750 0.0229079 0.0033422 0.0051207 0.0021322 0.0022177 0.0005668 0.0549046 0.0035902 0.0003479 0.0004027 0.0012185 0.0000000 0.0003094 0.0000000 0.0089045 0.0092987 0.0004958 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
NK cells 0.0046433 0.0085494 0.0051254 0.0058950 0.0036563 0.0000000 0.0026655 0.0014090 0.0020124 0.0011723 0.0016204 0.0015281 0.0014706 0.0008107 0.0000000 0.0044643 0.0014938 0.0266955 0.0060185 0.0016875 0.0079476 0.0020053 0.0000000 0.0002369 0.0020161 0.0011336 0.0010044 0.0033140 0.0003479 0.0004027 0.0012185 0.0013437 0.0006188 0.0011614 0.0000000 0.0019372 0.0019834 0.0175182 0.0100529 0.0068236 0.0073479 0.0068221 0.0005658 0.0098779
NK-T cells 0.0000000 0.0041368 0.0002698 0.0005359 0.0001523 0.0000000 0.0013327 0.0002562 0.0005488 0.0001465 0.0000000 0.0003056 0.0014706 0.0000000 0.0001397 0.0012755 0.0002134 0.0014430 0.0000000 0.0000000 0.0014025 0.0000000 0.0000000 0.0000000 0.0004032 0.0011336 0.0000000 0.0005523 0.0003479 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0007749 0.0000000 0.0025547 0.0002646 0.0004549 0.0010886 0.0005685 0.0000943 0.0009559
plasma B cells 0.0016885 0.0000000 0.0000000 0.0005359 0.0000000 0.0000000 0.0039982 0.0000000 0.0001829 0.0000000 0.0003241 0.0003056 0.0004902 0.0000000 0.0000000 0.0006378 0.0002134 0.0000000 0.0000000 0.0000000 0.0014025 0.0000000 0.0000000 0.0002369 0.0002016 0.0000000 0.0000000 0.0000000 0.0000000 0.0002013 0.0000000 0.0000000 0.0000000 0.0015486 0.0021587 0.0005812 0.0002479 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0003186
plasmacytoid DC 0.0067539 0.0165472 0.0026976 0.0029475 0.0012188 0.0003978 0.0008885 0.0019214 0.0049396 0.0002931 0.0049692 0.0006112 0.0009804 0.0008107 0.0001397 0.0031888 0.0040546 0.0147908 0.0009259 0.0006750 0.0074801 0.0013369 0.0000000 0.0018953 0.0016129 0.0073682 0.0050218 0.0033140 0.0020877 0.0020133 0.0008123 0.0010750 0.0015470 0.0030972 0.0010793 0.0011623 0.0006198 0.0000000 0.0000000 0.0000000 0.0000000 0.0079591 0.0026403 0.0020181
proliferating T/NK 0.0021106 0.0024821 0.0008093 0.0013398 0.0007617 0.0000000 0.0044425 0.0007685 0.0016465 0.0010258 0.0008642 0.0003056 0.0000000 0.0000000 0.0006984 0.0000000 0.0004268 0.0086580 0.0009259 0.0006750 0.0018700 0.0000000 0.0007315 0.0004738 0.0010081 0.0013225 0.0003348 0.0008285 0.0006959 0.0008053 0.0008123 0.0005375 0.0009282 0.0007743 0.0002698 0.0029059 0.0007438 0.0021898 0.0010582 0.0042079 0.0009525 0.0039795 0.0008487 0.0016994
secretory epithelial cells 0.0050654 0.0074462 0.0005395 0.0005359 0.0010664 0.0011933 0.0426477 0.0006405 0.0016465 0.0007327 0.0009722 0.0000000 0.0014706 0.0072963 0.0000000 0.0031888 0.0004268 0.0000000 0.0000000 0.0000000 0.0028050 0.0033422 0.0036576 0.0016584 0.0054435 0.0030229 0.0020087 0.0011047 0.0024356 0.0006040 0.0016247 0.0010750 0.0012376 0.0054201 0.0000000 0.0009686 0.0012396 0.0000000 0.0000000 0.0000000 0.0000000 0.0028425 0.0002829 0.0003186

Cell proportions by sample

props$Proportions %>%
  data.frame %>%
  inner_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity, 
                             Group,
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
  distinct()-> dat

ggplot(dat, aes(x = sample, y = Freq, fill = clusters)) +
  geom_bar(stat = "identity", color = "black", size = 0.1) +
  theme(axis.text.x = element_text(angle = 90,
                                   vjust = 0.5,
                                   hjust = 1),
        legend.text = element_text(size = 8),
        legend.position = "bottom") +
  labs(y = "Proportion", fill = "Cell Label") +
 # scale_fill_paletteer_d("miscpalettes::pastel", direction = 1) +
  facet_grid(~Group, scales = "free_x", space = "free_x")

Cell proportions by cell type

props$Proportions %>%
  data.frame %>%
  inner_join(seu@meta.data %>%
               dplyr::select(sample.id,
                             Annotation,
                             Annotation,
                             Disease,
                             Treatment,
                             Status, 
                             Severity, 
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id", "clusters" = "Annotation")) %>%
  distinct()-> dat

ggplot(dat, 
       aes(x = clusters, y = Freq, fill = clusters)) +
  geom_boxplot(outlier.size = 0.1, size = 0.25) +
  theme(axis.text.x = element_text(angle = 45,
                                   vjust = 1,
                                   hjust = 1),
        legend.text = element_text(size = 8)) +
  labs(y = "Proportion") +
#  scale_fill_paletteer_d("miscpalettes::pastel", direction = 1) +
  NoLegend()

Explore sources of variation

Cell count data

Look at the sources of variation in the raw cell count level data.

dims <- list(c(1,2), c(2:3), c(3,4), c(4,5))
p <- vector("list", length(dims))

for(i in 1:length(dims)){
  mds <- plotMDS(props$Counts,
    gene.selection = "common",
    plot = FALSE, dim.plot = dims[[i]])
  
  data.frame(x = mds$x, 
             y = mds$y,
             sample = rownames(mds$distance.matrix.squared)) %>%
    left_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity, 
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
    distinct() -> dat
  
  p[[i]] <- ggplot(dat, aes(x = x, y = y, 
                            shape = as.factor(Disease),
                            color = as.factor(Batch))) +
    geom_point(size = 3) +
    labs(x = glue("Principal Component {dims[[i]][1]}"),
         y = glue("Principal Component {dims[[i]][2]}"),
         colour = "Batch",
         shape = "Disease") +
    theme(legend.direction = "horizontal",
          legend.text = element_text(size = 8),
          legend.title = element_text(size = 9),
          axis.text = element_text(size = 8),
          axis.title = element_text(size = 9)) 
}

wrap_plots(p, cols = 2) + plot_layout(guides = "collect") &
  theme(legend.position = "bottom") 

dims <- list(c(1,2), c(2:3), c(3,4), c(4,5))
p <- vector("list", length(dims))

for(i in 1:length(dims)){
  mds <- plotMDS(props$Counts, 
                 gene.selection = "common",
                 plot = FALSE, dim.plot = dims[[i]])
  
   data.frame(x = mds$x, 
             y = mds$y,
             sample = rownames(mds$distance.matrix.squared)) %>%
    left_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity,
                             Participant,
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
    group_by(sample) %>%
    mutate(ncells = n()) %>%
    ungroup() %>%
    distinct() -> dat
  
  p[[i]] <- ggplot(dat, aes(x = x, y = y, 
                            colour = log2(ncells)))+
    geom_text(aes(label = str_remove_all(sample, "sample_")), size = 2.5) +
    labs(x = glue("Principal Component {dims[[i]][1]}"),
         y = glue("Principal Component {dims[[i]][2]}"),
         colour = "Log2 No. Cells") +
    theme(legend.direction = "horizontal",
          legend.text = element_text(size = 8),
          legend.title = element_text(size = 9),
          axis.text = element_text(size = 8),
          axis.title = element_text(size = 9)) +
    scale_colour_viridis_c(option = "magma")
}

wrap_plots(p, cols = 2) + plot_layout(guides = "collect") &
  theme(legend.position = "bottom") 

Cell proportion data

Look at the sources of variation in the cell proportions data.

dims <- list(c(1,2), c(2:3), c(3,4), c(4,5))
p <- vector("list", length(dims))

for(i in 1:length(dims)){
  mds <- plotMDS(props$TransformedProps,
    gene.selection = "common",
    plot = FALSE, dim.plot = dims[[i]])
  
  data.frame(x = mds$x, 
             y = mds$y,
             sample = rownames(mds$distance.matrix.squared)) %>%
    left_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity, 
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
    distinct() -> dat
  
  p[[i]] <- ggplot(dat, aes(x = x, y = y, 
                            shape = as.factor(Disease),
                            color = as.factor(Batch)))+
    geom_point(size = 3) +
    labs(x = glue("Principal Component {dims[[i]][1]}"),
         y = glue("Principal Component {dims[[i]][2]}"),
         colour = "Batch",
         shape = "Disease") +
    theme(legend.direction = "horizontal",
          legend.text = element_text(size = 8),
          legend.title = element_text(size = 9),
          axis.text = element_text(size = 8),
          axis.title = element_text(size = 9))
}

wrap_plots(p, cols = 2) + plot_layout(guides = "collect") &
  theme(legend.position = "bottom") 

dims <- list(c(1,2), c(2:3), c(3,4), c(4,5))
p <- vector("list", length(dims))

for(i in 1:length(dims)){
  mds <- plotMDS(props$TransformedProps,
    gene.selection = "common",
    plot = FALSE, dim.plot = dims[[i]])
  
  data.frame(x = mds$x, 
             y = mds$y,
             sample = rownames(mds$distance.matrix.squared)) %>%
    left_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity, 
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
    distinct() -> dat
  
  p[[i]] <- ggplot(dat, aes(x = x, y = y, 
                            shape = as.factor(Disease),
                            color = Sex))+
    geom_point(size = 3) +
    labs(x = glue("Principal Component {dims[[i]][1]}"),
         y = glue("Principal Component {dims[[i]][2]}"),
         colour = "Sex",
         shape = "Disease") +
    theme(legend.direction = "horizontal",
          legend.text = element_text(size = 8),
          legend.title = element_text(size = 9),
          axis.text = element_text(size = 8),
          axis.title = element_text(size = 9))
}

wrap_plots(p, cols = 2) + plot_layout(guides = "collect") &
  theme(legend.position = "bottom") 

dims <- list(c(1,2), c(2:3), c(3,4), c(4,5))
p <- vector("list", length(dims))

for(i in 1:length(dims)){
  mds <- plotMDS(props$TransformedProps, 
                 gene.selection = "common",
                 plot = FALSE, dim.plot = dims[[i]])
  
   data.frame(x = mds$x, 
             y = mds$y,
             sample = rownames(mds$distance.matrix.squared)) %>%
    left_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity,
                             Participant,
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
    group_by(sample) %>%
    mutate(ncells = n()) %>%
    ungroup() %>%
    distinct() -> dat
  
  p[[i]] <- ggplot(dat, aes(x = x, y = y, 
                            colour = log2(Age)))+
    geom_text(aes(label = str_remove_all(sample, "sample_")), size = 2.5) +
    labs(x = glue("Principal Component {dims[[i]][1]}"),
         y = glue("Principal Component {dims[[i]][2]}"),
         colour = "Log2 Age") +
    theme(legend.direction = "horizontal",
          legend.text = element_text(size = 8),
          legend.title = element_text(size = 9),
          axis.text = element_text(size = 8),
          axis.title = element_text(size = 9)) +
    scale_colour_viridis_c(option = "magma")
}

wrap_plots(p, cols = 2) + plot_layout(guides = "collect") &
  theme(legend.position = "bottom") 

dims <- list(c(1,2), c(2:3), c(3,4), c(4,5))
p <- vector("list", length(dims))

for(i in 1:length(dims)){
  mds <- plotMDS(props$TransformedProps, 
                 gene.selection = "common",
                 plot = FALSE, dim.plot = dims[[i]])
  
   data.frame(x = mds$x, 
             y = mds$y,
             sample = rownames(mds$distance.matrix.squared)) %>%
    left_join(seu@meta.data %>%
               dplyr::select(sample.id, 
                             Disease,
                             Treatment,
                             Status, 
                             Severity,
                             Participant,
                             Batch, 
                             Age, 
                             Sex), 
             by = c("sample" = "sample.id")) %>%
    group_by(sample) %>%
    mutate(ncells = n()) %>%
    ungroup() %>%
    distinct() -> dat
  
  p[[i]] <- ggplot(dat, aes(x = x, y = y, 
                            colour = log2(ncells)))+
    geom_text(aes(label = str_remove_all(sample, "sample_")), size = 2.5) +
    labs(x = glue("Principal Component {dims[[i]][1]}"),
         y = glue("Principal Component {dims[[i]][2]}"),
         colour = "Log2 No. Cells") +
    theme(legend.direction = "horizontal",
          legend.text = element_text(size = 8),
          legend.title = element_text(size = 9),
          axis.text = element_text(size = 8),
          axis.title = element_text(size = 9)) +
    scale_colour_viridis_c(option = "magma")
}

wrap_plots(p, cols = 2) + plot_layout(guides = "collect") &
  theme(legend.position = "bottom") 

Principal components versus traits

Principal components analysis (PCA) allows us to mathematically determine the sources of variation in the data. We can then investigate whether these correlate with any of the specifed covariates. First, we calculate the principal components. The scree plot belows shows us that most of the variation in this data is captured by the top 7 principal components.

PCs <- prcomp(t(props$TransformedProps), center = TRUE, 
              scale = TRUE, retx = TRUE)
loadings = PCs$x # pc loadings
plot(PCs, type="lines") # scree plot

Collect all of the known sample traits.

nGenes = nrow(props$TransformedProps)
nSamples = ncol(props$TransformedProps)

info <- seu@meta.data %>%
  dplyr::select(sample.id, 
                Disease,
                Treatment,
                Status, 
                Severity,
                Participant,
                Group,
                Batch, 
                Age, 
                Sex) %>%
  group_by(sample.id) %>%
  mutate(ncells = n()) %>%
  ungroup() %>%
  distinct()

m <- match(colnames(props$TransformedProps), info$sample.id)
info <- info[m,]

datTraits <- info %>% dplyr::select(Participant, Batch, Disease, Status,
                                    Group, Severity, Age, Sex, ncells) %>%
  mutate(Age = log2(Age),
         ncells = log2(ncells),
    Donor = factor(Participant),
         Batch = factor(Batch),
         Disease = factor(Disease, 
                          labels = 1:length(unique(Disease))),
         Group = factor(Group, 
                        labels = 1:length(unique(Group))),
         Treatment = factor(Status, 
                            labels = 1:length(unique(Status))),
         Sex = factor(Sex, labels = length(unique(Sex))),
         Severity = factor(Severity, labels = length(unique(Severity)))) %>%
  mutate(across(everything(), as.numeric)) %>%
  dplyr::select(-Participant, -Status)

datTraits %>% 
  knitr::kable()
Batch Disease Group Severity Age Sex ncells Donor Treatment
4 2 7 1 -0.2590872 2 11.21006 1 4
4 1 5 2 -0.0939001 2 11.82416 2 3
4 1 5 2 -0.1151479 1 11.85604 3 3
5 1 5 2 -0.0441471 1 11.86573 4 3
5 1 5 2 0.1428834 2 12.68036 5 3
6 1 5 2 -0.0729608 1 11.29577 6 3
4 2 7 1 0.1464588 2 11.13635 7 4
6 1 6 3 0.5597097 2 12.93055 8 3
4 1 6 3 1.5743836 1 12.41627 9 3
4 1 1 2 1.5993830 2 12.73640 10 1
6 1 1 2 2.3883594 2 13.17633 11 1
2 1 6 3 2.2957230 1 11.67596 12 3
2 1 5 2 2.3360877 2 10.99435 13 3
2 1 1 2 2.2980155 2 11.26854 14 1
6 1 5 2 2.5790214 1 12.80554 15 3
2 1 6 3 2.5823250 1 10.61471 16 3
6 2 7 1 0.1321035 2 12.19414 17 4
2 1 6 3 2.5889097 1 11.43671 18 3
2 1 5 2 2.5583683 1 11.07682 19 3
2 1 5 2 2.5670653 1 11.53284 20 3
2 1 2 3 2.5730557 2 11.06272 21 1
7 1 5 2 -0.9343238 1 10.54689 22 3
7 1 5 2 0.0918737 1 10.41680 22 3
7 1 5 2 1.0409164 1 12.04337 22 3
7 1 5 2 0.0807044 2 12.27612 23 3
7 1 5 2 0.9940589 2 12.36987 23 3
7 1 6 3 -0.0564254 1 11.54448 24 3
7 1 4 3 1.1764977 1 11.82217 24 2
3 1 5 2 1.5597097 1 11.48884 25 3
3 1 3 2 2.1930156 1 12.27816 25 2
3 1 3 2 2.2980155 1 11.26562 25 2
3 1 1 2 1.5703964 2 11.86147 26 1
3 1 1 2 2.0206033 2 11.65821 26 1
3 1 1 2 2.3485584 2 11.33483 26 1
5 1 5 2 1.9730702 1 11.85565 27 3
5 1 3 2 2.6297159 1 12.33371 27 2
7 2 7 1 0.2923784 2 12.97782 28 4
1 1 6 3 1.5801455 2 11.41996 29 3
1 1 5 2 1.5801455 2 11.88417 30 3
1 1 2 3 1.5993178 2 13.10214 31 1
1 2 7 1 1.5849625 2 12.84333 32 4
3 2 7 1 3.0699187 1 10.78054 33 4
4 2 7 1 2.4204621 2 13.37246 34 4
4 2 7 1 2.2356012 1 13.20075 35 4

Correlate known sample traits with the top 10 principal components. This can help us determine which traits are potentially contributing to the main sources of variation in the data and should thus be included in our statistical analysis.

moduleTraitCor <- suppressWarnings(cor(loadings[, 1:10], datTraits, use = "p"))
moduleTraitPvalue <- WGCNA::corPvalueStudent(moduleTraitCor, (nSamples - 2))

textMatrix <- paste(signif(moduleTraitCor, 2), "\n(", 
                    signif(moduleTraitPvalue, 1), ")", sep = "")
dim(textMatrix) <- dim(moduleTraitCor)

## Display the correlation values within a heatmap plot
par(cex=0.75, mar = c(6, 8.5, 3, 3))
WGCNA::labeledHeatmap(Matrix = t(moduleTraitCor),
                      xLabels = colnames(loadings)[1:10],
                      yLabels = names(datTraits),
                      colorLabels = FALSE,
                      colors = WGCNA::blueWhiteRed(6),
                      textMatrix = t(textMatrix),
                      setStdMargins = FALSE,
                      cex.text = 1,
                      zlim = c(-1,1),
                      main = paste("PCA-trait relationships: Top 10 PCs"))

Statistical analysis using the propeller and limma approach

Create the design matrix.

group <- factor(info$Group)
participant <- factor(info$Participant)
age <- log2(info$Age)
batch <- factor(info$Batch)
sex <- factor(info$Sex)

design <- model.matrix(~ 0 + group + batch + age + sex)
colnames(design)[1:7] <- levels(group) 
design
   CF.IVA.M CF.IVA.S CF.LUMA_IVA.M CF.LUMA_IVA.S CF.NO_MOD.M CF.NO_MOD.S
1         0        0             0             0           0           0
2         0        0             0             0           1           0
3         0        0             0             0           1           0
4         0        0             0             0           1           0
5         0        0             0             0           1           0
6         0        0             0             0           1           0
7         0        0             0             0           0           0
8         0        0             0             0           0           1
9         0        0             0             0           0           1
10        1        0             0             0           0           0
11        1        0             0             0           0           0
12        0        0             0             0           0           1
13        0        0             0             0           1           0
14        1        0             0             0           0           0
15        0        0             0             0           1           0
16        0        0             0             0           0           1
17        0        0             0             0           0           0
18        0        0             0             0           0           1
19        0        0             0             0           1           0
20        0        0             0             0           1           0
21        0        1             0             0           0           0
22        0        0             0             0           1           0
23        0        0             0             0           1           0
24        0        0             0             0           1           0
25        0        0             0             0           1           0
26        0        0             0             0           1           0
27        0        0             0             0           0           1
28        0        0             0             1           0           0
29        0        0             0             0           1           0
30        0        0             1             0           0           0
31        0        0             1             0           0           0
32        1        0             0             0           0           0
33        1        0             0             0           0           0
34        1        0             0             0           0           0
35        0        0             0             0           1           0
36        0        0             1             0           0           0
37        0        0             0             0           0           0
38        0        0             0             0           0           1
39        0        0             0             0           1           0
40        0        1             0             0           0           0
41        0        0             0             0           0           0
42        0        0             0             0           0           0
43        0        0             0             0           0           0
44        0        0             0             0           0           0
   NON_CF.CTRL batch1 batch2 batch3 batch4 batch5 batch6         age sexM
1            1      0      0      1      0      0      0 -0.25908722    1
2            0      0      0      1      0      0      0 -0.09390014    1
3            0      0      0      1      0      0      0 -0.11514787    0
4            0      0      0      0      1      0      0 -0.04414710    0
5            0      0      0      0      1      0      0  0.14288337    1
6            0      0      0      0      0      1      0 -0.07296080    0
7            1      0      0      1      0      0      0  0.14645883    1
8            0      0      0      0      0      1      0  0.55970971    1
9            0      0      0      1      0      0      0  1.57438357    0
10           0      0      0      1      0      0      0  1.59938302    1
11           0      0      0      0      0      1      0  2.38835941    1
12           0      1      0      0      0      0      0  2.29572302    0
13           0      1      0      0      0      0      0  2.33608770    1
14           0      1      0      0      0      0      0  2.29801547    1
15           0      0      0      0      0      1      0  2.57902140    0
16           0      1      0      0      0      0      0  2.58232503    0
17           1      0      0      0      0      1      0  0.13210354    1
18           0      1      0      0      0      0      0  2.58890969    0
19           0      1      0      0      0      0      0  2.55836829    0
20           0      1      0      0      0      0      0  2.56706530    0
21           0      1      0      0      0      0      0  2.57305573    1
22           0      0      0      0      0      0      1 -0.93432383    0
23           0      0      0      0      0      0      1  0.09187369    0
24           0      0      0      0      0      0      1  1.04091644    0
25           0      0      0      0      0      0      1  0.08070438    1
26           0      0      0      0      0      0      1  0.99405890    1
27           0      0      0      0      0      0      1 -0.05642543    0
28           0      0      0      0      0      0      1  1.17649766    0
29           0      0      1      0      0      0      0  1.55970971    0
30           0      0      1      0      0      0      0  2.19301559    0
31           0      0      1      0      0      0      0  2.29801547    0
32           0      0      1      0      0      0      0  1.57039639    1
33           0      0      1      0      0      0      0  2.02060327    1
34           0      0      1      0      0      0      0  2.34855840    1
35           0      0      0      0      1      0      0  1.97307024    0
36           0      0      0      0      1      0      0  2.62971590    0
37           1      0      0      0      0      0      1  0.29237837    1
38           0      0      0      0      0      0      0  1.58014548    1
39           0      0      0      0      0      0      0  1.58014548    1
40           0      0      0      0      0      0      0  1.59931779    1
41           1      0      0      0      0      0      0  1.58496250    1
42           1      0      1      0      0      0      0  3.06991870    0
43           1      0      0      1      0      0      0  2.42046210    1
44           1      0      0      1      0      0      0  2.23560118    0
attr(,"assign")
 [1] 1 1 1 1 1 1 1 2 2 2 2 2 2 3 4
attr(,"contrasts")
attr(,"contrasts")$group
[1] "contr.treatment"

attr(,"contrasts")$batch
[1] "contr.treatment"

attr(,"contrasts")$sex
[1] "contr.treatment"

Create the contrast matrix.

contr <- makeContrasts(CF.NO_MODvCF.IVA = 0.5*(CF.NO_MOD.M + CF.NO_MOD.S) - 0.5*(CF.IVA.M + CF.IVA.S),
                       CF.NO_MODvCF.LUMA_IVA = 0.5*(CF.NO_MOD.M + CF.NO_MOD.S) - 0.5*(CF.LUMA_IVA.M + CF.LUMA_IVA.S),
                       CF.NO_MOD.MvCF.NO_MOD.S = CF.NO_MOD.M - CF.NO_MOD.S,
                       CF.NO_MODvNON_CF.CTRL = 0.5*(CF.NO_MOD.M + CF.NO_MOD.S) - NON_CF.CTRL,
                       CF.IVAvNON_CF.CTRL = 0.5*(CF.IVA.M + CF.IVA.S) - NON_CF.CTRL,
                       CF.LUMA_IVAvNON_CF.CTRL = 0.5*(CF.LUMA_IVA.M + CF.LUMA_IVA.S) - NON_CF.CTRL,
                       levels = design)
contr
               Contrasts
Levels          CF.NO_MODvCF.IVA CF.NO_MODvCF.LUMA_IVA CF.NO_MOD.MvCF.NO_MOD.S
  CF.IVA.M                  -0.5                   0.0                       0
  CF.IVA.S                  -0.5                   0.0                       0
  CF.LUMA_IVA.M              0.0                  -0.5                       0
  CF.LUMA_IVA.S              0.0                  -0.5                       0
  CF.NO_MOD.M                0.5                   0.5                       1
  CF.NO_MOD.S                0.5                   0.5                      -1
  NON_CF.CTRL                0.0                   0.0                       0
  batch1                     0.0                   0.0                       0
  batch2                     0.0                   0.0                       0
  batch3                     0.0                   0.0                       0
  batch4                     0.0                   0.0                       0
  batch5                     0.0                   0.0                       0
  batch6                     0.0                   0.0                       0
  age                        0.0                   0.0                       0
  sexM                       0.0                   0.0                       0
               Contrasts
Levels          CF.NO_MODvNON_CF.CTRL CF.IVAvNON_CF.CTRL
  CF.IVA.M                        0.0                0.5
  CF.IVA.S                        0.0                0.5
  CF.LUMA_IVA.M                   0.0                0.0
  CF.LUMA_IVA.S                   0.0                0.0
  CF.NO_MOD.M                     0.5                0.0
  CF.NO_MOD.S                     0.5                0.0
  NON_CF.CTRL                    -1.0               -1.0
  batch1                          0.0                0.0
  batch2                          0.0                0.0
  batch3                          0.0                0.0
  batch4                          0.0                0.0
  batch5                          0.0                0.0
  batch6                          0.0                0.0
  age                             0.0                0.0
  sexM                            0.0                0.0
               Contrasts
Levels          CF.LUMA_IVAvNON_CF.CTRL
  CF.IVA.M                          0.0
  CF.IVA.S                          0.0
  CF.LUMA_IVA.M                     0.5
  CF.LUMA_IVA.S                     0.5
  CF.NO_MOD.M                       0.0
  CF.NO_MOD.S                       0.0
  NON_CF.CTRL                      -1.0
  batch1                            0.0
  batch2                            0.0
  batch3                            0.0
  batch4                            0.0
  batch5                            0.0
  batch6                            0.0
  age                               0.0
  sexM                              0.0

Add random effect for samples from the same individual.

dupcor <- duplicateCorrelation(props$TransformedProps, design=design,
                                block=participant)
dupcor
$consensus.correlation
[1] 0.6250941

$cor
[1] 0.6250941

$atanh.correlations
 [1]  0.76811923  1.32273928  0.61140958  0.53633809  1.01612542  0.57559935
 [7]  0.72951448  1.24765882  1.01475251 -0.53606034  0.93797080  0.34377796
[13]  1.06833501  0.41397905  0.26228503  0.07433215  1.16780264  0.67068831
[19]  1.08639046  0.65338501  1.43476320  0.63351546  1.28350769  1.24738214
[25]  0.63317472  0.91591486  0.24769902  0.49044207  0.34408607  0.89512501
[31]  0.59396879 -0.53606034  0.07991134  0.58554384  0.54921399  0.58214487
[37]  1.72028140  1.57899738  1.15405369  0.53292992 -0.16389086  0.60681356
[43]  0.97776902  0.86778258

Fit the model.

fit <- lmFit(props$TransformedProps, design=design, block=participant, 
                correlation=dupcor$consensus)
fit2 <- contrasts.fit(fit, contr)
fit2 <- eBayes(fit2, robust=TRUE, trend=FALSE)
pvalue <- 0.05
summary(decideTests(fit2, p.value = pvalue))
       CF.NO_MODvCF.IVA CF.NO_MODvCF.LUMA_IVA CF.NO_MOD.MvCF.NO_MOD.S
Down                  0                     0                       0
NotSig               44                    44                      44
Up                    0                     0                       0
       CF.NO_MODvNON_CF.CTRL CF.IVAvNON_CF.CTRL CF.LUMA_IVAvNON_CF.CTRL
Down                       0                  0                       0
NotSig                    43                 44                      44
Up                         1                  0                       0

Results

topTable(fit2)
                CF.NO_MODvCF.IVA CF.NO_MODvCF.LUMA_IVA CF.NO_MOD.MvCF.NO_MOD.S
neutrophil-like     -0.032103978           0.057343580          -0.03402256473
macro-IGF1           0.048434007           0.062714944           0.01695055528
macro-IFN            0.005205866           0.002539768           0.03003763351
monocytes           -0.012241009          -0.018333988           0.00006196445
HSP+ B cells         0.001953553           0.032950480          -0.01113271600
CD4 T-IFN           -0.013237507          -0.023120034           0.01914051357
migratory DC        -0.024505953          -0.026378390          -0.00393855044
macro-CCL18          0.054168504          -0.088129567          -0.00654047889
CD8 T-rm            -0.032141740          -0.056888959           0.01966709340
B cells             -0.029827960          -0.047618397          -0.05057953351
                CF.NO_MODvNON_CF.CTRL CF.IVAvNON_CF.CTRL
neutrophil-like           0.010971401        0.043075379
macro-IGF1                0.123586978        0.075152971
macro-IFN                 0.025393765        0.020187900
monocytes                -0.063451837       -0.051210829
HSP+ B cells              0.004247911        0.002294358
CD4 T-IFN                 0.007947308        0.021184815
migratory DC             -0.001232548        0.023273404
macro-CCL18               0.030308445       -0.023860059
CD8 T-rm                 -0.067488669       -0.035346929
B cells                  -0.048170472       -0.018342513
                CF.LUMA_IVAvNON_CF.CTRL     AveExpr        F     P.Value
neutrophil-like           -0.0463721791 0.032259739 4.289830 0.006998831
macro-IGF1                 0.0608720339 0.186514012 4.250580 0.007398005
macro-IFN                  0.0228539972 0.101845137 3.261977 0.024009216
monocytes                 -0.0451178496 0.096400155 3.089859 0.029716354
HSP+ B cells              -0.0287025686 0.005205621 3.011913 0.032748994
CD4 T-IFN                  0.0310673422 0.033190241 2.672084 0.050229354
migratory DC               0.0251458414 0.033207675 2.265013 0.084463190
macro-CCL18                0.1184380122 0.233027675 1.883140 0.138403204
CD8 T-rm                  -0.0105997106 0.117802877 1.707808 0.173431159
B cells                   -0.0005520755 0.099333335 1.628640 0.191987607
                adj.P.Val
neutrophil-like 0.1627561
macro-IGF1      0.1627561
macro-IFN       0.2881911
monocytes       0.2881911
HSP+ B cells    0.2881911
CD4 T-IFN       0.3683486
migratory DC    0.5309115
macro-CCL18     0.6637617
CD8 T-rm        0.6637617
B cells         0.6637617
p <- vector("list", ncol(contr))

for(i in 1:ncol(contr)){
props$Proportions %>% data.frame %>%
  left_join(info,
            by = c("sample" = "sample.id")) %>%
  dplyr::filter(Group %in%  names(contr[, i])[abs(contr[, i]) > 0]) -> dat
  
  if(length(unique(dat$Group)) > 2) dat$Group <- str_remove(dat$Group, ".(M|S)$")
ggplot(dat, aes(x = Group,
                y = Freq,
                colour = Group,
                group = Group)) +
  geom_boxplot(outlier.shape = NA, colour = "grey") +
  geom_jitter(stat = "identity",
              width = 0.15,
              size = 2) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90,
                                   hjust = 1,
                                   vjust = 0.5),
        legend.position = "bottom",
        legend.direction = "horizontal") +
  labs(x = "Group", y = "Proportion",
       colour = "Condition") +
  facet_wrap(~clusters, scales = "free_y", ncol = 4) -> p[[i]]
}

p
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]


[[6]]

Session info

The analysis and this document were prepared using the following software (click triangle to expand)
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.2 (2023-10-31)
 os       macOS Sonoma 14.5
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Australia/Melbourne
 date     2024-08-09
 pandoc   3.1.11 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/aarch64/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 ! package              * version    date (UTC) lib source
 P abind                  1.4-5      2016-07-21 [?] RSPM (R 4.3.0)
 P AnnotationDbi        * 1.64.1     2023-11-02 [?] Bioconductor
 P backports              1.4.1      2021-12-13 [?] RSPM (R 4.3.0)
 P base64enc              0.1-3      2015-07-28 [?] RSPM (R 4.3.0)
 P Biobase              * 2.62.0     2023-10-26 [?] Bioconductor
 P BiocGenerics         * 0.48.1     2023-11-02 [?] Bioconductor
 P BiocManager            1.30.22    2023-08-08 [?] RSPM (R 4.3.0)
 P Biostrings             2.70.2     2024-01-30 [?] Bioconductor 3.18 (R 4.3.2)
 P bit                    4.0.5      2022-11-15 [?] RSPM (R 4.3.0)
 P bit64                  4.0.5      2020-08-30 [?] RSPM (R 4.3.0)
 P bitops                 1.0-7      2021-04-24 [?] RSPM (R 4.3.0)
 P blob                   1.2.4      2023-03-17 [?] RSPM (R 4.3.0)
 P bslib                  0.6.1      2023-11-28 [?] RSPM (R 4.3.0)
 P cachem                 1.0.8      2023-05-01 [?] RSPM (R 4.3.0)
 P callr                  3.7.3      2022-11-02 [?] RSPM (R 4.3.0)
 P checkmate              2.3.1      2023-12-04 [?] RSPM (R 4.3.0)
 P circlize               0.4.15     2022-05-10 [?] RSPM (R 4.3.0)
 P cli                    3.6.2      2023-12-11 [?] RSPM (R 4.3.0)
 P clue                   0.3-65     2023-09-23 [?] RSPM (R 4.3.0)
 P cluster                2.1.6      2023-12-01 [?] CRAN (R 4.3.1)
 P clustree             * 0.5.1      2023-11-05 [?] RSPM (R 4.3.0)
 P codetools              0.2-20     2024-03-31 [?] CRAN (R 4.3.1)
 P colorspace             2.1-0      2023-01-23 [?] RSPM (R 4.3.0)
 P ComplexHeatmap         2.18.0     2023-10-26 [?] Bioconductor
 P cowplot                1.1.3      2024-01-22 [?] RSPM (R 4.3.0)
 P crayon                 1.5.2      2022-09-29 [?] RSPM (R 4.3.0)
 P data.table             1.15.0     2024-01-30 [?] RSPM (R 4.3.0)
 P DBI                    1.2.1      2024-01-12 [?] RSPM (R 4.3.0)
 P DelayedArray           0.28.0     2023-11-06 [?] Bioconductor
 P deldir                 2.0-2      2023-11-23 [?] RSPM (R 4.3.0)
 P dendextend             1.17.1     2023-03-25 [?] RSPM (R 4.3.0)
 P digest                 0.6.34     2024-01-11 [?] RSPM (R 4.3.0)
 P dittoSeq             * 1.14.2     2024-02-10 [?] Bioconductor 3.18 (R 4.3.2)
 P doParallel             1.0.17     2022-02-07 [?] RSPM (R 4.3.0)
 P dplyr                * 1.1.4      2023-11-17 [?] RSPM (R 4.3.0)
 P dynamicTreeCut         1.63-1     2016-03-11 [?] RSPM (R 4.3.0)
 P edgeR                * 4.0.15     2024-02-10 [?] Bioconductor 3.18 (R 4.3.2)
 P ellipsis               0.3.2      2021-04-29 [?] RSPM (R 4.3.0)
 P evaluate               0.23       2023-11-01 [?] RSPM (R 4.3.0)
 P fansi                  1.0.6      2023-12-08 [?] RSPM (R 4.3.0)
 P farver                 2.1.1      2022-07-06 [?] RSPM (R 4.3.0)
 P fastcluster            1.2.6      2024-01-12 [?] RSPM (R 4.3.0)
 P fastmap                1.1.1      2023-02-24 [?] RSPM (R 4.3.0)
 P fitdistrplus           1.1-11     2023-04-25 [?] RSPM (R 4.3.0)
 P forcats              * 1.0.0      2023-01-29 [?] RSPM (R 4.3.0)
 P foreach                1.5.2      2022-02-02 [?] RSPM (R 4.3.0)
 P foreign                0.8-86     2023-11-28 [?] CRAN (R 4.3.1)
   Formula                1.2-5      2023-02-24 [1] RSPM (R 4.3.0)
 P fs                     1.6.3      2023-07-20 [?] RSPM (R 4.3.0)
 P future                 1.33.1     2023-12-22 [?] RSPM (R 4.3.0)
 P future.apply           1.11.1     2023-12-21 [?] RSPM (R 4.3.0)
 P generics               0.1.3      2022-07-05 [?] RSPM (R 4.3.0)
 P GenomeInfoDb         * 1.38.6     2024-02-10 [?] Bioconductor 3.18 (R 4.3.2)
 P GenomeInfoDbData       1.2.11     2024-02-16 [?] Bioconductor
 P GenomicRanges        * 1.54.1     2023-10-30 [?] Bioconductor
 P GetoptLong             1.0.5      2020-12-15 [?] RSPM (R 4.3.0)
 P getPass                0.2-4      2023-12-10 [?] RSPM (R 4.3.0)
 P ggforce                0.4.2      2024-02-19 [?] RSPM (R 4.3.0)
 P ggplot2              * 3.5.0      2024-02-23 [?] RSPM (R 4.3.0)
 P ggraph               * 2.2.0      2024-02-27 [?] RSPM (R 4.3.0)
 P ggrepel                0.9.5      2024-01-10 [?] RSPM (R 4.3.0)
 P ggridges               0.5.6      2024-01-23 [?] RSPM (R 4.3.0)
 P git2r                  0.33.0     2023-11-26 [?] RSPM (R 4.3.0)
   glmGamPoi            * 1.14.3     2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
 P GlobalOptions          0.1.2      2020-06-10 [?] RSPM (R 4.3.0)
 P globals                0.16.2     2022-11-21 [?] RSPM (R 4.3.0)
 P glue                 * 1.7.0      2024-01-09 [?] RSPM (R 4.3.0)
 P GO.db                  3.18.0     2024-02-21 [?] Bioconductor
 P goftest                1.2-3      2021-10-07 [?] RSPM (R 4.3.0)
 P graphlayouts           1.1.0      2024-01-19 [?] RSPM (R 4.3.0)
 P gridExtra              2.3        2017-09-09 [?] RSPM (R 4.3.0)
 P gtable                 0.3.4      2023-08-21 [?] RSPM (R 4.3.0)
 P here                 * 1.0.1      2020-12-13 [?] RSPM (R 4.3.0)
 P highr                  0.10       2022-12-22 [?] RSPM (R 4.3.0)
   Hmisc                  5.1-1      2023-09-12 [1] RSPM (R 4.3.0)
 P hms                    1.1.3      2023-03-21 [?] RSPM (R 4.3.0)
   htmlTable              2.4.2      2023-10-29 [1] RSPM (R 4.3.0)
 P htmltools              0.5.7      2023-11-03 [?] RSPM (R 4.3.0)
 P htmlwidgets            1.6.4      2023-12-06 [?] RSPM (R 4.3.0)
 P httpuv                 1.6.14     2024-01-26 [?] RSPM (R 4.3.0)
 P httr                   1.4.7      2023-08-15 [?] RSPM (R 4.3.0)
 P ica                    1.0-3      2022-07-08 [?] RSPM (R 4.3.0)
 P igraph                 2.0.1.1    2024-01-30 [?] RSPM (R 4.3.0)
 P impute                 1.76.0     2023-10-26 [?] Bioconductor
 P IRanges              * 2.36.0     2023-10-26 [?] Bioconductor
 P irlba                  2.3.5.1    2022-10-03 [?] RSPM (R 4.3.0)
 P iterators              1.0.14     2022-02-05 [?] RSPM (R 4.3.0)
 P jquerylib              0.1.4      2021-04-26 [?] RSPM (R 4.3.0)
 P jsonlite               1.8.8      2023-12-04 [?] RSPM (R 4.3.0)
 P KEGGREST               1.42.0     2023-10-26 [?] Bioconductor
 P KernSmooth             2.23-22    2023-07-10 [?] CRAN (R 4.3.2)
 P knitr                  1.45       2023-10-30 [?] RSPM (R 4.3.0)
 P labeling               0.4.3      2023-08-29 [?] RSPM (R 4.3.0)
 P later                  1.3.2      2023-12-06 [?] RSPM (R 4.3.0)
 P lattice                0.22-6     2024-03-20 [?] CRAN (R 4.3.1)
 P lazyeval               0.2.2      2019-03-15 [?] RSPM (R 4.3.0)
 P leiden                 0.4.3.1    2023-11-17 [?] RSPM (R 4.3.0)
 P lifecycle              1.0.4      2023-11-07 [?] RSPM (R 4.3.0)
 P limma                * 3.58.1     2023-11-02 [?] Bioconductor
 P listenv                0.9.1      2024-01-29 [?] RSPM (R 4.3.0)
 P lmtest                 0.9-40     2022-03-21 [?] RSPM (R 4.3.0)
 P locfit                 1.5-9.8    2023-06-11 [?] RSPM (R 4.3.0)
 P lubridate            * 1.9.3      2023-09-27 [?] RSPM (R 4.3.0)
 P magrittr               2.0.3      2022-03-30 [?] RSPM (R 4.3.0)
 P MASS                   7.3-60.0.1 2024-01-13 [?] CRAN (R 4.3.1)
 P Matrix                 1.6-5      2024-01-11 [?] CRAN (R 4.3.1)
 P MatrixGenerics       * 1.14.0     2023-10-26 [?] Bioconductor
 P matrixStats          * 1.2.0      2023-12-11 [?] RSPM (R 4.3.0)
 P memoise                2.0.1      2021-11-26 [?] RSPM (R 4.3.0)
 P mime                   0.12       2021-09-28 [?] RSPM (R 4.3.0)
 P miniUI                 0.1.1.1    2018-05-18 [?] RSPM (R 4.3.0)
 P munsell                0.5.0      2018-06-12 [?] RSPM (R 4.3.0)
 P nlme                   3.1-164    2023-11-27 [?] CRAN (R 4.3.1)
 P nnet                   7.3-19     2023-05-03 [?] CRAN (R 4.3.2)
 P org.Hs.eg.db         * 3.18.0     2024-02-21 [?] Bioconductor
 P paletteer            * 1.6.0      2024-01-21 [?] RSPM (R 4.3.0)
 P parallelly             1.37.0     2024-02-14 [?] RSPM (R 4.3.0)
 P patchwork            * 1.2.0      2024-01-08 [?] RSPM (R 4.3.0)
 P pbapply                1.7-2      2023-06-27 [?] RSPM (R 4.3.0)
 P pheatmap               1.0.12     2019-01-04 [?] RSPM (R 4.3.0)
 P pillar                 1.9.0      2023-03-22 [?] RSPM (R 4.3.0)
 P pkgconfig              2.0.3      2019-09-22 [?] RSPM (R 4.3.0)
 P plotly                 4.10.4     2024-01-13 [?] RSPM (R 4.3.0)
 P plyr                   1.8.9      2023-10-02 [?] RSPM (R 4.3.0)
 P png                    0.1-8      2022-11-29 [?] RSPM (R 4.3.0)
 P polyclip               1.10-6     2023-09-27 [?] RSPM (R 4.3.0)
 P preprocessCore         1.64.0     2023-10-26 [?] Bioconductor
 P processx               3.8.3      2023-12-10 [?] RSPM (R 4.3.0)
 P progressr              0.14.0     2023-08-10 [?] RSPM (R 4.3.0)
 P promises               1.2.1      2023-08-10 [?] RSPM (R 4.3.0)
 P ps                     1.7.6      2024-01-18 [?] RSPM (R 4.3.0)
 P purrr                * 1.0.2      2023-08-10 [?] RSPM (R 4.3.0)
 P R6                     2.5.1      2021-08-19 [?] RSPM (R 4.3.0)
 P RANN                   2.6.1      2019-01-08 [?] RSPM (R 4.3.0)
 P RColorBrewer           1.1-3      2022-04-03 [?] RSPM (R 4.3.0)
 P Rcpp                   1.0.12     2024-01-09 [?] RSPM (R 4.3.0)
 P RcppAnnoy              0.0.22     2024-01-23 [?] RSPM (R 4.3.0)
 P RCurl                  1.98-1.14  2024-01-09 [?] RSPM (R 4.3.0)
 P readr                * 2.1.5      2024-01-10 [?] RSPM (R 4.3.0)
 P rematch2               2.1.2      2020-05-01 [?] RSPM (R 4.3.0)
   renv                   1.0.3      2023-09-19 [1] CRAN (R 4.3.1)
 P reshape2               1.4.4      2020-04-09 [?] RSPM (R 4.3.0)
 P reticulate             1.35.0     2024-01-31 [?] RSPM (R 4.3.0)
 P rjson                  0.2.21     2022-01-09 [?] RSPM (R 4.3.0)
 P rlang                  1.1.3      2024-01-10 [?] RSPM (R 4.3.0)
 P rmarkdown              2.25       2023-09-18 [?] RSPM (R 4.3.0)
 P ROCR                   1.0-11     2020-05-02 [?] RSPM (R 4.3.0)
 P rpart                  4.1.23     2023-12-05 [?] CRAN (R 4.3.1)
 P rprojroot              2.0.4      2023-11-05 [?] RSPM (R 4.3.0)
 P RSQLite                2.3.5      2024-01-21 [?] RSPM (R 4.3.0)
 P rstudioapi             0.15.0     2023-07-07 [?] RSPM (R 4.3.0)
 P Rtsne                  0.17       2023-12-07 [?] RSPM (R 4.3.0)
 P S4Arrays               1.2.0      2023-10-26 [?] Bioconductor
 P S4Vectors            * 0.40.2     2023-11-25 [?] Bioconductor 3.18 (R 4.3.2)
 P sass                   0.4.8      2023-12-06 [?] RSPM (R 4.3.0)
 P scales                 1.3.0      2023-11-28 [?] RSPM (R 4.3.0)
 P scattermore            1.2        2023-06-12 [?] RSPM (R 4.3.0)
 P sctransform            0.4.1      2023-10-19 [?] RSPM (R 4.3.0)
 P sessioninfo            1.2.2      2021-12-06 [?] RSPM (R 4.3.0)
 P Seurat               * 4.4.0      2023-09-28 [?] RSPM (R 4.3.2)
 P SeuratObject         * 4.1.4      2023-09-26 [?] RSPM (R 4.3.2)
 P shape                  1.4.6      2021-05-19 [?] RSPM (R 4.3.0)
 P shiny                  1.8.0      2023-11-17 [?] RSPM (R 4.3.0)
 P SingleCellExperiment * 1.24.0     2023-11-06 [?] Bioconductor
 P sp                     2.1-3      2024-01-30 [?] RSPM (R 4.3.0)
 P SparseArray            1.2.4      2024-02-10 [?] Bioconductor 3.18 (R 4.3.2)
 P spatstat.data          3.0-4      2024-01-15 [?] RSPM (R 4.3.0)
 P spatstat.explore       3.2-6      2024-02-01 [?] RSPM (R 4.3.0)
 P spatstat.geom          3.2-8      2024-01-26 [?] RSPM (R 4.3.0)
 P spatstat.random        3.2-2      2023-11-29 [?] RSPM (R 4.3.0)
 P spatstat.sparse        3.0-3      2023-10-24 [?] RSPM (R 4.3.0)
 P spatstat.utils         3.0-4      2023-10-24 [?] RSPM (R 4.3.0)
 P speckle              * 1.2.0      2023-10-26 [?] Bioconductor
 P statmod                1.5.0      2023-01-06 [?] RSPM (R 4.3.0)
 P stringi                1.8.3      2023-12-11 [?] RSPM (R 4.3.0)
 P stringr              * 1.5.1      2023-11-14 [?] RSPM (R 4.3.0)
 P SummarizedExperiment * 1.32.0     2023-11-06 [?] Bioconductor
 P survival               3.5-8      2024-02-14 [?] CRAN (R 4.3.1)
 P tensor                 1.5        2012-05-05 [?] RSPM (R 4.3.0)
 P tibble               * 3.2.1      2023-03-20 [?] RSPM (R 4.3.0)
 P tidygraph              1.3.1      2024-01-30 [?] RSPM (R 4.3.0)
 P tidyHeatmap          * 1.8.1      2022-05-20 [?] RSPM (R 4.3.2)
 P tidyr                * 1.3.1      2024-01-24 [?] RSPM (R 4.3.0)
 P tidyselect             1.2.0      2022-10-10 [?] RSPM (R 4.3.0)
 P tidyverse            * 2.0.0      2023-02-22 [?] RSPM (R 4.3.0)
 P timechange             0.3.0      2024-01-18 [?] RSPM (R 4.3.0)
 P tweenr                 2.0.3      2024-02-26 [?] RSPM (R 4.3.0)
 P tzdb                   0.4.0      2023-05-12 [?] RSPM (R 4.3.0)
 P utf8                   1.2.4      2023-10-22 [?] RSPM (R 4.3.0)
 P uwot                   0.1.16     2023-06-29 [?] RSPM (R 4.3.0)
 P vctrs                  0.6.5      2023-12-01 [?] RSPM (R 4.3.0)
 P viridis                0.6.5      2024-01-29 [?] RSPM (R 4.3.0)
 P viridisLite            0.4.2      2023-05-02 [?] RSPM (R 4.3.0)
 P WGCNA                  1.72-5     2023-12-07 [?] RSPM (R 4.3.2)
 P whisker                0.4.1      2022-12-05 [?] RSPM (R 4.3.0)
 P withr                  3.0.0      2024-01-16 [?] RSPM (R 4.3.0)
 P workflowr            * 1.7.1      2023-08-23 [?] RSPM (R 4.3.2)
 P xfun                   0.42       2024-02-08 [?] RSPM (R 4.3.0)
 P xtable                 1.8-4      2019-04-21 [?] RSPM (R 4.3.0)
 P XVector                0.42.0     2023-10-26 [?] Bioconductor
 P yaml                   2.3.8      2023-12-11 [?] RSPM (R 4.3.0)
 P zlibbioc               1.48.0     2023-10-26 [?] Bioconductor
 P zoo                    1.8-12     2023-04-13 [?] RSPM (R 4.3.0)

 [1] /Users/maksimovicjovana/Work/Projects/MCRI/melanie.neeland/paed-inflammation-CITEseq/renv/library/R-4.3/aarch64-apple-darwin20
 [2] /Users/maksimovicjovana/Library/Caches/org.R-project.R/R/renv/sandbox/R-4.3/aarch64-apple-darwin20/ac5c2659

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────

sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods  
[8] base     

other attached packages:
 [1] here_1.0.1                  tidyHeatmap_1.8.1          
 [3] paletteer_1.6.0             patchwork_1.2.0            
 [5] speckle_1.2.0               glue_1.7.0                 
 [7] org.Hs.eg.db_3.18.0         AnnotationDbi_1.64.1       
 [9] clustree_0.5.1              ggraph_2.2.0               
[11] dittoSeq_1.14.2             glmGamPoi_1.14.3           
[13] SeuratObject_4.1.4          Seurat_4.4.0               
[15] lubridate_1.9.3             forcats_1.0.0              
[17] stringr_1.5.1               dplyr_1.1.4                
[19] purrr_1.0.2                 readr_2.1.5                
[21] tidyr_1.3.1                 tibble_3.2.1               
[23] ggplot2_3.5.0               tidyverse_2.0.0            
[25] edgeR_4.0.15                limma_3.58.1               
[27] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
[29] Biobase_2.62.0              GenomicRanges_1.54.1       
[31] GenomeInfoDb_1.38.6         IRanges_2.36.0             
[33] S4Vectors_0.40.2            BiocGenerics_0.48.1        
[35] MatrixGenerics_1.14.0       matrixStats_1.2.0          
[37] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] fs_1.6.3                spatstat.sparse_3.0-3   bitops_1.0-7           
  [4] httr_1.4.7              RColorBrewer_1.1-3      doParallel_1.0.17      
  [7] dynamicTreeCut_1.63-1   backports_1.4.1         tools_4.3.2            
 [10] sctransform_0.4.1       utf8_1.2.4              R6_2.5.1               
 [13] lazyeval_0.2.2          uwot_0.1.16             GetoptLong_1.0.5       
 [16] withr_3.0.0             sp_2.1-3                gridExtra_2.3          
 [19] preprocessCore_1.64.0   progressr_0.14.0        WGCNA_1.72-5           
 [22] cli_3.6.2               spatstat.explore_3.2-6  labeling_0.4.3         
 [25] sass_0.4.8              spatstat.data_3.0-4     ggridges_0.5.6         
 [28] pbapply_1.7-2           foreign_0.8-86          sessioninfo_1.2.2      
 [31] parallelly_1.37.0       impute_1.76.0           rstudioapi_0.15.0      
 [34] RSQLite_2.3.5           generics_0.1.3          shape_1.4.6            
 [37] ica_1.0-3               spatstat.random_3.2-2   dendextend_1.17.1      
 [40] GO.db_3.18.0            Matrix_1.6-5            fansi_1.0.6            
 [43] abind_1.4-5             lifecycle_1.0.4         whisker_0.4.1          
 [46] yaml_2.3.8              SparseArray_1.2.4       Rtsne_0.17             
 [49] grid_4.3.2              blob_1.2.4              promises_1.2.1         
 [52] crayon_1.5.2            miniUI_0.1.1.1          lattice_0.22-6         
 [55] cowplot_1.1.3           KEGGREST_1.42.0         pillar_1.9.0           
 [58] knitr_1.45              ComplexHeatmap_2.18.0   rjson_0.2.21           
 [61] future.apply_1.11.1     codetools_0.2-20        leiden_0.4.3.1         
 [64] getPass_0.2-4           data.table_1.15.0       vctrs_0.6.5            
 [67] png_0.1-8               gtable_0.3.4            rematch2_2.1.2         
 [70] cachem_1.0.8            xfun_0.42               S4Arrays_1.2.0         
 [73] mime_0.12               tidygraph_1.3.1         survival_3.5-8         
 [76] pheatmap_1.0.12         iterators_1.0.14        statmod_1.5.0          
 [79] ellipsis_0.3.2          fitdistrplus_1.1-11     ROCR_1.0-11            
 [82] nlme_3.1-164            bit64_4.0.5             RcppAnnoy_0.0.22       
 [85] rprojroot_2.0.4         bslib_0.6.1             irlba_2.3.5.1          
 [88] rpart_4.1.23            KernSmooth_2.23-22      Hmisc_5.1-1            
 [91] colorspace_2.1-0        DBI_1.2.1               nnet_7.3-19            
 [94] tidyselect_1.2.0        processx_3.8.3          bit_4.0.5              
 [97] compiler_4.3.2          git2r_0.33.0            htmlTable_2.4.2        
[100] DelayedArray_0.28.0     plotly_4.10.4           checkmate_2.3.1        
[103] scales_1.3.0            lmtest_0.9-40           callr_3.7.3            
[106] digest_0.6.34           goftest_1.2-3           spatstat.utils_3.0-4   
[109] rmarkdown_2.25          XVector_0.42.0          base64enc_0.1-3        
[112] htmltools_0.5.7         pkgconfig_2.0.3         highr_0.10             
[115] fastmap_1.1.1           rlang_1.1.3             GlobalOptions_0.1.2    
[118] htmlwidgets_1.6.4       shiny_1.8.0             farver_2.1.1           
[121] jquerylib_0.1.4         zoo_1.8-12              jsonlite_1.8.8         
[124] RCurl_1.98-1.14         magrittr_2.0.3          Formula_1.2-5          
[127] GenomeInfoDbData_1.2.11 munsell_0.5.0           Rcpp_1.0.12            
[130] viridis_0.6.5           reticulate_1.35.0       stringi_1.8.3          
[133] zlibbioc_1.48.0         MASS_7.3-60.0.1         plyr_1.8.9             
[136] parallel_4.3.2          listenv_0.9.1           ggrepel_0.9.5          
[139] deldir_2.0-2            Biostrings_2.70.2       graphlayouts_1.1.0     
[142] splines_4.3.2           tensor_1.5              hms_1.1.3              
[145] circlize_0.4.15         locfit_1.5-9.8          ps_1.7.6               
[148] fastcluster_1.2.6       igraph_2.0.1.1          spatstat.geom_3.2-8    
[151] reshape2_1.4.4          evaluate_0.23           renv_1.0.3             
[154] BiocManager_1.30.22     tzdb_0.4.0              foreach_1.5.2          
[157] tweenr_2.0.3            httpuv_1.6.14           RANN_2.6.1             
[160] polyclip_1.10-6         future_1.33.1           clue_0.3-65            
[163] scattermore_1.2         ggforce_0.4.2           xtable_1.8-4           
[166] later_1.3.2             viridisLite_0.4.2       memoise_2.0.1          
[169] cluster_2.1.6           timechange_0.3.0        globals_0.16.2