Last updated: 2024-08-21

Checks: 7 0

Knit directory: CCL19_FRCs_lung_cancer/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240808) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7411834. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.DS_Store
    Ignored:    data/Human/
    Ignored:    data/Mouse/
    Ignored:    output/GSEA_AdvFB_SULF1/
    Ignored:    output/GSEA_AdvFB_TLS/
    Ignored:    output/GSEA_CCR7_T/
    Ignored:    output/GSEA_CD8_T/
    Ignored:    output/GSEA_CYCL_T/
    Ignored:    output/GSEA_EXH_T/
    Ignored:    output/GSEA_SMC_PRC/

Untracked files:
    Untracked:  analysis/NSCLC_PDAC_CAFs.Rmd
    Untracked:  analysis/NSCLC_trajectory_analysis.Rmd
    Untracked:  analysis/Tetra_CD8_T_cells.Rmd
    Untracked:  analysis/Total_CD8_DTR_Tetra.Rmd
    Untracked:  analysis/extra_functions.R
    Untracked:  analysis/index_hidden.Rmd
    Untracked:  analysis/mcov_R.Rmd

Unstaged changes:
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Mouse_LLC_naive.Rmd) and HTML (docs/Mouse_LLC_naive.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7411834 Pchryssa 2024-08-21 Mouse naive LLC
html d858d59 Pchryssa 2024-08-21 Build site.
html 58bc483 Pchryssa 2024-08-21 Build site.
html fb217c6 Pchryssa 2024-08-21 Build site.
Rmd f15622d Pchryssa 2024-08-21 NSCLC FRC TIL merge

Load packages

suppressPackageStartupMessages({
  library(here)
  library(purrr)
  library(dplyr)
  library(stringr)
  library(patchwork)
  library(Seurat)
  library(Matrix)
  library(dittoSeq)
  library(gridExtra)
  library(gsubfn)
  library(ggsci)
  library(slingshot)
})

Set directory

basedir <- here()

Read CCL19-EYFP⁺ cell data from naïve lungs and excised LLC-gp33 tumors on day 23

CCL19_EYFP <- readRDS(paste0(basedir,"/data/Mouse/CCL19_EYFP_nonmCOV.rds"))

CCL19-EYFP⁺ cells (Figure 5E)

Umap colored per celltype

#Define color palette
palet <-c("#2ED9FF","#90AD1C","#FEAF16","#B00068","#1CFFCE","#3283FE","#16FF32","#AA0DFE")
names(palet) <-c(paste0("Smoc1", expression("\u207A "), "AdvFB"),paste0("Cd34", expression("\u207A "), "AdvFB"),paste0("Npnt", expression("\u207A "), "AlvFB"),paste0("Hhip", expression("\u207A "), "AdvFB"),paste0("Sulf1", expression("\u207A "), "TRC"),paste0("Rgs5", expression("\u207A "), "PRC"),"SMC/PC","AlvFB/SMC/PC")

DimPlot(CCL19_EYFP, reduction = "umap", group.by = "annot", cols=palet)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle(paste0("Ccl19-EYFP", "\U207A ", "cells"))

Umap colored per tumor presence

CCL19_EYFP_origin <- subset(CCL19_EYFP, origin %in% c("naive","tumor"))

CCL19_EYFP_origin$origin[which(CCL19_EYFP_origin$origin == "naive")] <- "Lung"
CCL19_EYFP_origin$origin[which(CCL19_EYFP_origin$origin == "tumor")] <- "Tumor/Day 23"

DimPlot(CCL19_EYFP_origin, reduction = "umap", group.by = "origin", cols = c("lightgrey", "red"))+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Dotplot (Figure 5F)

data_conv <-CCL19_EYFP
data_conv <-Remove_ensebl_id(data_conv)

Idents(data_conv) <- data_conv$annot
levels(data_conv)<-levels(data_conv)[order(match(levels(data_conv),c("Hhip⁺ AdvFB","Cd34⁺ AdvFB","Smoc1⁺ AdvFB",paste0("Npnt", expression("\u207A "), "AlvFB"),
                                                                     "Sulf1⁺ TRC","SMC/PC","AlvFB/SMC/PC","Rgs5⁺ PRC")))]
data_conv$annot <- factor(as.character(data_conv@active.ident), levels = rev(c("Hhip⁺ AdvFB","Cd34⁺ AdvFB","Smoc1⁺ AdvFB",paste0("Npnt", expression("\u207A "), "AlvFB"),"Sulf1⁺ TRC","SMC/PC","AlvFB/SMC/PC","Rgs5⁺ PRC")))

gene_list <-c("Cd34","Pdpn","Npnt","Hhip","Sulf1","Ccl11","Il33","Cxcl9","Tnc","Pdgfrb","Notch3","Rgs5","Acta2","Des","Myh11")

gg <-DotPlot(data_conv, features = gene_list, group.by = "annot", scale = TRUE, cols = c("lightgrey", "#C51B7D"), 
             scale.min = 0, scale.max = 100,col.min = 0 , dot.scale = 4) + xlab(" ") + ylab(" ")

gg + theme(axis.text.x = element_text(angle = 45,hjust = 1))

CCL19-EYFP⁺ cells in different timepoints (Figure 5K)

Umap colored per timepoint of tumor detection

CCL19_EYFP$TimePoint[which(CCL19_EYFP$TimePoint == "d0")] <- "Naive"
CCL19_EYFP$TimePoint[which(CCL19_EYFP$TimePoint == "d15")] <- "Day 15"
CCL19_EYFP$TimePoint[which(CCL19_EYFP$TimePoint == "d23")] <- "Day 23"

DimPlot(CCL19_EYFP, reduction = "umap", group.by = "TimePoint", cols = c("red", "gray" , "gray"))+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle(paste0("Ccl19-EYFP", "\U207A ", "cells"))

Umap of unaffected Lung (Naive)

CCL19_EYFP_naive <- subset(CCL19_EYFP, TimePoint %in% c("Naive"))

DimPlot(CCL19_EYFP_naive, reduction = "umap", group.by = "TimePoint", cols = c("gray"))+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle("Naive")

Umap of Tumor at Day 15

CCL19_EYFP_d15 <- subset(CCL19_EYFP, TimePoint %in% c("Day 15"))

DimPlot(CCL19_EYFP_d15, reduction = "umap", group.by = "TimePoint", cols = c("red"))+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle("Day 15")

Umap of Tumor at Day 23

CCL19_EYFP_d23 <- subset(CCL19_EYFP, TimePoint %in% c("Day 23"))

DimPlot(CCL19_EYFP_d23, reduction = "umap", group.by = "TimePoint", cols = c("grey"))+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle("Day 23")

Des in Day 15 vs Day 23 (Supplementary Figure 6C)

CCL19_EYFP_15_vs_23 <- subset(CCL19_EYFP, TimePoint %in% c("Day 15","Day 23"))

FeaturePlot(CCL19_EYFP_15_vs_23, reduction = "umap", split.by = "TimePoint",
          features = get_full_gene_name('Des',CCL19_EYFP),raster=FALSE,
          cols=c("lightgrey", "darkred"))

Differentiation trajectories on CCL19-EYFP⁺ cells based on Slingshot algorithm (Figure 5L)

Annotation from RNA_snn_res.0.25 to perform trajectory analysis

#Define color palette
palet_new <-c("#2ED9FF","#90AD1C","#FEAF16","#B00068","#1CFFCE","#3283FE","#16FF32","#AA0DFE")
names(palet_new) <-c("5","0","2","3","4","6","1","7" )

# This column was used to annotate the dataset
DimPlot(CCL19_EYFP, reduction = "umap", group.by = "RNA_snn_res.0.25",cols = palet_new)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle("RNA_snn_res.0.25")

Differentiation trajectories for Sulf1⁺ TRC and Rgs5⁺ PRC

#Set color palette
palet_new <-c("#90AD1C","#16FF32","#FEAF16","#B00068","#1CFFCE","#2ED9FF","#3283FE","#AA0DFE")
names(palet_new) <-c(1,2,3,4,5,6,7,8)

#Calculation of CCL19-EYFP`r knitr::asis_output("\U207A")` cell differentiation trajectories
clustering <- as.integer(CCL19_EYFP@meta.data$RNA_snn_res.0.25)
dimred <- CCL19_EYFP@reductions$umap@cell.embeddings

# Slingshot for TRC
pto_TRC <- slingshot(dimred, clustering, start.clus = '6', end.clus = '5' ,reducedDim = 'umap',extend="n",stretch=0.07,thresh=0.05)
pto_TRC <- as.SlingshotDataSet(pto_TRC)

# Slingshot for PRC
pto_PRC <- slingshot(dimred, clustering, start.clus = '2', end.clus = '7' ,reducedDim = 'umap',extend="n",stretch=0.07,thresh=0.05)
pto_PRC <- as.SlingshotDataSet(pto_PRC)

plot(dimred, col = palet_new[clustering], asp = 1, pch = 16)
lines(pto_PRC@curves$Lineage4, lwd = 3, col = 'magenta')
lines(pto_TRC@curves$Lineage2, lwd = 3, col = 'black')
legend("bottomright", legend = c("T1","T2"), col = c('black','magenta'), lty = 1, lwd = 2.5, cex = 1.1)
legend("topright", legend = names(palet), col = palet, pch = 2, pt.cex = 1, cex = 0.72)

CCL19-EYFP⁺ cells (no fate) and CCL19-iEYFP ⁺ cells sorted from doxycycline-treated LLC-gp33 tumors (Fatemapping experiment) (Figure 5N)

Umap

CCL19_EYFP$FateMapping[which(CCL19_EYFP$FateMapping == "no fate")] <- "Ccl19-EYFP"
CCL19_EYFP$FateMapping[which(CCL19_EYFP$FateMapping == "fate mapped")] <- "Ccl19-iEYFP (Day 15 progeny)"

DimPlot(CCL19_EYFP, reduction = "umap", group.by = "FateMapping", cols = c("#00BFC4","#F8766D"))+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") 

Umap indicating differentiation trajectories

CCL19_EYFP$FateMapping_anot <- CCL19_EYFP$FateMapping
CCL19_EYFP$FateMapping_anot[which(CCL19_EYFP$FateMapping == "no fate")] <- 1
CCL19_EYFP$FateMapping_anot[which(CCL19_EYFP$FateMapping == "fate mapped")] <- 2

#Set color palette
cols_vec <- c("#00BFC4","#F8766D")
names(cols_vec) <-c("Ccl19-EYFP","Ccl19-iEYFP (Day 15 progeny)")

clustering <- CCL19_EYFP@meta.data$FateMapping_anot 

plot(dimred, col = cols_vec[clustering], asp = 1, pch = 16)
lines(pto_PRC@curves$Lineage4, lwd = 3, col = 'magenta')
lines(pto_TRC@curves$Lineage2, lwd = 3, col = 'black')
legend("bottomright", legend = c("T1","T2"), col = c('black','magenta'), lty = 1, lwd = 2.5, cex = 1)
legend("topright", legend = names(cols_vec), col = cols_vec, pch = 2, pt.cex = 1, cex = 0.6)

Session info

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.6.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] slingshot_2.8.0             TrajectoryUtils_1.8.0      
 [3] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2
 [5] Biobase_2.60.0              GenomicRanges_1.52.0       
 [7] GenomeInfoDb_1.36.1         IRanges_2.34.1             
 [9] S4Vectors_0.38.1            BiocGenerics_0.46.0        
[11] MatrixGenerics_1.12.3       matrixStats_1.0.0          
[13] princurve_2.1.6             ggsci_3.0.0                
[15] gsubfn_0.7                  proto_1.0.0                
[17] gridExtra_2.3               dittoSeq_1.12.1            
[19] ggplot2_3.4.2               Matrix_1.6-0               
[21] SeuratObject_4.1.3          Seurat_4.3.0.1             
[23] patchwork_1.1.2             stringr_1.5.0              
[25] dplyr_1.1.2                 purrr_1.0.1                
[27] here_1.0.1                  magrittr_2.0.3             
[29] circlize_0.4.15             tidyr_1.3.0                
[31] tibble_3.2.1                workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.21          splines_4.3.1            
  [3] later_1.3.1               bitops_1.0-7             
  [5] polyclip_1.10-4           lifecycle_1.0.3          
  [7] tcltk_4.3.1               rprojroot_2.0.3          
  [9] globals_0.16.2            processx_3.8.2           
 [11] lattice_0.21-8            MASS_7.3-60              
 [13] plotly_4.10.2             sass_0.4.7               
 [15] rmarkdown_2.23            jquerylib_0.1.4          
 [17] yaml_2.3.7                httpuv_1.6.11            
 [19] sctransform_0.3.5         sp_2.0-0                 
 [21] spatstat.sparse_3.0-2     reticulate_1.36.1        
 [23] cowplot_1.1.1             pbapply_1.7-2            
 [25] RColorBrewer_1.1-3        abind_1.4-5              
 [27] zlibbioc_1.46.0           Rtsne_0.16               
 [29] RCurl_1.98-1.12           git2r_0.33.0             
 [31] GenomeInfoDbData_1.2.10   ggrepel_0.9.3            
 [33] irlba_2.3.5.1             listenv_0.9.0            
 [35] spatstat.utils_3.1-0      pheatmap_1.0.12          
 [37] goftest_1.2-3             spatstat.random_3.1-5    
 [39] fitdistrplus_1.1-11       parallelly_1.36.0        
 [41] DelayedMatrixStats_1.22.0 leiden_0.4.3             
 [43] codetools_0.2-19          DelayedArray_0.28.0      
 [45] tidyselect_1.2.0          shape_1.4.6              
 [47] farver_2.1.1              spatstat.explore_3.2-1   
 [49] jsonlite_1.8.7            ellipsis_0.3.2           
 [51] progressr_0.13.0          ggridges_0.5.4           
 [53] survival_3.5-5            systemfonts_1.0.4        
 [55] tools_4.3.1               ragg_1.2.5               
 [57] ica_1.0-3                 Rcpp_1.0.11              
 [59] glue_1.6.2                SparseArray_1.2.4        
 [61] xfun_0.39                 withr_2.5.0              
 [63] fastmap_1.1.1             fansi_1.0.4              
 [65] callr_3.7.3               digest_0.6.33            
 [67] R6_2.5.1                  mime_0.12                
 [69] textshaping_0.3.6         colorspace_2.1-0         
 [71] scattermore_1.2           tensor_1.5               
 [73] spatstat.data_3.0-1       utf8_1.2.3               
 [75] generics_0.1.3            data.table_1.14.8        
 [77] httr_1.4.6                htmlwidgets_1.6.2        
 [79] S4Arrays_1.2.1            whisker_0.4.1            
 [81] uwot_0.1.16               pkgconfig_2.0.3          
 [83] gtable_0.3.3              lmtest_0.9-40            
 [85] XVector_0.40.0            htmltools_0.5.5          
 [87] scales_1.2.1              png_0.1-8                
 [89] knitr_1.43                rstudioapi_0.15.0        
 [91] reshape2_1.4.4            nlme_3.1-162             
 [93] cachem_1.0.8              zoo_1.8-12               
 [95] GlobalOptions_0.1.2       KernSmooth_2.23-22       
 [97] parallel_4.3.1            miniUI_0.1.1.1           
 [99] pillar_1.9.0              grid_4.3.1               
[101] vctrs_0.6.3               RANN_2.6.1               
[103] promises_1.2.0.1          xtable_1.8-4             
[105] cluster_2.1.4             evaluate_0.21            
[107] cli_3.6.1                 compiler_4.3.1           
[109] rlang_1.1.1               crayon_1.5.2             
[111] future.apply_1.11.0       labeling_0.4.2           
[113] ps_1.7.5                  getPass_0.2-4            
[115] plyr_1.8.8                fs_1.6.3                 
[117] stringi_1.7.12            viridisLite_0.4.2        
[119] deldir_1.0-9              munsell_0.5.0            
[121] lazyeval_0.2.2            spatstat.geom_3.2-4      
[123] sparseMatrixStats_1.12.2  future_1.33.0            
[125] shiny_1.7.4.1             highr_0.10               
[127] ROCR_1.0-11               igraph_1.5.0.1           
[129] bslib_0.5.0              
date()
[1] "Wed Aug 21 10:10:11 2024"

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.6.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] slingshot_2.8.0             TrajectoryUtils_1.8.0      
 [3] SingleCellExperiment_1.22.0 SummarizedExperiment_1.30.2
 [5] Biobase_2.60.0              GenomicRanges_1.52.0       
 [7] GenomeInfoDb_1.36.1         IRanges_2.34.1             
 [9] S4Vectors_0.38.1            BiocGenerics_0.46.0        
[11] MatrixGenerics_1.12.3       matrixStats_1.0.0          
[13] princurve_2.1.6             ggsci_3.0.0                
[15] gsubfn_0.7                  proto_1.0.0                
[17] gridExtra_2.3               dittoSeq_1.12.1            
[19] ggplot2_3.4.2               Matrix_1.6-0               
[21] SeuratObject_4.1.3          Seurat_4.3.0.1             
[23] patchwork_1.1.2             stringr_1.5.0              
[25] dplyr_1.1.2                 purrr_1.0.1                
[27] here_1.0.1                  magrittr_2.0.3             
[29] circlize_0.4.15             tidyr_1.3.0                
[31] tibble_3.2.1                workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.21          splines_4.3.1            
  [3] later_1.3.1               bitops_1.0-7             
  [5] polyclip_1.10-4           lifecycle_1.0.3          
  [7] tcltk_4.3.1               rprojroot_2.0.3          
  [9] globals_0.16.2            processx_3.8.2           
 [11] lattice_0.21-8            MASS_7.3-60              
 [13] plotly_4.10.2             sass_0.4.7               
 [15] rmarkdown_2.23            jquerylib_0.1.4          
 [17] yaml_2.3.7                httpuv_1.6.11            
 [19] sctransform_0.3.5         sp_2.0-0                 
 [21] spatstat.sparse_3.0-2     reticulate_1.36.1        
 [23] cowplot_1.1.1             pbapply_1.7-2            
 [25] RColorBrewer_1.1-3        abind_1.4-5              
 [27] zlibbioc_1.46.0           Rtsne_0.16               
 [29] RCurl_1.98-1.12           git2r_0.33.0             
 [31] GenomeInfoDbData_1.2.10   ggrepel_0.9.3            
 [33] irlba_2.3.5.1             listenv_0.9.0            
 [35] spatstat.utils_3.1-0      pheatmap_1.0.12          
 [37] goftest_1.2-3             spatstat.random_3.1-5    
 [39] fitdistrplus_1.1-11       parallelly_1.36.0        
 [41] DelayedMatrixStats_1.22.0 leiden_0.4.3             
 [43] codetools_0.2-19          DelayedArray_0.28.0      
 [45] tidyselect_1.2.0          shape_1.4.6              
 [47] farver_2.1.1              spatstat.explore_3.2-1   
 [49] jsonlite_1.8.7            ellipsis_0.3.2           
 [51] progressr_0.13.0          ggridges_0.5.4           
 [53] survival_3.5-5            systemfonts_1.0.4        
 [55] tools_4.3.1               ragg_1.2.5               
 [57] ica_1.0-3                 Rcpp_1.0.11              
 [59] glue_1.6.2                SparseArray_1.2.4        
 [61] xfun_0.39                 withr_2.5.0              
 [63] fastmap_1.1.1             fansi_1.0.4              
 [65] callr_3.7.3               digest_0.6.33            
 [67] R6_2.5.1                  mime_0.12                
 [69] textshaping_0.3.6         colorspace_2.1-0         
 [71] scattermore_1.2           tensor_1.5               
 [73] spatstat.data_3.0-1       utf8_1.2.3               
 [75] generics_0.1.3            data.table_1.14.8        
 [77] httr_1.4.6                htmlwidgets_1.6.2        
 [79] S4Arrays_1.2.1            whisker_0.4.1            
 [81] uwot_0.1.16               pkgconfig_2.0.3          
 [83] gtable_0.3.3              lmtest_0.9-40            
 [85] XVector_0.40.0            htmltools_0.5.5          
 [87] scales_1.2.1              png_0.1-8                
 [89] knitr_1.43                rstudioapi_0.15.0        
 [91] reshape2_1.4.4            nlme_3.1-162             
 [93] cachem_1.0.8              zoo_1.8-12               
 [95] GlobalOptions_0.1.2       KernSmooth_2.23-22       
 [97] parallel_4.3.1            miniUI_0.1.1.1           
 [99] pillar_1.9.0              grid_4.3.1               
[101] vctrs_0.6.3               RANN_2.6.1               
[103] promises_1.2.0.1          xtable_1.8-4             
[105] cluster_2.1.4             evaluate_0.21            
[107] cli_3.6.1                 compiler_4.3.1           
[109] rlang_1.1.1               crayon_1.5.2             
[111] future.apply_1.11.0       labeling_0.4.2           
[113] ps_1.7.5                  getPass_0.2-4            
[115] plyr_1.8.8                fs_1.6.3                 
[117] stringi_1.7.12            viridisLite_0.4.2        
[119] deldir_1.0-9              munsell_0.5.0            
[121] lazyeval_0.2.2            spatstat.geom_3.2-4      
[123] sparseMatrixStats_1.12.2  future_1.33.0            
[125] shiny_1.7.4.1             highr_0.10               
[127] ROCR_1.0-11               igraph_1.5.0.1           
[129] bslib_0.5.0