Last updated: 2024-08-21

Checks: 7 0

Knit directory: CCL19_FRCs_lung_cancer/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240808) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 56cd3c3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/figure/
    Ignored:    data/Human/
    Ignored:    data/Mouse/
    Ignored:    output/GSEA_AdvFB_SULF1/
    Ignored:    output/GSEA_AdvFB_TLS/
    Ignored:    output/GSEA_CCR7_T/
    Ignored:    output/GSEA_CD8_T/
    Ignored:    output/GSEA_CYCL_T/
    Ignored:    output/GSEA_EXH_T/
    Ignored:    output/GSEA_SMC_PRC/

Untracked files:
    Untracked:  analysis/Mouse_LLC_naive.Rmd
    Untracked:  analysis/Mouse_mCOV.Rmd
    Untracked:  analysis/NSCLC_PDAC_CAFs.Rmd
    Untracked:  analysis/NSCLC_TILS.Rmd
    Untracked:  analysis/NSCLC_trajectory_analysis.Rmd
    Untracked:  analysis/NSCLC_vs_Tonsils.Rmd
    Untracked:  analysis/Tetra_CD8_T_cells.Rmd
    Untracked:  analysis/Total_CD8_DTR_Tetra.Rmd
    Untracked:  analysis/extra_functions.R
    Untracked:  analysis/index_hidden.Rmd
    Untracked:  analysis/mcov_R.Rmd
    Untracked:  analysis/merge_NSCLC_FRC_TIL.Rmd

Unstaged changes:
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/NSCLC_stroma_CCCL19_FRC.Rmd) and HTML (docs/NSCLC_stroma_CCCL19_FRC.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 56cd3c3 Pchryssa 2024-08-21 NSCLC stroma CCCL19 FRC

Load packages

suppressPackageStartupMessages({
  library(here)
  library(purrr)
  library(dplyr)
  library(stringr)
  library(patchwork)
  library(Seurat)
  library(Matrix)
  library(dittoSeq)
  library(gridExtra)
  library(gsubfn)
  library(ggsci)
})

Stroma cells in NSCLC

Set directory

basedir <- here()

Read Stroma cell data

data <- readRDS(paste0(basedir,"/data/Human/NSCLC_stroma_total.rds"))

Define color palette

cols<- pal_igv()(51)
names(cols) <- c(0:50)

NSCLC Stroma cells (Supplementary Figure 2A-2B)

Patients

# Total fibroblasts and endothelial cells across NSCLC patients
colors_pID <-c("#F8766D","#00C08B","#00B4F0","#0ADD08","#B79F00")
names(colors_pID) <-c("NSCLC#2","NSCLC#3","NSCLC#4","NSCLC#6","NSCLC#7")

DimPlot(data, reduction = "tsne", group.by = "patient", cols=colors_pID)+ 
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank()) +
  xlab("tSNE1") +
  ylab("tSNE2") + ggtitle("Patients")

Origin

# Total fibroblasts and endothelial cells isolated from SM, CM and unaffected lung (LU)
colors_origin <-c("red","blue" ,"#33CC00FF") 
names(colors_origin) <- c("Subpleural Margin","Lung (unaffected)","Central Margin")

DimPlot(data, reduction = "tsne", group.by = "origin", cols=colors_origin )+ 
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank()) +
  xlab("tSNE1") +
  ylab("tSNE2") + ggtitle("Origin")

COL1A2

FeaturePlot(data, reduction = "tsne", 
          features = get_full_gene_name('COL1A2',data),raster=FALSE,
          cols=c("lightgrey", "darkred")) + ggtitle("CAF/FB(COL1A2)")

PECAM1

FeaturePlot(data, reduction = "tsne", 
          features = get_full_gene_name('PECAM1',data),raster=FALSE,
          cols=c("lightgrey", "darkred")) + ggtitle("EC(PECAM1)")

Cell type

palet <- cols[4:10]
names(palet) <- c("CAF2","CAF1", "EC", "FB" ,"Meso","SMC/PC")

DimPlot(data, reduction = "tsne", group.by = "cell_type", cols= palet)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank(),
         panel.grid.major = element_blank()) +
 xlab("TSNE1") +
ylab("TSNE2") 

Dotplots (Supplementary Figure 2C and 2F)

Cell type assignment

data_conv <-data
data_conv <-Remove_ensebl_id(data_conv)

Idents(data_conv) <- data_conv$cell_type
levels(data_conv)<-levels(data_conv)[order(match(levels(data_conv),c("CAF2","FB","CAF1","SMC/PC","Meso","EC")))]
data_conv$cell_type <- factor(as.character(data_conv@active.ident), levels = rev(c("CAF2","FB","CAF1","SMC/PC","Meso","EC")))

gene_list <-c("COL1A2","POSTN","MMP2","PDPN","PDGFRA","PDGFRB","ACTA2","RGS5","KRT19","PECAM1")

gg <- dittoDotPlot(data_conv, vars = gene_list, group.by = "cell_type", size = 9,legend.size.title = "% expressed",scale = FALSE,summary.fxn.color = mean, max = 6.5, min = 0 , min.color = "#D1E5F0" , max.color = "#631879FF")

gg + ggtitle("Celltype assignment")

Chemokines

gene_list <-c("CCL19","CCL21","CCL3","CCL5","CCL8","CXCL10","CXCL3","CXCL9")

gg <- dittoDotPlot(data_conv, vars = gene_list, group.by = "cell_type", size = 9,legend.size.title = "% expressed",scale = FALSE,summary.fxn.color = mean, min.percent = 0.02, max.percent = 0.7, max = 1.6, min = 0 ,min.color = "#D1E5F0" , max.color = "#631879FF")

gg + ggtitle("Chemokines")

Stacked Barplots (Supplementary Figure 2D and 2E)

Number of cells per patient

df <-data@meta.data %>% count(patient, cell_type) %>%    # Group by patient and cell_type, then count number in each group
         mutate(pct=n/sum(n))                            # Calculate percent within each patient

df$cell_type <- factor(df$cell_type, levels=names(palet))
df$patient <- factor(df$patient, levels=c("NSCLC#2", "NSCLC#3" ,"NSCLC#4" ,"NSCLC#6" ,"NSCLC#7"))

ggplot(df, aes(patient, n, fill=cell_type)) +
  geom_bar(stat="identity") +
  theme(  axis.line = element_line(),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    panel.background = element_blank()) +
  scale_y_continuous(expand = c(0, 0))+
  labs(y= "Cells", x= " ") +
  scale_fill_manual(values = palet)

Number of cells per origin

df <-data@meta.data %>% count(origin, cell_type) %>%    # Group by orign and cell_type, then count number in each group
         mutate(pct=n/sum(n))                           # Calculate percent within each patient

df$cell_type <- factor(df$cell_type, levels=names(palet))
df$origin <- factor(df$origin, levels=c("Lung (unaffected)", "Subpleural Margin", "Central Margin"))

ggplot(df,aes(origin, n, fill=cell_type)) +
  geom_bar(stat="identity") +
  theme(  axis.line = element_line(),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    panel.background = element_blank()) +
  scale_y_continuous(expand = c(0, 0))+
  labs(y= "Cells", x= " ") +
  scale_fill_manual(values = palet)

CCL19⁺ FRCs in NSCLC

Read CCL19 FRC data

NSCLC_CCL19_data <- readRDS(paste0(basedir,"/data/Human/NSCLC_CCL19_FRCs_CAFs.rds"))

CCL19⁺ fibroblasts (Figure 1K)

#Define color palet
palet_CCL19_FRC <- c("#1B9E77", "#54B0E4","#E3BE00", "#E41A1C")
names(palet_CCL19_FRC) <- c("CAF2/TRC","CAF1/PRC","AdvFB" ,"SMC/PC")

palet_CCL19_FRC <- palet_CCL19_FRC[names(palet_CCL19_FRC) %in% unique(NSCLC_CCL19_data$cell_type)]

DimPlot(NSCLC_CCL19_data, reduction = "umap", group.by = "cell_type",cols = palet_CCL19_FRC)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2") + ggtitle(paste0("CCL19", "\U207A ", "fibroblasts"))

Dotplot (Figure 1L)

data_conv <-NSCLC_CCL19_data

data_conv <-Remove_ensebl_id(data_conv)

Idents(data_conv) <- data_conv$cell_type
levels(data_conv)<-levels(data_conv)[order(match(levels(data_conv),c("SMC/PC","CAF1/PRC","AdvFB","CAF2/TRC")))]
data_conv$cell_type <- factor(as.character(data_conv@active.ident), levels = rev(c("SMC/PC","CAF1/PRC","AdvFB","CAF2/TRC")))

gene_list <-c("CCL19","CCL21","PDPN","FAP","POSTN","CLU","LEPR","CD34","SULF1","DPT","ICAM1","VCAM1","ACTA2","MYH11",
"MCAM","NOTCH3","RGS5","DES","AIFM2")

dittoDotPlot(data_conv, vars = gene_list, group.by = "cell_type", size = 8,legend.size.title = "Expression (%)",scale = FALSE) + ylab(" ") + ggtitle(paste0("CCL19", expression("\u207A"), " fibroblasts"))

Signatures

SLO-PRC (Figure 1M)

SLO_PRC <-list("CCL19","CCL21","ITGA1","ITGA7","MCAM","CNN1","NOTCH3","ACTA2","PDGFRB","ANGPT2")
object <- AddModuleScore(object = data_conv, features = SLO_PRC, name = "SLO_PRC_signature",ctrl = 20)
FeaturePlot(object = object, features = "SLO_PRC_signature10",min.cutoff = -1, max.cutoff = 2.5) + ggtitle("SLO-PRC signature")

SLO-TRC (Figure 1N)

SLO_TRC <-c("CCL19","CCL21","PDPN","ICAM1","VCAM1","LUM","PDGFRA","TNFSF13B")
object <- AddModuleScore(object = data_conv, features = SLO_TRC, name = "SLO_TRC_signature",ctrl = 20)
FeaturePlot(object = object, features = "SLO_TRC_signature8",min.cutoff = -1, max.cutoff = 2.5) + ggtitle("SLO-TRC signature")

Signatures (Supplementary Figure 2G)

CCL21

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('CCL21',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("CCL21")

ACTA2

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('ACTA2',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("ACTA2")

ITGA1

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('ITGA1',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("ITGA1")

NOTCH3

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('NOTCH3',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("NOTCH3")

MCAM

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('MCAM',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("MCAM")

CCL19

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('CCL19',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("CCL19")

PDPN

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('PDPN',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("PDPN")

ICAM1

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('ICAM1',NSCLC_CCL19_data)[2],raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("ICAM1")

VCAM1

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('VCAM1',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("VCAM1")

LUM

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('LUM',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("LUM")

Unaffected Lung vs Tumor (Supplementary Figure 5A)

Umap

DimPlot(NSCLC_CCL19_data, reduction = "umap", group.by = "type", split.by = "type")+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(),
        panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

DES

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", split.by = "type",
          features = get_full_gene_name('DES',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5)

Signatures (Supplementary Figure 5B)

CD34

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('CD34',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("CD34")

LEPR

FeaturePlot(NSCLC_CCL19_data, reduction = "umap", 
          features = get_full_gene_name('LEPR',NSCLC_CCL19_data),raster=FALSE,
          cols=c("lightgrey", "darkred"), min.cutoff = 0, max.cutoff = 4.5) + ggtitle("LEPR")

Extract NSCLC TRC and PRC

NCLS_FRCS <- subset(NSCLC_CCL19_data, cell_type %in% c("CAF2/TRC","CAF1/PRC"))

#Preprocessing
resolution <- c(0.1, 0.25, 0.4, 0.6,0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0)
NCLS_FRCS <- FindVariableFeatures(NCLS_FRCS, selection.method = "vst", nfeatures = 2000)
NCLS_FRCS <- ScaleData(NCLS_FRCS)
NCLS_FRCS <- RunPCA(object = NCLS_FRCS, npcs = 30, verbose = FALSE,seed.use = 8734)
NCLS_FRCS <- RunTSNE(object = NCLS_FRCS, reduction = "pca", dims = 1:20, seed.use = 8734)
NCLS_FRCS <- RunUMAP(object = NCLS_FRCS, reduction = "pca", dims = 1:20, seed.use = 8734)
NCLS_FRCS <- FindNeighbors(object = NCLS_FRCS, reduction = "pca", dims = 1:20, seed.use = 8734)
for(k in 1:length(resolution)){
  NCLS_FRCS <- FindClusters(object = NCLS_FRCS, resolution = resolution[k], random.seed = 8734)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9474
Number of communities: 4
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9089
Number of communities: 8
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8838
Number of communities: 9
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8560
Number of communities: 12
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8432
Number of communities: 13
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8315
Number of communities: 15
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8227
Number of communities: 16
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8139
Number of communities: 17
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7990
Number of communities: 17
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7839
Number of communities: 18
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7705
Number of communities: 21
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7591
Number of communities: 22
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 5023
Number of edges: 172182

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7483
Number of communities: 23
Elapsed time: 0 seconds

CCL19⁺ TRC and PRC

Save NSCLC CCL19⁺ TRC PRC data

#saveRDS(NCLS_FRCS, paste0(basedir,"/data/Human/NSCLC_CCL19_TRC_PRC_CAFs.rds"))

Session info

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.6.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggsci_3.0.0        gsubfn_0.7         proto_1.0.0        gridExtra_2.3     
 [5] dittoSeq_1.12.1    ggplot2_3.4.2      Matrix_1.6-0       SeuratObject_4.1.3
 [9] Seurat_4.3.0.1     patchwork_1.1.2    stringr_1.5.0      dplyr_1.1.2       
[13] purrr_1.0.1        here_1.0.1         magrittr_2.0.3     circlize_0.4.15   
[17] tidyr_1.3.0        tibble_3.2.1       workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          rstudioapi_0.15.0          
  [3] jsonlite_1.8.7              shape_1.4.6                
  [5] spatstat.utils_3.1-0        farver_2.1.1               
  [7] rmarkdown_2.23              ragg_1.2.5                 
  [9] zlibbioc_1.46.0             GlobalOptions_0.1.2        
 [11] fs_1.6.3                    vctrs_0.6.3                
 [13] ROCR_1.0-11                 spatstat.explore_3.2-1     
 [15] RCurl_1.98-1.12             S4Arrays_1.2.1             
 [17] htmltools_0.5.5             SparseArray_1.2.4          
 [19] sass_0.4.7                  sctransform_0.3.5          
 [21] parallelly_1.36.0           KernSmooth_2.23-22         
 [23] bslib_0.5.0                 htmlwidgets_1.6.2          
 [25] ica_1.0-3                   plyr_1.8.8                 
 [27] plotly_4.10.2               zoo_1.8-12                 
 [29] cachem_1.0.8                whisker_0.4.1              
 [31] igraph_1.5.0.1              mime_0.12                  
 [33] lifecycle_1.0.3             pkgconfig_2.0.3            
 [35] R6_2.5.1                    fastmap_1.1.1              
 [37] GenomeInfoDbData_1.2.10     MatrixGenerics_1.12.3      
 [39] fitdistrplus_1.1-11         future_1.33.0              
 [41] shiny_1.7.4.1               digest_0.6.33              
 [43] colorspace_2.1-0            S4Vectors_0.38.1           
 [45] ps_1.7.5                    rprojroot_2.0.3            
 [47] tensor_1.5                  irlba_2.3.5.1              
 [49] textshaping_0.3.6           GenomicRanges_1.52.0       
 [51] labeling_0.4.2              progressr_0.13.0           
 [53] fansi_1.0.4                 spatstat.sparse_3.0-2      
 [55] httr_1.4.6                  polyclip_1.10-4            
 [57] abind_1.4-5                 compiler_4.3.1             
 [59] withr_2.5.0                 highr_0.10                 
 [61] MASS_7.3-60                 DelayedArray_0.28.0        
 [63] tools_4.3.1                 lmtest_0.9-40              
 [65] httpuv_1.6.11               future.apply_1.11.0        
 [67] goftest_1.2-3               glue_1.6.2                 
 [69] callr_3.7.3                 nlme_3.1-162               
 [71] promises_1.2.0.1            grid_4.3.1                 
 [73] Rtsne_0.16                  getPass_0.2-4              
 [75] cluster_2.1.4               reshape2_1.4.4             
 [77] generics_0.1.3              gtable_0.3.3               
 [79] spatstat.data_3.0-1         data.table_1.14.8          
 [81] XVector_0.40.0              sp_2.0-0                   
 [83] utf8_1.2.3                  BiocGenerics_0.46.0        
 [85] spatstat.geom_3.2-4         RcppAnnoy_0.0.21           
 [87] ggrepel_0.9.3               RANN_2.6.1                 
 [89] pillar_1.9.0                later_1.3.1                
 [91] splines_4.3.1               lattice_0.21-8             
 [93] survival_3.5-5              deldir_1.0-9               
 [95] tidyselect_1.2.0            SingleCellExperiment_1.22.0
 [97] miniUI_0.1.1.1              pbapply_1.7-2              
 [99] knitr_1.43                  git2r_0.33.0               
[101] IRanges_2.34.1              SummarizedExperiment_1.30.2
[103] scattermore_1.2             stats4_4.3.1               
[105] xfun_0.39                   Biobase_2.60.0             
[107] matrixStats_1.0.0           pheatmap_1.0.12            
[109] stringi_1.7.12              lazyeval_0.2.2             
[111] yaml_2.3.7                  evaluate_0.21              
[113] codetools_0.2-19            tcltk_4.3.1                
[115] cli_3.6.1                   uwot_0.1.16                
[117] systemfonts_1.0.4           xtable_1.8-4               
[119] reticulate_1.36.1           munsell_0.5.0              
[121] processx_3.8.2              jquerylib_0.1.4            
[123] GenomeInfoDb_1.36.1         Rcpp_1.0.11                
[125] globals_0.16.2              spatstat.random_3.1-5      
[127] png_0.1-8                   parallel_4.3.1             
[129] ellipsis_0.3.2              bitops_1.0-7               
[131] listenv_0.9.0               viridisLite_0.4.2          
[133] scales_1.2.1                ggridges_0.5.4             
[135] crayon_1.5.2                leiden_0.4.3               
[137] rlang_1.1.1                 cowplot_1.1.1              
date()
[1] "Wed Aug 21 08:58:20 2024"

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.6.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggsci_3.0.0        gsubfn_0.7         proto_1.0.0        gridExtra_2.3     
 [5] dittoSeq_1.12.1    ggplot2_3.4.2      Matrix_1.6-0       SeuratObject_4.1.3
 [9] Seurat_4.3.0.1     patchwork_1.1.2    stringr_1.5.0      dplyr_1.1.2       
[13] purrr_1.0.1        here_1.0.1         magrittr_2.0.3     circlize_0.4.15   
[17] tidyr_1.3.0        tibble_3.2.1       workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          rstudioapi_0.15.0          
  [3] jsonlite_1.8.7              shape_1.4.6                
  [5] spatstat.utils_3.1-0        farver_2.1.1               
  [7] rmarkdown_2.23              ragg_1.2.5                 
  [9] zlibbioc_1.46.0             GlobalOptions_0.1.2        
 [11] fs_1.6.3                    vctrs_0.6.3                
 [13] ROCR_1.0-11                 spatstat.explore_3.2-1     
 [15] RCurl_1.98-1.12             S4Arrays_1.2.1             
 [17] htmltools_0.5.5             SparseArray_1.2.4          
 [19] sass_0.4.7                  sctransform_0.3.5          
 [21] parallelly_1.36.0           KernSmooth_2.23-22         
 [23] bslib_0.5.0                 htmlwidgets_1.6.2          
 [25] ica_1.0-3                   plyr_1.8.8                 
 [27] plotly_4.10.2               zoo_1.8-12                 
 [29] cachem_1.0.8                whisker_0.4.1              
 [31] igraph_1.5.0.1              mime_0.12                  
 [33] lifecycle_1.0.3             pkgconfig_2.0.3            
 [35] R6_2.5.1                    fastmap_1.1.1              
 [37] GenomeInfoDbData_1.2.10     MatrixGenerics_1.12.3      
 [39] fitdistrplus_1.1-11         future_1.33.0              
 [41] shiny_1.7.4.1               digest_0.6.33              
 [43] colorspace_2.1-0            S4Vectors_0.38.1           
 [45] ps_1.7.5                    rprojroot_2.0.3            
 [47] tensor_1.5                  irlba_2.3.5.1              
 [49] textshaping_0.3.6           GenomicRanges_1.52.0       
 [51] labeling_0.4.2              progressr_0.13.0           
 [53] fansi_1.0.4                 spatstat.sparse_3.0-2      
 [55] httr_1.4.6                  polyclip_1.10-4            
 [57] abind_1.4-5                 compiler_4.3.1             
 [59] withr_2.5.0                 highr_0.10                 
 [61] MASS_7.3-60                 DelayedArray_0.28.0        
 [63] tools_4.3.1                 lmtest_0.9-40              
 [65] httpuv_1.6.11               future.apply_1.11.0        
 [67] goftest_1.2-3               glue_1.6.2                 
 [69] callr_3.7.3                 nlme_3.1-162               
 [71] promises_1.2.0.1            grid_4.3.1                 
 [73] Rtsne_0.16                  getPass_0.2-4              
 [75] cluster_2.1.4               reshape2_1.4.4             
 [77] generics_0.1.3              gtable_0.3.3               
 [79] spatstat.data_3.0-1         data.table_1.14.8          
 [81] XVector_0.40.0              sp_2.0-0                   
 [83] utf8_1.2.3                  BiocGenerics_0.46.0        
 [85] spatstat.geom_3.2-4         RcppAnnoy_0.0.21           
 [87] ggrepel_0.9.3               RANN_2.6.1                 
 [89] pillar_1.9.0                later_1.3.1                
 [91] splines_4.3.1               lattice_0.21-8             
 [93] survival_3.5-5              deldir_1.0-9               
 [95] tidyselect_1.2.0            SingleCellExperiment_1.22.0
 [97] miniUI_0.1.1.1              pbapply_1.7-2              
 [99] knitr_1.43                  git2r_0.33.0               
[101] IRanges_2.34.1              SummarizedExperiment_1.30.2
[103] scattermore_1.2             stats4_4.3.1               
[105] xfun_0.39                   Biobase_2.60.0             
[107] matrixStats_1.0.0           pheatmap_1.0.12            
[109] stringi_1.7.12              lazyeval_0.2.2             
[111] yaml_2.3.7                  evaluate_0.21              
[113] codetools_0.2-19            tcltk_4.3.1                
[115] cli_3.6.1                   uwot_0.1.16                
[117] systemfonts_1.0.4           xtable_1.8-4               
[119] reticulate_1.36.1           munsell_0.5.0              
[121] processx_3.8.2              jquerylib_0.1.4            
[123] GenomeInfoDb_1.36.1         Rcpp_1.0.11                
[125] globals_0.16.2              spatstat.random_3.1-5      
[127] png_0.1-8                   parallel_4.3.1             
[129] ellipsis_0.3.2              bitops_1.0-7               
[131] listenv_0.9.0               viridisLite_0.4.2          
[133] scales_1.2.1                ggridges_0.5.4             
[135] crayon_1.5.2                leiden_0.4.3               
[137] rlang_1.1.1                 cowplot_1.1.1