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We develop a multi-fidelity surrogate modelling approach to replace the complex and

costly physics-based computer models that are often used in the optimization of solid

oxide fuel cell (SOFC) performance, or the simplified models that are used in lieu of com-

plex models. We extend multi-fidelity stochastic collocation through a feature engineering

step, and eliminate the requirement for the exact low-fidelity output at the inference stage.

In contrast to previous approaches, the surrogate model we develop provides detailed

spatial information, rather than one or more scalar outputs. This allows for the incorpo-

ration of such information into the objective of the optimization study, with the flexibility

to choose from more than one objective, such as a minimum, maximum or average.

Furthermore, the detailed spatial information can be used for general design purposes,

such as ensuring uniformity in reactant and potential distributions. From the results on a

3-d SOFC model, we demonstrate highly accurate predictions of multiple spatially

distributed quantities at up to spatial 250,000 locations. The results are superior to state-of-

the-art multi-fidelity approaches, particularly for low numbers of high fidelity training

points. We use the surrogate model to optimize the SOFC performance with respect to

different objectives (including with nonlinear constraints and multiple objectives), with

results that are accurate and are obtained in a fraction of the time required for the full

model.
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Introduction

Fuel cells (FCs) are expected to play a major role in the future

energy landscape, for standalone stationary power applica-

tions and for electric vehicle propulsion. FCs convert chemical

energy into electricity [1,2] generating benign products. Solid

oxide fuel cells (SOFC) are highly attractive due to their fuel

flexibility, range of different geometries, and high tempera-

tures, allowing for combined heat and power. The high tem-

peratures lead to low costs since they eliminate the need for a

catalyst and allow for fuels to be reformed internally in the

anode. Modelling and simulation are important tools in the

development of fuel cells, providing fundamental insights and

lowering the costs associated with laboratory investigations,

particularly for design and optimization [3,4].

Detailed fuel cell models, however, involve a complex sys-

tem of nonlinear partial differential equations in a 3-

d geometry comprising multiple components. They are often

referred to as computational fluid dynamics (CFD) approaches,

although in the general case they contain other laws such as

charge and reactant conservation, and incorporate electro-

chemical reactions. Detailed reviews of SOFC and polymer

electrolyte membrane (PEM) fuel cell modelling, including the

various approaches andmodelling assumptions, can be found

in Refs. [5e7]. The time costs for solving such models, using

finite differences, finite volumes or finite elements along with

time-stepping schemes, can be prohibitive for applications

that requiremany results at different parameter/input values,

as for example, in optimization, sensitivity analyses and

parameter identification. For small number of parameters [8]

the time costsmay be acceptable, but the number of computer

model runs scales exponentially with the number of parame-

ters, rendering complex models infeasible in many cases.

The most frequently employed strategy to circumvent this

problem is to use simplifiedmodels. For example, Salva et al. [9]

used a 1-d analytical model for optimizing PEM fuel cell per-

formancewith respect to operating conditions,whileHasanien

et al. used a 0-d model for PEM fuel cell model parameter

identification [10]. Pourkiaei et al. performed a multi-objective

optimization of a tubular SOFC using a 0-d model combined

with a genetic algorithm, using the electrical power and exergy

destructionasobjectives [11].A similar studywasperformedby

Mojaver et al. [12] for a methane-fueled SOFC, using the elec-

trical energy efficiency, CO2 emissions and electrical exergy

efficiency as the objectives. A combined Taguchi/AHP/TOPSIS

methodwasused for the optimization. A review of SOFCmodel

parameter identification using similar models can be found in

Ref. [13], based on a variety of optimization techniques.

Such approaches, however, will inevitably introduce crude

simplifications that can lead to unsatisfactory results. Guo

et al. used a detailed 3-d SOFC model that included charge,

mass, momentum and heat balances. The model was devel-

oped in Ref. [14] and coupled to a mechanical-failure model in

Ref. [15] to study the impact of the interconnector (IC) struc-

ture on the electrical performance and mechanical stability.

Although the authors stated that their study was an optimi-

zation, in common with many other such studies, in actual

fact it was a parametric study. Abdullah and Liu [16] per-

formed a microstructural optimization for a low-temperature
SOFC by coupling macroscopic and pore-scale models. To

make the optimization feasible, the macroscopic model was

restricted to 1-d.

An alternative approach is to use surrogate model approx-

imations, usually based on machine learning or multi-fidelity

methods. In the context of electrochemical energy technolo-

gies,machine learningmethods have beenused extensively as

surrogate models for sensitivity analyses [17], optimization

[18,19], fuel cell degradation [20], monitoring fuel cell perfor-

mance [21], battery health monitoring [22,23], inverse param-

eter estimation [24] and model identification [25]. Examples of

the methods employed are linear regression [26], artificial

neural networks (ANNs) [27e29], deep learning networks

(DNNs) [30,31] and Gaussian process (GP)models [21,32]. ANNs

[28,29] and DNNs [33] have proven to be particularly popular

given the availability of open-source and commercial codes.

In [34], Xu et al. assessed 19 different machine learning

approaches, including ANNs, Boltzmann machines and sup-

port vector regression trained on data from a CFD model,

which were used in combination with a genetic algorithm to

optimize the power density output of a SOFC. Wang et al. [35]

developed a response surface model based on linear regres-

sion using data from a finite element model to optimize geo-

metric parameters for minimizing the long-term creep of a

SOFC. Subotic et al. instead conducted an SOFC performance

optimization using experimental polarization and impedance

data, used for an ANN (although it was actual a parametric

study) [29]. In general, however, ANNs require large volumes

of data, which can be a hindrance when the complex com-

puter model used to generate the data requires hours or even

days to complete one simulation.

Almost exclusively, as in the examples cited above,

machine-learning surrogate models have been used for scalar

outputs, such as a peak power density or an efficiency. Ideally,

however, the output of the surrogate model should contain

the richness of information (spatial distributions of reactant

concentrations, ionic and electronic potentials, temperature,

and so on) found in the original computer model, in order to

make fully-informed design and optimization decisions. For

example, it is important to ensure uniform distributions of the

reactants, temperature, flow velocity and overpotentials in

the electrodes, which optimizes the performance and effi-

ciency, and mitigates against degradation. This cannot be

achieved by relying on a single or multiple scalar summaries

from the model. Spatio-temporal information can also allow

for optimization with respect tomultiple objectives, and these

objectives do not necessarily need to be decided beforehand.

For example, we may use a minimum, maximum, average or

some other functional summary. In this paper we therefore

focus on the approximation of spatial outputs. Surrogate

models for spatial or spatio-temporal outputs are particularly

challenging due to the sizes of the output spaces. It is no

surprise therefore that there have been few attempts to

develop such models for fuel cells (and batteries), with ex-

ceptions being the reduced-dimensional GP approach of Shah

and co-workers [36,37], and a similar approach combinedwith

a coregionalisation model for multi-task learning (multiple

outputs learned together) [38].

Another paradigm for developing surrogates is multi-

fidelity modelling, in which data from models of low fidelity
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1 https://www.comsol.com/model/current-density-
distribution-in-a-solid-oxide-fuel-cell-514 (Application ID: 514).
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(low accuracy and computational cost) is leveraged to aid the

learningof outputs at ahigherfidelity [39]. Thegreat advantage

of such approaches is that they typically require fewer runs of

the high-fidelity model than are required for pure machine

learning approaches, which rely entirely on high-fidelity data.

When the number of system parameters (those of interest in

the application) is high, collecting the data for training a pure

machine learning model can itself become an issue.

In [40], Liu et al. developed a dual-segmented approach for

a PEM fuel cell stack in which interpolation was used to bridge

the gap between coarse- and fine-level segmentations. The

authors claimed that the high fidelity result was equivalent to

a finite-element simulation in terms of accuracy, but pre-

sented no direct evidence of this. Voskuilen et al. [41] surveyed

various battery models, classifying them in terms of the fi-

delity, which was typically based on the number and extent of

simplifications (of the underlying physics). The authors did

not, however, combine these models in any way, in spite of

the title of their paper. More conventional and sophisticated

multi-fidelity approaches have not been applied to fuel cells.

Xing et al. [42] developed a residual Gaussian process model

that was tested in only one example on an SOFC finite-

element model.

Many multi-fidelity models involve building a surrogate

model (usually based on machine learning) at each fidelity.

The linear autoregressive (LAR) multi-fidelity model [43] (see

also [44]) assumes a linear relationship or parametricmapping

between the different fidelity levels. Nonlinear AR (NARGP)

[45,46] places GP priors over the unknown mappings between

fidelities, allowing for greater model flexibility. For spatial and

spatio-temporal problems, the major shortcoming of this

method is that the solution at a fidelity f is used as an input to

the GP model for fidelity f þ 1. This presents an enormous

challenge in terms of learning the model hyperparameters.

Furthermore, tractability is lost and expensive sampling or

variational methods are required for training and inference.

In multi-fidelity stochastic collocation (SC) [47], a greedy

algorithm is used to identify inputs for a low number of high-

fidelity simulations, while the low-fidelity results are used to

approximate the coefficients in a high-fidelity SC approxi-

mation. SC and related approaches require out-of-sample

low-fidelity model results in order to make predictions,

which may be justified in some design contexts but renders

them unusable for optimization, sensitivity analysis and un-

certainty quantification when the low fidelity model is itself

moderately expensive, as is frequently the case.

Greedy NAR [48] provides a bridge between NARGP and SC,

appealing to the advantages of both methods. The high-

fidelity model is written as a linear map of the low-fidelity

model in an abstract (feature) space, with the feature map

specified implicitly by marginalising over the weight matrix

appearing in the map and using kernel substitution. Active

learning is then used to efficiently identify the inputs for the

data generation at all fidelities greater than the lowest. Greedy

NAR outperformed LAR, NARGP and SC, but was subsequently

outperformed by ResGP [42], which uses GP models for the

residuals between fidelities, leading to a tractable posterior

and scalable hyperparameter learning.

In this paperwedevelop amulti-fidelity surrogatemodel for

a SOFC that is capable of approximating detailed spatial
information and can be used for optimization purposes. We

extend theSCapproach tomake itmoreaccurateandapply it to

a detailed 3-d SOFCmodel that includesmass,momentumand

charge balances in the channels, electrodes and electrolyte.

The model capacity of SC is enhanced by introducing a novel

feature engineering step, and the requirement of low-fidelity

data for predictions is eliminated by using a GP model. The

approach is shown to yield highly accurate predictions of

multiple spatially distributed quantities, including the elec-

trolyte current density, ionic potential, volumetric anode cur-

rent density and cathode overpotential, at up to 250,000 spatial

locations. We note that these quantities are chosen for the

purposes of illustration, and that there is no restriction on the

type of field output,which canbe related to theelectrochemical

performance, flow field, reactant concentrations or tempera-

ture. Indeed, SC has been successfully applied to frequency-

modulated heat driven cavity flows [49], acoustics [50], molec-

ulardynamics [51], airfoil design [52], discrete-spaceprobability

density evolution [53], and turbulence modelling [54].

The results are compared to LAR, NARGP, ResGP and

Greedy NAR, demonstrating superior performance, particu-

larly for low numbers of high fidelity training points. We also

compare the computational complexities of these methods

with that of ours. We then apply the surrogate model to the

optimization of the SOFC performance, considering different

objectives, objectives with nonlinear constraints and multiple

objectives. The level of detail furnished by the surrogate

model we develop allows for flexibility in deciding the objec-

tives a-posteriori, in contrast to approaches that focus on

scalar targets.We reiterate the novel aspects of our work: (i) as

far as we are aware, we develop the first genuinemulti-fidelity

approach for SOFC that requires only a few runs of a complex

(time-intensive), physics-basedmodel to generate data; (ii) we

are able to predict spatial outputs, allowing formore informed

design and optimization decisions, with some flexibility to

change objectives a-posteriori; (c) the method we develop

significantly extends the original stochastic collocation

formulation using feature enhancement and, moreover, re-

places the expensive low-fidelity simulation required for

prediction with an extremely rapid GP approximation.
Physics-based high and low fidelity models of a
SOFC

Weconsider a detailed steady-state, isothermal 3-d solid oxide

fuel cell model, which was implemented in the COMSOL Mul-

tiphysics software package1. We present only the essential

details of themodel and refer the reader to the documentation

for the full set of equations and parameter values. A two-

fidelity setting was considered. COMSOL Multiphysics uses

the finite element method to solve the governing equations.

Additionally, a V cycle geometric multigrid is used in this

particular implementation. The domain comprises single

anode and cathode channels, the electrodes and a ceramic

separator, depicted in Fig. 1. The spatial variable is denotedx¼
(x,y,z)T. The dimensions of the channels are 1 cm � 0.5 mm �

https://www.comsol.com/model/current-density-distribution-in-a-solid-oxide-fuel-cell-514
https://www.comsol.com/model/current-density-distribution-in-a-solid-oxide-fuel-cell-514
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Fig. 1 e Computational domain for the COMSOL model.
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0.5 mm in the x � y � z directions. The dimensions of the

electrodes are 1 cm � 1 mm � 0.1 mm, and the dimensions of

the separator are 1 cm � 1 mm � 0.1 mm. The geometry is

constructed such that the anode inlet is placed at x ¼ 0, while

the cathode inlet is placed at x ¼ 1 cm.

The model is based on hydrogen and air at the anode and

cathode, respectively. Humidified hydrogen (hydrogen and

water vapour) is supplied at the anode inlet, while humidified

air (oxygen, water vapour and nitrogen) is supplied at the

cathode inlet. The model includes charge balances in the

electrolyte and electrodes (based on Ohm's law with fixed

conductivity values) to calculate the electronic and ionic po-

tentials. The incompressible Navier-Stokes equations along

with continuity are used for the gas channel flow, while

Brinkman's equation is used for the porous electrode flow.

Mass balances of all species are solved in the channels and

electrodes, incorporating Maxwell-Stefan diffusion and bulk

motion by convection for the multi-component transport.

The electrochemical reactions are:

H2 þO2�/H2Oþ 2e� anode
O2 þ 4e�/2O2� cathode

(1)

Butler-Volmer laws are assumed for these reactions, with

current densities (Am�2) (and associated reaction rates via

stoichiometry) given by:

ia ¼ i0;a

�
PH2

PH2 ;ref
exp

�
Fh
2RT

�
� PH2O

PH2O;ref
exp

�
� 3Fh
2RT

��
anode

ic ¼ i0;c

�
exp

�
3:5Fh
RT

�
� PO2

PO2 ;ref
exp

�
� Fh
2RT

��
cathode

(2)

in which i0,a and i0,c are the anode and cathode exchange

current densities (Am�2),Pj and Pj,ref denote the partial pres-

sures and reference pressures of species j (Pa), F is Faraday's
constant (Cmol�1), R is the universal gas constant (Jmol�1K�1),

T is the cell temperature (assumed constant) and h is the

overpotential (V). The latter is defined by:

h ¼ fs � fe � Eeq;a (3)

in which fs and fe are the solid phase and electrolyte poten-

tials, respectively, and Eeq is the equilibrium potential

(assumed constant) for the anode or cathode (j 2 {a, c}).
The cell is assumed to operate in potentiostatic mode. At

anode channel rib, where the electrode interfaces with the

end plate, a reference potential of zero is imposed, while the

potential is set to the cell voltage Ecell at the cathode channel

rib, where again the electrode interfaces with the end plate. At

the walls of the gas channels and the porous electrode, insu-

lation (zero mass and charge fluxes) is assumed. The compo-

sitions (weight fractions of species) are specified at the inlets,

while the outlet conditions assume a convective flux. The

default parameter values are specified in the documentation

and are not repeated here to conserve space. Aside from the

chosen inputs (specified below) all parameters were set to

their default values.

Various settings can be adjusted in order to generate so-

lutions of different fidelity. The low-fidelity solution in this

case was defined by 360 domain elements, 474 boundary ele-

ments, 212 edge elements (corresponding to Fig. 1) and a

relative tolerance of 0.1, while the high-fidelity solution was

defined by 883,601 domain elements, 93,067 boundary ele-

ments, 3979 edge elements and a relative tolerance of 0.001,

with other settings fixed, making the latter far more accurate

and costly. The low fidelity model took 3 min and 3 s to

compute the 128 solutions, while the high-fidelity model took

14 h, 17 min and 8 s on a Macbook pro 2.3 GHz, 8-Core Intel

Core i9 with 64 GB 2667 MHz DDR4 RAM.

Four inputs were chosen for the experiments:

1. Electrode porosities in the range ε 2 [0.4, 0.85]

2. Cell voltage in the range Ecell 2 [0.3, 0.95] V

3. Cell temperature (assumed constant) in the range T2 [973,

1273] K

4. Channel pressures (assumed equal) in the range P 2 [0.5,

2.5] atm.

and are collected inside an input vector:

x ¼ ðε;E cell;T;PÞT (4)

The ranges above define the feasible input space D3Rp,

p ¼ 4.

N ¼ 128 values of each input (vector) were selected using a

Sobol sequence design-of-experiment, and are labelled xn2D,

https://doi.org/10.1016/j.ijhydene.2023.04.012
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n¼ 1…,N. The chosen outputswere: (1) the electrolyte current

density ie(x; x) (A m�2); and (2) the ionic (electrolyte) potential

fe(x; x) (V), both in the x � z plane at the centres of the chan-

nels in the y direction (see Fig. 1). This notation indicates that

these outputs are functions of x, and are parameterised by the

inputs x.

Each of the outputs was recorded at locations xj, j ¼ 1, …,

d ¼ 5000 on a uniform grid, and were subsequently vectorised

to form vectors yf
n2Rd, where the subscript n indicates that

the input xn was used, and f denotes the fidelity, namely f ¼ F

for the high fidelity output, and f¼ L for the low fidelity output.

Note that we use a generic symbol yf
n to denote both outputs in

order to keep notation to a minimum.

Later in the optimization section Surrogate assisted opti-

mization of an SOFC we also consider the volumetric current

density in the anode it(x; x) (Am�3) and the cathode over-

potential hc(x; x) (V), both recorded at 250,000 locations. We

may think of the outputs as values of mappings (functions)

yf(x) of the input; that is, yf
n ¼ yf ðxnÞ. Our ultimate goal is to

find an estimator for the high-fidelity mapping yF(x) so that

rapid and accurate predictions can be made for an arbitrary x.

This estimator can then be used for optimization, or any other

application requiring repeated evaluations of, and predictions

from the original computer model, e.g., sensitivity analysis

and uncertainty quantification. The method we employ is an

adaptation of the stochastic collocation (SC) approach [47],

overcoming two of its limitations.

Stochastic collocation multi-fidelity fusion

The multi-fidelity SC methodology is based on a combination

of sampling refinement and multi-fidelity data fusion. It has

been successfully applied to numerous problems in science

and engineering [50,52,54,55]. Consider low- and high-fidelity

models that define mappings yf : D/Rd from a p-dimen-

sional input parameter spaceD to low and high-fidelity output

spaces lying in Rd. In essence, the SC approach [47] finds an

estimator yF(x) of the high-fidelity mapping in the form:

yHðxÞ ¼
XM
n¼1

cnðxÞyH
n (5)

in which M is the number of training points and cn(x) are un-

known coefficients that depend on the input x. Clearly, this

approach amounts to an interpolation, in which the co-

efficients (usually assumed to polynomials) are estimated

using values of yH(x) at judiciously selected collocation points,

such as the Gauss-Lobatto-Legendre or Fekete points [56]. Due

to the cost associated with calculating values of yH(x), how-

ever, the low-fidelity solutions are instead employed to

approximate the cn(x). Given yL(x), corresponding to a general

x, the coefficients are determined by the conditions:

XM
n¼1

cnðxÞðyL
nÞ

T
yL
n ¼ ðyLðxÞÞTyL

n; cyL
n (6)

This is an interpolation or projection of yL(x) onto the space

spanfyL
ng, i.e., all linear combinations of the low fidelity data

points. In practice, the SC approach is equivalent to a
Gaussian process model with a linear kernel (Bayesian linear

regression), as demonstrated in Ref. [48].

Assume that we are able to sample at random from the

parameter space D and obtain N low-fidelity model evalua-

tions. An N � N Gramian matrix GL can be constructed as

follows:

½GL�l;n ¼ k
�
yLðxlÞ;yLðxnÞ

�
; l;n ¼ 1;…;N (7)

where kð,; ,Þ : Rd � Rd/R is any valid kernel function. In the

original formulation [47], a linear kernel is used, i.e.:

k
�
yLðxlÞ;yLðxnÞ

� ¼ ðyLðxlÞÞTyLðxnÞ (8)

as seen in Eq. (6). A sampling refinement procedure to select

the collocation points is then employed, involving the appli-

cation of an LU decomposition with complete pivoting on the

low-fidelity Gramianmatrix GL. An ordering of the low-fidelity

data points based on their ‘importance’ (explained in the next

section) is obtained via the calculation of a matrix Q from:

PGLQ ¼ LU (9)

where the matrices L and U are lower and upper triangular

factorization matrices, respectively, while P and Q are per-

mutation matrices that reorder the rows and columns of the

Gramian matrix, respectively. This procedure leads to the

selection of m ≪ N sampling points with indices n1, …, nm, for

determining the cn(x) and evaluating the high-fidelity output at

any x2D. The latter is given by Eq. (5) applied at the sampling

points:

yHðxÞ ¼
Xm
i¼1

ciðxÞyHðxni Þ (10)

in which the ci(x) are computed via a least-squares projection

onto the low-fidelity model data:

0
BB@

GL
i1 ;i1

/ GL
i1 ;im

« 1 «

GL
i1 ;im

/ GL
im ;im

1
CCA
0
@ c1ðxÞ

«
cmðxÞ

1
A ¼

0
@ k

�
yLðxÞ;yLðxi1 Þ

�
«

k
�
yLðxÞ;yLðxim Þ

�
1
A (11)

The yH(x) in Eq. (10) is of course not the true latent function but

an estimator. In order to avoid notational clutter, we do not

make the distinction unless it is necessary. The same applies

to the estimator of yL(x) introduced later.

Explanation of the point selection strategy in multi-fidelity
stochastic collocation

Selection of the inputs to generate the high-fidelity training

data, i.e., the interpolation nodes xni
used in Eq. (10), is a

weak greedy procedure. Consider a general description, in

which we have a low-fidelity model uLðxÞ : D/VL in some

low-fidelity solution space VL that is assumed to be Hilbert

space with inner product C,,,DL. Then the distance between

any subspace W3VL and a function vðxÞ2VL can be defined

as the greatest lower bound of the distance between v and W,

measured in terms of the norm induced by the inner product

k ,kL ¼ C,,,DL:

dLðv;WÞ¼ infw2WkðI� PWÞvkL (12)

https://doi.org/10.1016/j.ijhydene.2023.04.012
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where PW denotes the orthogonal projection operator onto W
and I is the identity operator. In our case, u(x) ¼ yL(x) and

VL3Rd, which is obviously a (finite dimensional) Hilbert space,

for which we can use the standard inner product.

In radial basis methods (RBMs) for the (single-fidelity) so-

lution uðxÞ : D/V to a parameter-dependent PDE problem, a

common greedy strategy is to select R query points x1,…, xR, to

generate basis vectors u(x1), …, u(xR), from the functional

manifold fuðxÞ : x2Dg such that the distance (as defined

above) between fuðxÞ : x2Dg and spanfuðx1Þ;…;uðxRÞg3V is

minimized.

We would like to perform a similar procedure to select

query points for the high-fidelity data, but since the high-

fidelity model is expensive, the low fidelity solution is

instead used as a proxy. The selection of query points in RBMs

as described above is implemented iteratively, by adding a

point x* to the optimal set Gn at step n such that the distance

between uL(x*) and ULðGnÞ ¼ spanfuðxÞjx2Gng is maximal:

x* ¼ argmax
x2D

e

dL
�
uLðxÞ;ULðGnÞ; Gnþ1 ¼ Gn∪fx*g (13)

in which D4D and G0 ¼ {}, i.e., the empty set. Performing this

process in the continuous space D ¼ D is generally not

computationally feasible, due to the potentially very high

number of queries to the low fidelity model uL allied with the

lack of a closed form expression for Vxu
L, necessitating

expensive numerical approximations. It is, however, achiev-

able in a discrete finite-cardinality set D3D.

As proven by Narayan et al. [47], full-pivoting LU decom-

position of the low-fidelity Gramian matrix GL to obtain the m

indices n1, …, nm, and corresponding sampling points

Gm ¼ fxnig is one of the greedy solutions to the optimization

problem defined in Eq. (13) on the finite-cardinality candidate

set D ¼ fxngMn¼1. This assumes that D is dense enough to cap-

ture all important variations in the high-fidelity data, and that

there are no restrictions on selecting point in D.

Bayesian nonparametric model for the low-fidelity output
when making predictions

In the original framework [47], a high-fidelity prediction yH(x)

for an unseen input x requires the true low-fidelity output

yL(x), which can still be very expensive to obtain in real-wold

applications. To build a more efficient mutli-fidelity model,

we use a GP approximation for the low-fidelity output by

introducing a prior:

yLðxÞ � GPðyLðxÞj0; kðx; x0jqÞ5Q þ s2I5 dðx; x0ÞÞ (14)

in which GPð,j ,; ,Þ denotes a GP, with the first and second

arguments denoting the mean and covariance functions. The

symbol ~ signifies that the random variable or process to left is

distributed according to the distribution to the right, 5 is the

Kronecker product, d(x, x0) is the Kronecker-delta function and

Q is a coregionalization matrix (treated as hyperparameter),

containing the covariances between the components of yL(x).

k(x, x0|q) is a kernel for the covariance across inputs, containing
a vector of hyperparameter q. The product structure k(x, x0 |q)

5Q is referred to as separable [57]. The term s2I 5 d(x, x0) ac-

counts for i.i.d. noise in the data, or equivalently acts as a

regularization (penalty) term.

One of the most widely used kernels is the squared expo-

nential automatic relevance determination (ARD) kernel:

kðx; x0jqÞ ¼ exp

 
�
Xd
l¼1

jxn;l � x0n;lj2
q2l

!
(15)

in which xn,l is the l� th component of xn, and ql are correlation

lengths that form the vector q. The total set of hyper-

parameters is {q, Q, s2}.

The simulation data can be collected in a matrix YL ¼
½yL

1;…;yL
NL
�T2RNL�d, where NL is the number of low fidelity

data points used for training. The logmarginal likelihood L for

the model 14 is:

L ¼ 1
2
ln jSj � 1

2
tr
�
vecðYLÞvecðYLÞTS�1

�
� dNL

2
lnð2pÞ (16)

in which vec(,) denotes a vectorization and tr is the trace of a

matrix. S ¼ Q5Kþ s2I2RdNL�dNL is the covariance matrix, in

which K2RNL�NL is given by [K]ij ¼ k(xi, xj). A maximum likeli-

hood estimate (MLE) can be used for the hyperparameters,

which can be placed in the following posterior distribution for

yL(x) [58]:

E½yLðxÞ� ¼ ðQ5kðxÞÞTS�1vecðYLÞ
Var

�
yLðxÞ� ¼ kðx; xÞQ � ðQ5kðxÞÞTS�1ðQ5kðxÞÞ (17)

in which kðxÞ ¼ ½kðx; x1Þ;…; kðx; xNH
Þ�T contains the correlations

between the output at a test input x and the observations in

the data set.

Efficient computation using a noise-free assumption

For multi-fidelity fusion problems, the noise term can, and in

fact usually is, taken to be zero by virtue of the fact that the

low- and high-fidelity models are deterministic [47]. With this

assumption, the predictive mean in Eq. (17) simplifies as

follows:

E½yLðxÞ� ¼ ðQ5kðxÞÞTðQ5KÞ�1vecðYLÞ
¼ Q5ðkðxÞÞT�Q�15K�1

�
vecðYLÞ

¼ ðQQ�1Þ5ðkðxÞÞTK�1vecðYLÞ
¼ I5ðkðxÞÞTK�1vecðYLÞ
¼ vec

�
ðkðxÞÞTK�1YLIT

�
¼ ðYLÞTK�1kðxÞ

(18)

demonstrating that the value of Q does not affect the mean

predictions. What is more, outputs in high-dimensional

spaces (large d) can be handled without the need for the

difficult task of learning the d(d þ 1)/2 components of Q. To

illustrate the difficulty in the optimization of (16), in the ex-

amples we consider, d2 {5000, 250,000}, yielding 1.25025� 107

or 3.125 � 1010 entries. This would severely compromise the

accuracy of the maximum likelihood estimate of the

hyperparameters.
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Therefore, we set Q ¼ I to obtain:

yLðxÞ � GP�yLðxÞj0; kðx; x0Þ5 I
�

(19)

and the likelihood:

L ¼ d
2
ln jKj � 1

2
tr
��
YLÞ�TK�1YL

��NLd
2

lnð2pÞ (20)

The computational complexity associated with this likelihood

is now OðN3
LdÞ, in contrast to the OðN3

Ld
3Þ complexity of the

original likelihoodmaximization, making it significantly more

scalable to high values of d. The corresponding predictive

posterior is as follows:

E½yLðxÞ� ¼ kðxÞTK�1YL

Var
�
yLðxÞ� ¼

�
kðx; xÞ � kðxÞTK�1kðxÞ

�
5I

(21)

which constitutes the estimator for the true low fidelity

mapping.

Feature enhancement for the low-fidelity Gramian: an
efficient nonlinear kernel

We note that the predictive equations in Eqs. (10) and (11) are

very similar to those in Eq. (21). As we pointed out in Ref. [48],

SC is a special case of NAR when using a linear kernel. How-

ever, in practice, we find that introducing a nonlinear kernel,

e.g., an ARD kernel, can only improve the performance when

sufficient data is provided to accurately learn the hyper-

parameters introduced; for ARD there are OðdÞ hyper-

parameters, which is typically very high for the types of

models under consideration. In a practical situation in which

the high-fidelity observations are sparse, performance will

therefore be compromised.

There are possible remedies via approximate or fully

Bayesian approaches, e.g., variational Bayes or MCMC, which,

however, are computationally expensive and can defeat the

originalpurposeoffindinganinexpensivesurrogate for thehigh

fidelity model. To overcome this problem, we can use a feature

enhancement technique to augment the low-fidelity observa-

tions in order to makemore accurate high-fidelity predictions.

Specifically, we design a feature transformation of the low-

fidelity observations via a linear combination of kernels as

follows:
½GL�l;j ¼ CyLðxlÞ;yLðxjÞDþ u1CðyLðxlÞÞ2; ðyLðxjÞÞ2Dþ u2CexpðyLðxlÞÞ; expðyLðxjÞÞD

þu3ClnðyLðxlÞÞ; lnðyLðxjÞÞDþ u4CsinðyLðxlÞÞ; sinðyLðxjÞÞDþ…

(22)
where C,; ,D denotes the standard Euclidean inner product, uk

are weights and the operations (,)2, exp(,), etc. are performed

element-wise. Other operations included in this work are
ffiffiffi
,

p
,

|,| and cos(,), although any arbitrary number Z of functions

can be incorporated. In order to avoid overfitting, we place a

Laplace prior over each weight:

pðukÞfexpð�jukjÞ (23)
and set u ¼ ðu1;…;uZÞT. The Laplace prior with a maximum-

likelihood point estimate of u is then equivalent to mini-

mizing the L2 loss function between the data points and their

SC approximations with an L1 regularization term:

u* ¼argmin
u

1
2

XNH

n¼1

kyHðxnÞ�yH
n k2 þ lkuk1 (24)

in which: k ,k1 is the L1 norm; NH is the number of high fidelity

samples available (NH ¼mwith the greedy strategy); yH(xn) are

the SC predictions (functions of u) via Eqs. (10), (11) and (22) of

the high-fidelity observations yH
n ; and l is the regularization

constant, which is determined using a leave-one-out cross-

validation.

High-fidelity predictive posterior using Monte-Carlo
integration

Given q and u, we can derive the high-fidelity posterior dis-

tribution. Despite the fact that the low-fidelity prediction (21)

for yL(x) is Gaussian, due to the feature enhancement, the

high-fidelity prediction yH(x) is no longer tractable, which

necessitates integration:

p
�
yHðxÞ� ¼ Z pðyLðxÞÞp�yHðxÞjyLðxÞ�dyLðxÞ (25)

in which p(yL(x)) is the predictive posterior in Eq. (21) and

pðyHðxÞjyLðxÞÞ is the nonlinear deterministic mapping given by

Eqs. 10 and 11 and (22). If d is low, says less than 10, we can use

an efficient Gaussian quadrature to approximate the integral.

For observations in high-dimensional spaces, we can use a

Monte-Carlo integration, which is more expensive but still

efficient since sampling froma standard Gaussian distribution

is straightforward and quick using reparameterization.

To this end, we first sample Kd points gi from a normal

distribution Nð0;1Þ and reshape them into a matrix G2Rd�K,

with columns gk2Rd, k ¼ 1, …, K. We can then approximate

the mean of the high-fidelity predictive distribution as:

E½yHðxÞ�z
XK
k¼1

�
yH
k ðxÞjyL

kðxÞ
� ¼ 1

K

XK
k¼1

Xm
l¼1

ckl ðxÞyHðxlÞ (26)

in which
yL
kðxÞ ¼ kðxÞTK�1YL þ gk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx; xÞ � kðxÞTK�1kðxÞ

q
(27)

are samples from the low-fidelity predictive posterior (21). The

coefficients ckl ðxÞ are obtained by substituting the low-fidelity

samples into Eq. (11) with the kernel defined in Eq. (22).

Similarly, the variance of the predictive distribution is ob-

tained from:
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Var
�
yHðxÞ� ¼1

K

XK
k¼1

 Xm
l¼1

ckl ðxÞyHðxlÞ � E½yHðxÞ�
!

 Xm
l¼1

ckl ðxÞyHðxlÞ � E½yHðxÞ�
!T (28)

Computational complexity

Table 1 compares the time/computational complexity for the

training of ourmethodwith those of state-of-the-artmethods.

For a GP model with NL training points, the computational

complexity of the training is OðN3
LÞ, by virtue of the require-

ment to invert the NL � NL covariance matrix when imple-

menting themaximum log-likelihood solution [58]. For SC, the

complexity is OðN3
HÞ due to the inversion of an NH � NH

Grammian matrix in the loss function (24). This is the same

complexity as that of all the other methods in Table 1, expect

for linear autoregression (LAR) [43], which is considerably

higher. The number of model parameters is comparable to

ResGP [42] and LAR for typical values of p, but much lower

than for NARGP [45] and Greedy NAR [48].
Results and discussion

In the comparisons in this section, NARGP, LAR, Greedy NAR

and ResGP are implemented according to their original
Table 1 e Model complexity comparison. p is the
dimension of the input space, d is the dimension of the
output space, NH and NL are the number of high and low
fidelity training points, respectively, and Z is the number
of features used in Eq. (22).

Method Complexity Number of parameters

Our method OðN3
LÞ þ OðN3

HÞ (p þ 1) þ Z

NARGP OðN3
LÞ þ OðN3

HÞ 2(p þ 1) þ d

LAR OððNL þNHÞ3Þ 2(p þ 2) � 1

Greedy NAR OðN3
LÞ þ OðN3

HÞ (p þ 1) þ d

ResGP OðN3
LÞ þ OðN3

HÞ 2(p þ 1)

Fig. 2 e Box plots of the square errors (SE) against the test examp

x) (V) and current density ie(x; x) (A m¡2) using Eq. (21), for an in
formulations and specifications. The GP based methods as-

sume a zero-mean function after centering the data and ARD

kernels are used in all of thesemethods, except for NARGP. For

NARGP, the fidelity-1 kernel is an ARD kernel, and the fidelity 2

kernel is of the form used by Perdikaris et al. in their original

implementation [45]. Three ARD kernels are combined

togetherby factoring thedependenceon the inputsand the low

fidelity solution, and adding another kernel that represents a

bias term. All methods were implemented in both Python

(PyTorch) and Matlab. For the optimization, Matlab was

preferred due to the availability of the Optimization Toolbox.

The prediction accuracy of all methods is measured using

the root square mean error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

n¼1

					yp;n � ynk2
vuut (29)

in which Nt is the number of test points, yp,n is the prediction

and yn is the test point. All numerical experiments were

conducted five times with randomization of the data, and the

average value of the RMSE is presented. For individual results

we use the square error (SE), kyp,n � ynk2.
Beforemoving onto themulti-fidelity results, we first show

(Fig. 2) box plots of the square errors (SE) against the test ex-

amples for theprediction of the lowfidelity ionic potentialfe(x;

x) (V) and current density ie(x; x) (A m�2) using Eq. (21), for an

increasing number of training points. There is a clear decrease

in theSE values as thenumberof trainingpoints increases, and

the results are very accurate even at 40 training points.

To give and indication of the significance of the sizes of the

errors, we first note that themean value of the current density

data was 1.058 � 103 A m�2. The square root of the median

square error per coordinate of the output (d¼ 5000 in this case)

at 40 training points is 5.963 Am�2, while the square root of the

maximum square error (an outlier) is 50.178 A m�2. The corre-

sponding errors are significantly lower at 80 training points. For

the ionic potential, the mean value of the data was �0.0924 V.

The square root of themedian square error per coordinate at 40

training points is 4.472 � 10�4 V, while the square root of the

maximum square error (an outlier) is 1.890 � 10�3. Again, the

corresponding errors decrease significantly at 80 training

points.
les for the prediction of the low fidelity ionic potential fe(x;

creasing number of training points.
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Fig. 3 e Log root mean square errors (RMSE) against the test examples for our proposed method, corresponding to different

numbers and ratios of low- (F1) and high-fidelity (F2) ionic potential fe(x; x) (V) training data points. Included are

comparisons to LAR, NARGP, ResGP, and Greedy NAR.
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Prediction of the ionic potential

The RMSE values (with the five-fold cross validation) relating

to the discretised ionic potential fe(x; x) (V) in the x� z plane at

the channel centres are shown in Fig. 3, for increasing

numbers of training samples, with the high-to low-fidelity

sample ratios fixed to 1:1, 1:2, 1:3, and 1:4. In each case the

remaining high fidelity data points were used for testing.

Comparisons to the other methods are also shown. When the

numbers of low and high fidelity samples are equal, all

methods yield a similar level of accuracy, with the exception

of NARGP at low training point numbers. This is not surprising

considering the number of hyperparameters involved in

NARGP.

The accuracy of our method is very high, with average

RMSE values below 1.65 � 10�5 V per each of the 5000 co-

ordinates of the output when the number of low fidelity

samples is more than around 25 (for all training data ratios).

This is ca. 0.017% of the mean value �0.0970 V of the ionic

potential across the data set. For around 55 training points, the

RMSE is below 1 � 10�5 V per coordinate. As the ratio of high-

fidelity to low-fidelity samples decreases, ourmethod shows a

significant improvement over the other methods, even at a

low to mid-range number of training points (40e60). NARGP

performs poorly except when a large data set is available;

around 85 for a ratio of 3:1 and around 100 for a ratio of 1:4, in

which case it approaches the accuracy of our method. As

already explained, this is to be expected for high values of d.
The improvement over the other methods for decreasing

high-fidelity to low-fidelity sample ratios is significant

because it allows for fewer high-fidelity training points. For

example, at a ratio of 4:1, with 72 low-fidelity and only 18 high-

fidelity training points, our method is approximately 26%

more accurate than LAR, the next best method. LAR, more-

over, has roughly double the computational complexity

compared to our method for this number of low and high fi-

delity samples.

Wenowcompare ourmethod to SC, inwhich bothmethods

are provided with the exact low fidelity data for prediction.

This allows us to assess the effect of the added features. The

number of low and high fidelity training points is the same for

bothmethods.As canbe seen in Fig. 4, themethods are roughly

the same for training point numbers below 25, but for higher

numbers of training points our method is significantly more

accurate. For training point numbers above 70, the RMSE is ca.

25% lower. Even at 55 training points it ismore than 11% lower.

This underlines the benefit of the added features.

Wenote also that in Fig. 4 the RMSE is significantly lower for

both methods than the errors in Fig. 3. This is because the low

fidelity data is provided for bothmethods,whereas in Fig. 3 the

GP model (21) is used to predict the low-fidelity result in order

to generate the high-fidelity approximation. Thus, it is not a

fair comparison since execution of the low fidelity model in-

volves considerable computational costs. For the optimization

presented later (and other applications) it is usually infeasible

to make repeated calls to the low fidelity model.
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Fig. 4 e A comparison of log RMSE for stochastic collocation

(SC) and our proposed method with the feature

enhancement in Eq. (22). In this case, the exact low fidelity

data is provided for prediction.

Fig. 5 e Three predictions of the ionic potential fe(x; x) (V) in the

and 20 high-fidelity training points. These predictions were chos

the middle row close to the median square error and the bottom

prediction, the second column the tests (ground truths) and the
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Examples of the predictions using our method are shown

in Fig. 5, corresponding to the case with the lowest square

error, a case in the region of the median square error and the

case with the highest square error. Also shown are the tests

(ground truths) and the point-wise absolute differences be-

tween the prediction and ground truth. 80 low-fidelity and 20

high-fidelity training points were used to generate these re-

sults. It can be seen that even in the case of the highest square

error, the prediction is highly accurate, both qualitatively and

quantitatively.

Prediction of the current density

The RMSE values (with the five-fold cross validation) relating

to the discretised current density ie(x; x) (A m�2) in the x � z

plane at the channel centres are shown in Fig. 6, for increasing

numbers of training samples and different high-to low-fidelity

sample ratios. In each case the remaining high fidelity data

points were used for testing. Again, comparisons to the other

methods are provided. As with the ionic potential, the RMSE
x ¡ z plane at the channel centres (Fig. 1) for 80 low-fidelity

en such that the top row exhibited the lowest square error,

row the highest square error. The first column contains the

third column the point-wise absolute differences.
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Fig. 6 e Log root mean square errors (RMSE) against the test examples for our proposed method, corresponding to different

numbers and ratios of low- (F1) and high-fidelity (F2) current density ie(x; x) (A m¡2) training data points. Included are

comparisons to LAR, NARGP, ResGP, and Greedy NAR.
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values are roughly the same when the numbers of low and

high-fidelity samples are equal. This, however, is unrealistic.

Themore realistic scenarios of 1:2, 1:3, and 1:4 show again that

our method yields the lowest RMSE in most cases, and the

differences are especially noticeable at the two lowest ratios.

It must be said, however, that the differences are not as pro-

nounced as in the case of the ionic potential. At a training ratio

of 1:3, the RMSE is, nevertheless, ca. 20% lower than it is for

ResGP, the next best method.

Examples of the predictions using our method are

shown in Fig. 7, corresponding to the case with the lowest

square error, a case with a square error in the vicinity of

the median square error and the case with the highest

square error, together with the ground truths and the

point-wise absolute differences. 80 low-fidelity and 20 high-

fidelity training points were used. Again, even in the case

of the highest square error, the prediction is highly

accurate.

Surrogate assisted optimization of an SOFC

The results of the previous section demonstrate that our

method has sufficient accuracy to be used as surrogate model

for optimization. In this section we employ the method to
optimize the SOFC performance with respect to several ob-

jectives. We note that the objectives are illustrative and serve

as examples and tests, rather than being physically inspired.

We start with the aim ofmaximizing the current density in

the anode. For this we extracted values of the volumetric

current density it(x; xn) for each of the 128 inputs xn. The values

were taken at 250, 000 locations xj and vectorised to form

outputs yn as described in section 2. The objective is:

x* ¼ argmax
x

1
V

Z
x

itðx; xÞdx

subject to

0:2 � x1 � 0:9; 0:1 V � x2 � 0:95 V 800 K � x3 � 1500 K;

0:5 atm � x3 � 3 atm (30)

where V is the volume of the anode. We note that the lower

and upper bounds on the input are deliberately chosen to fall

outside the design space D used to train the model, so that

problem (30) forms a good test for the reliability of the model.

We use our multi-fidelity surrogate model for it(x; xn), namely,

for y(x), with a trapezoidal rule to estimate the integral in (30),

based on the components of y(x).

The optimization method used is a primal-dual interior

point method, i.e., both the primal and the dual problems are
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Fig. 7 e Threepredictionsof the currentdensity ie(x; x) (Am¡2) in the x¡ zplaneat the channel centres (Fig. 1) for 80 low-fidelity

and 20 high-fidelity training points. These predictions were chosen such that the top row exhibited the lowest square error,

the middle row close to the median square error and the bottom row the highest square error. The first column contains the

prediction, the second column the tests (ground truths) and the third column the point-wise absolute differences.
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simultaneously solved, implemented in Matlab (the ‘fmincon’

function). This particular interior point method [59] is a

variant of predictor-corrector infeasible-interior-point algo-

rithm by Mehrotra [60], which calculates a Newton (predic-

tion) direction, followed by a corrector direction, in which a

barrier is introduced.

The work flow is as follows:

1. Load the data set (inputs and outputs for low and high

fidelity)

2. Use Eqs. 20 and 21 to obtain the low-fidelity posterior pre-

diction for yL(x) for a given number of low fidelity training

points

3. The high fidelity predictive posteriormean for yH(x) is given

by Eqs. (26) and (27), using Eqs. (11), (21) and (22), for a given

number of low and high fidelity training points

4. Perform the optimization using the predictive posterior

mean for yH(x) to estimate the objective function using a

trapezoidal rule
Using 80 low-fidelity and 40 high-fidelity training points, the

results are summarised in Table 2, averaged over 5 experi-

ments. The average time taken to estimate x* (the entire

procedure described above) was 22.95 s, and yielded x*¼
(0.9,0.1 V, 800 K,3 atm)T � ε, in which each component of ε is

Oð10�7Þ. The function evaluation count ranged from 87 to 153,

underlining the benefit of replacing the high-fidelity solver

with the surrogate. The RMSE for the high-fidelity prediction

against 88 high-fidelity test points was 1.334� 10�4 A cm�3 per

component of y(d ¼ 250, 000), while the mean value of it(x; xn)

in the data set was 19.754 A cm�3.

The result in Table 2 is of course correct, since for the

highest current density we need to use the highest porosity

and channel inlet pressures, together with the lowest cell

voltage and temperature. Note that in the COMSOLmodel, the

inlet mole fractions of species are fixed and the channel inlet

concentrations C follow the ideal gas law C ¼ P/(RT). Thus,

higher temperatures lead to lower concentrations for a fixed

channel pressure, which overwhelms any other effects

https://doi.org/10.1016/j.ijhydene.2023.04.012
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Table 2 e Solutions to the optimization problems (30)e(33), together with the function evaluation counts and the times
taken.

Objective x1 x2/V x3/K x4/atm Time/s Function evals

(30) 0.9 0.1 800 3 22.95 121

(31) 0.9 0.1 800 3 12.11 67

(32) 0.2 0.1 800 3 17.27 316

(33) 0.2009 0.6957 1100.4 2.9992 17.27 387
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associated with higher temperatures, such as faster kinetics.

The highest channel concentrations are attained when

P¼ 3 atm and T¼ 800K. Fixing the channel inlet pressures and

varying the concentrations independently would lead to the

opposite result, namely that higher temperatures would lead

to higher current densities.

Applying the same procedure to:

x* ¼ argmax
x

1
A

Z
x

ieðx; xÞdx

subject to

0:2 � x1 � 0:9; 0:1 V � x2 � 0:95 V; 800 K � x3 � 1500 K;

0:5 atm � x3 � 3 atm (31)

in which we maximize the average of the electrolyte current

density in the x � z plane (with area A) at the channel centres,

led to the same result (to within 10�6 for all components of x)

for the same reasons, as summarised in Table 2.

We now turn our attention to maximizing the magnitude

of the average electrolyte potential in the x � z plane at the

channel centres:

x* ¼ argmax
x





1A
Z
x

feðx; xÞdx






subject to

0:2 � x1 � 0:9; 0:1 V � x2 � 0:95 V; 800 K � x3 � 1500 K;

0:5 atm � x3 � 3 atm (32)

The result (to within 10�4 for all components of x) is shown in

Table 2. Here we see that the maximum occurs for the lowest

temperature and highest pressure (i.e., the highest channel

concentrations), the lowest cell voltage and the lowest

porosity. This is as expected, since the lowest electrode

porosity leads to the highest volume fraction of electrolyte. In

this case the average number of function evaluations was 316,

which would take around 35 h to complete with the original

high-fidelity COMSOL model. We now add a nonlinear

constraint to (32), namely that the minimum value of fe(x; x)

should not be less than �0.2V:

x* ¼ argmax
x





1A
Z
x

feðx; xÞdx






subject to

�0:2 V � minxfeðx; xÞ
0:2 � x1 � 0:9; 0:1 V � x2 � 0:95 V; 800 K � x3 � 1500 K;

0:5 atm � x3 � 3 atm (33)

The result is again shown in Table 2. The values were aver-

aged over 5 runs, with differences between the values of each
coordinate of xwithin 0.5%. Here, we find that tomaximize the

magnitude of the average electrolyte potential, the added

constraint raises the optimal temperature to ca. 1100 K and

raises the cell voltage to ca. 0.7 V, while the channel pressure

and electrode porosity remain unchanged. Both a higher cell

voltage and a higher temperature (which lowers the channel

concentrations) will lower the rate of charge transfer, and

therefore lower the magnitude of the average electrolyte

potential.

The final experiment relates to multiple objectives,

namely:

x* ¼ argmax
x

fðxÞ ¼
�
1
V

Z
x

itðx; xÞdx; �1
V

Z
x

hcðx; xÞdx
�T

subject to

0:4 � x1 � 0:8; 0:2 V � x2 � 0:85 V; 973 K � x3 � 1273 K;

0:5 atm � x3 � 2:5 atm (34)

in which we simultaneously wish to maximize the average

volumetric anode current density and minimize the magni-

tude of the average cathode overpotential hc(x; x). As with the

volumetric anode current density, the cathode overpotential

was recorded at 250, 000 spatial locations and vectorised to

form outputs yn. The objectives in this case are clearly

competing. To solve this problem we approximate the Pareto

front. This is the first stage of a so-called Generate-First

Choose-Later approach, in which a set of Pareto optimal so-

lutions is first generated as a candidate set, and from which

the design choice can subsequently be made according to

other considerations, experience and preferences. A solution

is called Pareto optimal or non-dominated if none of the ob-

jectives can be improved upon with degrading one or more of

the other objectives. The Pareto front is the set of all such

solutions, and it was approximated using the genetic algo-

rithm implemented in the ‘gamultiobj’ function in Matlab.

The average time taken to build the surrogate model and

conduct the optimization (over 5 experiments) was 242.43 s,

and on average 7350 function evaluations were required. The

results are shown in Fig. 8, in which the objective function

values corresponding to the Pareto optimal solutions are

plotted against each other. In total, a set of 20 Pareto optimal

solutions were generated, all of which could be considered as

candidates for achieving the objective.

Although, as stated, the objectives chosen are for illustra-

tion rather than for any particular physical significance, most

of the results above are readily explainable, which facilitates

the validation of the approach. Other objectives (single or

multiple) would not require a qualitatively different approach.

The method is flexible and general enough to incorporate any

https://doi.org/10.1016/j.ijhydene.2023.04.012
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Fig. 8 e A plot of the objective function values

corresponding to the Pareto optimal solutions to problem

(34).
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summary objective or objectives, as long as the corresponding

data is available from the multi-fidelity model.
Summary and conclusions

Modelling and simulation play a major role in the develop-

ment of fuel cell technologies. The complexity of computer

models and the attendant times associated with their execu-

tion has led to a growth in surrogatemodelling approaches for

applications such as optimization. Very few such approaches

are based on multi-fidelity methods, despite their advantages

over puremachine learningmodels. In addition, few attempts

have been made in the fuel cell literature to capture spatial

variations in key quantities with surrogate models. In this

paper we extended the multi-fidelity stochastic collocation

framework for spatially distributed outputs using a feature

enhancement, and removed the requirement for exact low-

fidelity outputs during inference by using another surrogate

model. Our approach is Bayesian, so that estimates of uncer-

tainty are possible.

We showed that the addition of features into the original

stochastic colocation formulation can improve its accuracy.

Experiments on a detailed SOFC model at two fidelities

showed that our approach leads to a highly accurate surrogate

model, outperforming several state-of-the-art multi-fidelity

methods. It was used in several SOFC optimization problems,

for a range of different objectives, for objectives with

nonlinear constraints and for multiple objectives. The level of

detail furnished by our approach allows for a great deal of

flexibility in deciding the objectives a-posteriori, in contrast to

focusing on specific scalar targets. It is also worth noting that

using the original high-fidelitymodel would not be feasible for

many problems of this nature, such as the multi-objective

example we consider, in which over 7000 function evalua-

tions were required.
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