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A B S T R A C T

Monitoring the state-of-health of Li-ion batteries is a critical component of battery management systems in
electric vehicles. A large number of feature-based machine-learning methods have been introduced in the last
decade to improve the accuracy of predictions of the state-of-health and end-of-life, especially early in the
lifetime of the battery stack. Unless multiple battery data sets are used for direct and crude predictions of the
end-of-life, however, such an approach is infeasible since the features are not known for future cycles. In this
study a new nonlinear state-space model that can overcome this limitation is introduced. The powerful Gaussian
process dynamical model is extended by generalizing the covariance structure, and therefore permitting
more flexible models for the observables and latent variables. The model is further enhanced with transfer
learning, to yield accurate early predictions of the future state-of-health of Li-ion batteries up to end-of-life.
Experiments conducted on two of the NASA Ames Battery data sets and the Oxford Battery Degradation data
set demonstrate the accuracy and superiority of the new model over state-of-the-art benchmarks algorithms,
including supervised Gaussian process models, deep convolutional networks, recurrent networks and support
vector regression. The root mean square error is reduced by up to 43% on the NASA data sets and by up to
54% on the Oxford data set.
1. Introduction

Batteries are essential components of modern energy systems, pro-
viding energy storage capabilities in a broad range of sectors. The most
prominent emerging application is electric vehicles, which are forecast
to become the primary method of transportation in the developed
world beyond 2030. The main technology under consideration for these
applications is Li-ion batteries, which undergo a number of degradation
processes during operation [1,2], leading to an irreversible loss in
capacity and a need to replace the stack when the end-of-life (EOL)
is reached. The EOL is normally defined as the charge–discharge cycle
number at which the stack reaches 70%–80% of its rated capacity, after
which it can be used for second-life applications [3].

One of the challenges in developing electric vehicles, therefore,
lies in devising strategies to monitor, control and predict the future
health status of the battery stack [4], as part of a broader attempt to
develop digital twins [5]. This can aid maintenance, lower the risk of
hazards such as fire and explosion, and inform the decision to retire
the stack. The health status is usually defined in terms of the stack
or battery state-of-health (SOH), which is a normalized capacity at a
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particular state-of-charge (SOC). An algorithm can be placed inside
a battery management system to predict the SOH for future charge–
discharge cycles [6,7]. Such algorithms provide running predictions of
the EOL and remaining useful life (RUL), namely the number of cycles
remaining before the stack reaches EOL.

Algorithms for SOH prediction can be devised in a number of ways.
Early attempts relied on physics-based or semi-empirical models of the
degradation process. Physics-based models are, however, hampered by
a lack of knowledge of the degradation phenomena. As a consequence,
data-driven or machine learning approaches have emerged as the pre-
ferred choice, especially in the past decade [8]. These approaches can
be categorized in terms of (a) the overall strategy, and (b) the machine
learning method employed. Strategy 1 seeks a map between the cycle
number (input) and the SOH (output) [9]. Strategy 2 augments the
input in Strategy 1 with features extracted from current, voltage,
temperature, impedance and other data related to the charge–discharge
cycles [10,11]. Strategy 3 directly defines the output as the RUL or EOL
and uses data from multiple batteries [12,13].

Strategy 1 has the benefit of simplicity in terms of the algorithm
and data acquisition, but it leads to poor estimates, especially for early
https://doi.org/10.1016/j.rser.2024.115045
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data mining, AI training, and similar technologies. 
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Nomenclature

Abbreviations
Acronym Meaning
CNN Convolutional neural network
DNN Deep neural network
E-GPDM Enhanced Gaussian process dynamical model
EOL End of life
GP Gaussian process
GPDM Gaussian process dynamical model
GPLVM Gaussian process latent variable model
GRU Gated recurrent unit
LSTM Long short term memory
RMSE Root mean square error
RNN Recurrent neural network
RUL Remaining useful life
SOH State of charge
SOH State of health
SVR Support vector regression

Symbols
Symbol Meaning
𝑎(𝑛) Attribute or feature as a function of cycle number 𝑛
𝐀,𝐁 Matrices of basis expansion coefficients
𝐚,𝐛 Row vectors of 𝐀,𝐁
𝐚̂, 𝐛̂ Column vectors of 𝐀,𝐁
 Datasets
𝐷 Dimension of the observables (data) space
𝐊 Column or row covariance matrix
𝑘(⋅, ⋅|⋅) Kernel function
𝐋 Cholesky decomposition factor
 Likelihood function
𝑚 Battery label
𝑛 Cycle number
𝐧 Normal noise
𝑤 Weight factor for noise
𝑄 Latent space dimension
𝑇 Training point number
𝐱 Latent/hidden variable
𝐗 Matrix of latent variables
𝐲 Observable
𝐘 Matrix of observed data
𝜽 vector of hyperparameters
𝜃 Hyperparameter
𝜽 Vector of hyperparameter
𝜦 Gaussian process predictive variance
𝝁 Gaussian process mean estimate of observable/latent

variable
𝜎 Noise variance
𝜮 Covariance matrix
𝝍 , 𝝓 Vectors of basis functions
𝜓 , 𝜙 Basis functions
𝜳 , 𝜱 Design matrices corresponding to 𝝍 , 𝝓

predictions. Strategy 2 was introduced to improve upon the predictive
performance of Strategy 1. Hand-crafted features based on the collected
data [10,14] or features extracted during learning [12,15] can exhibit
 strong correlation to the SOH. The obvious logical flaw in Strategy
 is that the features are not known for future cycles, and so cannot
e used as inputs to predict the SOH beyond the next cycle. Strategy 3
oes not suffer from this logical flaw and it has been used successfully
 t

2 
for predicting degradation in batteries [16,17] and other devices or
omponents, such as bearings [18] and supercapacitors [19]. Strategy 3

is also able to exploit multiple data sets to improve predictions. Random
variabilities in the performance of batteries, however, means that it can
only furnish crude estimates of the EOL or RUL for a batch of batteries
e.g., post manufacturing), as pointed out by Severson et al. [20] and

as is evident from the results.
A variety of machine learning methods have been used in Ap-

proaches 1–3, including Gaussian process (GP) models [3,9], support
ector regression (SVR) [21,22], neural networks (ANN) and deep

neural networks (DNN) [17,23]. DNN implementations include recur-
ent networks (RNNs) [24,25], convolutional networks (CNNs) [26],

transformers and encoder–decoder models [17,27], and hybrid net-
works [28]. DNNs are a popular choice, but they were developed
primarily for problems in which the data sets are very large, and
their success in such applications is primarily due to their scalability

hen trained with stochastic gradient descent algorithms. On small- or
edium-sized data sets (the case in single battery or single stack SOH
rediction), their high model variance and lower accuracy compared
o non-parametric methods such as GP models and SVR are major
isadvantages. Moreover, DNNs are designed for, and best suited to
lassification (CNNs) and sequential problems in natural language pro-
essing (RNNs); such problems involve categorical outputs arising from
iscrete probability distributions, rather than continuous sequential
ata such as a SOH.

Time-series methods are in theory more appropriate for SOH pre-
diction, but only a few examples are found in the literature, in the
orm of linear state-space models [29,30]. For example, Kim et al. [30]

developed an auto-regressive moving average (ARIMA) model with
exogenous inputs or features. As with other feature-based models, the
eatures are not available for future cycles. The unsupervised Gaussian
rocess dynamical model (GPDM) [31,32] extends the Gaussian process
atent variable model (GPLVM) [33] by including a Markov model for

the latent variable, which allows for the prediction of sequential data.
In this study, a new approach for SOH prediction based on the GPDM is
eveloped. The GPDM assumption of independence across coordinates
s relaxed using a marginalization procedure and kernel substitution,
eading to an infinite-dimensional approximating subspace with a far
icher covariance structure. This method is termed Enhanced GPDM (E-
PDM) to distinguish it from the original GPDM. To allow for training
n multiple SOH data sets, a transfer learning approach is used together

with E-GPDM.
E-GPDM overcomes the major issue in Approach 2 regarding the

ncorporation of features, by recursively predicting features as well as
he SOH up to an arbitrary horizon. Thus, the main novelty of E-GPDM

is that it is the first method that can incorporate features for predicting
he SOH more than one cycle ahead. Transfer learning leverages related
attery data sets for training, and further enhances the predictive power
f E-GPDM. E-GPDM does not require large data sets and it exhibits a

low model variance. As a Bayesian method, it also furnishes uncertainty
bounds, which facilitates better-informed decision making on second-
ife use. Numerical experiments on two NASA AMES data sets and
he Oxford Battery Degradation data set demonstrate that E-GPDM is
ble to provide accurate predictions of the SOH trajectory early in the
attery lifetime. Comparisons are made to state-of-the-art supervised
Ps, SVR and DNNs, for which transfer learning is also used to ensure

air comparisons. On the NASA data sets, the root mean square error
RMSE) is reduced in 12 out of 15 cases, by up to 43% when using 33%
f the data for training, and by up to 45% with a 50% training ratio.
n the Oxford data set, the RMSE is reduced in 9 out of 12 cases, by
p to 50% with a 33% training ratio and by up to 54% with a 50%
raining ratio.
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2. Data and methods

2.1. Problem definition

It is noted that the use of data from a single cell is valid for the study
of stacks, since a battery stack would exhibit a similar SOH trajectory;
roughly speaking, an average of the SOH for the individual cells. The
discharge capacity 𝑐(𝑛) of a battery for a given cycle 𝑛 can be used as the
basis for defining its state-of-health (SOH), namely SOH(𝑛) = 𝑐(𝑛)∕𝑐(0).
The EOL and RUL for the current cycle are defined as

EOL = min 𝑛 such that SOH(𝑛) ≤ 𝜗, RUL = EOL − 𝑛 (1)

for some threshold 𝜗, normally in the range 𝜗 ∈ (0.7, 0.8).That is, the
EOL is the first cycle for which the SOH falls below the threshold,
usually 70 to 80% of the rated or initial capacity 𝑐(0). The RUL is the
number of cycles remaining before the EOL is reached. The primary
goal is to predict the curve SOH(𝑛) accurately and efficiently, especially
early in the evolution, namely for cycles 𝑛 ≤ 1

2EOL, i.e., less than or
equal to half the lifetime.

Let (𝐲𝑛)𝑛∈N, 𝐲𝑛 ∈ R𝐷, be a time-series comprising 𝐷 attributes of
the battery at each cycle 𝑛. In the simplest case, 𝐷 = 2 and the only
attributes are the SOH and the cycle number, 𝐲𝑛 = [𝑛, SOH(𝑛)]⊤. In the
more general case

𝐲𝑛 = [𝑛, 𝑎1(𝑛),… , 𝑎𝐷−1(𝑛)]⊤

with 𝑎1(𝑛) = SOH(𝑛) and additional scalar or vector attributes 𝑎2(𝑛),… ,
𝑎𝐷−1(𝑛). For example, 𝑎2(𝑛) could be the temperature, 𝑎3(𝑛) the voltage,
𝑎4(𝑛) the humidity and so on, where the values are taken at some fixed
SOC on each charge or discharge cycle. Alternatively, whole voltage,
temperature, etc. curves can be used, in a vectorized form. The main
aim is then to predict 𝑎1(𝑛) = SOH(𝑛) for 𝑛 > 𝑇 given training data
𝑇 = {𝐲𝑛}𝑇𝑛=1. The data sets used (described in Section 2.6) take the
form 𝑁 = {𝐲𝑛}𝑁𝑛=1 for some cycle number 𝑁 that exceeds the EOL.
𝑇 < 𝑁 cycles are used for training, where the training number 𝑇 can
be varied. Only scalar attributes are considered, although the method
allows for the vector case.

Regarding the use of the term ‘features’, which is the common ter-
minology in the literature on battery degradation, it is pointed out that
in feature engineering, features are quantities extracted from data, with
the components of the data termed ‘attributes’. In particular, physical
quantities that are used as inputs to battery degradation models (as
opposed to features learned from these quantities) will be referred to
as attributes in this study. In contrast, the components of the latent
variables in E-GPDM are referred to as features, since they map the
attributes in the data to a feature or latent space.

When focusing on the SOH, in contrast to the RUL or EOL, incor-
porating attributes as inputs is infeasible since they are unknown for
future cycles. In E-GPDM, this will no longer present a problem for
reasons that were given in the introduction and which will be fully
explained in Section 2.3. To enhance the predictive power of E-GPDM,
data from other batteries of the same type and operated under the
same conditions is exploited during training. This is explained the next
section.

2.2. Transfer learning

The approach of Richardson et al. [34] is adopted in order to inject
additional battery data into the learning process.Consider data 𝑚

𝑁𝑚
=

{𝐲𝑚𝑛 }
𝑁𝑚
𝑛=1, 𝑚 = 1, 2,… , 𝑀 , in which𝑁𝑚 is the number of cycles for battery

𝑚 = 1,… , 𝑀 , and 𝐲𝑚𝑛 = R𝐷 is the corresponding vector of attributes at
cycle 𝑛. For simplicity, it is assumed that 𝑁𝑚 = 𝑁 for all batteries,
without loss of generality. The task is to predict 𝑎𝑚∗

1 (𝑛) = SOH𝑚∗ (𝑛) for
a given battery of interest 𝑚 = 𝑚∗, from cycles 𝑛 = 𝑇 + 1 to 𝑛 = EOL.
To perform this task, the following data is utilized for training

 𝑚∗ =

(

⋃

𝑚
𝑁

)

∪𝑚∗
𝑇 (2)
𝑚≠𝑚∗

3 
Fig. 1. Graphical representation of GPDM. A and B denote weights for the basis
functions.

That is, all of the data for batteries 𝑚 ≠ 𝑚∗, and only the first 𝑇 cycles
for battery 𝑚 = 𝑚∗ (the battery of interest).

To implement the training procedure efficiently, a single output
relevant to all batteries is formulated as follows

𝐲𝑛 = [𝑛, 𝑚, 𝑎1(𝑛),… , 𝑎𝐷−1(𝑛)]⊤, (3)

In this way, the battery-specific outputs 𝐲𝑚𝑛 are replaced by 𝐲𝑛, in which
the battery label 𝑚 is used to distinguish between batteries. In the next
section, the development of the E-GPDM method is presented.

2.3. Enhanced Gaussian process dynamical models

The GPDM is primarily used to track the dynamics of latent vari-
ables, or low-dimensional embeddings. It contains a nonlinear proba-
bilistic mapping from a latent to an observation space, together with
a dynamical model in the latent space [31].In contrast to the ma-
chine learning approaches usually employed for battery degradation
forecasting, it is an unsupervised method, only requiring a singular
data point (which could be called an input or an output) consisting
of the battery attributes. It can be represented by the graphical model
in Fig. 1. Consider training data 𝐘 = [𝐲1 … 𝐲𝑇 ]⊤ ∈ R𝑇×𝐷, which
contains 𝑇 observations 𝐲𝑛 ∈ R𝐷, as described in Section 2.2. Let
𝐗 = [𝐱1 … 𝐱𝑇 ]⊤ ∈ R𝑇×𝑄 be a matrix of the latent variables 𝐱𝑛 ∈ R𝑄, with
𝑄 < 𝐷.The latent variables 𝐱𝑛 represent a ‘hidden’ or unobservable state
of the dynamical system, which in some sense captures the essential
dynamics. In contrast, the available data 𝐲𝑛 are the variables that can be
observed or measured. In GPDM, the basic principle is to create models
of the observable and latent variables: one model propagates the latent
variable in time or some other ordered index (cycle number in this
case), and a second model is a mapping between the latent variable
and observable.

The following model with first-order Markovian dynamics is as-
sumed

𝐱𝑛 = 𝑓 (𝐱𝑛−1;𝐀) + 𝐧𝑥,𝑛 =
𝐾
∑

𝑖=1
𝐚𝑖𝜙𝑖(𝐱𝑛−1) + 𝐧𝑥,𝑛 ∶= 𝐀⊤𝝓(𝐱𝑛−1) + 𝐧𝑥,𝑛

𝐲𝑛 = 𝑔(𝐱𝑛;𝐁) + 𝐧𝑦,𝑛 =
𝑀
∑

𝑗=1
𝐛𝑗𝜓𝑗 (𝐱𝑛) + 𝐧𝑦,𝑛 ∶= 𝐁⊤𝝍(𝐱𝑛) + 𝐧𝑦,𝑛

(4)

in which the rows of 𝐀 = [𝐚1 … 𝐚𝐾 ]⊤ ∈ R𝐾×𝑄 and 𝐁 = [𝐛1 …𝐛𝑀 ]⊤ ∈
R𝑀×𝐷 are weights, while {𝜙𝑖(𝐱)} and {𝜓𝑗 (𝐱)} are basis functions and
𝐧𝑦,𝑛, 𝐧𝑥,𝑛 are zero-mean Gaussian processes representing noise. The
individual models in (4) are essentially generalized linear models.

The use of explicit basis functions with some user specified numbers
𝐾 and 𝑀 and associated weights 𝐀 and 𝐁 is an inconvenience that
can be eliminated by using a Bayesian approach that marginalizes out
both sets of weights using Gaussian priors. In the standard GPDM, 𝐁 is
integrated out by placing independent isotropic priors over its columns
𝐛 ∈ R𝑀 , 𝑑 = 1,… , 𝐷
𝑑
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𝑝(̂𝐛𝑑 ∣ 𝑤𝑑 ) = 
(

𝟎, 𝑤−2
𝑑 𝐈

)

The model for each column 𝐲̂𝑑 of 𝐘 (the 𝑑th attribute) is 𝐲̂𝑑 =
𝐛̂𝑑 + 𝐧𝑦,𝑑 , in which 𝜳 = [𝝍(𝐱1) …𝝍(𝐱𝑇 )]⊤ is a design matrix and
𝑦,𝑑 ∼  (𝟎, 𝑤−2

𝑑 𝜎2𝑌 𝐈) is i.i.d. noise. Here, the variance of the error
−2
𝑑 𝜎2𝑌 is assumed to take a particular form, namely that it is scaled by
−2
𝑑 [35]. The distribution over 𝐲̂𝑑 is therefore 𝑝(𝐲̂𝑑 ∣ 𝐗, 𝐛̂𝑑 , 𝑤𝑑 , 𝜎𝑌 ) =
(

𝜳 𝐛̂𝑑 , 𝑤−2
𝑑 𝜎2𝑌 𝐈

)

. Standard conditional results applied to the Gaus-
ians 𝑝(𝐲̂𝑑 ∣ 𝐗, 𝐛̂𝑑 , 𝑤𝑑 , 𝜎𝑌 ) and 𝑝(̂𝐛𝑑 ∣ 𝑤𝑑 ) allow for the elimination of
𝐛𝑑 in order to obtain

𝑝(𝐲̂𝑑 ∣ 𝐗, 𝑤𝑑 , 𝜎𝑌 ) = 
(

𝟎, 𝑤−2
𝑑 𝐊𝑌

)

, 𝐊𝑌 = 𝜳 𝜳⊤ + 𝜎2𝑌 𝐈 (5)

in which 𝐊𝑌 is an unscaled kernel matrix.
The kernel matrix 𝐊𝑌 can be generated by an equivalent kernel

unction, representing covariances between the components 𝑦𝑑 ,𝑛 of
𝐲𝑑 , i.e, cov(𝑦𝑑 ,𝑛, 𝑦𝑑 ,𝑛′ ) = 𝑤−2

𝑑 𝑘𝑌 (𝐱𝑛, 𝐱𝑛′ |𝜽). For example, the following
squared exponential kernel is commonly used

𝑘𝑌 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑌 ) = 𝜃𝑌 ,1 exp
(

−
𝜃𝑌 ,2
2

‖𝐱𝑛 − 𝐱𝑛′‖2
)

+ 𝜃−1𝑌 ,3𝛿(𝐱𝑛 − 𝐱𝑛′ ) (6)

in which 𝜽𝑌 =
{

𝜃𝑌 ,1, 𝜃𝑌 ,2, 𝜃𝑌 ,3
}

and 𝜃−1𝑌 ,3 = 𝜎2𝑌 . Note that the noise is
absorbed into the kernel using a delta function 𝛿(𝐱𝑛−𝐱𝑛′ ). The complete
joint likelihood is then given by, after using the properties of the trace
tr(⋅) of a matrix

𝑝(𝐘 ∣ 𝐗,𝜽𝑌 ,𝐖) =
𝐷
∏

𝑑=1
𝑝(𝐲̂𝑑 ∣ 𝐗,𝜽𝑌 , 𝑤𝑑 )

=
|𝐖|

𝑇
√

(2𝜋)𝑇 𝐷|𝐊𝑌 |
𝐷
exp

{

−1
2

tr
(

𝐊−1
𝑌 𝐘𝐖2𝐘⊤

)}

(7)

in which 𝐖 = diag (𝑤1,… , 𝑤𝐷
)

In E-GPDM, a general matrix Gaussian prior is instead placed over
𝐁

𝑝(𝐁 ∣ 𝐊𝐷,𝐊𝑀 ) = 1
√

(2𝜋)𝑀 𝐷
|𝐊𝐷|

𝑀
|𝐊𝑀 |

𝐷
exp

{

−1
2
t r [𝐊−1

𝑀𝐁𝑇𝐊−1
𝐷 𝐁]

}

(8)

in which 𝐊𝑀 ∈ R𝑀×𝑀 and 𝐊𝐷 ∈ R𝐷×𝐷 are the row and column
ovariance matrices. Marginalizing over 𝐁 yields

𝑝
(

𝐲𝑛 ∣ 𝐱𝑛,𝐊𝑀 ,𝐊𝐷, 𝜎𝑌
)

= 
(

𝟎,𝝍𝑇 (𝐱𝑛)𝐊𝑀𝝍(𝐱𝑛)𝐊𝐷 + 𝜎2𝑌 𝐈
)

(9)

𝐊𝑀 is positive semidefinite (p.s.d.) and therefore possesses a unique
.s.d. square root, so that 𝝍𝑇 (𝐱𝑛)𝐊𝑀𝝍(𝐱𝑛) defines a kernel

⟨𝝍̃(𝐱𝑛), 𝝍̃(𝐱𝑛′ )⟩ ∶= ⟨𝝍(𝐱𝑛),𝝍(𝐱𝑛′ )⟩𝐊𝑀 (10)

in which 𝝍̃(𝐱𝑛) =
√

𝐊𝑀𝝍(𝐱𝑛), ⟨⋅, ⋅⟩ denotes the standard Euclidean inner
product and ⟨⋅, ⋅⟩𝐊𝑀 is an inner product weighted by 𝐊𝑀 . Note that this
approach models the 𝐲𝑛 directly, as opposed to the original approach
in which the columns of 𝐘 are modeled. Using an equivalent kernel
𝑘𝑌 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑌 ) to replace 𝝍𝑇 (𝐱𝑛)𝐊𝑀𝝍(𝐱𝑛′ ) yields the separable model

𝐲𝑛 ∣ 𝐱𝑛,𝐊𝐷,𝜽𝑌 , 𝜎𝑌 ∼ 
(

𝟎, 𝑘𝑌 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑌 )⊗𝐊𝐷 + 𝛿(𝐱𝑛 − 𝐱𝑛′ )⊗ 𝜎2𝑌 𝐈
)

(11)

in which (⋅, ⋅) denotes a GP, with the first and second arguments
pecifying the mean and covariance functions. ⊗ is the Kronecker

product. This leads to the likelihood

𝑝
(

𝐘 ∣ 𝐗,𝐋𝑌 ,𝜽𝑌 , 𝜎𝑌
)

= 1
√

(2𝜋)𝑇 𝐷|𝜮𝑌 |
𝐷

× exp
{

−1
2
t r (vec(𝐘)vec(𝐘)⊤𝜮−1

𝑌
)

}

𝜮𝑌 = 𝐊𝑌 ⊗ 𝐋𝑌 𝐋⊤𝑌 + 𝜎2𝑌 𝐈

(12)

in which 𝐊𝑌 is generated by 𝑘𝑌 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑌 ), 𝑛, 𝑛′ = 1,… , 𝑇 . Since 𝐊𝐷
is p.s.d., the correlations across the dimensions of 𝐲𝑛 can be modeled
indirectly using a full-rank or low-rank Cholesky decomposition 𝐊𝐷 =
𝐋 𝐋⊤ , where 𝐋 is lower triangular.
𝑌 𝑌 𝑌

4 
For the latent mapping, the original GPDM places independent
isotropic priors over the columns 𝐚̂𝑞 ∈ R𝐾 , 𝑞 = 1,… , 𝑄, of 𝐀, this time
using standard normals, 𝑝(𝐚̂𝑞) =  (𝟎, 𝐈). In E-GPDM, the equivalent of
(13) for 𝐀 is instead used

𝑝(𝐀 ∣ 𝐊𝑄,𝐊𝐾 ) = 1
√

(2𝜋)𝐾 𝑄|𝐊𝑄|
𝐾
|𝐊𝐾 |

𝑄
exp

{

−1
2
t r [𝐊−1

𝐾 𝐀𝑇𝐊−1
𝑄 𝐀]

}

(13)

in which 𝐊𝐾 ∈ R𝐾×𝐾 and 𝐊𝑄 ∈ R𝑄×𝑄 are again row and column
covariance matrices. The model for 𝐱𝑛 is autoregressive and therefore
he distribution over 𝐱1 has to be accounted for separately, given that
0 is not known. GPDM assumes the model 𝐱̂𝑞∖1 = 𝜱∖𝑇 𝐚̂𝑞 +𝐧𝑥,𝑞 for each
olumn 𝐱̂𝑞∖1 of 𝐗∖1, where 𝐗∖1 is the matrix 𝐗 excluding the first row.
∖𝑇 = [𝝓(𝐱1) …𝝓(𝐱𝑇−1)]⊤ is a design matrix that excludes the last row

nd 𝐧𝑥,𝑞 ∼  (𝟎, 𝜎2𝑋𝐈) is i.i.d. noise with variance 𝜎2𝑋 . The distribution
over 𝐱̂𝑞 is therefore 𝑝(𝐱̂𝑞∖1 ∣ 𝐚̂𝑞) = 

(

𝜱∖𝑇 𝐚̂𝑞 , 𝜎2𝑋𝐈
)

and integrating out
𝐚𝑞 as before leads to 𝑝(𝐱̂𝑞∖1 ∣ 𝜎𝑋 ) = 

(

𝟎,𝐊𝑋∖𝑇
)

, in which 𝐊𝑋∖𝑇 =
𝜱∖𝑇𝜱⊤

∖𝑇+𝜎
2
𝑋𝐈 is a kernel matrix that can be generated by any equivalent

kernel 𝑘𝑋 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑋 ), 𝑛, 𝑛′ = 1,… , 𝑇 − 1, with hyperparameters 𝜽𝑋 . The
joint likelihood is then given by

𝑝(𝐗 ∣ 𝜽𝑋 ) = 𝑝(𝐱1)
𝑄
∏

𝑞=2
𝑝(𝐱̂𝑞∖1 ∣ 𝜽𝑋 )

=
𝑝(𝐱1)

√

(2𝜋)(𝑇−1)𝑄|𝐊𝑋∖𝑇 |
𝑄
exp

{

−1
2

tr
(

𝐊−1
𝑋∖𝑇𝐗∖1𝐗⊤∖1

)}

(14)

E-GPDM instead marginalizes over 𝐀 and defines an equivalent
ernel 𝑘𝑋 (𝐱𝑛−1, 𝐱𝑛′−1|𝜽𝑋 ) to replace 𝝓𝑇 (𝐱𝑛−1)𝐊𝐾𝝓(𝐱𝑛′−1), yielding

𝐱𝑛 ∣ 𝐱𝑛−1,𝐊𝑄,𝜽𝑋 , 𝜎𝑋 ∼ 
(

𝟎, 𝑘𝑋 (𝐱𝑛−1, 𝐱𝑛′−1|𝜽𝑋 )⊗𝐊𝑄

+ 𝛿(𝐱𝑛−1 − 𝐱𝑛′−1)⊗ 𝜎2𝑋𝐈
)

(15)

and the likelihood function

𝑝
(

𝐗 ∣ 𝐋𝑋 ,𝜽𝑋 , 𝜎𝑋
)

=
𝑝(𝐱1)

√

(2𝜋)(𝑇−1)𝑄|𝜮𝑋 |
𝑄

× exp
{

−1
2
t r (vec(𝐗∖1)vec(𝐗∖1)⊤𝜮−1

𝑋
)

}

𝜮𝑋 = 𝐊𝑋∖𝑇 ⊗ 𝐋𝑋𝐋⊤𝑋 + 𝜎2𝑋𝐈

(16)

with 𝐊𝑋∖𝑇 generated by 𝑘𝑋 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑋 ), 𝑛, 𝑛′ = 1,… , 𝑇 − 1 and 𝐋𝑋
being the equivalent of 𝐋𝑌 . 𝐱1 can be modeled by an isotropic Gaussian
prior but is irrelevant as far as minimizing the negative log posterior is
concerned. It is noted that neither (14) nor (16) is Gaussian.

For dynamical problems, common kernels such as the squared ex-
ponential or Matérn are often combined with a linear kernel

𝑘𝑋 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑋 ) = 𝜃1,𝑋 exp
(

−
𝜃2,𝑋
2

‖

‖

𝐱 − 𝐱′‖
‖

2
)

+ 𝜃3,𝑋𝐱𝑇 𝐱′ (17)

in which 𝜽𝑋 =
{

𝜃1,𝑋 , 𝜃2,𝑋 , 𝜃3,𝑋
}

. In this work, multi-kernels formed by
linear combinations of up to six different kernels (detailed later) were
also considered; they can be defined as

𝑘𝑋 (𝐱𝑛, 𝐱𝑛′ |𝜽𝑋 ) =
𝐿
∑

𝑙=1
𝑤𝑙𝑘𝑙(𝐱𝑛, 𝐱𝑛′ |𝜽𝑙) (18)

in which 𝑘𝑙(𝐱𝑛, 𝐱𝑛′ |𝜽𝑙) are different kernels with hyperparameters 𝜽𝑙,
nd 𝜽𝑋 = {𝜽𝑙}.

2.4. Training via maximum likelihood

To learn 𝐗, the posterior 𝑝(𝐗 ∣ 𝐘) must be inferred according
o Bayes’ rule (assuming that the hyperparameters have already been
nferred)

𝑝(𝐗 ∣ 𝐘) = 𝑝(𝐗,𝐘)
𝑝(𝐘)

∝ 𝑝(𝐘 ∣ 𝐗)𝑝(𝐗) (19)

This can be achieved by approximately sampling from the posterior
using Monte Carlo methods, or by using a point estimate, such as
maximizing the log of the posterior, treating the denominator as a
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Fig. 2. Flowchart of the proposed E-GPDM method with transfer learning.
N

v

2
B
c

constant. A joint maximization, in which the hyperparameters are
simultaneously learned, is simpler. To avoid overfitting, inverse priors
are placed over the kernel hyperparameters and variances

𝑝(𝜽𝑗 ) ∝
∏

𝑖
𝜃−1𝑖,𝑗 , 𝑝(𝜎2𝑗 ) ∝ 𝜎−2𝑗 , 𝑗 ∈ {𝑋 , 𝑌 }, (20)

so that the posterior in Eq. (19) becomes

𝑝(𝐗,𝜽𝑋 ,𝜽𝑌 , 𝜎𝑋 , 𝜎𝑌 ∣ 𝐘,𝐋𝑋 ,𝐋𝑌 ) ∝ 𝑝(𝐘 ∣ 𝐗,𝐋𝑌 ,𝜽𝑌 , 𝜎𝑌 )𝑝(𝐗 ∣ 𝐋𝑋 ,𝜽𝑋 , 𝜎𝑋 )
×

∏

𝑗
𝑝(𝜽𝑗 )𝑝(𝜎2𝑗 )

(21)

The negative joint log posterior − ln 𝑝(𝐗,𝜽𝑋 ,𝜽𝑌 , 𝜎𝑋 , 𝜎𝑌 ∣ 𝐘,𝐋𝑋 ,𝐋𝑌 )
(ignoring any constants) is then minimized

𝐗∗,𝜽∗𝑋 ,𝜽
∗
𝑌 ,𝐋

∗
𝑋 ,𝐋

∗
𝑌 , 𝜎∗𝑋 , 𝜎∗𝑌 = arg min

𝐗,𝜽𝑋 ,𝜽𝑌 ,𝐋𝑋 ,𝐋𝑌 ,𝜎𝑋 ,𝜎𝑌
−(𝐗,𝜽𝑋 ,𝜽𝑌 ,𝐋𝑋 ,𝐋𝑌 , 𝜎𝑋 , 𝜎𝑌 )

(𝐗,𝜽𝑋 ,𝜽𝑌 ,𝐋𝑋 ,𝐋𝑌 , 𝜎𝑋 , 𝜎𝑌 ) = − 𝑄
2
ln |
|

𝜮𝑋
|

|

− 1
2
t r (vec(𝐗∖1)

× vec(𝐗∖1)⊤𝜮−1
𝑋
)

− 𝐷
2
ln |
|

𝜮𝑌
|

|

− 1
2
t r (vec(𝐘)vec(𝐘)⊤𝜮−1

𝑌
)

−
∑

𝑖,𝑗
ln 𝜃𝑖,𝑗

− 2
∑

𝑗
ln 𝜎𝑗

(22)

𝐗 can be initialized and a value of 𝑄 selected using a principal compo-
ent analysis, selecting the 𝑄 features (principal components) with the
argest associated eigenvalues.

2.5. Prediction with observations

To predict future values of the observables 𝐲, this study adopts the
simple yet effective method of mean-prediction [32]; the mean value in
he GP predictive posterior is used. Based on the first-order Markovian
ynamics, the model predicts 𝐱𝑛 conditioned on 𝐱𝑛−1 using Gaussian
onditioning rules, as in the original GPDM
𝑝(𝐱𝑛 ∣ 𝐱𝑛−1,𝜽𝑋 ,𝐋𝑋 ) = 

(

𝝁𝑋
(

𝐱𝑛−1
)

,𝜦𝑋
(

𝐱𝑛−1
))

𝝁𝑋 (𝐱) =
(

𝐋𝑋𝐋⊤𝑋 ⊗ 𝐤𝑋∖𝑇 (𝐱)
)⊤ 𝜮−1

𝑋 vec(𝐗∖1)

𝜦𝑋 (𝐱) = 𝑘𝑋 (𝐱, 𝐱|𝜽𝑋 )𝐋𝑋𝐋⊤𝑋 −
(

𝐋𝑋𝐋⊤𝑋 ⊗ 𝐤𝑋∖𝑇 (𝐱)
)⊤

× 𝜮−1
𝑋

(

𝐋𝑋𝐋⊤𝑋 ⊗ 𝐤𝑋∖𝑇 (𝐱)
)

(23)

in which 𝐤𝑋∖𝑇 (𝐱) = [𝑘𝑋 (𝐱, 𝐱1|𝜽𝑋 ),… , 𝑘𝑋 (𝐱, 𝐱𝑇−1|𝜽𝑋 )]⊤. To be clear,
the forecasting consists of iteratively using the mean estimate 𝐱𝑛−1 =
𝝁𝑋 (𝐱𝑛−2) to estimate 𝐱𝑛 via Eq. (23). Similarly, 𝐲𝑛 is inferred by the
mean of the following posterior predictive distribution using the mean
estimate of 𝐱𝑛
𝑝(𝐲𝑛 ∣ 𝐱𝑛,𝜽𝑌 ,𝐋𝑌 ) = 

(

𝝁𝑌
(

𝐱𝑛
)

,𝜦𝑌
(

𝐱𝑛
))

,

𝑌 (𝐱) =
(

𝐋𝑌 𝐋⊤𝑌 ⊗ 𝐤𝑌 (𝐱)
)⊤ 𝜮−1

𝑌 vec(𝐘),

𝑌 (𝐱) = 𝑘𝑌 (𝐱, 𝐱|𝜽𝑌 )𝐋𝑌 𝐋⊤𝑌 −
(

𝐋𝑌 𝐋⊤𝑌 ⊗ 𝐤𝑌 (𝐱)
)⊤ 𝜮−1

𝑌
(

𝐋𝑌 𝐋⊤𝑌 ⊗ 𝐤𝑌 (𝐱)
)

,

(24)

in which 𝐤𝑌 (𝐱) = [𝑘𝑌 (𝐱, 𝐱1|𝜽𝑌 ),… , 𝑘𝑌 (𝐱, 𝐱𝑇 |𝜽𝑌 )]⊤. The entire process is
illustrated in Fig. 2.
5 
2.6. Datasets

E-GPDM is assessed on two NASA Ames Prognostics Center of
Excellence Battery Datasets from Saha and Goebel [36] and the Oxford
Battery Degradation Dataset of Birkl [37]. Both datasets record the
charging and discharging performance of Li-ion batteries. The Oxford
data set contains a significant level of noise, and also shows evidence
of the regeneration phenomenon in Li-ion batteries. It is therefore
considered a gold-standard in degradation forecasting.

Data pertaining to seven batteries from two different groups in the
ASA data set were used. The batteries are labeled B0005, B0006,

B0007 (group 1), and B0029, B0030, B0031, B0032 (group 2). All
batteries were charged using a constant current of 1.5 A until the
oltage reached the limit 4.2 V, following which a constant voltage was

applied until the current reached 20 mA. The operating temperature for
the group 1 tests was 24 ◦C, while the temperature for the group 2 tests
was 43 ◦C. Batteries in group 1 were discharged at a constant current of
 A until the voltage fell to 2.7 V, 2.5 V and 2.2 V for B0005, B0006 and
0007, respectively. Batteries in group 2 were discharged at a constant
urrent of 4 A to 2.0 V, 2.2 V, 2.5 V and 2.7 V for B0029, B0030,

B0031 and B0032, respectively. For the group 1 batteries, 168 charge–
discharge cycles were performed, whereas for the group 2 batteries, 39
cycles were performed. The data in each case consists of temperature,
voltage, current and capacity measurements. Although the data also
contains impedance measurements, they were not used in this study
due to the extremely high levels of noise they contain.

The Oxford dataset contains measurements from Li-ion pouch cells,
all tested in a thermal chamber at 40 ◦C. The cells were exposed to a
constant-current and constant-voltage charging profile, followed by a
drive cycle discharging profile derived from the urban Artemis profile,
with measurements taken every 100 cycles. The batteries are labeled
Ox1, Ox2, Ox3 and Ox4. Again, the data contains measurements of
temperature, voltage, current and capacity on each cycle.

2.7. Data preprocessing

The raw data was pre-processed as follows:

1. Cut off . Voltage and temperature sequences during the discharge
cycles were truncated after the voltage reached the threshold
(cut-off) value as set in the experiment.

2. Interpolation. For the NASA dataset, cubic splines were used to
obtain voltage and temperature data on a fixed grid, with 200
measurements for each cycle. The Oxford dataset did not require
interpolation since there are an equal number of measurements
for each cycle.

3. Rescaling . The capacity was rescaled to define the SOH as de-
scribed earlier, while the temperature, voltage and other at-
tributes were scaled using a min–max normalization.

Fig. 3 shows the SOH trajectories for the batteries considered.
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Fig. 3. SOH trajectories for 3 groups of batteries. Left: B0005, B0006, B0007, and B0018 from the NASA dataset. Middle: B0029, B0030, B0031 and B0032 from the NASA dataset.
Right: Ox1, Ox2, Ox3 and Ox4 from the Oxford dataset.
3. Results and discussion

3.1. Model training and evaluation

In this section, the results of E-GPDM are compared to those from a
umber of baseline methods: a GP model, a CNN, stacked long short
erm memory (LSTM) networks, stacked gated recurrent unit (GRU)
etworks, and support vector regression (SVR). After testing stacked
STMs and GRUs with up to 10 recurrent layers, 5 dense layers and
ropout layers, it was found that a bi-LSTM and a single GRU worked
est, and therefore only results for these architectures are presented. All
odels were evaluated with 5 different random seeds, and the average

rrors were calculated.
The GP models were tested with combinations of 6 different kernel

unctions, including the linear, squared-exponential (RBF), polynomial,
ational quadratic, and Matérn kernels. Amongst these, a combination
f Matérn 3 and Matérn 5 gave the best performance for the GP model,
hile a mixed RBF and linear kernel gave the best performance for
-GPDM. The latent variables 𝐱𝑛 are embeddings of the data 𝐲𝑛. To ini-
ialize 𝐗, a PCA on 𝐘 was conducted, and all principal components were
sed to define the latent variables 𝐱. Stochastic gradient descent (SGD)
as used for the MLE solution. The SVR algorithm was implemented
sing an 𝜖−insensitive error and a Gaussian kernel.

The bi-LSTM layers used a tanh activation and a sigmoid recurrent
ctivation, and were followed by a dense layer of size 64 neurons and
 final output layer. Each LSTM layer was followed by a dropout layer
f rate 0.2. The GRU used a single GRU layer of size 64 followed by
wo dense layers of sizes 64 and 32, followed by the output layer.
eLU activation functions were used. Large networks (high model
omplexity) led to deteriorating performance due to the exponential
rowth in the number of parameters and, therefore, the difficulty in

minimizing the loss function with the small data sets available. For this
reason, regression versions of large networks such as VGG [38] and
aster-r-CNN [39] are not used for battery degradation forecasting and

similar problems.
Various CNN architectures were investigated and the best perform-

ng network used two CNN layers followed by two dense layers of
izes 64 and 32 neurons, along with an output layer. The CNN layers

employed padding, strides of 1, and 16 filters each. Pooling was not
used since it was found to deteriorate performance. A dropout layer of
ratio 0.25 was used after each CNN layer and ReLu activation functions

ere used in the dense layers. Again, larger architectures of up to 10
NN layers and 5 dense layers led to worse performance. Both of the
NNs were trained using the ADAM algorithm [40], with a learning

rate of 0.5 × 10−4 and a decay rate of 0.5 × 10−5.
To assess the accuracy, the root mean square error (RMSE) is

employed

RMSE =
√

1
𝑁𝑡

∑

𝑛
(𝑦(𝑛) − 𝑦𝑡(𝑛))2 (25)

in which 𝑦(𝑛) is the prediction, 𝑦𝑡(𝑛) is the test value at cycle 𝑛, and 𝑁𝑡
is the number of test points.The RMSE is used over the MAE since it is
6 
Table 1
RMSE values relating to the SOH predictions using all methods on the NASA data sets.
% Train refers to the percentage of the total data used for training.

B0005

% Train E-GPDM E-GPDMa GP CNN bi-LSTM GRU SVR

33 0.0147 0.0588 0.0630 0.0313 0.0376 0.0330 0.0168
50 0.0095 0.0227 0.0324 0.0289 0.0312 0.0215 0.0173
70 0.0113 0.0640 0.0278 0.0350 0.0101 0.0265 0.0236

B0006

33 0.0189 0.0321 0.0499 0.0330 0.0702 0.0350 0.0414
50 0.0378 0.0408 0.0322 0.0319 0.0211 0.0247 0.0335
70 0.0188 0.0430 0.0353 0.0311 0.0287 0.0217 0.0194

B0007

33 0.0184 0.0800 0.0774 0.0550 0.0479 0.0281 0.0198
50 0.0113 0.0558 0.0399 0.0441 0.0292 0.0289 0.0151
70 0.0128 0.0314 0.0473 0.0228 0.0298 0.0213 0.0178

B0029

33 0.0172 0.0533 0.0215 0.0207 0.0184 0.0189 0.0315
50 0.0226 0.0415 0.0280 0.0175 0.0195 0.0242 0.0340
70 0.0145 0.0299 0.0194 0.0190 0.0154 0.0223 0.0269

B0032

33 0.0124 0.0225 0.0201 0.0186 0.0144 0.0168 0.0209
50 0.0203 0.0216 0.0205 0.0229 0.0201 0.0260 0.0253
70 0.0112 0.0145 0.0132 0.0154 0.0132 0.0212 0.0130

a Without transfer learning.

a more robust measure of error. The RMSE upper bounds the MAE and
is more sensitive the presence of outliers by virtue of the squaring of
the residuals. In the next section, results without the use of attributes
other than the SOH and battery label are presented.

3.2. Comparison to baseline methods without additional attributes

In the first set of experiments, the data points are considered to only
contain the cycle number 𝑛, battery label 𝑚 and SOH. In the supervised
models, the inputs and outputs are 𝐳𝑚𝑛 = [𝑛, 𝑚]⊤ and 𝐲𝑚𝑛 = SOH𝑚(𝑛),
respectively. For the unsupervised E-GPDM, there are only attributes,
so that the data takes the form (3), i.e.

𝐲𝑛 = [𝑛, 𝑚, SOH𝑚(𝑛)]⊤

For each group of batteries, all of the data related to the group
(e.g., B0029-B0032) was used, except that for battery under consid-
eration (e.g., B0029), for which 30, 50 or 70% was used.

3.3. Predictions on the NASA data set

Table 1 shows the RMSE values for predictions related to B0005,
B0006, B0007, B0029 and B0032. The results from E-GPDM and three
of the other methods are displayed in Fig. 4 for B0005 with 30%, 50%
and 70% training ratios (percentage of the total data used for training).



W.W. Xing et al.

i

c

s
c
i

7
u
i

Renewable and Sustainable Energy Reviews 208 (2025) 115045 
Fig. 4. SOH predictions for battery B0005. (a) E-GPDM (with transfer learning), (b) GP, (c) CNN, (d) bi-LSTM. The figures from left to right correspond to 33%, 50% and 70%
training ratios.
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The GP models include uncertainty estimates, namely 95% confidence
ntervals shown by the shaded regions in Fig. 4 and defined by

𝜇(𝑛) − 1.96𝜎(𝑛) ≤ SOH(𝑛) ≤ 𝜇(𝑛) + 1.96𝜎(𝑛) (12)

in which 𝜇(𝑛) and 𝜎(𝑛) are the mean value and predictive variance at
ycle 𝑛.

The RMSE values without transfer learning for E-GPDM are also
hown in Table 1, from which it is clear that transfer learning signifi-
antly improves the accuracy. In the case of B0007, the improvement
s 77%, 79% and 59% for 30, 50 and 70% training ratios, respectively.

Similar dramatic improvements are seen for B0005, B0006 and B0029,
while the improvements on B0032 are less significant at 50% and
0% training ratios. To ensure fair comparisons, transfer learning was
sed for all methods to generate the results in Table 1, and similar
mprovements were seen for all methods. As seen in Table 1, for the

group 1 batteries, E-GPDM (with transfer learning) yields the lowest
RMSE in 7 out of 9 cases. Consistent with these results, the predictions
for group 2 batteries (B0029 and B0032) are superior with E-GPDM
in almost all (5 out of 6) cases. Notably, the earliest prediction (33%
training ratio) is most accurate with E-GPDM for all of the 5 batteries.

The direct GP model (Fig. 4(b)) with transfer learning yields a poor
estimate of the rate of decline in SOH, even when presented with 70%
of the data. The CNN and GRU perform reasonably well, except at a
70% training ratio, while the bi-LSTM performs well at both 50% and
70% training ratios. In fact, the bi-LSTM is the most accurate at a 70%
training ratio (10% lower RMSE than E-GPDM). SVR also performs well
 a

7 
at 30% and 50% ratios, but has low accuracy for the 70% ratio. From
Table 1, it can be seen that E-GPDM is superior to all of the other

ethods for 33% and 50% training ratios on the B0005 battery. The
overall trend of the SOH is captured well with E-GPDM (Fig. 4(a)), and
the EOL prediction is close to the true value.

Predictions related to the B0007 battery are shown in Fig. 5. The
direct GP model performance is again poor. The CNN and bi-LSTM
(Fig. 5(c)&(d)) essentially fail in this case, while the GRU performance
improves compared to the B0005 data set, as can be seen in Table 1.
E-GPDM (Fig. 5(a)) is clearly superior to all of the other methods,
chieving high accuracy for all training point numbers and again
apturing the overall trend of the SOH well. Table 1 reveals that the
erformance of SVR is also impressive for B0007. For B0006, the E-
PDM predictions are significantly more accurate than any of the other
ethods at a 30% training ratio. SVR is accurate only with a 70%

raining ratio. At a 50% training ratio, the bi-LSTM yields the lowest
MSE, with the GRU yielding the second best performance.

For B0029, while E-GPDM yields the lowest RMSE at 30% and 70%
raining ratios, the differences between E-GPDM and other methods not
s pronounced, as seen in Table 1 and Fig. 6. In particular, the bi-LSTM
erformance is close to that of E-GPDM. The CNN yields marginally

the best performance at the 50% training ratio, and the GRU closely
matches the performance of E-GPDM and the bi-LSTM at the 30% ratio.
For the B0032 battery, E-GPDM yields the best performance in all cases,
although at a 50% training ratio, the performances of E-GPDM, the GP
nd the bi-LSTM are indistinguishable. In this case, the GP does rather
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Fig. 5. SOH predictions for battery B0007. (a) E-GPDM (with transfer learning), (b) GP, (c) CNN, (d) bi-LSTM. The figures from left to right correspond to 33%, 50% and 70%
training ratios.
well, especially at 50% and 70% training ratios. Furthermore, the bi-
LSTM again closely matches the performance of E-GPDM for all ratios.
The comparatively good performance of bi-LSTM on the group 1 and
roup 2 batteries is not surprising, since it is designed for sequence
roblems. What is not obvious is why the GRU performance is relatively
oor, given that it is also designed for such problems.

3.4. Predictions on the Oxford data set

Table 2 shows the equivalent RMSE values for the Oxford battery
data set, with transfer learning. Again, E-GPDM is generally superior
(9 out of 12 cases), with the bi-LSTM and GP occasionally providing
the best result (2 out of 12 cases for the GP and 1 out of 12 cases
for the bi-LSTM). As with the NASA data set, the bi-LSTM does well
on the short-term predictions corresponding to a 70% training ratio,
with the GP now also performing well on Ox2 and Ox3. The early
predictions (33% training ratio) are still, however, superior with E-
GPDM, which is respectively 31%, 17%, 44% and 50% more accurate
than the next most accurate method (bi-LSTM for Ox1-3 and SVR for
Ox4). The equivalent numbers for a 50% training ratio are 29%, 33%,
20% and 54%. Fig. 7 shows the predictions corresponding to Ox3,
clearly demonstrating the superiority of E-GPDM at the 33% training
ratio. The excellent performance of bi-LSTM and the GP at a 70% ratio
is also evident.
G
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Table 2
RMSE values relating to the SOH predictions using all methods on the Oxford data set.
% Train refers to the percentage of the total data used for training.

Ox1

% Train E-GPDM E-GPDMa GP CNN bi-LSTM GRU SVR

33 0.0093 0.0226 0.0668 0.0199 0.0135 0.0197 0.0288
50 0.0135 0.0244 0.0207 0.0226 0.0191 0.0219 0.0308
70 0.0147 0.0263 0.0261 0.0448 0.0105 0.0237 0.0327

Ox2

33 0.0044 0.0769 0.0092 0.0330 0.0053 0.0209 0.0202
50 0.0058 0.0325 0.0087 0.0276 0.0118 0.0240 0.0220
70 0.0042 0.0082 0.0037 0.0316 0.0101 0.0269 0.0234

Ox3

33 0.0086 0.0364 0.0134 0.0207 0.0117 0.0140 0.0186
50 0.0099 0.0118 0.0123 0.0236 0.0158 0.0118 0.0182
70 0.0101 0.0089 0.0061 0.0096 0.0078 0.0109 0.0183

Ox4

33 0.0101 0.0189 0.0411 0.0327 0.0299 0.0424 0.0204
50 0.0086 0.0360 0.0345 0.0337 0.0185 0.0330 0.0188
70 0.0073 0.0133 0.0219 0.0394 0.0175 0.0236 0.0233

a Without transfer learning.

3.5. Predictions with additional attributes

The previous experiments evaluated the predictive power of E-
PDM and the other methods without attributes other than the SOH.
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Fig. 6. SOH predictions for battery B0029. (a) E-GPDM (with transfer learning), (b) GP, (c) CNN, (d) bi-LSTM. The figures from left to right correspond to 33%, 50% and 70%
training ratios.
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E-GPDM was superior (lower RMSE) when the number of training
points was low, corresponding to early predictions. In other cases (50%
nd 70% training ratios) it yielded the lowest RMSE in 67% (12 out of

18) cases. Overall, E-GPDM was more accurate or as accurate in 19 out
of 27 (70%) of the cases. Although these results are impressive, the
main advantage of E-GPDM is that it allows for the incorporation of
an arbitrary number of attributes, which, in theory, can improve the
results. In this section, the following attributes are now incorporated
for each battery 𝑚

1. Attribute 1. Temperature at the midpoint of each discharge
cycle, 𝑇𝑚(𝑛)

2. Attribute 2. Voltage at the midpoint of each discharge cycle,
𝑉𝑚(𝑛)

3. Attribute 3. Energy delivered by the battery (unnormalized),
given by 𝐼𝑚(𝑛) = ∫𝑡 𝑉𝑚(𝑛)𝑑 𝑡, in which 𝑉𝑚(𝑛) is the voltage curve (a
function of time 𝑡) for cycle 𝑛. The integral was evaluated using
a trapezoidal rule

Attributes 1 and 2 will clearly be correlated with the SOH, and are
two of the most frequently used attributes. The (unnormalized) energy
delivered by the battery will exhibit a decline as the SOH declines,
o is again correlated with the SOH. The choice of these attributes is

based on their similarity to those used previously in the literature as
well as the extent of the information contained in the three data sets
under consideration. More attributes can be added and optimized for
est performance. Explicitly, the data now takes the form (3)
𝐲𝑛 = [𝑛, 𝑚, SOH(𝑛), 𝑇𝑚(𝑛), 𝑉𝑚(𝑛), 𝐼𝑚(𝑛)]⊤ (26) t

9 
in which 𝑎1(𝑛) = SOH(𝑛), 𝑎2(𝑛) = 𝑇𝑚(𝑛), 𝑎3(𝑛) = 𝑉𝑚(𝑛) and 𝑎4(𝑛) = 𝐼𝑚(𝑛).
The other methods of the previous section cannot be used in this

case, for the obvious reason that the attributes will not be known
for future cycles. Using known attribute values from the given data
set to perform a multi-cycle lookahead would not lead to a practical
algorithm. In comparison, E-GPDM propagates the dynamic hidden
variable 𝐱𝑛, from which the observable attributes 𝐲𝑛 (including the
OH) can be predicted for an arbitrary number of future cycles. It
s possible to compare E-GPDM with a GPLVM [41], which is able

to reconstruct a complete data set from partially known features or
attributes, a problem that is encountered in many areas, e.g., hu-

an motion tracking. This property of GPLVM can be exploited to
econstruct the complete SOH curve from 33%, 50% and 70% of the
ata. The E-GPDM latent space embedding is again initialized using all

principal components from a PCA. A combination of a linear and RBF
kernel was used, together with the conjugate gradient method to solve
the maximum likelihood problem for both E-GPDM and GPLVM.

Table 3 shows the RMSE values on all three data sets, which are to
be compared with the values in Tables 1 and 2. For convenience, the
E-GPDM results with transfer learning from the latter tables are repro-
duced in Table 3. Also reproduced is the best result for each battery
(from Tables 1 and 2). In 23 out of 27 cases (85%), the RMSE values
re lower when additional attributes are included. In three of the other
ases (B0005/50%, B0032/33% and Ox3/50%) the values are virtually
ndistinguishable. In the case of Ox2/33%, the error with features is
6% higher, although the result is still very accurate. In particular,
here is generally a vast decrease in the RMSE at 50% and 70% training
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Fig. 7. SOH predictions for the Ox3 battery. (a) E-GPDM (with transfer learning), (b) GP, (c) CNN, (d) bi-LSTM. The figures from left to right correspond to 33%, 50% and 70%
training ratios.
Fig. 8. SOH predictions for B0005 when employing additional features. (a) E-GPDM (with transfer learning), (b) GPLVM. The figures from left to right correspond to 33%, 50%
and 70% training ratios.
ratios. The decrease for a 70% training ratio compared to the best
esult in Tables 1 and 2 is: 71% (B0005), 65% (B0006), 29% (B0007),

44% (B0029), 6% (B0032), 80% (Ox1), 38% (Ox2), 46% (Ox3) and
75% (Ox4). For 50%, the improvement is: negligible (B0005), 34%
 t

10 
(B0006), negligible (B0007), 54% (B0029), 38% (B0032), 63% (Ox1),
40% (Ox2), 12% (Ox3) and 58% (Ox4).

Figs. 8 and 9 show the predictions for B0005 and B0006 for different
raining ratios using E-GPDM (with transfer learning) and GPLVM. It
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Fig. 9. SOH predictions for B0006 when employing additional features. (a) E-GPDM (with transfer learning), (b) GPLVM. The figures from left to right correspond to 33%, 50%
and 70% training ratios.
Fig. 10. SOH predictions for B0029 when employing additional features. (a) E-GPDM (with transfer learning), (b) GPLVM. The figures from left to right correspond to 33%, 50%
and 70% training ratios.
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is clear that E-GPDM tracks the overall trend of the curve as well
s the fluctuations with good accuracy. GPLVM, however, fails both
ualitatively and quantitatively. Fig. 8 should be compared with Fig. 4

(without additional attributes), from which the improvement in per-
formance is obvious. It is recalled that for B0005 at a 70% training
ratio, the RMSE was 0.0113 without features, higher than the bi-LSTM
alue of 0.0101. The RMSE for E-GPDM with features is now 0.0029, far

lower than that for the bi-LSTM. For B0006, the RMSE for E-GPDM was
0.0378 at 50%, while that for the bi-LSTM was 0.0211. The RMSE for
E-GPDM with features is 0.0140, again lower than that for the bi-LSTM.

Fig. 10, which can be compared to Fig. 6, shows the predictions
for B0029. Again, the accuracy improves markedly. In this case, the
fluctuations are not as well captured, since they appear not to follow
any trend, in comparison to those in the B0005-B0007 datasets, which
are caused by a regeneration phenomenon. Finally, in Fig. 11 (to be
compared with Fig. 7) the predictions are shown for Ox3. In this
ase there is a less significant improvement since the result without
eatures was already very accurate. What is noticeable, however, is
he improvement near the end of the cycling at all training ratios,
 6
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although at the start of the prediction interval the results are slightly
ess accurate.

3.6. Direct comparisons with other methods in the literature

A vast number of methods in the literature use features. Tagade
t al. [42] employed a deep GP with features on the B0006 data set
o obtain mean absolute error (MAE) values of ca. 0.009 and 0.008
Fig. 3 of their paper) for 100 training points (60% training ratio)
nd 120 training points (71% training ratio), respectively. E-GPDM
ields MAE values of 0.0096 and 0.0045 for 50% and 70% training
atios. Yang et al. [10] employed a supervised GP model with four

features. The RMSE values on the B0006 and B0007 data sets using
0 training points (ca. 50% training ratio) were 0.0149 and 0.0078,
espectively. These values can be compared to 0.0140 and 0.0111,
espectively, using E-GPDM. Yang et al. however, discarded what they
onsidered to be outliers data, without specifying the number of these
oints. Chen et al. [14] used features with an LSTM. They discarded
0 unspecified outliers of the 168 B0006 data points and were able to
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Fig. 11. SOH predictions for Ox3. (a) E-GPDM (with transfer learning), (b) GPLVM. The figures from left to right correspond to 33%, 50% and 70% training ratios.
Fig. 12. 2-d latent trajectories for B0006 using E-GPDM (left) and GPLVM (right). The axes correspond to the two latent coordinates and the intensity is proportional to the
predictive variance (lighter regions correspond to smaller variance).
obtain RMSE values between 0.0025 and 0.0012 for B0006, depending
on the proportion of data used for training.

In this study, no points were discard as outliers, which make com-
parisons to the latter two studies difficult. The use of features in [10,14,
42] and other similar approaches can provide a virtually arbitrary level
of accuracy (with virtually any method) because the features follow the
same pattern as the SOH, including the fluctuations. The predictions,
however, are invalid for anything other than the next cycle because
the feature values are not known in the future, i.e., all of the values
past the 𝑇 th cycle, where 𝑇 is the training point number. The only
meaningful error would be the cumulative error from a sequence of
one-step predictions, which is not what is calculated in these studies,
and which would be far higher than the quoted errors.

3.7. Latent trajectories

One important component of the proposed method is the underlying
dynamics captured by Eqs. (4). If this component is removed, the
proposed method is reduced to the GPLVM. Here, the effects of incorpo-
rating the dynamical process are demonstrated by comparing 2-d latent
variable reconstructions from GPLVM and E-GPDM in the case of B0006
(with attributes). The 2-d latent trajectories {𝐱𝑛} from the two methods
are shown in Fig. 12, with the shading intensity proportional to the
predictive variance (brighter regions indicate smaller variance). Fig. 12
(left) illustrates that E-GPDM produces a much smoother configuration
of latent positions than GPLVM (right), which contains a high degree
of scatter. This illustrates that the evolution underlying the state of
the battery is much better captured by E-GPDM, as a consequence
12 
of including the dynamics. The latent embeddings provide a good
representation of the state of the system.

4. Conclusions

Accurate predictions of the SOH of a Li-ion battery and its EOL are
crucial for the management and control of stacks in electric vehicles.
One of the issues that has hampered the development of algorithms
for early prediction of the EOL relates to the incorporation of prior
knowledge from other batteries, while also using data that is specific to
the battery under consideration. Another issue is in how to incorporate
other attributes (or features) of the battery performance in order to
improve predictions, given that they are not known for future cycles. In
this study, a method that overcomes both of these issues in an efficient
manner was presented. This method (E-GPDM) leads to an algorithm
with a very low computational burden compared to DNNs, and the
added benefit of providing a confidence interval.

The results on three data sets show that without additional at-
tributes, E-GPDM is more accurate in the majority of cases. With the
inclusion of additional attributes such as temperature, the accuracy
is further increased except in a small number of cases. Key to these
results is the incorporation of additional data through transfer learning.
Without transfer learning it is difficult to capture an overall SOH trend
early in the battery life when the trajectory is complex.

Future research will focus on two aspects: better incorporation of
prior knowledge and data for more complex SOH trajectories, and
the performance of E-GPDM with more features. The volume and
nature (whether under the same conditions or not) of the data that
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Table 3
RMSE values relating to the SOH predictions using E-GPDM and GPLVM on all data
sets when employing additional features. % Train refers to the percentage of the total
data used for training.

B0005

% Train Bestb E-GPDMc E-GPDM E-GPDMa GPLVM [41]

33 0.0147 0.0147 0.0091 0.1682 0.0884
50 0.0095 0.0095 0.0101 0.0321 0.0348
70 0.0101 0.0113 0.0029 0.0224 0.0141

B0006

33 0.0189 0.0189 0.0185 0.0410 0.0944
50 0.0211 0.0378 0.0140 0.0325 0.0535
70 0.0188 0.0188 0.0065 0.0166 0.0432

B0007

33 0.0184 0.0184 0.0137 0.0824 0.0343
50 0.0113 0.0113 0.0111 0.0428 0.0329
70 0.0128 0.0128 0.0091 0.0284 0.0292

B0029

33 0.0172 0.0172 0.0101 0.0424 0.0378
50 0.0175 0.0226 0.0080 0.0436 0.0389
70 0.0145 0.0145 0.0081 0.0214 0.0203

B0032

33 0.0124 0.0124 0.0128 0.0284 0.0391
50 0.0203 0.0203 0.0125 0.0342 0.0414
70 0.0112 0.0112 0.0105 0.0223 0.0193

Ox1

33 0.0093 0.0093 0.0050 0.0158 0.0603
50 0.0135 0.0135 0.0050 0.0061 0.0409
70 0.0105 0.0147 0.0021 0.0033 0.0218

Ox2

33 0.0044 0.0044 0.0060 0.0115 0.0569
50 0.0058 0.0058 0.0035 0.0132 0.0606
70 0.0037 0.0042 0.0023 0.0059 0.0186

Ox3

33 0.0086 0.0086 0.0089 0.0439 0.0630
50 0.0099 0.0099 0.0087 0.0090 0.0409
70 0.0061 0.0101 0.0033 0.0039 0.0213

Ox4

33 0.0101 0.0101 0.0071 0.0152 0.0300
50 0.0086 0.0086 0.0036 0.0160 0.0289
70 0.0073 0.0073 0.0018 0.0058 0.0078

a Without transfer learning.
b The best result from Tables 1 and 2 for each battery.
c The results for E-GPDM without features in Tables 1 and 2.

best provides accurate learning of the SOH trajectory requires a more
thorough investigation. Additionally, characterization of the number
and types of features for optimal accuracy requires more extensive data
sets combined with rigorous ablation studies. It is suspected that the
optimal data and features will be specific to the type of battery. Both
of these extensions are beyond the scope of this study, which serves as
a proof of concept for E-GPDM combined with transfer learning.
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