Last updated: 2022-02-10

Checks: 6 1

Knit directory: Serreze-T1D_Workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220210) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/corneb/Documents/MyJax/CS/Projects/Serreze/qc/workflowr/Serreze-T1D_Workflow .

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d199bd4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store

Untracked files:
    Untracked:  analysis/0.1.1_preparing.data_bqc_4batches.Rmd
    Untracked:  analysis/2.1_sample_bqc_3.batches.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_4batches.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.eoi.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs.Rmd
    Untracked:  analysis/4.1.2_qtl.analysis_cont_age_ici.vs.eoi.Rmd
    Untracked:  analysis/4.1.2_qtl.analysis_cont_age_ici.vs.pbs.Rmd
    Untracked:  analysis/4.1.2_qtl.analysis_cont_rzage_ici.vs.eoi.Rmd
    Untracked:  analysis/4.1.2_qtl.analysis_cont_rzage_ici.vs.pbs.Rmd
    Untracked:  data/GM_covar.csv
    Untracked:  data/bad_markers_all_4.batches.RData
    Untracked:  data/covar_cleaned_ici.vs.eoi.csv
    Untracked:  data/covar_cleaned_ici.vs.pbs.csv
    Untracked:  data/e.RData
    Untracked:  data/e_snpg_samqc_4.batches.RData
    Untracked:  data/e_snpg_samqc_4.batches_bc.RData
    Untracked:  data/errors_ind_4.batches.RData
    Untracked:  data/errors_ind_4.batches_bc.RData
    Untracked:  data/genetic_map.csv
    Untracked:  data/genotype_errors_marker_4.batches.RData
    Untracked:  data/genotype_freq_marker_4.batches.RData
    Untracked:  data/gm_allqc_4.batches.RData
    Untracked:  data/gm_samqc_3.batches.RData
    Untracked:  data/gm_samqc_4.batches.RData
    Untracked:  data/gm_samqc_4.batches_bc.RData
    Untracked:  data/gm_serreze.192.RData
    Untracked:  data/percent_missing_id_3.batches.RData
    Untracked:  data/percent_missing_id_4.batches.RData
    Untracked:  data/percent_missing_id_4.batches_bc.RData
    Untracked:  data/percent_missing_marker_4.batches.RData
    Untracked:  data/pheno.csv
    Untracked:  data/physical_map.csv
    Untracked:  data/qc_info_bad_sample_3.batches.RData
    Untracked:  data/qc_info_bad_sample_4.batches.RData
    Untracked:  data/qc_info_bad_sample_4.batches_bc.RData
    Untracked:  data/sample_geno.csv
    Untracked:  data/sample_geno_bc.csv
    Untracked:  data/serreze_probs.rds
    Untracked:  data/serreze_probs_allqc.rds
    Untracked:  data/summary.cg_3.batches.RData
    Untracked:  data/summary.cg_4.batches.RData
    Untracked:  data/summary.cg_4.batches_bc.RData
    Untracked:  output/Percent_missing_genotype_data_4.batches.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples_4.batches.pdf

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/2.2.1_snp_qc_4.batches.Rmd) and HTML (docs/2.2.1_snp_qc_4.batches.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d199bd4 Belinda Cornes 2022-02-10 QC analysis

Loading Project

load("data/e_snpg_samqc_4.batches.RData")
gm <- get(load("data/gm_samqc_4.batches.RData"))

gm
Object of class cross2 (crosstype "bc")

Total individuals               188
No. genotyped individuals       188
No. phenotyped individuals      188
No. with both geno & pheno      188

No. phenotypes                    1
No. covariates                    6
No. phenotype covariates          0

No. chromosomes                  20
Total markers                133716

No. markers by chr:
    1     2     3     4     5     6     7     8     9    10    11    12    13 
10159 10172  7987  7736  7778  7911  7548  6561  6823  6472  7276  6226  6177 
   14    15    16    17    18    19     X 
 6082  5421  5075  5161  4682  3612  4857 

It can also be useful to look at the proportion of missing genotypes by marker. Markers with a lot of missing data were likely difficult to call, and so the genotypes that were called may contain a lot of errors.

Marker Missing Data

pmis_mar <- n_missing(gm, "marker", "proportion")*100
save(pmis_mar, file = "data/percent_missing_marker_4.batches.RData")

par(mar=c(5.1,0.6,0.6, 0.6))
hist(pmis_mar, breaks=seq(0, 100, length=201),
     main="", yaxt="n", ylab="", xlab="Percent missing genotypes")
rug(pmis_mar)

pdf(file = "output/Percent_missing_genotype_data_per_marker.pdf")
par(mar=c(5.1,0.6,0.6, 0.6))
hist(pmis_mar, breaks=seq(0, 100, length=201),
     main="", yaxt="n", ylab="", xlab="Percent missing genotypes")
rug(pmis_mar)
dev.off()
quartz_off_screen 
                2 
count
pmis_mar_5 3768
pmis_mar_10 2138
pmis_mar_15 1599
pmis_mar_25 1089
pmis_mar_50 368
pmis_mar_75 69
total_snps 133716

Marker Genotype Frequencies

g <- do.call("cbind", gm$geno[1:19])
#fg <- do.call("cbind", gm$founder_geno[1:19])
#g <- g[,colSums(g)!=0]
#fg <- fg[,colSums(fg==0)==0]
#fgn <- colSums(g==2)

gf_mar <- t(apply(g, 2, function(a) table(factor(a, 1:2))/sum(a != 0)))
gn_mar <- t(apply(g, 2, function(a) table(factor(a, 1:2))))

gf_mar <- gf_mar[gf_mar[,2] != "NaN",]
MAF <- apply(gf_mar, 1, function(x) min(x))
MAF <- as.data.frame(MAF)
MAF$index <- 1:nrow(gf_mar)
gf_mar_maf <- merge(gf_mar,as.data.frame(MAF), by="row.names")
gf_mar_maf <- gf_mar_maf[order(gf_mar_maf$index),]

pdf(file = "output/genotype_frequency_marker.pdf")
par(mar=c(5.1,0.6,0.6, 0.6))
hist(gf_mar_maf$MAF, breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="MAF")
rug(gf_mar_maf$MAF)
dev.off()
quartz_off_screen 
                2 
par(mar=c(5.1,0.6,0.6, 0.6))
hist(gf_mar_maf$MAF, breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="MAF")
rug(gf_mar_maf$MAF)

gfmar <- NULL
gfmar$gfmar_mar_0 <- sum(gf_mar_maf$MAF==0)
gfmar$gfmar_mar_1 <- sum(gf_mar_maf$MAF< 0.01)
gfmar$gfmar_mar_5 <- sum(gf_mar_maf$MAF< 0.05)
gfmar$gfmar_mar_10 <- sum(gf_mar_maf$MAF< 0.10)
gfmar$gfmar_mar_15 <- sum(gf_mar_maf$MAF< 0.15)
gfmar$gfmar_mar_25 <- sum(gf_mar_maf$MAF< 0.25)
gfmar$gfmar_mar_50 <- sum(gf_mar_maf$MAF<= 0.50)
gfmar$total_snps <- nrow(as.data.frame(gf_mar_maf))

gfmar <- t(as.data.frame(gfmar))
gfmar <- as.data.frame(gfmar)
gfmar$count <- gfmar$V1

gfmar[c(2)] %>%
  kable(escape = F,align = c("ccccccccc"),linesep ="\\hline") %>%
  kable_styling(full_width = F) %>%
  kable_styling("striped", full_width = F)  %>%
  row_spec(8 ,bold=T,color= "white",background = "black")
count
gfmar_mar_0 84900
gfmar_mar_1 88608
gfmar_mar_5 95233
gfmar_mar_10 96232
gfmar_mar_15 96470
gfmar_mar_25 97178
gfmar_mar_50 128857
total_snps 128857
save(gf_mar, file = "data/genotype_freq_marker_4.batches.RData")

Marker Genotype Errors

Markers with higher rates of missing genotypes tend to show higher errors rates.

Removing Markers

Missingness

[1] 2138

Monomorphic/Low Frequency markers

[1] 88609

Genotyping Error

[1] 11032

Total

[1] 97037

Only removing markers that are missing in at least 10% of the samples

#missing in at least 10% of the samples

gm_allqc2 <- drop_markers(gm_samqc, high_miss_bad$marker)
gm_allqc <- drop_nullmarkers(gm_allqc2)


gm_allqc
Object of class cross2 (crosstype "bc")

Total individuals               188
No. genotyped individuals       188
No. phenotyped individuals      188
No. with both geno & pheno      188

No. phenotypes                    1
No. covariates                    6
No. phenotype covariates          0

No. chromosomes                  20
Total markers                131578

No. markers by chr:
    1     2     3     4     5     6     7     8     9    10    11    12    13 
 9977 10005  7858  7589  7621  7758  7413  6472  6725  6396  7154  6137  6085 
   14    15    16    17    18    19     X 
 5981  5346  5019  5093  4607  3564  4778 
save(gm_allqc, file = "data/gm_allqc_4.batches.RData")

sessionInfo()
R version 3.6.2 (2019-12-12)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] fst_0.9.2        knitr_1.33       kableExtra_1.1.0 mclust_5.4.6    
 [5] ggrepel_0.8.2    ggplot2_3.3.5    qtlcharts_0.11-6 qtl2_0.22       
 [9] broman_0.70-4    workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] tidyselect_1.0.0  xfun_0.24         purrr_0.3.4       colorspace_2.0-2 
 [5] vctrs_0.3.8       viridisLite_0.4.0 htmltools_0.5.1.1 yaml_2.2.1       
 [9] utf8_1.2.1        blob_1.2.1        rlang_0.4.11      later_1.0.0      
[13] pillar_1.6.1      glue_1.4.2        withr_2.4.2       DBI_1.1.1        
[17] bit64_4.0.5       lifecycle_1.0.0   stringr_1.4.0     munsell_0.5.0    
[21] gtable_0.3.0      rvest_0.3.5       memoise_2.0.0     evaluate_0.14    
[25] fastmap_1.1.0     httpuv_1.5.2      parallel_3.6.2    fansi_0.5.0      
[29] highr_0.9         Rcpp_1.0.7        readr_1.3.1       promises_1.1.0   
[33] backports_1.2.1   scales_1.1.1      cachem_1.0.5      webshot_0.5.2    
[37] fs_1.4.1          bit_4.0.4         hms_0.5.3         digest_0.6.27    
[41] stringi_1.7.2     dplyr_0.8.5       grid_3.6.2        rprojroot_1.3-2  
[45] tools_3.6.2       magrittr_2.0.1    RSQLite_2.2.7     tibble_3.1.2     
[49] crayon_1.4.1      whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.2   
[53] xml2_1.3.1        data.table_1.14.0 httr_1.4.1        rstudioapi_0.13  
[57] assertthat_0.2.1  rmarkdown_2.1     qtl_1.46-2        R6_2.5.0         
[61] git2r_0.26.1      compiler_3.6.2