Last updated: 2023-04-13

Checks: 5 2

Knit directory: Serreze-T1D_Workflow/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220210) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/corneb/Documents/MyJax/CS/Projects/Serreze/qc/workflowr/Serreze-T1D_Workflow .

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 51e3845. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    analysis/.DS_Store

Untracked files:
    Untracked:  analysis/0.1.1_preparing.data_bqc_7.batches_myo.R
    Untracked:  analysis/0.1.1_preparing.data_bqc_7.batches_myo.Rmd
    Untracked:  analysis/0.1_samples_batch_20230124.Rmd
    Untracked:  analysis/0.1_samples_batch_20230225.Rmd
    Untracked:  analysis/0.1_samples_batch_20230313.Rmd
    Untracked:  analysis/0.2_haplotype_comparison_bqc_7.batches_myo_minprob.R
    Untracked:  analysis/0.2_haplotype_comparison_bqc_7.batches_myo_minprob.Rmd
    Untracked:  analysis/2.1_sample_bqc_7.batches_myo.R
    Untracked:  analysis/2.1_sample_bqc_7.batches_myo.Rmd
    Untracked:  analysis/2.1_sample_bqc_7.batches_myo.Rmd.R
    Untracked:  analysis/2.2.1_snp_qc_7.batches_myo.R
    Untracked:  analysis/2.2.1_snp_qc_7.batches_myo.Rmd
    Untracked:  analysis/2.2.1_snp_qc_7.batches_myo_mis.R
    Untracked:  analysis/2.2.1_snp_qc_7.batches_myo_mis.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_7.batches_myo.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_7.batches_myo_mis.Rmd
    Untracked:  analysis/2.4_preparing.data_aqc_7.batches_myo_misd.R
    Untracked:  analysis/3.1_phenotype.qc_corrected_7.batches_myo.Rmd
    Untracked:  analysis/3.1_phenotype.qc_corrected_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici-myo-yes.vs.het-ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_het-ici.vs.het-pbs_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-myo-yes.vs.ici-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici-sick.vs.ici-eoi_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_ici.vs.pbs_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_myo-yes.vs.myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.R
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo.Rmd
    Untracked:  analysis/4.1.1_qtl.analysis_binary_pbs-myo-yes.vs.pbs-myo-no_snpsqc_dis_no-x_updated_7.batches_myo_mis.Rmd
    Untracked:  analysis/debugging_comparing_old_Rmd/
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_het-ici.vs.het-pbs_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici-sick.vs.ici-eoi_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_ici.vs.pbs_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_myo-yes.vs.myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/genotype.frequencies_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/index_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_het-ici.vs.het-pbs_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici-sick.vs.ici-eoi_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_ici.vs.pbs_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_ici.vs.pbs_7batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_myo-yes.vs.myo-no_7.batches_myo_mis.Rmd
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.Rmd
    Untracked:  analysis/power.analysis_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.Rmd
    Untracked:  data/GM_covar_4.batches_myo.csv
    Untracked:  data/GM_covar_7.batches_myo.csv
    Untracked:  data/bad_markers_all_4.batches_myo.RData
    Untracked:  data/bad_markers_all_7.batches_myo.RData
    Untracked:  data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_het-ici.vs.het-pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_het-ici.vs.het-pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici-sick.vs.ici-eoi_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_ici.vs.pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_myo-yes.vs.myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_myo-yes.vs.myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected.cleaned_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_het-ici-myo-yes.vs.het-ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_het-ici.vs.het-pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected_het-ici.vs.het-pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici-myo-yes.vs.ici-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_ici-myo-yes.vs.ici-myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici-sick.vs.ici-eoi_7.batches_myo.csv
    Untracked:  data/covar_corrected_ici-sick.vs.ici-eoi_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_ici.vs.pbs_7.batches_myo.csv
    Untracked:  data/covar_corrected_ici.vs.pbs_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_myo-yes.vs.myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_myo-yes.vs.myo-no_7.batches_myo_mis.csv
    Untracked:  data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo.csv
    Untracked:  data/covar_corrected_pbs-myo-yes.vs.pbs-myo-no_7.batches_myo_mis.csv
    Untracked:  data/e_4.batches_myo.RData
    Untracked:  data/e_7.batches_myo.RData
    Untracked:  data/e_snpg_samqc_4.batches_myo.RData
    Untracked:  data/e_snpg_samqc_7.batches_myo.RData
    Untracked:  data/errors_ind_4.batches_myo.RData
    Untracked:  data/errors_ind_7.batches_myo.RData
    Untracked:  data/genetic_map_4.batches_myo.csv
    Untracked:  data/genetic_map_7.batches_myo.csv
    Untracked:  data/genotype_errors_marker_4.batches_myo.RData
    Untracked:  data/genotype_errors_marker_7.batches_myo.RData
    Untracked:  data/genotype_freq_marker_4.batches_myo.RData
    Untracked:  data/genotype_freq_marker_7.batches_myo.RData
    Untracked:  data/gm_allqc_4.batches_myo.RData
    Untracked:  data/gm_allqc_4.batches_myo_mis.RData
    Untracked:  data/gm_allqc_7.batches_myo.RData
    Untracked:  data/gm_allqc_7.batches_myo_mis.RData
    Untracked:  data/gm_samqc_4.batches_myo.RData
    Untracked:  data/gm_samqc_7.batches_myo.RData
    Untracked:  data/gm_serreze.BC312.RData
    Untracked:  data/gm_serreze.BC366.RData
    Untracked:  data/gm_serreze_7.batches_myo.RData
    Untracked:  data/gm_serreze_bc_7.batches_myo.RData
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici-myo-yes.vs.het-ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/het-ici.vs.het-pbs_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/ici-myo-yes.vs.ici-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/myo-yes.vs.myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.geno.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_marker.freq_low.probs.freq.removed_sample.outliers.removed_geno.ratio_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.geno.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_7.batches_myo_mis.csv
    Untracked:  data/pbs-myo-yes.vs.pbs-myo-no_sample.genos_marker.freq_low.probs.freq.removed_sample.outliers.removed_7.batches_myo_mis.csv
    Untracked:  data/percent_missing_id_4.batches_myo.RData
    Untracked:  data/percent_missing_id_7.batches_myo.RData
    Untracked:  data/percent_missing_marker_4.batches_myo.RData
    Untracked:  data/percent_missing_marker_7.batches_myo.RData
    Untracked:  data/pheno_4.batches_myo.csv
    Untracked:  data/pheno_7.batches_myo.csv
    Untracked:  data/physical_map_4.batches_myo.csv
    Untracked:  data/physical_map_7.batches_myo.csv
    Untracked:  data/probs_36state_bc_7.batches_myo.rds
    Untracked:  data/probs_8state_bc_7.batches_myo.rds
    Untracked:  data/qc_info_bad_sample_4.batches_myo.RData
    Untracked:  data/qc_info_bad_sample_7.batches_myo.RData
    Untracked:  data/sample_geno_AHB_4.batches_myo.csv
    Untracked:  data/sample_geno_AHB_7.batches_myo.csv
    Untracked:  data/sample_geno_AHB_7.batches_myo_orig.id.csv
    Untracked:  data/sample_geno_bc_4.batches_myo.csv
    Untracked:  data/sample_geno_bc_7.batches_myo.csv
    Untracked:  data/sample_geno_bc_7.batches_myo_orig.id.csv
    Untracked:  data/serreze_probs_4.batches_myo.rds
    Untracked:  data/serreze_probs_7.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_4.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_4.batches_myo_mis.rds
    Untracked:  data/serreze_probs_allqc_7.batches_myo.rds
    Untracked:  data/serreze_probs_allqc_7.batches_myo_mis.rds
    Untracked:  data/summary.cg_4.batches_myo.RData
    Untracked:  data/summary.cg_7.batches_myo.RData
    Untracked:  output/Percent_missing_genotype_data_4.batches_myo.pdf
    Untracked:  output/Percent_missing_genotype_data_7.batches_myo.pdf
    Untracked:  output/Percent_missing_genotype_data_per_marker_4.batches_myo.pdf
    Untracked:  output/Percent_missing_genotype_data_per_marker_7.batches_myo.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples_4.batches_myo.pdf
    Untracked:  output/Proportion_matching_genotypes_before_removal_of_bad_samples_7.batches_myo.pdf
    Untracked:  output/genotype_error_marker_4.batches_myo.pdf
    Untracked:  output/genotype_error_marker_7.batches_myo.pdf
    Untracked:  output/genotype_frequency_marker_4.batches_myo.pdf
    Untracked:  output/genotype_frequency_marker_7.batches_myo.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


This script is running genotype QC on raw data (with some outcomes already seen in the project at a glace). Here, we first load the R/qtl2 package and the data. We’ll also load the R/broman package for some utilities and plotting functions, and R/qtlcharts for interactive graphs.

We will follow the steps by Karl Broman found here

Loading Project

gm <- get(load("data/gm_serreze_bc_7.batches_myo.RData"))
gm
Warning in check_cross2(object): 1249 invalid genotypes in cross
Object of class cross2 (crosstype "bc")

Total individuals               366
No. genotyped individuals       366
No. phenotyped individuals      366
No. with both geno & pheno      366

No. phenotypes                    1
No. covariates                   11
No. phenotype covariates          0

No. chromosomes                  20
Total markers                133716

No. markers by chr:
    1     2     3     4     5     6     7     8     9    10    11    12    13 
10159 10172  7987  7736  7778  7911  7548  6561  6823  6471  7276  6226  6177 
   14    15    16    17    18    19     X 
 6082  5421  5075  5162  4682  3612  4857 
sample_file <- dir(path = filepaths, pattern = "^DODB_*", full.names = TRUE)
samples <- read.csv(sample_file)
all.equal(as.character(ind_ids(gm)), as.character(samples$Original.Mouse.ID))
[1] "366 string mismatches"
all.equal(as.character(ind_ids(gm)), as.character(samples$Unique.Sample.ID))
[1] TRUE

Missing Data

percent_missing <- n_missing(gm, "ind", "prop")*100

labels <- paste0(as.character(do.call(rbind.data.frame, strsplit(names(percent_missing), "_"))[,7]), " (", round(percent_missing,2), "%)")
#labels <- paste0(names(percent_missing), " (", round(percent_missing,2), "%)")
iplot(seq_along(percent_missing), percent_missing, indID=labels,
      chartOpts=list(xlab="Mouse", ylab="Percent missing genotype data",
                     ylim=c(0, 70)))
Set screen size to height=700 x width=1000
#save into pdf
pdf(file = "output/Percent_missing_genotype_data_7.batches_myo.pdf", width = 20, height = 20)
#labels <- as.character(do.call(rbind.data.frame, strsplit(names(totxo), "V01_"))[,2])
labels <- as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])
#labels <- paste0(names(percent_missing), " (", round(percent_missing,2), "%)")
#labels <- ind_ids(gm)
labels[percent_missing < 10] = ""
# Change point shapes and colors
p <- ggplot(data = data.frame(Mouse=seq_along(percent_missing),  
                         Percent_missing_genotype_data = percent_missing,
                         batch = factor(as.character(do.call(rbind.data.frame, strsplit(as.character(samples$Unique.Sample.ID), "_"))[,6]))
                         #batch = factor(as.character(do.call(rbind.data.frame, strsplit(as.character(samples$Directory), "_"))[,5]))
                         ), 
        aes(x=Mouse, y=Percent_missing_genotype_data, color = batch)) +
        geom_point() +
        geom_hline(yintercept=10, linetype="solid", color = "red") +
        geom_text_repel(aes(label=labels), vjust = 0, nudge_y = 0.01, show.legend = FALSE, size=3) +
        theme(text = element_text(size = 10))
p

dev.off()
quartz_off_screen 
                2 
p

save(percent_missing,file = "data/percent_missing_id_7.batches_myo.RData")

gm.covar = data.frame(id=rownames(gm$covar),gm$covar)
qc_info_cr <- merge(gm.covar,
                  data.frame(id = names(percent_missing),percent_missing = percent_missing,stringsAsFactors = F),by = "id")
bad.sample.cr <- qc_info_cr[qc_info_cr$percent_missing >= 10,]
Sample_ID Unique_ID batch.date percent_missing
D351-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D351-ICI-Myo_C10 2022-08-26 12.6649017320291
D345-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D345-ICI-SICK_H5 2022-10-06 12.5557150976697
D611-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D611-ICI-Myo_D6 2022-10-06 16.431092763768
D631-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D631-ICI-SICK_A12 2022-10-06 10.1880104101229
7363-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_7363-PBS-SICK_C11 2022-11-16 12.3971701217506
7917-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7917-PBS-EOI_E5 2022-11-16 26.244428490233
8172-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8172-PBS-EOI_B12 2022-11-16 18.566214963056
D1016-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1016-PD1-SICK_F11 2022-11-16 13.9452271979419
D1223-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1223-PD1-SICK_E12 2022-11-16 16.256842860989

Sex

hdf5_filename <- dir(path = filepaths, pattern = "^hdf5_*", full.names = TRUE)
snps_file <- "/Users/corneb/Documents/MyJax/CS/Projects/support.files/MUGAarrays/UWisc/gm_uwisc_v1.csv"
snps <- read.csv(snps_file)

snps <- snps[snps$unique == TRUE, ]
#snps <- snps[snps$chr %in% c(1:19, "X"), ]
snps$chr <- sub("^chr", "", snps$chr)  ###remove prefix "chr"
colnames(snps)[colnames(snps)=="bp_mm10"] <- "pos" 
colnames(snps)[colnames(snps)=="cM_cox"] <- "cM"
snps <- snps %>% drop_na(chr, marker) 
snps$pos <- snps$pos * 1e-6
rownames(snps) <- snps$marker
colnames(snps)[1:4] <- c("marker", "chr", "pos", "pos") 

#  g <- h5read(hdf5_filename, "G")
#  g <- do.call(cbind, g)
x <- h5read(hdf5_filename, "X") # X channel intensities
x <- do.call(cbind, x)
#colnames(x) <- as.character(ind_ids(gm))
y <- h5read(hdf5_filename, "Y") # Y channel intensities
y <- do.call(cbind, y)
#colnames(y) <- as.character(ind_ids(gm))
rn <- h5read(hdf5_filename, "rownames")[[1]]  # markers 
cn <- h5read(hdf5_filename, "colnames")  # samples
cn <- do.call(c, cn)
# dimnames(g) <- list(rn, cn)
dimnames(x) <- list(rn, cn)
dimnames(y) <- list(rn, cn)
#cr <- colMeans(g != "--") # Call rate for each sample avg 0.95
#  sex <- determine_sex(x = x, y = y, markers = snps)$se

markers <- snps

chrx <- markers$marker[which(markers$chr == "X")]
chry <- markers$marker[which(markers$chr == "Y")]
#x[chrx,ind_ids(gm)]

chrx_int <- colMeans(x[chrx,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])] + y[chrx,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])], na.rm = T)
chry_int <- colMeans(x[chry,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])] + y[chry,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])], na.rm = T)

all.equal(as.character(ind_ids(gm)), as.character(samples$Unique.Sample.ID))
[1] TRUE
#sex order
#samples$Sex <- 'F'
sex <- samples$Sex


point_colors <- as.character( brocolors("web")[c("green", "purple")] )
percent_missing <- n_missing(gm, summary="proportion")*100
labels <- paste0(names(chrx_int), " (", round(percent_missing), "%)")
iplot( chrx_int,  chry_int, group=sex, indID=labels,
      chartOpts=list(pointcolor=point_colors, pointsize=4,
                     xlab="Average X chr intensity", ylab="Average Y chr intensity"))

For figures above and below, those labelled as female in metadata given, are coloured green, with those labelled as male are coloured as purple. The above is an interactive scatterplot of the average SNP intensity on the Y chromosome versus the average SNP intensity on the X chromosome.

phetX <- rowSums(gm$geno$X == 2)/rowSums(gm$geno$X != 0)
phetX <- phetX[as.character(do.call(rbind.data.frame, strsplit(names(phetX), "_"))[,7]) %in% names(chrx_int)]
names(phetX) <- as.character(do.call(rbind.data.frame, strsplit(names(phetX), "_"))[,7])
iplot(chrx_int, phetX, group=sex, indID=labels,
      chartOpts=list(pointcolor=point_colors, pointsize=4,
                     xlab="Average X chr intensity", ylab="Proportion het on X chr"))

In the above scatterplot, we show the proportion of hets vs the average intensity for the X chromosome SNPs. In calculating the proportion of heterozygous genotypes for the individuals, we look at X chromosome genotypes equal to 2 which corresponds to the heterozygote) relative to not being 0 (which is used to encode missing genotypes). The genotypes are arranged with rows being individuals and columns being markers.

The following are the mice that have had sex incorrectly assigned:

Sample_ID Unique_ID batch.date Sex Inferred.Sex
D63-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D63-ICI-Myo_B7 2022-07-29 M F
D38-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D38-ICI-Myo_B9 2022-08-26 F M
D351-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D351-ICI-Myo_C10 2022-08-26 F M
D320-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D320-ICI-SICK_H3 2022-10-06 F M
D611-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D611-ICI-Myo_D6 2022-10-06 F M
7363-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_7363-PBS-SICK_C11 2022-11-16 F M
D1016-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1016-PD1-SICK_F11 2022-11-16 F M
8172-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8172-PBS-EOI_B12 2022-11-16 F M
D1223-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1223-PD1-SICK_E12 2022-11-16 F M
8626-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8626-PBS-EOI_H12 2022-11-16 F M
7917-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7917-PBS-EOI_E5 2022-11-16 F M
8144-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8144-PBS-EOI_E8 2022-11-16 F M
D981-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D981-PD1-SICK_A9 2022-11-16 F M
7167-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7167-ICI-EOI_E11 2023-02-25 F M

Sample Duplicates

cg <- compare_geno(gm, cores=10)
summary.cg <- summary(cg)

Here is a histogram of the proportion of matching genotypes. The tick marks below the histogram indicate individual pairs.

save(summary.cg,file = "data/summary.cg_7.batches_myo.RData")

pdf(file = "output/Proportion_matching_genotypes_before_removal_of_bad_samples_7.batches_myo.pdf", width = 20, height = 20) 
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cg[upper.tri(cg)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cg[upper.tri(cg)])
dev.off()
quartz_off_screen 
                2 
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cg[upper.tri(cg)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes")
rug(cg[upper.tri(cg)])

cgsub <- cg[percent_missing < 10, percent_missing < 10]
par(mar=c(5.1,0.6,0.6, 0.6))
hist(cgsub[upper.tri(cgsub)], breaks=seq(0, 1, length=201),
     main="", yaxt="n", ylab="", xlab="Proportion matching genotypes [percent missing < 10%]")
rug(cgsub[upper.tri(cgsub)])

Array Intensities

#load the intensities.fst_7.batches_myo.RData
#load("data/intensities.fst_7.batches_myo.RData")

xn <- x[,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])]
xn <- xn[snps$marker,]
xnm <- rownames(xn)

yn <- y[,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])]
yn <- yn[snps$marker,]

# bring together in one matrix
result <- cbind(snp=rep(snps$marker, 2),
                channel=rep(c("x", "y"), each=length(snps$marker)),
                as.data.frame(rbind(xn, yn)))
rownames(result) <- 1:nrow(result)

# bring SNP rows together
result <- result[as.numeric(t(cbind(seq_along(snps$marker), seq_along(snps$marker)+length(snps$marker)))),]
rownames(result) <- 1:nrow(result)

#load the intensities.fst_7.batches_myo.RData
#load("data/heh/intensities.fst_7.batches_myo.RData")
#X and Y channel
X <- result[result$channel == "x",]
rownames(X) <- X$snp
X <- X[,c(-1,-2)]

Y <- result[result$channel == "y",]
rownames(Y) <- Y$snp
Y <- Y[,c(-1,-2)]

int <- result

#int <- result

#rm(result)
int <- int[seq(1, nrow(int), by=2),-(1:2)] + int[-seq(1, nrow(int), by=2),-(1:2)]
names(int) <- gsub("\\.1","", names(int))
int <- int[,as.character(do.call(rbind.data.frame, strsplit(ind_ids(gm), "_"))[,7])]
names(int) <- gsub("\\.1","", names(int))
names(int) <- as.character(names(percent_missing))
names(percent_missing) <- as.character(names(percent_missing))
n <- names(sort(percent_missing[intersect(as.character(ind_ids(gm)), colnames(int))], decreasing=TRUE))
tn = int[,n]
iboxplot(log10(t(tn)+1), orderByMedian=FALSE, chartOpts=list(ylab="log10(SNP intensity + 1)"))
names(tn) <- as.character(do.call(rbind.data.frame, strsplit(names(tn), "_"))[,7])
iboxplot(log10(t(tn)+1), orderByMedian=FALSE, chartOpts=list(ylab="log10(SNP intensity + 1)"))

In the above plot, distributions of array intensities (after a log10(x+1) transformation) are displayed.

The arrays are sorted by the proportion of missing genotype data for the sample, and the curves connect various quantiles of the intensities.

qu <- apply(int, 2, quantile, c(0.01, 0.99), na.rm=TRUE)
group <- (percent_missing >= 19.97) + (percent_missing > 5) + (percent_missing > 2) + 1
labels <- paste0(as.character(do.call(rbind.data.frame, strsplit(colnames(qu), "_"))[,7]), " (", round(percent_missing), "%)")
iplot(qu[1,], qu[2,], indID=labels, group=group,
      chartOpts=list(xlab="1 %ile of array intensities",
                     ylab="99 %ile of array intensities",
                     pointcolor=c("#ccc", "slateblue", "Orchid", "#ff851b")))

For this particular set of arrays, a plot of the 1 %ile vs the 99 %ile is quite revealing. In the following, the orange points are those with > 20% missing genotypes, the pink points are the samples with 5-20% missing genotypes, and the blue points are the samples with 2-5% missing genotypes.

Genotyping Error LOD Scores

load("data/e_7.batches_myo.RData")
errors_ind <- rowSums(e>2)[rownames(gm$covar)]/n_typed(gm)*100
lab <- paste0(as.character(do.call(rbind.data.frame, strsplit(names(errors_ind), "_"))[,7]), " (", myround(percent_missing[as.character(rownames(gm$covar))],1), "%)")
iplot(seq_along(errors_ind), errors_ind, indID=lab,
      chartOpts=list(xlab="Mouse", ylab="Percent genotyping errors", ylim=c(0, 15),
                     axispos=list(xtitle=25, ytitle=50, xlabel=5, ylabel=5)))
save(errors_ind, file = "data/errors_ind_7.batches_myo.RData")

Removing Samples

##percent missing
gm.covar = data.frame(id=as.character(rownames(gm$covar)),gm$covar)
qc_info <- merge(gm.covar,
                  data.frame(id = names(percent_missing),percent_missing = percent_missing,stringsAsFactors = F),by = "id")

#missing sex
#qc_info$sex.match <- ifelse(qc_info$sexp == qc_info$sex, TRUE, FALSE)
rownames(samples) <- as.character(samples$Unique.Sample.ID)
samples <- samples[as.character(qc_info$id),]
#samples$Unique.Sample.ID <- as.character(samples$Unique.Sample.ID)
all.equal(as.character(qc_info$id), as.character(samples$Unique.Sample.ID))
[1] TRUE
qc_info$sex.match <- ifelse((samples$Inferred.Sex == samples$Sex), TRUE, FALSE)

#genotype errors
qc_info <- merge(qc_info,
                 data.frame(id = as.character(names(errors_ind)),
                            genotype_erros = errors_ind,stringsAsFactors = F),by = "id")

##duplicated id to be remove
qc_info$duplicate.id <- ifelse(qc_info$id %in% as.character(summary.cg$remove.id), TRUE,FALSE)

#bad.sample <- qc_info[qc_info$generation ==1 | qc_info$Number_crossovers <= 200 | qc_info$Number_crossovers >=1000 | qc_info$percent_missing >= 10 | qc_info$genotype_erros >= 1 | qc_info$remove.id.duplicated == TRUE,]
bad.sample <- qc_info[qc_info$percent_missing >= 10 | qc_info$genotype_erros >= 8,]

save(qc_info, bad.sample, file = "data/qc_info_bad_sample_7.batches_myo.RData")

gm_samqc <- gm[paste0("-",as.character(bad.sample$id)),]

gm_samqc
Warning in check_cross2(object): 1249 invalid genotypes in cross
Object of class cross2 (crosstype "bc")

Total individuals               357
No. genotyped individuals       357
No. phenotyped individuals      357
No. with both geno & pheno      357

No. phenotypes                    1
No. covariates                   11
No. phenotype covariates          0

No. chromosomes                  20
Total markers                133716

No. markers by chr:
    1     2     3     4     5     6     7     8     9    10    11    12    13 
10159 10172  7987  7736  7778  7911  7548  6561  6823  6471  7276  6226  6177 
   14    15    16    17    18    19     X 
 6082  5421  5075  5162  4682  3612  4857 
save(gm_samqc, file = "data/gm_samqc_7.batches_myo.RData")

# update other stuff
e <- e[ind_ids(gm_samqc),]
#g <- g[ind_ids(gm_samqc),]
#snpg <- snpg[ind_ids(gm_samqc),]

#save(e,g,snpg, file = "data/e_g_snpg_samqc_7.batches_myo.RData")
save(e, file = "data/e_snpg_samqc_7.batches_myo.RData")

Here is the list of samples that were removed:

Sample_ID Unique_ID batch.date
D351-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D351-ICI-Myo_C10 2022-08-26
D345-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D345-ICI-SICK_H5 2022-10-06
D611-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D611-ICI-Myo_D6 2022-10-06
D631-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D631-ICI-SICK_A12 2022-10-06
7363-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_7363-PBS-SICK_C11 2022-11-16
7917-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7917-PBS-EOI_E5 2022-11-16
8172-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8172-PBS-EOI_B12 2022-11-16
D1016-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1016-PD1-SICK_F11 2022-11-16
D1223-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1223-PD1-SICK_E12 2022-11-16

Below is a table summarising the problematic samples found throughout QC. These include the following:

NB: For duplcate pairs, the one that was chosen to be removed was the one that had a higher missing rate

Sample_ID Unique_ID batch.date high_miss diff_sex high_geno.errors highly_concordant
6411-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_6411-PBS-Myo_D11 19202 XX
6863-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_6863-PBS-Myo_D12 19202 XX
7169-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_7169-ICI-Myo_E5 19202 XX
7179-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_7179-ICI-Myo_E6 19202 XX
7269-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_7269-PBS-Myo_E7 19202 XX
7333-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_7333-ICI-EOI_E8 19202 XX
7782-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_7782-ICI-Myo_E9 19202 XX
7789-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_7789-ICI-Myo_E10 19202 XX
7924-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_7924-ICI-EOI_E11 19202 XX
7937-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_7937-ICI-EOI_E12 19202 XX
D100-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D100-ICI-EOI_D6 19202 XX
D115-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D115-ICI-EOI_D7 19202 XX
D118-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D118-ICI-EOI_D8 19202 XX
D12-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D12-ICI-EOI_C7 19202 XX
D121-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D121-ICI-Myo_D9 19202 XX
D128-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D128-PBS-Myo_D10 19202 XX
D13-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D13-ICI-EOI_C8 19202 XX
D24-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D24-ICI-EOI_C9 19202 XX
D30-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D30-ICI-Myo_C11 19202 XX
D304-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D304-ICI-Myo_F5 19202 XX
D309-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D309-ICI-Myo_F6 19202 XX
D31-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D31-PBS-Myo_C12 19202 XX
D313-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D313-ICI-Myo_F7 19202 XX
D318-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D318-ICI-Myo_F8 19202 XX
D362-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D362-ICI-Myo_C6 19202 XX
D374-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D374-ICI-Myo_C10 19202 XX
D398-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D398-ICI-Myo_A5 19202 XX
D408-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D408-ICI-Myo_D5 19202 XX
D506-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D506-ICI-Myo_F12 19202 XX
D548-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D548-ICI-Myo_F9 19202 XX
D552-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D552-ICI-Myo_F10 19202 XX
D563-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D563-ICI-Myo_F11 19202 XX
D6-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D6-PBS-Myo_B5 19202 XX
D61-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D61-ICI-EOI_C5 19202 XX
D62-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D62-ICI-Myo_B12 19202 XX
D63-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D63-ICI-Myo_B7 19202 XX XX
D66-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D66-ICI-Myo_B8 19202 XX
D74-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D74-ICI-EOI_B9 19202 XX
D75-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_D75-ICI-EOI_B10 19202 XX
D86-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_D86-ICI-Myo_B11 19202 XX
NM00155-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00155-ICI-Myo_B6 19202 XX
NM00161-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00161-ICI-EOI_A6 19202 XX
NM00174-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00174-PBS-Myo_A7 19202 XX
NM00175-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00175-ICI-EOI_A8 19202 XX
NM00180-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00180-PBS-Myo_A9 19202 XX
NM00181-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00181-PBS-Myo_A10 19202 XX
NM00183-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00183-PBS-Myo_A11 19202 XX
NM00184-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220729_NM00184-ICI-Myo_A12 19202 XX
6874-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_6874-PBS-Myo_D9 19230 XX
7168-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_7168-ICI-Myo_D10 19230 XX
7927-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_7927-ICI-Myo_E9 19230 XX
D1-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D1-PBS-Myo_A10 19230 XX
D251-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D251-PBS-Myo_E10 19230 XX
D344-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D344-ICI-Myo_F10 19230 XX
D351-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D351-ICI-Myo_C10 19230 XX XX
D38-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D38-ICI-Myo_B9 19230 XX XX
D40-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D40-ICI-Myo_B10 19230 XX
D517-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_D517-ICI-Myo_F9 19230 XX
D90-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20220826_D90-ICI-EOI_C9 19230 XX
NM00185-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20220826_NM00185-ICI-Myo_A9 19230 XX
6404-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6404-PBS-EOI_G9 19271 XX
6603-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6603-PBS-EOI_G10 19271 XX
6614-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6614-PBS-EOI_H11 19271 XX
6704-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6704-PBS-EOI_B8 19271 XX
6705-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6705-PBS-EOI_B9 19271 XX
6707-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6707-PBS-EOI_H12 19271 XX
6708-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6708-PBS-EOI_B10 19271 XX
6872-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_6872-PBS-Myo_D11 19271 XX
6964-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_6964-PBS-EOI_B12 19271 XX
7176-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7176-ICI-Myo_C12 19271 XX
7182-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7182-PBS-Myo_C1 19271 XX
7329-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7329-ICI-Myo_C2 19271 XX
7346-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7346-PBS-Myo_H1 19271 XX
7359-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7359-PBS-Myo_C3 19271 XX
7786-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7786-ICI-Myo_C4 19271 XX
7788-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7788-ICI-Myo_C5 19271 XX
7792-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_7792-ICI-Myo_C6 19271 XX
8604-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_8604-PBS-Myo_C7 19271 XX
8839-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_8839-PBS-Myo_C8 19271 XX
D110-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D110-PBS-EOI_B4 19271 XX
D113-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D113-PBS-EOI_B5 19271 XX
D114-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D114-PBS-EOI_B6 19271 XX
D127-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D127-PBS-EOI_B7 19271 XX
D132-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D132-PBS-EOI_G2 19271 XX
D137-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D137-PBS-EOI_G3 19271 XX
D158-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D158-PBS-EOI_G4 19271 XX
D159-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D159-PBS-EOI_G5 19271 XX
D162-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D162-PBS-EOI_G6 19271 XX
D183-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D183-PBS-EOI_G7 19271 XX
D19-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D19-PBS-EOI_F5 19271 XX
D2-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D2-PBS-EOI_F3 19271 XX
D20-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D20-PBS-EOI_F6 19271 XX
D206-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D206-PBS-EOI_G8 19271 XX
D21-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D21-PBS-EOI_F7 19271 XX
D300-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D300-ICI-SICK_H2 19271 XX
D320-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D320-ICI-SICK_H3 19271 XX XX
D343-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D343-ICI-SICK_H4 19271 XX
D345-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D345-ICI-SICK_H5 19271 XX
D35-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D35-PBS-EOI_F8 19271 XX
D37-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D37-PBS-EOI_F9 19271 XX
D373-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D373-ICI-Myo_C9 19271 XX
D386-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D386-ICI-Myo_C10 19271 XX
D4-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D4-PBS-EOI_F4 19271 XX
D402-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D402-ICI-Myo_E11 19271 XX
D410-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D410-ICI-Myo_D12 19271 XX
D436-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D436-PBS-Myo_D1 19271 XX
D463-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D463-ICI-SICK_H6 19271 XX
D467-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D467-ICI-Myo_D2 19271 XX
D491-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D491-PBS-SICK_H7 19271 XX
D50-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D50-PBS-EOI_B1 19271 XX
D503-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D503-ICI-Myo_D3 19271 XX
D509-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D509-ICI-Myo_D4 19271 XX
D529-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D529-ICI-Myo_H8 19271 XX
D532-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D532-ICI-SICK_D5 19271 XX
D551-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D551-ICI-SICK_H9 19271 XX
D558-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D558-ICI-SICK_H10 19271 XX
D60-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D60-PBS-EOI_B2 19271 XX
D611-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D611-ICI-Myo_D6 19271 XX XX XX
D631-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D631-ICI-SICK_A12 19271 XX
D667-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D667-ICI-Myo_D7 19271 XX
D678-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D678-ICI-Myo_A1 19271 XX
D679-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D679-ICI-SICK_D8 19271 XX
D682-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D682-ICI-Myo_D9 19271 XX
D69-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D69-PBS-EOI_F10 19271 XX
D699-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D699-ICI-Myo_D10 19271 XX
D70-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D70-PBS-EOI_G11 19271 XX
D727-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D727-PBS-Myo_E12 19271 XX
D743-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D743-ICI-Myo_E1 19271 XX
D755-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221006_D755-ICI-SICK_E2 19271 XX
D767-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D767-ICI-Myo_E3 19271 XX
D8-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D8-PBS-Myo_C11 19271 XX
D82-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D82-PBS-EOI_G12 19271 XX
D821-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D821-ICI-Myo_E4 19271 XX
D83-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_D83-PBS-EOI_G1 19271 XX
D868-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D868-ICI-Myo_E5 19271 XX
D870-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D870-ICI-Myo_E6 19271 XX
D879-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D879-ICI-Myo_E7 19271 XX
D882-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D882-ICI-Myo_E8 19271 XX
D89-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D89-ICI-Myo_B3 19271 XX
D927-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D927-ICI-Myo_E9 19271 XX
D931-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D931-ICI-Myo_E10 19271 XX
D934-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D934-ICI-Myo_F11 19271 XX
D985-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D985-ICI-Myo_F12 19271 XX
D993-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20221006_D993-PBS-Myo_F1 19271 XX
NM00170-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221006_NM00170-PBS-EOI_F2 19271 XX
6890-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_6890-PBS-EOI_D10 19312 XX
6892-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_6892-PBS-EOI_B11 19312 XX
6894-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_6894-PBS-EOI_H11 19312 XX
7175-PD1-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7175-PD1-EOI_F12 19312 XX
7181-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7181-PBS-EOI_D1 19312 XX
7276-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7276-PBS-EOI_D2 19312 XX
7338-PD1-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7338-PD1-EOI_D3 19312 XX
7340-PD1-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7340-PD1-EOI_D4 19312 XX
7348-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7348-PBS-EOI_D5 19312 XX
7351-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7351-PBS-EOI_D6 19312 XX
7357-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7357-PBS-EOI_D7 19312 XX
7358-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7358-PBS-EOI_D8 19312 XX
7360-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_7360-PBS-SICK_E10 19312 XX
7363-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_7363-PBS-SICK_C11 19312 XX XX
7364-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7364-PBS-EOI_A12 19312 XX
7805-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7805-PBS-EOI_G12 19312 XX
7904-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7904-PBS-EOI_E1 19312 XX
7911-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7911-PBS-EOI_E2 19312 XX
7912-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7912-PBS-EOI_E3 19312 XX
7915-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7915-PBS-EOI_E4 19312 XX
7917-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7917-PBS-EOI_E5 19312 XX XX XX
7921-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_7921-PBS-EOI_E6 19312 XX
8144-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8144-PBS-EOI_E8 19312 XX XX
8149-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8149-PBS-EOI_E7 19312 XX
8153-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8153-PBS-EOI_F10 19312 XX
8169-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8169-PBS-EOI_D11 19312 XX
8172-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8172-PBS-EOI_B12 19312 XX XX
8608-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8608-PBS-EOI_F1 19312 XX
8615-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8615-PBS-EOI_F2 19312 XX
8626-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8626-PBS-EOI_H12 19312 XX XX
8829-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8829-PBS-EOI_F3 19312 XX
8840-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_8840-PBS-EOI_F4 19312 XX
8851-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_8851-PBS-SICK_F5 19312 XX
D1014-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1014-PD1-SICK_H10 19312 XX
D1016-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1016-PD1-SICK_F11 19312 XX XX
D1062-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1062-PBS-SICK_B1 19312 XX
D1086-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1086-PD1-SICK_B2 19312 XX
D1088-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1088-PD1-SICK_B3 19312 XX
D1104-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1104-PD1-SICK_B4 19312 XX
D1108-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1108-PD1-SICK_B5 19312 XX
D1109-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1109-PD1-SICK_B6 19312 XX
D1110-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1110-PD1-SICK_B7 19312 XX
D1142-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1142-PD1-SICK_B8 19312 XX
D1154-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1154-PD1-SICK_B9 19312 XX
D1206-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1206-PD1-SICK_A11 19312 XX
D1208-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1208-PD1-SICK_G11 19312 XX
D1223-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1223-PD1-SICK_E12 19312 XX XX
D1262-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1262-PD1-SICK_C1 19312 XX
D1280-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1280-PD1-SICK_C2 19312 XX
D1281-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1281-PD1-SICK_C3 19312 XX
D1283-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1283-PD1-SICK_C4 19312 XX
D1285-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1285-PD1-SICK_C5 19312 XX
D1290-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1290-PD1-SICK_C6 19312 XX
D1422-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1422-PD1-SICK_C7 19312 XX
D1452-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1452-PD1-SICK_C8 19312 XX
D1454-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D1454-PD1-SICK_C9 19312 XX
D250-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20221116_D250-PBS-EOI_F7 19312 XX
D315-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D315-PD1-SICK_D12 19312 XX
D329-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D329-PBS-SICK_F8 19312 XX
D357-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D357-PD1-SICK_G10 19312 XX
D538-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D538-PD1-SICK_E11 19312 XX
D629-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D629-PD1-SICK_C12 19312 XX
D704-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D704-PD1-SICK_A1 19312 XX
D752-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D752-PD1-SICK_A2 19312 XX
D761-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D761-PD1-SICK_A3 19312 XX
D857-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D857-PD1-SICK_A4 19312 XX
D964-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D964-PD1-SICK_A5 19312 XX
D969-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D969-PD1-SICK_A6 19312 XX
D975-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D975-PD1-SICK_A7 19312 XX
D976-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D976-PD1-SICK_A8 19312 XX
D981-PD1-SICK The_Jackson_Lab_Serreze_MURGIGV01_20221116_D981-PD1-SICK_A9 19312 XX XX
7275-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230124_7275-PBS-SICK_A6 19381 XX
7798-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230124_7798-PBS-SICK_D6 19381 XX
8617-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230124_8617-PBS-SICK_C7 19381 XX
D1167-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1167-PBS-Myo_B7 19381 XX
D1320-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1320-ICI-Myo_A8 19381 XX
D1368-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1368-ICI-Myo_D8 19381 XX
D1400-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1400-ICI-Myo_C9 19381 XX
D1465-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1465-PBS-Myo_C1 19381 XX
D1485-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1485-ICI-Myo_B2 19381 XX
D1500-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1500-ICI-Myo_A3 19381 XX
D1521-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1521-ICI-Myo_D3 19381 XX
D1584-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1584-ICI-Myo_C4 19381 XX
D1593-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D1593-ICI-Myo_B5 19381 XX
D244-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230124_D244-PBS-SICK_B8 19381 XX
D252-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D252-PBS-Myo_A9 19381 XX
D253-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230124_D253-PBS-SICK_D9 19381 XX
D265-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230124_D265-PBS-EOI_A1 19381 XX
D270-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D270-PBS-Myo_D1 19381 XX
D306-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230124_D306-ICI-EOI_C2 19381 XX
D314-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D314-ICI-Myo_B3 19381 XX
D316-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D316-ICI-Myo_A4 19381 XX
D323-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D323-PBS-Myo_D4 19381 XX
D324-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D324-PBS-Myo_C5 19381 XX
D331-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D331-PBS-Myo_B6 19381 XX
D341-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D341-PBS-Myo_A7 19381 XX
D354-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D354-ICI-Myo_D7 19381 XX
D365-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D365-ICI-Myo_C8 19381 XX
D423-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D423-PBS-Myo_B9 19381 XX
D434-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D434-PBS-Myo_B1 19381 XX
D439-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D439-PBS-Myo_A2 19381 XX
D441-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D441-PBS-Myo_D2 19381 XX
D447-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D447-PBS-Myo_C3 19381 XX
D475-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D475-PBS-Myo_B4 19381 XX
D522-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D522-PBS-Myo_A5 19381 XX
D530-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D530-ICI-Myo_D5 19381 XX
D805-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230124_D805-ICI-Myo_C6 19381 XX
6197-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_6197-PBS-EOI_E4 19413 XX
6200-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230225_6200-PBS-SICK_E5 19413 XX
6410-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_6410-PBS-EOI_E6 19413 XX
6868-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_6868-PBS-EOI_E7 19413 XX
6869-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_6869-PBS-EOI_E8 19413 XX
6870-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_6870-PBS-EOI_E9 19413 XX
6881-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_6881-PBS-EOI_E10 19413 XX
7167-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7167-ICI-EOI_E11 19413 XX XX
7174-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7174-ICI-EOI_E12 19413 XX
7185-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7185-PBS-EOI_F1 19413 XX
7277-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7277-PBS-EOI_F2 19413 XX
7278-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7278-PBS-EOI_F3 19413 XX
7328-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7328-PBS-EOI_F4 19413 XX
7334-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7334-PBS-EOI_F5 19413 XX
7337-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7337-PBS-EOI_F6 19413 XX
7341-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7341-PBS-EOI_F7 19413 XX
7349-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230225_7349-PBS-SICK_F8 19413 XX
7442-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7442-ICI-EOI_F9 19413 XX
7445-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7445-ICI-EOI_F10 19413 XX
7448-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7448-ICI-EOI_F11 19413 XX
7787-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7787-ICI-EOI_G1 19413 XX
7796-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7796-PBS-EOI_G2 19413 XX
7800-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7800-PBS-EOI_G3 19413 XX
7801-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7801-PBS-EOI_G4 19413 XX
7907-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7907-PBS-EOI_G5 19413 XX
7909-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7909-PBS-EOI_G6 19413 XX
7920-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7920-PBS-EOI_G7 19413 XX
7929-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_7929-PBS-EOI_G8 19413 XX
8059-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8059-PBS-EOI_G9 19413 XX
8065-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8065-PBS-EOI_G10 19413 XX
8151-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8151-PBS-EOI_G11 19413 XX
8600-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8600-PBS-EOI_F12 19413 XX
8609-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8609-PBS-EOI_H4 19413 XX
8610-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8610-PBS-EOI_H5 19413 XX
8614-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8614-PBS-EOI_H6 19413 XX
8618-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8618-PBS-EOI_H7 19413 XX
8620-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8620-PBS-EOI_H8 19413 XX
8623-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8623-PBS-EOI_H1 19413 XX
8625-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8625-PBS-EOI_H2 19413 XX
8835-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8835-PBS-EOI_H9 19413 XX
8838-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8838-PBS-EOI_H10 19413 XX
8842-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_8842-PBS-EOI_H11 19413 XX
D1063-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1063-PBS-Myo_C12 19413 XX
D1090-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1090-ICI-Myo_D1 19413 XX
D1100-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1100-PBS-Myo_D2 19413 XX
D1168-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1168-PBS-SICK_D3 19413 XX
D1224-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1224-ICI-Myo_D4 19413 XX
D1244-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1244-PBS-Myo_D5 19413 XX
D1266-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1266-PBS-Myo_D6 19413 XX
D1267-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1267-PBS-Myo_D7 19413 XX
D1299-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1299-PBS-Myo_D8 19413 XX
D133-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D133-PBS-EOI_E3 19413 XX
D1628-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1628-ICI-Myo_D9 19413 XX
D1630-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1630-ICI-Myo_D10 19413 XX
D1650-ICI-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1650-ICI-SICK_D11 19413 XX
D1655-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1655-ICI-Myo_D12 19413 XX
D1656-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1656-ICI-Myo_E1 19413 XX
D1729-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D1729-PBS-Myo_E2 19413 XX
D241-PBS-SICK The_Jackson_Lab_Serreze_MURGIGV01_20230225_D241-PBS-SICK_G12 19413 XX
D249-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D249-PBS-EOI_H3 19413 XX
D497-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D497-PBS-Myo_A1 19413 XX
D501-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D501-ICI-Myo_A2 19413 XX
D533-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D533-ICI-Myo_A3 19413 XX
D561-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D561-ICI-Myo_A4 19413 XX
D564-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D564-ICI-Myo_A5 19413 XX
D578-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D578-PBS-Myo_A6 19413 XX
D589-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D589-PBS-Myo_A7 19413 XX
D602-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D602-ICI-Myo_A8 19413 XX
D604-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D604-ICI-Myo_A9 19413 XX
D605-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D605-ICI-Myo_A10 19413 XX
D627-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D627-ICI-Myo_A11 19413 XX
D644-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D644-ICI-EOI_A12 19413 XX
D645-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D645-ICI-Myo_B1 19413 XX
D647-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D647-PBS-EOI_B2 19413 XX
D652-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D652-PBS-Myo_B3 19413 XX
D665-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D665-PBS-Myo_B4 19413 XX
D683-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D683-ICI-Myo_B5 19413 XX
D690-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D690-ICI-Myo_B6 19413 XX
D695-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D695-ICI-Myo_B7 19413 XX
D706-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D706-PBS-Myo_B8 19413 XX
D721-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D721-PBS-Myo_B9 19413 XX
D722-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D722-PBS-Myo_B10 19413 XX
D753-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D753-ICI-Myo_B11 19413 XX
D762-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D762-ICI-Myo_B12 19413 XX
D764-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D764-ICI-Myo_C1 19413 XX
D772-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D772-PBS-Myo_C2 19413 XX
D789-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D789-ICI-Myo_C3 19413 XX
D827-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D827-ICI-EOI_C4 19413 XX
D828-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D828-ICI-Myo_C5 19413 XX
D854-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D854-PBS-EOI_C6 19413 XX
D877-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230225_D877-ICI-EOI_C7 19413 XX
D884-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D884-ICI-Myo_C8 19413 XX
D896-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D896-ICI-Myo_C9 19413 XX
D914-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D914-PBS-Myo_C10 19413 XX
D920-PBS-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230225_D920-PBS-Myo_C11 19413 XX
7451-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_7451-ICI-EOI_G9 19429 XX
D1706-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1706-ICI-Myo_G4 19429 XX
D1708-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1708-ICI-Myo_G5 19429 XX
D1731-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1731-ICI-Myo_G7 19429 XX
D1737-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1737-ICI-Myo_G6 19429 XX
D1739-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1739-ICI-Myo_H7 19429 XX
D1771-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1771-ICI-Myo_G8 19429 XX
D1774-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D1774-ICI-Myo_H8 19429 XX
D249-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D249-PBS-EOI_H9 19429 XX
D266-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D266-PBS-EOI_H1 19429 XX
D268-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D268-PBS-EOI_H2 19429 XX
D271-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D271-PBS-EOI_H3 19429 XX
D307-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D307-ICI-EOI_H4 19429 XX
D308-ICI-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D308-ICI-EOI_H5 19429 XX
D322-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D322-PBS-EOI_H6 19429 XX
D928-ICI-Myo The_Jackson_Lab_Serreze_MURGIGV01_20230313_D928-ICI-Myo_G1 19429 XX
D947-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D947-PBS-EOI_G2 19429 XX
D948-PBS-EOI The_Jackson_Lab_Serreze_MURGIGV01_20230313_D948-PBS-EOI_G3 19429 XX

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.1   readxl_1.4.1      cluster_2.1.4     dplyr_1.0.10     
 [5] optparse_1.7.3    rhdf5_2.40.0      tidyr_1.2.1       data.table_1.14.6
 [9] fst_0.9.8         knitr_1.41        kableExtra_1.3.4  mclust_6.0.0     
[13] ggrepel_0.9.2     ggplot2_3.4.0     qtlcharts_0.16    qtl2_0.30        
[17] broman_0.80       workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] httr_1.4.4         sass_0.4.4         bit64_4.0.5        jsonlite_1.8.4    
 [5] viridisLite_0.4.1  bslib_0.4.1        assertthat_0.2.1   getPass_0.2-2     
 [9] highr_0.9          blob_1.2.3         cellranger_1.1.0   yaml_2.3.6        
[13] pillar_1.8.1       RSQLite_2.2.19     glue_1.6.2         digest_0.6.30     
[17] promises_1.2.0.1   rvest_1.0.3        colorspace_2.0-3   htmltools_0.5.3   
[21] httpuv_1.6.6       pkgconfig_2.0.3    purrr_0.3.5        scales_1.2.1      
[25] webshot_0.5.4      processx_3.8.0     svglite_2.1.0      qtl_1.54          
[29] whisker_0.4.1      getopt_1.20.3      later_1.3.0        timechange_0.1.1  
[33] git2r_0.30.1       tibble_3.1.8       farver_2.1.1       generics_0.1.3    
[37] ellipsis_0.3.2     cachem_1.0.6       withr_2.5.0        cli_3.4.1         
[41] magrittr_2.0.3     memoise_2.0.1      evaluate_0.18      ps_1.7.2          
[45] fs_1.5.2           fansi_1.0.3        xml2_1.3.3         tools_4.2.2       
[49] lifecycle_1.0.3    stringr_1.5.0      Rhdf5lib_1.18.2    munsell_0.5.0     
[53] callr_3.7.3        compiler_4.2.2     jquerylib_0.1.4    systemfonts_1.0.4 
[57] rlang_1.0.6        grid_4.2.2         fstcore_0.9.12     rhdf5filters_1.8.0
[61] rstudioapi_0.14    htmlwidgets_1.5.4  labeling_0.4.2     rmarkdown_2.18    
[65] gtable_0.3.1       DBI_1.1.3          R6_2.5.1           fastmap_1.1.0     
[69] bit_4.0.5          utf8_1.2.2         rprojroot_2.0.3    stringi_1.7.8     
[73] parallel_4.2.2     Rcpp_1.0.9         vctrs_0.5.1        tidyselect_1.2.0  
[77] xfun_0.35