Last updated: 2020-01-21

Checks: 7 0

Knit directory: 20170327_Psen2S4Ter_RNASeq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 71b8832 Steve Ped 2020-01-21 Added DE QC for GC bias
html 71b8832 Steve Ped 2020-01-21 Added DE QC for GC bias
Rmd e825637 Steve Ped 2020-01-21 Minor updates to DE plots
html 01512da Steve Ped 2020-01-21 Added initial DE analysis to index
Rmd fbb6242 Steve Ped 2020-01-21 Paused DE analysis
Rmd c560637 Steve Ped 2020-01-20 Started DE analysis

Setup

library(ngsReports)
library(tidyverse)
library(magrittr)
library(edgeR)
library(AnnotationHub)
library(ensembldb)
library(scales)
library(pander)
library(cowplot)
library(cqn)
library(ggrepel)
library(tidygraph)
library(ggraph)
if (interactive()) setwd(here::here())
theme_set(theme_bw())
panderOptions("big.mark", ",")
panderOptions("table.split.table", Inf)
panderOptions("table.style", "rmarkdown")
twoCols <- c(rgb(0.8, 0.1, 0.1), rgb(0.2, 0.2, 0.8))

Annotations

ah <- AnnotationHub() %>%
    subset(species == "Danio rerio") %>%
    subset(rdataclass == "EnsDb")
ensDb <- ah[["AH74989"]]
grTrans <- transcripts(ensDb)
trLengths <- exonsBy(ensDb, "tx") %>%
    width() %>%
    vapply(sum, integer(1))
mcols(grTrans)$length <- trLengths[names(grTrans)]
gcGene <- grTrans %>%
    mcols() %>%
    as.data.frame() %>%
    dplyr::select(gene_id, tx_id, gc_content, length) %>%
    as_tibble() %>%
    group_by(gene_id) %>%
    summarise(
        gc_content = sum(gc_content*length) / sum(length),
        length = ceiling(median(length))
    )
grGenes <- genes(ensDb)
mcols(grGenes) %<>%
    as.data.frame() %>%
    left_join(gcGene) %>%
    as.data.frame() %>%
    DataFrame()

Similarly to the Quality Assessment steps, GRanges objects were formed at the gene and transcript levels, to enable estimation of GC content and length for each transcript and gene. GC content and transcript length are available for each transcript, and for gene-level estimates, GC content was taken as the sum of all GC bases divided by the sum of all transcript lengths, effectively averaging across all transcripts. Gene length was defined as the median transcript length.

samples <- read_csv("data/samples.csv") %>%
    distinct(sampleName, .keep_all = TRUE) %>%
    dplyr::select(sample = sampleName, sampleID, genotype) %>%
    mutate(genotype = factor(genotype, levels = c("WT", "Het", "Hom")))

Sample metadata was also loaded, with only the sampleID and genotype being retained. All other fields were considered irrelevant.

Count Data

minCPM <- 1.5
minSamples <- 4
dgeList <- file.path("data", "2_alignedData", "featureCounts", "genes.out") %>%
    read_delim(delim = "\t") %>%
    set_names(basename(names(.))) %>%
    as.data.frame() %>%
    column_to_rownames("Geneid") %>%
    as.matrix() %>% 
    set_colnames(str_remove(colnames(.), "Aligned.sortedByCoord.out.bam")) %>%
    .[rowSums(cpm(.) >= minCPM) >= minCPM,] %>%
    DGEList(
        samples = tibble(sample = colnames(.)) %>%
            left_join(samples),
        genes = grGenes[rownames(.)] %>%
            as.data.frame() %>%
            dplyr::select(
                chromosome = seqnames, start, end, 
                gene_id, gene_name, gene_biotype, description, 
                entrezid, gc_content, length
            )
    ) %>%
    .[!grepl("rRNA", .$genes$gene_biotype),] %>%
    calcNormFactors()

Gene-level count data as output by featureCounts, was loaded and formed into a DGEList object. During this process, genes were removed if:

  • They were not considered as detectable (CPM < 1.5 in > 8 samples). This translates to > 18 reads assigned a gene in all samples from one or more of the genotype groups
  • The gene_biotype was any type of rRNA.

These filtering steps returned gene-level counts for 16,640 genes, with total library sizes between 11,852,141 and 16,997,219 reads assigned to genes. It was noted that these library sizes were about 1.5-fold larger than the transcript-level counts used for the QA steps.

cpm(dgeList, log = TRUE) %>%
    as.data.frame() %>%
    pivot_longer(
        cols = everything(),
        names_to = "sample",
        values_to = "logCPM"
    ) %>%
    split(f = .$sample) %>%
    lapply(function(x){
        d <- density(x$logCPM)
        tibble(
            sample = unique(x$sample),
            x = d$x,
            y = d$y
        )
    }) %>%
    bind_rows() %>%
    left_join(samples) %>%
    ggplot(aes(x, y, colour = genotype, group = sample)) +
    geom_line() +
    labs(
        x = "logCPM",
        y = "Density",
        colour = "Genotype"
    )
*Expression density plots for all samples after filtering, showing logCPM values.*

Expression density plots for all samples after filtering, showing logCPM values.

Version Author Date
01512da Steve Ped 2020-01-21

Additional Functions

contLabeller <- as_labeller(
    c(
        HetVsWT = "S4Ter/+ Vs +/+",
        HomVsWT = "S4Ter/S4Ter Vs +/+",
        HomVsHet = "S4Ter/S4Ter Vs S4Ter/+",
        Hom = "S4Ter/S4Ter",
        Het = "S4Ter/+",
        WT = "+/+"
    )
)
geneLabeller <- structure(grGenes$gene_name, names = grGenes$gene_id) %>%
    as_labeller()

Labeller functions for genotypes, contrasts and gene names were additionally defined for simpler plotting using ggplot2.

Analysis

PCA

pca <- dgeList %>%
    cpm(log = TRUE) %>%
    t() %>%
    prcomp() 
pcaVars <- percent_format(0.1)(summary(pca)$importance["Proportion of Variance",])
pca$x %>%
    as.data.frame() %>%
    rownames_to_column("sample") %>%
    left_join(samples) %>%
    as_tibble() %>%
    ggplot(aes(PC1, PC2, colour = genotype, fill = genotype)) +
    geom_point() +
    geom_text_repel(aes(label = sampleID), show.legend = FALSE) +
    stat_ellipse(geom = "polygon", alpha = 0.05, show.legend = FALSE) +
    guides(fill = FALSE) +
    labs(
        x = paste0("PC1 (", pcaVars[["PC1"]], ")"),
        y = paste0("PC2 (", pcaVars[["PC2"]], ")"),
        colour = "Genotype"
    )
*PCA of gene-level counts.*

PCA of gene-level counts.

Version Author Date
01512da Steve Ped 2020-01-21

A Principal Component Analysis (PCA) was also performed using logCPM values from each sample. Both mutant genotypes appear to cluster together, however it has previously been noted that GC content appears to track closely with PC1, as a result of varable rRNA removal.

Model Description

Model and contrast matrices were defined setting each genotype separately, and comparing between each pair of genotypes.

create_ring(3) %>% 
    mutate(
        name = factor(levels(samples$genotype), levels = levels(samples$genotype))
    ) %>% 
    activate(edges) %>%
    mutate(comparison = c("Het Vs WT", "Hom Vs Het", "Hom Vs WT")) %>% 
    ggraph(layout = "kk") + 
    geom_edge_link2(
        aes(label = comparison),
        angle_calc = "along",
        label_dodge = unit(0.02, "npc"),
        start_cap = circle(0.04, "npc"),
        end_cap = circle(0.04, "npc"),
        label_size = 5,
        arrow = arrow(
            length = unit(0.06, "npc"),
            ends = "both", 
            type = "closed"
        )
    ) +
    geom_node_label(
        aes(label = name, colour = name),
        size = 5,
        fill = rgb(1,1,1,0.7)
    ) + 
    theme_void() +
    theme(
        legend.position = "none"
    ) 

Version Author Date
01512da Steve Ped 2020-01-21
d <- model.matrix(~ 0 + genotype, data = dgeList$samples) %>%
    set_colnames(str_remove_all(colnames(.), "genotype"))
cont <- makeContrasts(
    HetVsWT = Het - WT,
    HomVsWT = Hom - WT,
    HomVsHet = Hom - Het,
    levels = d
)

Normalisation

gcCqn <- cqn(
    counts = dgeList$counts,
    x = dgeList$genes$gc_content,
    lengths = dgeList$genes$length,
    sizeFactors = dgeList$samples$lib.size
)
par(mfrow = c(1, 2))
cols <- as.integer(dgeList$samples$genotype)
cqnplot(gcCqn, n = 1, xlab = "GC Content", col = cols)
cqnplot(gcCqn, n = 2, xlab = "Length", col = cols)
legend("bottomright", legend = levels(samples$genotype), col = seq_along(levels(samples$genotype)), lty = 1)
*Model fits for GC content and gene length under the CQN model. Genotype-specific effects are clearly visible.*

Model fits for GC content and gene length under the CQN model. Genotype-specific effects are clearly visible.

Version Author Date
01512da Steve Ped 2020-01-21
par(mfrow = c(1, 1))
dgeList$offset <- gcCqn$glm.offset 
dgeList %<>% estimateDisp(design = d)

As GC content and length was noted as being of concern for this dataset, conditional-quantile normalisation was performed using the cqn package. This adds a gene and sample-level offset for each count which takes into account any systemic bias, such as that identified previously as an artefact of variable rRNA removal. The resultant glm.offset values were added to the original DGEList object.

Model Fitting

minLfc <- log2(1.5)
fit <- glmFit(dgeList)
topTables <- colnames(cont) %>%
    sapply(function(x){
        glmLRT(fit, contrast = cont[,x]) %>%
            topTags(n = Inf) %>%
            .[["table"]] %>%
            as_tibble() %>%
            dplyr::select(
                gene_id, gene_name, logFC, logCPM, PValue, FDR, everything()  
            ) %>%
            mutate(
                comparison = x,
                DE = FDR < 0.05 & abs(logFC) > minLfc
            )
    },
    simplify = FALSE) 

Models were fit using the negative-binomial approaches of glmFit(). Top Tables were then obtained using pairwise likelihood-ratio tests in glmLRT(). These test the standard \(H_0\) that there is no difference in gene expression estimates between genotypes, the gene expression estimates are obtained under the negative binomial model.

For initial enrichment testing, genes were considered to be DE using an estimated logFC outside of the range \(\pm \log_2(1.5)\) and an FDR-adjusted p-value < 0.05. Using these criteria, the following initial DE genesets were defined:

pander(topTables %>% lapply(filter, DE) %>% vapply(nrow, integer(1)))
HetVsWT HomVsWT HomVsHet
2,274 1,577 7

Model Checking

topTables %>%
    bind_rows() %>%
    ggplot(aes(logCPM, logFC)) +
    geom_point(aes(colour = DE), alpha = 0.4) +
    geom_text_repel(
        aes(label = gene_name, colour = DE),
        data = . %>% dplyr::filter(DE & abs(logFC) > 2.8)
    ) +
    geom_text_repel(
        aes(label = gene_name, colour = DE),
        data = . %>% dplyr::filter(FDR < 0.05 & comparison == "HomVsHet")
    ) +
    geom_smooth(se = FALSE) +
    facet_wrap(~comparison, ncol = 1, labeller = contLabeller) +
    scale_y_continuous(breaks = seq(-8, 8, by = 2)) +
    scale_colour_manual(values = c("grey50", "red")) +
    theme(legend.position = "none")
*MA plots checking for any logFC bias across the range of expression values. The small curve in the average at the low end of expression values was considered to be an artefact of the sparse points at this end. Initial DE genes are shown in red, with select points labelled.*

MA plots checking for any logFC bias across the range of expression values. The small curve in the average at the low end of expression values was considered to be an artefact of the sparse points at this end. Initial DE genes are shown in red, with select points labelled.

Version Author Date
71b8832 Steve Ped 2020-01-21
01512da Steve Ped 2020-01-21
topTables %>%
    bind_rows() %>%
    mutate(stat = -sign(logFC)*log10(PValue)) %>%
    ggplot(aes(gc_content, stat)) +
    geom_point(aes(colour = DE)) +
    geom_smooth(se = FALSE) +
    facet_wrap(~comparison, labeller = contLabeller)  +
    labs(
        x = "GC content (%)",
        y = "Ranking Statistic"
    ) +
    coord_cartesian(ylim = c(-10, 10)) +
    scale_colour_manual(values = c("grey50", "red")) +
    theme(legend.position = "none")
*Checks for GC bias in differential expression. GC content is shown against the ranking statistic, using -log10(p) multiplied by the sign of log fold-change.*

Checks for GC bias in differential expression. GC content is shown against the ranking statistic, using -log10(p) multiplied by the sign of log fold-change.

Version Author Date
71b8832 Steve Ped 2020-01-21
topTables %>%
    bind_rows() %>%
    mutate(stat = -sign(logFC)*log10(PValue)) %>%
    ggplot(aes(length, stat)) +
    geom_point(aes(colour = DE)) +
    geom_smooth(se = FALSE) +
    facet_wrap(~comparison, labeller = contLabeller)  +
    labs(
        x = "Gene Length (bp)",
        y = "Ranking Statistic"
    ) +
    coord_cartesian(ylim = c(-10, 10)) +
    scale_x_log10(labels = comma) +
    scale_colour_manual(values = c("grey50", "red")) +
    theme(legend.position = "none")
*Checks for length bias in differential expression. Gene length is shown against the ranking statistic, using -log10(p) multiplied by the sign of log fold-change.*

Checks for length bias in differential expression. Gene length is shown against the ranking statistic, using -log10(p) multiplied by the sign of log fold-change.

Version Author Date
71b8832 Steve Ped 2020-01-21

Checks for both GC and length bias on differnetial expression showed that a small bias remained evident, despite using conditional-quantile normalisation.

Results

topTables %>%
    bind_rows() %>%
    ggplot(aes(logFC, -log10(PValue), colour = DE)) +
    geom_point(alpha = 0.4) +
    geom_text_repel(
        aes(label = gene_name),
        data = . %>% dplyr::filter(PValue < 0.2e-12 | logFC > 4)
    ) +
    geom_text_repel(
        aes(label = gene_name),
        data = . %>% dplyr::filter(FDR < 0.05 & comparison == "HomVsHet")
    ) +
    facet_wrap(~comparison, nrow = 1, labeller = contLabeller) +
    scale_colour_manual(values = c("grey50", "red")) +
    scale_x_continuous(breaks = seq(-8, 8, by = 2)) +
    theme(legend.position = "none") 
*Volcano Plots showing DE genes against logFC.*

Volcano Plots showing DE genes against logFC.

Version Author Date
71b8832 Steve Ped 2020-01-21
01512da Steve Ped 2020-01-21

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 3.6.2 (2019-12-12)
 os       Ubuntu 18.04.3 LTS          
 system   x86_64, linux-gnu           
 ui       X11                         
 language en_AU:en                    
 collate  en_AU.UTF-8                 
 ctype    en_AU.UTF-8                 
 tz       Australia/Adelaide          
 date     2020-01-21                  

─ Packages ───────────────────────────────────────────────────────────────────
 package                * version   date       lib source        
 AnnotationDbi          * 1.48.0    2019-10-29 [2] Bioconductor  
 AnnotationFilter       * 1.10.0    2019-10-29 [2] Bioconductor  
 AnnotationHub          * 2.18.0    2019-10-29 [2] Bioconductor  
 askpass                  1.1       2019-01-13 [2] CRAN (R 3.6.0)
 assertthat               0.2.1     2019-03-21 [2] CRAN (R 3.6.0)
 backports                1.1.5     2019-10-02 [2] CRAN (R 3.6.1)
 Biobase                * 2.46.0    2019-10-29 [2] Bioconductor  
 BiocFileCache          * 1.10.2    2019-11-08 [2] Bioconductor  
 BiocGenerics           * 0.32.0    2019-10-29 [2] Bioconductor  
 BiocManager              1.30.10   2019-11-16 [2] CRAN (R 3.6.1)
 BiocParallel             1.20.1    2019-12-21 [2] Bioconductor  
 BiocVersion              3.10.1    2019-06-06 [2] Bioconductor  
 biomaRt                  2.42.0    2019-10-29 [2] Bioconductor  
 Biostrings               2.54.0    2019-10-29 [2] Bioconductor  
 bit                      1.1-15.1  2020-01-14 [2] CRAN (R 3.6.2)
 bit64                    0.9-7     2017-05-08 [2] CRAN (R 3.6.0)
 bitops                   1.0-6     2013-08-17 [2] CRAN (R 3.6.0)
 blob                     1.2.0     2019-07-09 [2] CRAN (R 3.6.1)
 broom                    0.5.3     2019-12-14 [2] CRAN (R 3.6.2)
 callr                    3.4.0     2019-12-09 [2] CRAN (R 3.6.2)
 cellranger               1.1.0     2016-07-27 [2] CRAN (R 3.6.0)
 cli                      2.0.1     2020-01-08 [2] CRAN (R 3.6.2)
 cluster                  2.1.0     2019-06-19 [2] CRAN (R 3.6.1)
 colorspace               1.4-1     2019-03-18 [2] CRAN (R 3.6.0)
 cowplot                * 1.0.0     2019-07-11 [2] CRAN (R 3.6.1)
 cqn                    * 1.32.0    2019-10-29 [2] Bioconductor  
 crayon                   1.3.4     2017-09-16 [2] CRAN (R 3.6.0)
 curl                     4.3       2019-12-02 [2] CRAN (R 3.6.2)
 data.table               1.12.8    2019-12-09 [2] CRAN (R 3.6.2)
 DBI                      1.1.0     2019-12-15 [2] CRAN (R 3.6.2)
 dbplyr                 * 1.4.2     2019-06-17 [2] CRAN (R 3.6.0)
 DelayedArray             0.12.2    2020-01-06 [2] Bioconductor  
 desc                     1.2.0     2018-05-01 [2] CRAN (R 3.6.0)
 devtools                 2.2.1     2019-09-24 [2] CRAN (R 3.6.1)
 digest                   0.6.23    2019-11-23 [2] CRAN (R 3.6.1)
 dplyr                  * 0.8.3     2019-07-04 [2] CRAN (R 3.6.1)
 edgeR                  * 3.28.0    2019-10-29 [2] Bioconductor  
 ellipsis                 0.3.0     2019-09-20 [2] CRAN (R 3.6.1)
 ensembldb              * 2.10.2    2019-11-20 [2] Bioconductor  
 evaluate                 0.14      2019-05-28 [2] CRAN (R 3.6.0)
 FactoMineR               2.1       2020-01-17 [2] CRAN (R 3.6.2)
 fansi                    0.4.1     2020-01-08 [2] CRAN (R 3.6.2)
 farver                   2.0.3     2020-01-16 [2] CRAN (R 3.6.2)
 fastmap                  1.0.1     2019-10-08 [2] CRAN (R 3.6.1)
 flashClust               1.01-2    2012-08-21 [2] CRAN (R 3.6.1)
 forcats                * 0.4.0     2019-02-17 [2] CRAN (R 3.6.0)
 fs                       1.3.1     2019-05-06 [2] CRAN (R 3.6.0)
 generics                 0.0.2     2018-11-29 [2] CRAN (R 3.6.0)
 GenomeInfoDb           * 1.22.0    2019-10-29 [2] Bioconductor  
 GenomeInfoDbData         1.2.2     2019-11-21 [2] Bioconductor  
 GenomicAlignments        1.22.1    2019-11-12 [2] Bioconductor  
 GenomicFeatures        * 1.38.0    2019-10-29 [2] Bioconductor  
 GenomicRanges          * 1.38.0    2019-10-29 [2] Bioconductor  
 ggdendro                 0.1-20    2016-04-27 [2] CRAN (R 3.6.0)
 ggforce                  0.3.1     2019-08-20 [2] CRAN (R 3.6.1)
 ggplot2                * 3.2.1     2019-08-10 [2] CRAN (R 3.6.1)
 ggraph                 * 2.0.0     2019-09-02 [2] CRAN (R 3.6.1)
 ggrepel                * 0.8.1     2019-05-07 [2] CRAN (R 3.6.0)
 git2r                    0.26.1    2019-06-29 [2] CRAN (R 3.6.1)
 glue                     1.3.1     2019-03-12 [2] CRAN (R 3.6.0)
 graphlayouts             0.5.0     2019-08-20 [2] CRAN (R 3.6.1)
 gridExtra                2.3       2017-09-09 [2] CRAN (R 3.6.0)
 gtable                   0.3.0     2019-03-25 [2] CRAN (R 3.6.0)
 haven                    2.2.0     2019-11-08 [2] CRAN (R 3.6.1)
 highr                    0.8       2019-03-20 [2] CRAN (R 3.6.0)
 hms                      0.5.3     2020-01-08 [2] CRAN (R 3.6.2)
 htmltools                0.4.0     2019-10-04 [2] CRAN (R 3.6.1)
 htmlwidgets              1.5.1     2019-10-08 [2] CRAN (R 3.6.1)
 httpuv                   1.5.2     2019-09-11 [2] CRAN (R 3.6.1)
 httr                     1.4.1     2019-08-05 [2] CRAN (R 3.6.1)
 hwriter                  1.3.2     2014-09-10 [2] CRAN (R 3.6.0)
 igraph                   1.2.4.2   2019-11-27 [2] CRAN (R 3.6.1)
 interactiveDisplayBase   1.24.0    2019-10-29 [2] Bioconductor  
 IRanges                * 2.20.2    2020-01-13 [2] Bioconductor  
 jpeg                     0.1-8.1   2019-10-24 [2] CRAN (R 3.6.1)
 jsonlite                 1.6       2018-12-07 [2] CRAN (R 3.6.0)
 kableExtra               1.1.0     2019-03-16 [2] CRAN (R 3.6.1)
 knitr                    1.27      2020-01-16 [2] CRAN (R 3.6.2)
 labeling                 0.3       2014-08-23 [2] CRAN (R 3.6.0)
 later                    1.0.0     2019-10-04 [2] CRAN (R 3.6.1)
 lattice                  0.20-38   2018-11-04 [4] CRAN (R 3.6.0)
 latticeExtra             0.6-29    2019-12-19 [2] CRAN (R 3.6.2)
 lazyeval                 0.2.2     2019-03-15 [2] CRAN (R 3.6.0)
 leaps                    3.1       2020-01-16 [2] CRAN (R 3.6.2)
 lifecycle                0.1.0     2019-08-01 [2] CRAN (R 3.6.1)
 limma                  * 3.42.0    2019-10-29 [2] Bioconductor  
 locfit                   1.5-9.1   2013-04-20 [2] CRAN (R 3.6.0)
 lubridate                1.7.4     2018-04-11 [2] CRAN (R 3.6.0)
 magrittr               * 1.5       2014-11-22 [2] CRAN (R 3.6.0)
 MASS                     7.3-51.5  2019-12-20 [4] CRAN (R 3.6.2)
 Matrix                   1.2-18    2019-11-27 [2] CRAN (R 3.6.1)
 MatrixModels             0.4-1     2015-08-22 [2] CRAN (R 3.6.1)
 matrixStats              0.55.0    2019-09-07 [2] CRAN (R 3.6.1)
 mclust                 * 5.4.5     2019-07-08 [2] CRAN (R 3.6.1)
 memoise                  1.1.0     2017-04-21 [2] CRAN (R 3.6.0)
 mgcv                     1.8-31    2019-11-09 [4] CRAN (R 3.6.1)
 mime                     0.8       2019-12-19 [2] CRAN (R 3.6.2)
 modelr                   0.1.5     2019-08-08 [2] CRAN (R 3.6.1)
 munsell                  0.5.0     2018-06-12 [2] CRAN (R 3.6.0)
 ngsReports             * 1.1.2     2019-10-16 [1] Bioconductor  
 nlme                     3.1-143   2019-12-10 [4] CRAN (R 3.6.2)
 nor1mix                * 1.3-0     2019-06-13 [2] CRAN (R 3.6.1)
 openssl                  1.4.1     2019-07-18 [2] CRAN (R 3.6.1)
 pander                 * 0.6.3     2018-11-06 [2] CRAN (R 3.6.0)
 pillar                   1.4.3     2019-12-20 [2] CRAN (R 3.6.2)
 pkgbuild                 1.0.6     2019-10-09 [2] CRAN (R 3.6.1)
 pkgconfig                2.0.3     2019-09-22 [2] CRAN (R 3.6.1)
 pkgload                  1.0.2     2018-10-29 [2] CRAN (R 3.6.0)
 plotly                   4.9.1     2019-11-07 [2] CRAN (R 3.6.1)
 plyr                     1.8.5     2019-12-10 [2] CRAN (R 3.6.2)
 png                      0.1-7     2013-12-03 [2] CRAN (R 3.6.0)
 polyclip                 1.10-0    2019-03-14 [2] CRAN (R 3.6.0)
 preprocessCore         * 1.48.0    2019-10-29 [2] Bioconductor  
 prettyunits              1.1.0     2020-01-09 [2] CRAN (R 3.6.2)
 processx                 3.4.1     2019-07-18 [2] CRAN (R 3.6.1)
 progress                 1.2.2     2019-05-16 [2] CRAN (R 3.6.0)
 promises                 1.1.0     2019-10-04 [2] CRAN (R 3.6.1)
 ProtGenerics             1.18.0    2019-10-29 [2] Bioconductor  
 ps                       1.3.0     2018-12-21 [2] CRAN (R 3.6.0)
 purrr                  * 0.3.3     2019-10-18 [2] CRAN (R 3.6.1)
 quantreg               * 5.54      2019-12-13 [2] CRAN (R 3.6.2)
 R6                       2.4.1     2019-11-12 [2] CRAN (R 3.6.1)
 rappdirs                 0.3.1     2016-03-28 [2] CRAN (R 3.6.0)
 RColorBrewer             1.1-2     2014-12-07 [2] CRAN (R 3.6.0)
 Rcpp                     1.0.3     2019-11-08 [2] CRAN (R 3.6.1)
 RCurl                    1.95-4.13 2020-01-16 [2] CRAN (R 3.6.2)
 readr                  * 1.3.1     2018-12-21 [2] CRAN (R 3.6.0)
 readxl                   1.3.1     2019-03-13 [2] CRAN (R 3.6.0)
 remotes                  2.1.0     2019-06-24 [2] CRAN (R 3.6.0)
 reprex                   0.3.0     2019-05-16 [2] CRAN (R 3.6.0)
 reshape2                 1.4.3     2017-12-11 [2] CRAN (R 3.6.0)
 rlang                    0.4.2     2019-11-23 [2] CRAN (R 3.6.1)
 rmarkdown                2.0       2019-12-12 [2] CRAN (R 3.6.2)
 rprojroot                1.3-2     2018-01-03 [2] CRAN (R 3.6.0)
 Rsamtools                2.2.1     2019-11-06 [2] Bioconductor  
 RSQLite                  2.2.0     2020-01-07 [2] CRAN (R 3.6.2)
 rstudioapi               0.10      2019-03-19 [2] CRAN (R 3.6.0)
 rtracklayer              1.46.0    2019-10-29 [2] Bioconductor  
 rvest                    0.3.5     2019-11-08 [2] CRAN (R 3.6.1)
 S4Vectors              * 0.24.2    2020-01-13 [2] Bioconductor  
 scales                 * 1.1.0     2019-11-18 [2] CRAN (R 3.6.1)
 scatterplot3d            0.3-41    2018-03-14 [2] CRAN (R 3.6.1)
 sessioninfo              1.1.1     2018-11-05 [2] CRAN (R 3.6.0)
 shiny                    1.4.0     2019-10-10 [2] CRAN (R 3.6.1)
 ShortRead                1.44.1    2019-12-19 [2] Bioconductor  
 SparseM                * 1.78      2019-12-13 [2] CRAN (R 3.6.2)
 stringi                  1.4.5     2020-01-11 [2] CRAN (R 3.6.2)
 stringr                * 1.4.0     2019-02-10 [2] CRAN (R 3.6.0)
 SummarizedExperiment     1.16.1    2019-12-19 [2] Bioconductor  
 testthat                 2.3.1     2019-12-01 [2] CRAN (R 3.6.1)
 tibble                 * 2.1.3     2019-06-06 [2] CRAN (R 3.6.0)
 tidygraph              * 1.1.2     2019-02-18 [2] CRAN (R 3.6.0)
 tidyr                  * 1.0.0     2019-09-11 [2] CRAN (R 3.6.1)
 tidyselect               0.2.5     2018-10-11 [2] CRAN (R 3.6.0)
 tidyverse              * 1.3.0     2019-11-21 [2] CRAN (R 3.6.1)
 truncnorm                1.0-8     2018-02-27 [2] CRAN (R 3.6.0)
 tweenr                   1.0.1     2018-12-14 [2] CRAN (R 3.6.0)
 usethis                  1.5.1     2019-07-04 [2] CRAN (R 3.6.1)
 vctrs                    0.2.1     2019-12-17 [2] CRAN (R 3.6.2)
 viridis                  0.5.1     2018-03-29 [2] CRAN (R 3.6.0)
 viridisLite              0.3.0     2018-02-01 [2] CRAN (R 3.6.0)
 webshot                  0.5.2     2019-11-22 [2] CRAN (R 3.6.1)
 whisker                  0.4       2019-08-28 [2] CRAN (R 3.6.1)
 withr                    2.1.2     2018-03-15 [2] CRAN (R 3.6.0)
 workflowr              * 1.6.0     2019-12-19 [2] CRAN (R 3.6.2)
 xfun                     0.12      2020-01-13 [2] CRAN (R 3.6.2)
 XML                      3.99-0.2  2020-01-18 [2] CRAN (R 3.6.2)
 xml2                     1.2.2     2019-08-09 [2] CRAN (R 3.6.1)
 xtable                   1.8-4     2019-04-21 [2] CRAN (R 3.6.0)
 XVector                  0.26.0    2019-10-29 [2] Bioconductor  
 yaml                     2.2.0     2018-07-25 [2] CRAN (R 3.6.0)
 zeallot                  0.1.0     2018-01-28 [2] CRAN (R 3.6.0)
 zlibbioc                 1.32.0    2019-10-29 [2] Bioconductor  
 zoo                      1.8-7     2020-01-10 [2] CRAN (R 3.6.2)

[1] /home/steveped/R/x86_64-pc-linux-gnu-library/3.6
[2] /usr/local/lib/R/site-library
[3] /usr/lib/R/site-library
[4] /usr/lib/R/library