class: center, middle, inverse, title-slide # Econ 330: Urban Economics ## Lecture 07 ### Andrew Dickinson ### 29 July, 2021 --- class: inverse, center, middle # Lecture 07: Urban Labor Markets --- class: inverse, middle # Schedule .pull-left[ .ul[.bigger[.hi-gold[Today:]]] .hi-white[(i). Urban labor markets] - .hi-white[Urban labor demand] - .hi-white[Urban labor supply] - .hi-white[Urban labor EQ] ] -- .pull-right[ .ul[.bigger[.hi-gold[Upcoming:]]] - .hi-white[Reading] (Chapter 5) - .hi-white[Problem set 01 due on Sunday at Midnight] .ul[.bigger[.hi-gold[After MT:]]] - .hi-white[(ii). Monopsony] ] --- # Housekeeping --- class: inverse, middle, center # Urban labor markets --- # Urban labor Markets .hi[Why care about labor markets in urban economics?] David Card: > A city _is_ a labor market -- Cities provide incentives for firms and workers to locate close to each other Density of a city is generated entirely by incentives in the labor market -- <br> .qa[Q:] Modeling .hii[individual] location decisions, what should we consider? --- # Urban labor Markets .hi[What are the most important features in location decisions?] -- .pull-left[ - Wages - Rents - Amenities (catch all)] -- .pull-right[ - Birthplace - Distance to birthplace] -- .hii[Wages] are significant factor of individual/household location choices .hi[Imagine] if Amazon/Google/Microsoft opens a campus in Portland -- - What would happen to rents? Gentrification? Commute times? -- <br> .hi[Introducing large amounts of high paying jobs + capital changes a city] --- # Urban labor Markets .hi[A labor market consists of:] .hi[(i).] Firms that buy labor. Generate labor demand .hi[(ii).] HH's who sell labor. Generate labor supply -- Labor and urban economist model labor markets (supply) differently -- .hi-gold[Labor:] Discuss labor supply as being generated from labor-leisure tradeoff - Model: Rational agents making optimal choices over leisure/education -- .hii[Urban:] Discuss labor supply as being generated from _location choices_ - Assume people work fixed hours but choose where to work --- class: inverse, middle # Urban labor Markets: Labor demand --- # Urban labor Markets: Labor demand What do both fields have (somewhat) in common? -- .center[.hi[Labor demand]] -- .ul[.hi[Definition:] Labor Demand] - Set of quantities of labor demanded corresponding to a _set_ of wages -- .qa[Q:] What's the difference between changes in: .pull-left[ - _labor demand_] .pull-right[ - _quantity of labor demanded_] -- `\(\Delta\)` Labor demand: Shift in the demand curve `\(\Delta\)` Quantity of labor demanded: Movement along a demand curve --- # Urban labor Markets: Labor demand We will start with the .hi[competitive] model: -- .ul[.hi[Assumptions:]] .hii[(i).] Firms seek to maximize profits -- .hii[(ii).] Markets are perfectly competitive (in .orange[both] inputs and output) -- `\(\Rightarrow\)` No individual firm can influence the price of labor (or other inputs) `\(\Rightarrow\)` No individual firm can influence the output price -- Are these assumptions reasonable? Discuss -- --- # Urban labor Markets: Labor demand Derive a condition for EQ labor the firm will hire in the competitive model? `\begin{align*} \pi &= P*Q - TC \end{align*}` --- # Urban labor Markets: Labor demand Derive a condition for EQ labor the firm will hire in the competitive model? `\begin{align*} \pi &= P*Q - TC\\ \pi &= \underbrace{P*F(L,K)}_\text{TR} - \underbrace{w*L-r*K}_{\text{TC}} \end{align*}` where: -- - `\(P\)`: Output price - `\(F(L,K) = Q\)`: Quantity produced (function of labor and capital) - `\(Q = F(L,K)\)` -- - `\(w\)`: Wage rate; `\(L\)`: total labor employed `\(\Rightarrow w*L =\)` cost of labor - `\(r\)`: rental rate; `\(K\)`: capital `\(\Rightarrow r*K =\)` cost of capital --- # Urban labor Markets: Labor demand .hi[Claim]: Firm hires labor iff the _marginal profit_ w.r.t to labor is positive. -- .hi[.ul[Definition:] Marginal Profit w.r.t to labor] ( `\(\frac{\Delta \pi}{\Delta L}\)` ) - The change in profit from hiring an additional unit of labor -- .hi["Proof":] (Too many cooks) - If `\(\frac{\Delta \pi}{\Delta L} <0\)`, added profit from an additional unit of labor is negative (ie. a loss), so the firm _should not_ hire the next unit -- - If `\(\frac{\Delta \pi}{\Delta L} > 0\)`, added profit from an additional unit of labor is positive (ie. a gain), so the firm _should_ hire the next unit -- - If `\(\frac{\Delta \pi}{\Delta L} = 0\)` Optimal allocation for the firm. Can't do better -- --- # Urban labor Markets: Labor demand .ul[.hi[Definitions:]] - .hi[Marginal Product of Labor]: Change in output from an additional unit of labor employed -- - `\(MP_L = \frac{\Delta F(L,K)}{\Delta L}\)` -- - .hi[Marginal Revenue Product of Labor]: Value of the change in output from an additional unit of labor employed -- - `\(MRP_L = P*\frac{\Delta F(L,K)}{\Delta L}\)` --- # Urban labor Markets: Labor demand So what is `\(\frac{\Delta \pi}{\Delta L}\)`? -- `\begin{align*} \frac{\Delta \pi}{\Delta L} = P*\frac{\Delta F(L,K)}{\Delta L} - w*\frac{\Delta L}{\Delta L} \end{align*}` --- # Urban labor Markets: Labor demand So what is `\(\frac{\Delta \pi}{\Delta L}\)`? `\begin{align*} \frac{\Delta \pi}{\Delta L} &= P*\frac{\Delta F(L,K)}{\Delta L} - w*\frac{\Delta L}{\Delta L} \\ &= P*MP_L - w\\ & = MRP_L - w \end{align*}` -- Now, set `\(\frac{\Delta \pi}{\Delta L}=0\)` to get the labor demand curve: `\begin{align*} MRP_L - w =0 \implies MRP_L = w \end{align*}` -- .center[.hi[What does this mean in words?]] -- .center[.hii[A firm will hire labor until labor costs (wage) exactly ofsets the marginal revenue product of labor]] --- # Urban labor Markets: Labor demand <img src="07-labor_files/figure-html/supply_demand-1.svg" style="display: block; margin: auto;" /> --- # Urban labor Markets: Labor demand Why might .hi[labor demand] curves vary across cities? -- .hi[(i).] Differences in productivity across cities (agglomeration) -- .hi[(ii).] Variation in (business) taxes across cities -- .hi[(iii).] Industrial public service infastructure (electricity, water, gas pipelines) -- .hi[(iv).] Land use policies - stricter zoning `\(\implies\)` higher land price `\(\implies\)` less money for other inputs -- .hi[(v).] Demand for a city's exported goods --- # Urban labor Markets: Labor demand .qa[Q]: What would two cities where everything is equal except one has a higher productivity of labor look like? -- <img src="07-labor_files/figure-html/supply_demand2-1.svg" style="display: block; margin: auto;" /> --- # Urban labor Markets: Labor demand .qa[Q]: What about a city with lower export demand? -- <img src="07-labor_files/figure-html/supply_demand3-1.svg" style="display: block; margin: auto;" /> --- class: inverse, middle, center # Urban labor markets: Supply --- #Labor Supply Labor supply is driven from location decisions of individuals. What generates location choices? -- 1) .hi[Wages] 2) Rents 3) Amenities 4) Other, individual specific stuff (like birth location) -- --- # Labor Supply A _set_ of quantities of labor supplied corresponding to a _set_ of wages. .qa[Q1]: What causes _movement along_ the labor supply curve? -- - A change in wages. That's it! -- .qa[Q2]: What causes a _shift_ of the labor supply curve? -- 1) Changes in amenities (building of a nicer school, eroding of air quality) 2) Changes in residential government expenditures (increase in taxes drives people away, increases in govt spending brings people in) -- --- # Labor Supply Knowing how responsive workers are to changes in wages is key for vast swaths of policies - Estimates for labor supply elasticities are pretty big - If `\(\varepsilon_{\text{workforce},\text{wage}} = 2\)`, what does this mean? -- .hi.orange[In general] estimated labor supply elasticities are higher for workers with a college degree than without a college degree. What does this mean? -- - College educated individuals are more responsive to changes in wages w.r.t to their location decisions -- -- --- # Labor Supply Example <img src="07-labor_files/figure-html/labor_supply-1.svg" style="display: block; margin: auto;" /> --- # Labor Supply .qa[Question]: What happens when a city improves its school quality? -- <img src="07-labor_files/figure-html/labor_supply2-1.svg" style="display: block; margin: auto;" /> --- class: inverse, middle, center # Equilibrium --- #Equilibrium __Defn__ - A .hi[labor market equilibrium] is a pair of points `\((L^*, W^*)\)` such that: - labor supply = labor demand - In other words: a labor market eq is where there is no excess supply or demand -- We usually think of cities as being "seperate" labor markets, so the eqs can be different across cities -- --- # Equilibrium: Example <img src="07-labor_files/figure-html/eq1-1.svg" style="display: block; margin: auto;" /> --- # Quiz 04 [link](https://raw.githubusercontent.com/ajdickinson/ec330-summer21/main/problem-sets/quizzes/quiz04.pdf) --- class: inverse, center, middle # End of MT material --- # Min Wage Refresher Recall from EC201: minimum wages are a form of .hi[price controls]. Specifically, a minimum wage is a: -- - Price floor: dictates the _minimum_ allowed price for transactions in a marketplace -- We say that a price floor is .hi.purple[effective] if it has an impact on the market equilibrium -- - Price floors that are below the market price are ineffective --- # Min Wage Refresher Is the following effective/ineffective?: <img src="07-labor_files/figure-html/min1-1.svg" style="display: block; margin: auto;" /> --- # Min Wage Refresher The following is .hi[ineffective] <img src="07-labor_files/figure-html/min1.5-1.svg" style="display: block; margin: auto;" /> --- # Min Wage Refresher Is the following effective/ineffective?: <img src="07-labor_files/figure-html/min2-1.svg" style="display: block; margin: auto;" /> --- # Min Wage Refresher The following is .hi[effective] <img src="07-labor_files/figure-html/min3-1.svg" style="display: block; margin: auto;" /> --- # Min Wage Refresher <img src="07-labor_files/figure-html/min4-1.svg" style="display: block; margin: auto;" /> --- # Example: Two Cities If we treat cities as two _seperate_ labor markets, have: .pull-left[ <img src="07-labor_files/figure-html/city_1-1.svg" style="display: block; margin: auto;" /> ] .pull-right[ <img src="07-labor_files/figure-html/city_2-1.svg" style="display: block; margin: auto;" /> ] --- #Significance? __2 Questions__ - Why do we care so much about modeling cities as different labor markets? .hi.purple[Discuss] -- - Do you think all labor markets across cities and industries are competitive? .hi.purple[Discuss] --- # Some Notes - All else equal, low tax cities grow faster than high tax cities - Elasticity (business activity, taxes) -- - Across cities: -0.1 to -0.6 - Within cities: -1.0 to -3.0 -- - Manufacturers are more sensitive to tax differences --- # Competitive Model We built up labor .hi[supply] and .hi[demand]. Where do these come from? -- - Demand: Firms - Supply: Workers -- What did we assume about the market structure? -- - .hi[Perfect Competition] -- --- count: false # Competitive Model We built up labor .hi[supply] and .hi[demand]. Where do these come from? - Demand: Firms - Supply: Workers What did we assume about the market structure? - .hi[Perfect Competition] - Firms pay workers their MV of labor (max WTP) -- Probably not super reasonable -- --- # Monopsony Let's consider a different labor market structure: -- <center> <font size="15"> Monopsony </font> </center> -- - We say a firm is a .hi[monopsonist] if they are .hi.purple[the only employer] of labor in the area (city) - We say a firm has .hi[monopsony power] if they have the ability to influence the market wage -- - Not to be confused with __monopoly__ (in which there is only one .hi.purple[seller] of a good) - __Monopsony__ has to do with one .hi.purple[buyer] of a good -- --- # Examples of Monopsonys Can you think of any? -- - Universities (go GTFF!) - Coal Towns - Amazon / Walmart Towns? -- --- # Monopsony So what do you think the main consequence(s) of .hi[monopsony] are? <center> <font size="15"> Monopsonists have the ability to pay a wage below the marginal value </font> </center> The consequences? -- - .pink[Higher profit] for the firms - Deadweight loss (inefficient outcome) -- We will formalize this in a few slides, but first lets go over some evidence of local monopsonys --- # Monopsony: Formalizing the Result In the competive model, the firm pays the worker `\(w = MRP_l\)`. -- - Is this what the monopsonist would do? - Where is this? -- --- # Recall: The competitive model Remember: in the competitve model, the firm seeks to maximize profits (but does not influence prices). - The competitive firm hires labor until the marginal profit w.r.t to labor is zero `\begin{align*} \pi &= TR - TC\\ \pi &= TR - wL - rK \end{align*}` Profit maxing cond: `\(\frac{\Delta \pi}{\Delta L} = 0 \implies MRP_L -w = 0 \implies w = MRP_L\)` --- # Monopsony: Formalizing the Result With a monopsonist, the amount of labor they hire influences the wage. That is, now -- `\begin{align*} \pi &= TR - w(L)L - rK \end{align*}` -- where `\(w(L)\)` is an .pink[increasing function] of the .pink[amount of labor hired] -- - The firm should hire labor until marginal cost is equalized to marginal benefit (.hi.purple[same as before]) - or: _.pink[marginal profit] wrt labor_ is equal to zero `\begin{align*} \frac{\Delta \pi}{\Delta L} =0 \end{align*}` --- # Monopsony: Formalizing the Result Notation: `\(TC(L) =w(L)*L\)` is the TC from labor in monopsony (__note__: `\(w(L)\)` wage is a function of labor) `\begin{align*} \pi &= TR - TC(L) - rK \end{align*}` -- Profit Maximization: `\begin{align*} \frac{\Delta \pi}{\Delta L} &=0 \end{align*}` --- count: false # Monopsony: Formalizing the Result Notation: `\(TC(L) =w(L)*L\)` is the TC from labor in monopsony (__note__: `\(w(L)\)` wage is a function of labor) `\begin{align*} \pi &= TR - TC(L) - rK \end{align*}` Profit Maximization: `\begin{align*} \frac{\Delta \pi}{\Delta L} &=0\\ MRP_L - \frac{\Delta TC(L)}{\Delta L} &= 0\\ \end{align*}` --- count: false # Monopsony: Formalizing the Result Notation: `\(TC(L) =w(L)*L\)` is the TC from labor in monopsony (__note__: `\(w(L)\)` wage is a function of labor) `\begin{align*} \pi &= TR - TC(L) - rK \end{align*}` Profit Maximization: `\begin{align*} \frac{\Delta \pi}{\Delta L} &=0\\ MRP_L - \frac{\Delta TC(L)}{\Delta L} &= 0\\ MRP_L &= \frac{\Delta TC(L)}{\Delta L}\\ MRP_L & = MC_L \end{align*}` --- count: false # Monopsony: Formalizing the Result So the monoposonist hires until: `\begin{align*} MRP_L & = MC_L \end{align*}` Compared to the competitve outcome: `\begin{align*} MRP_L & = W \end{align*}` .hi[Important:] Note that in the competitive model, marginal cost of labor was constant (and equal to wage). --- count: false # Monopsony: Formalizing the Result So the monoposonist hires until: `\begin{align*} MRP_L & = MC_L \end{align*}` Compared to the competitve outcome: `\begin{align*} MRP_L & = W \end{align*}` .hi[Important:] Note that in the competitive model, marginal cost of labor was constant (and equal to wage). - Now: marginal cost is increasing because monopsonist is _only_ buyer of labor --- # An Example: .center[**Monopsonist Wage Schedule**] <table class="table table-striped" style="margin-left: auto; margin-right: auto;"> <caption></caption> <thead> <tr> <th style="text-align:center;"> .pink[Wage] </th> <th style="text-align:center;"> .purple[Labor] </th> <th style="text-align:center;"> TC </th> <th style="text-align:center;"> .hi[MC] </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> </td> <td style="text-align:center;line-height: 110%;"> </td> </tr> <tr> <td style="text-align:center;line-height: 110%;"> 2 </td> <td style="text-align:center;line-height: 110%;"> 2 </td> <td style="text-align:center;line-height: 110%;"> </td> <td style="text-align:center;line-height: 110%;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> Let's fill in the table. What do you notice? --- count: false # An Example: .center[**Monopsonist Wage Schedule**] <table class="table table-striped" style="margin-left: auto; margin-right: auto;"> <caption></caption> <thead> <tr> <th style="text-align:center;"> .pink[Wage] </th> <th style="text-align:center;"> .purple[Labor] </th> <th style="text-align:center;"> TC </th> <th style="text-align:center;"> .hi[MC] </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> </td> </tr> <tr> <td style="text-align:center;line-height: 110%;"> 2 </td> <td style="text-align:center;line-height: 110%;"> 2 </td> <td style="text-align:center;line-height: 110%;"> 4 </td> <td style="text-align:center;line-height: 110%;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 9 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 16 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 25 </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> Let's fill in the table. What do you notice? --- count: false # An Example: .center[**Monopsonist Wage Schedule**] <table class="table table-striped" style="margin-left: auto; margin-right: auto;"> <caption></caption> <thead> <tr> <th style="text-align:center;"> .pink[Wage] </th> <th style="text-align:center;"> .purple[Labor] </th> <th style="text-align:center;"> TC </th> <th style="text-align:center;"> .hi[MC] </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> 1 </td> <td style="text-align:center;line-height: 110%;"> 1 </td> </tr> <tr> <td style="text-align:center;line-height: 110%;"> 2 </td> <td style="text-align:center;line-height: 110%;"> 2 </td> <td style="text-align:center;line-height: 110%;"> 4 </td> <td style="text-align:center;line-height: 110%;"> 3 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 9 </td> <td style="text-align:center;"> 5 </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 16 </td> <td style="text-align:center;"> 7 </td> </tr> <tr> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 5 </td> <td style="text-align:center;"> 25 </td> <td style="text-align:center;"> 9 </td> </tr> </tbody> </table> Let's fill in the table. What do you notice? -- At .pink[every level of labor], the .purple[marginal cost of labor] exceeds the .pink[wage] -- --- # Graph of Monopsony <img src="07-labor_files/figure-html/monop1-1.svg" style="display: block; margin: auto;" /> --- # Graph of Monopsony <img src="07-labor_files/figure-html/monop2-1.svg" style="display: block; margin: auto;" /> --- class: inverse, middle # Checklist .pull-left[ 0) .hi[Rehash model from last class]: ✅ 1) .hi[Labor Markets and Urban Econ: overview]: ✅ 2) .hi[Urban Labor Demand]: ✅ ] .pull-right[ 3) .hi[Urban Labor Supply]: ✅ 4) .hi[Equilibrium]: ✅ ] --- exclude: true ```r p_load(pagedown) pagedown::chrome_print(here::here("009-labor_one","lecture_nine.html")) ``` <!-- --- --> <!-- exclude: true --> <!-- ```{R, generate pdfs, include = F} --> <!-- system("decktape remark 02_goodsmarket_part1.html 02_goodsmarket_part1.pdf --chrome-arg=--allow-file-access-from-files") --> <!-- ``` -->