Last updated: 2021-04-29

Checks: 7 0

Knit directory: booksn_dispersantes/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210428) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a6cd9dc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/prepare-data.Rmd) and HTML (docs/prepare-data.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a6cd9dc Antonio J Perez-Luque 2021-04-29 cleaning old censuses
html 7281d42 Antonio J Perez-Luque 2021-04-28 Build site.
Rmd 1ed7427 Antonio J Perez-Luque 2021-04-28 Add my first analysis

Data sources

Data coming from two sources:

  • Old bird censuses provided by R. Zamora, consists in bird censuses in three locations: oak population (1700 masl); juniper-scrubland (2230 masl) and summit environments (3200 masl). Range temporal cover from 1981 to 1985.

  • Obsnev bird censuses provided by OBSNEV, realized in several transects distributed along Sierra Nevada. Temporal range from 2008 to 2020. The data were downloaded from new information system of OBSNEV (i.e. PostgreSQL db01.obsnev.es)

All data are stored in the folder /data_raw

Notes for Old bird censuses (in Spanish)

  • File RObledal año 1981 RZAves_SN_10ha.xls:

    • habitat: oak woodlands (Q. pyrenaica)
    • elevation: 1700 masl
    • year: 1981
    • variable: bird abundance monthly aggregated (ind / 10 ha)
    • sample size: n = 3 (may, june, july)
    • notes: The data aren’t the original bird censuses but are monthly aggregated
  • File Enebral año 1985 RZAves_SN_10ha.xls

    • habitat: juniper-scrubland
    • elevation: 2300 masl
    • year: 1985
    • variable: bird abundance monthly aggregated (ind / 10 ha)
    • sample size: n = 3 (may, june, july)
    • notes: The data aren’t the original bird censuses but are monthly aggregated
  • File Aves_SN_meses_reproduccion.xls

    • habitat: jseveral habitats. We selected juniper-scrubland and summit environments
    • elevation: 2300 and 3200 masl
    • year: 1984 (juniper); 1982 (summit environment)
    • variable: raw bird abundance. For juniper ind / 10.2 ha; and for summit ind / 20 ha.
    • sample size: n = 9 transects (juniper) and 6 transects (juniper) during may-july
    • notes: Original bird censuses

Prepare Old bird censuses

library("tidyverse")
library("here")
library("readxl")
library("DT")
robledal1981 <- read_excel(here::here("data/data_raw/RObledal año 1981 RZAves_SN_10ha.xls")) %>% 
  pivot_longer(cols= mayo_1981:julio_1981, names_to="fecha") %>% 
  separate(fecha, into = c("mes", "year"), sep="_", remove = FALSE) %>% 
  rename("especie" = Aves, "den" = value) %>% 
  mutate(year = as.numeric(year), 
         habitat = "robledal", 
         cota = 1700,
         mes = case_when(
           mes == "mayo" ~ as.numeric(5), 
           mes == "junio" ~ as.numeric(6),
           mes == "julio" ~ as.numeric(7)), 
         fecha = format(as.Date(paste(year, mes, "01", sep="-")), format="%Y-%m-%d")) 

head(robledal1981)
# A tibble: 6 x 7
  especie              fecha        mes  year   den habitat   cota
  <chr>                <chr>      <dbl> <dbl> <dbl> <chr>    <dbl>
1 Phylloscopus bonelli 1981-05-01     5  1981   8   robledal  1700
2 Phylloscopus bonelli 1981-06-01     6  1981  13.8 robledal  1700
3 Phylloscopus bonelli 1981-07-01     7  1981  14.6 robledal  1700
4 Sylvia atricapilla   1981-05-01     5  1981   4.4 robledal  1700
5 Sylvia atricapilla   1981-06-01     6  1981   4.6 robledal  1700
6 Sylvia atricapilla   1981-07-01     7  1981   6.8 robledal  1700
enebral1985 <- read_excel(here::here("data/data_raw/Enebral año 1985 RZAves_SN_10ha.xls")) %>%   pivot_longer(cols= mayo_1985:julio_1985, names_to="fecha") %>% 
  separate(fecha, into = c("mes", "year"), sep="_") %>% 
  rename("especie" = Aves, "den" = value) %>% 
  mutate(year = as.numeric(year), 
         habitat = "enebral", 
         cota = 2230, 
         mes = case_when(
           mes == "mayo" ~ as.numeric(5), 
           mes == "junio" ~ as.numeric(6),
           mes == "julio" ~ as.numeric(7)),
         fecha = format(as.Date(paste(year, mes, "01", sep="-")), format="%Y-%m-%d")) 

head(enebral1985)
# A tibble: 6 x 7
  especie               mes  year   den habitat  cota fecha     
  <chr>               <dbl> <dbl> <dbl> <chr>   <dbl> <chr>     
1 Carduelis carduelis     5  1985   0   enebral  2230 1985-05-01
2 Carduelis carduelis     6  1985   0   enebral  2230 1985-06-01
3 Carduelis carduelis     7  1985   0.1 enebral  2230 1985-07-01
4 Alauda arvensis         5  1985   5.1 enebral  2230 1985-05-01
5 Alauda arvensis         6  1985   5.4 enebral  2230 1985-06-01
6 Alauda arvensis         7  1985   5.7 enebral  2230 1985-07-01
enebral1984 <- read_excel(here::here("data/data_raw/Aves_SN_meses_reproduccion.xlsx"),
                           sheet = "2230") %>% 
  rename("especie" = Ave, "den" = `Número`) %>% 
  mutate(den = round(den*(10/10.2),2),
         habitat = "enebral", 
         cota = 2230, 
         mes = lubridate::month(Fecha), 
         year = lubridate::year(Fecha), 
         Fecha = strftime(Fecha, format="%Y-%m-%d")) %>% 
  rename(fecha = Fecha)

head(enebral1984)  
# A tibble: 6 x 7
  especie             fecha        den habitat  cota   mes  year
  <chr>               <chr>      <dbl> <chr>   <dbl> <dbl> <dbl>
1 Oenanthe oenanthe   1984-05-05 15.7  enebral  2230     5  1984
2 Alauda arvensis     1984-05-05  3.92 enebral  2230     5  1984
3 Emberiza cia        1984-05-05 15.7  enebral  2230     5  1984
4 Phoenicurus ochuros 1984-05-05  0.98 enebral  2230     5  1984
5 Anthus campestris   1984-05-05  0.98 enebral  2230     5  1984
6 Alectoris rufa      1984-05-05  0.98 enebral  2230     5  1984
cumbres1982 <- read_excel(here::here("data/data_raw/Aves_SN_meses_reproduccion.xlsx"),
                           sheet = "3200") %>% 
  rename("especie" = Ave, "den" = `Número`) %>% 
  mutate(den = round(den*(10/20),2),
         habitat = "altas cumbres", 
         cota = 3200, 
         mes = lubridate::month(Fecha), 
         year = lubridate::year(Fecha),
        Fecha = strftime(Fecha, format="%Y-%m-%d")) %>% 
  rename(fecha = Fecha)

head(cumbres1982)
# A tibble: 6 x 7
  especie             fecha        den habitat        cota   mes  year
  <chr>               <chr>      <dbl> <chr>         <dbl> <dbl> <dbl>
1 Oenanthe oenanthe   1982-06-06   0.5 altas cumbres  3200     6  1982
2 Phoenicurus ochuros 1982-06-06   3   altas cumbres  3200     6  1982
3 Prunella collaris   1982-06-06   2.5 altas cumbres  3200     6  1982
4 Oenanthe oenanthe   1982-06-07   0.5 altas cumbres  3200     6  1982
5 Phoenicurus ochuros 1982-06-07   1   altas cumbres  3200     6  1982
6 Prunella collaris   1982-06-07   4   altas cumbres  3200     6  1982

Bind old data

old_census <- bind_rows(cumbres1982, enebral1984, enebral1985, robledal1981)
datatable(old_census)

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DT_0.17         readxl_1.3.1    here_1.0.1      forcats_0.5.1  
 [5] stringr_1.4.0   dplyr_1.0.4     purrr_0.3.4     readr_1.4.0    
 [9] tidyr_1.1.2     tibble_3.0.6    ggplot2_3.3.3   tidyverse_1.3.0
[13] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6        lubridate_1.7.10  assertthat_0.2.1  rprojroot_2.0.2  
 [5] digest_0.6.27     utf8_1.1.4        R6_2.5.0          cellranger_1.1.0 
 [9] backports_1.2.1   reprex_1.0.0      evaluate_0.14     httr_1.4.2       
[13] pillar_1.4.7      rlang_0.4.10      rstudioapi_0.13   whisker_0.4      
[17] jquerylib_0.1.3   rmarkdown_2.6.6   htmlwidgets_1.5.3 munsell_0.5.0    
[21] broom_0.7.4       compiler_4.0.2    httpuv_1.5.5      modelr_0.1.8     
[25] xfun_0.20         pkgconfig_2.0.3   htmltools_0.5.1.1 tidyselect_1.1.0 
[29] fansi_0.4.2       crayon_1.4.1      dbplyr_2.1.0      withr_2.4.1      
[33] later_1.1.0.1     grid_4.0.2        jsonlite_1.7.2    gtable_0.3.0     
[37] lifecycle_1.0.0   DBI_1.1.1         git2r_0.28.0      magrittr_2.0.1   
[41] scales_1.1.1      cli_2.3.0         stringi_1.5.3     fs_1.5.0         
[45] promises_1.2.0.1  xml2_1.3.2        bslib_0.2.4       ellipsis_0.3.1   
[49] generics_0.1.0    vctrs_0.3.6       tools_4.0.2       glue_1.4.2       
[53] hms_1.0.0         crosstalk_1.1.1   yaml_2.2.1        colorspace_2.0-0 
[57] rvest_0.3.6       knitr_1.31        haven_2.3.1       sass_0.3.1