Last updated: 2022-09-16
Checks: 7 0
Knit directory: ms_mariposas_biodiversity/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211228)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a449c23. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Untracked files:
Untracked: data/Density.aux.xml
Untracked: data/Diversity_v2.aux.xml
Untracked: data/Richness.aux.xml
Untracked: data/density.ovr
Untracked: data/density/
Untracked: data/diversity_v2.ovr
Untracked: data/diversity_v2/
Untracked: data/richness.ovr
Untracked: data/richness_v2.aux.xml
Untracked: data/richness_v2/
Untracked: figs/cor_den_div_np.png
Untracked: figs/cor_den_div_p.png
Untracked: figs/cor_den_rich_np.png
Untracked: figs/cor_den_rich_p.png
Untracked: figs/cor_div_ric_np.png
Untracked: figs/cor_div_ric_p.png
Unstaged changes:
Modified: .Rprofile
Modified: .gitattributes
Modified: .gitignore
Modified: CITATION.cff
Modified: README.md
Modified: _workflowr.yml
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Modified: analysis/modeliza.Rmd
Modified: analysis/plot_variables_elevation.Rmd
Modified: analysis/plot_variables_elevation_all_years.Rmd
Modified: analysis/plots_descriptores.Rmd
Modified: analysis/prepara_datos_mariposas.Rmd
Modified: analysis/prepara_datos_mariposas_all_years.Rmd
Modified: analysis/prepara_matrix_ambiental.Rmd
Modified: analysis/tabla_descriptivos.Rmd
Modified: analysis/tabla_suplementaria.Rmd
Modified: code/README.md
Modified: data/Mariposas_2008_2021.xlsx
Modified: data/README.md
Modified: data/Tabla_variables_2012_2020.xls
Modified: data/Tabla_variables_modelización_lepidópteros_ACTUALIZADO_2020.xlsx
Modified: data/climate_year.csv
Modified: data/densidad_by_year.csv
Modified: data/densidad_by_year_alldata.csv
Modified: data/diversidad_by_year.csv
Modified: data/diversidad_by_year_alldata.csv
Modified: data/longitud_transectos.xlsx
Modified: data/mariposas_diurnas_contactos_transectos.csv
Modified: data/mariposas_diurnas_visitas.csv
Modified: data/matrix_env_variables_selected.csv
Modified: data/mod_den_coefficients.csv
Modified: data/mod_den_selectionBIC.csv
Modified: data/mod_div_coefficients.csv
Modified: data/mod_div_selectionBIC.csv
Modified: data/mod_riq_coefficients.csv
Modified: data/mod_riq_selectionBIC.csv
Modified: data/riqueza_by_site.csv
Modified: data/riqueza_by_year.csv
Modified: data/riqueza_by_year_alldata.csv
Modified: data/supplementary_species.xlsx
Modified: data/supplementary_taxones.xlsx
Modified: data/tabla_4-v2.xlsx
Modified: data/tabla_descriptivos.csv
Modified: data/tabla_especies_transectos.csv
Modified: data/tabla_taxones_transectos.csv
Modified: data/transect_abrev.csv
Modified: data/transectos_tabla.csv
Modified: figs/contactos_elevation_by_sp.pdf
Modified: figs/correlation_env_variables.pdf
Modified: figs/correlation_env_variables_numbers.pdf
Modified: figs/dendrograma_env.pdf
Modified: figs/plot_rarefaction.pdf
Modified: figs/plot_species_acumulation_area.pdf
Modified: figs/plot_variables_elevation.pdf
Modified: figs/plot_variables_elevation.png
Modified: figs/plot_variables_elevation_allyears.pdf
Modified: figs/plot_variables_elevation_allyears.png
Modified: figs/predictors_den_div.pdf
Modified: figs/predictors_den_div.png
Modified: figs/predictors_rich.pdf
Modified: glmulti.analysis.modgen.back
Modified: glmulti.analysis.mods.back
Modified: ms_mariposas_biodiversity.Rproj
Modified: output/README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/plot_correlations.Rmd
) and
HTML (docs/plot_correlations.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | a449c23 | ajpelu | 2022-09-16 | add correlations |
library(tidyverse)
library(raster)
library(fasterize)
library(rgdal)
library(ggpubr)
library(ggstatsplot)
Warning: package 'ggstatsplot' was built under R version 4.0.5
Warning: replacing previous import 'dplyr::collapse' by 'glue::collapse' when
loading 'statsExpressions'
library(here)
library(statsExpressions)
Warning: package 'statsExpressions' was built under R version 4.0.5
den <- raster::raster(here::here("data/density.ovr"))
riq <- raster::raster(here::here("data/richness.ovr"))
div <- raster::raster(here::here("data/diversity_v2.ovr"))
s <- stack(den, riq, div)
df <- as.data.frame(s, xy=TRUE) %>%
filter(!is.na(density))
cor_den_rich_np <- ggscatterstats(df,
x = density, y = richness,
marginal = FALSE,
type = "parametric",
point.args = list(fill="gray", alpha = 0.8),
smooth.line.args =
list(method = "gam", formula = y ~ s(x, bs = "cs"),
color = "blue"))
cor_den_rich_np
cor_den_div_np <- ggscatterstats(df,
x = density, y = diversity_v2,
marginal = FALSE,
type = "nonparametric",
point.args = list(fill="gray", alpha = 0.2),
smooth.line.args =
list(method = "gam", formula = y ~ s(x, bs = "cs"),
color = "blue"))
cor_den_div_np
cor_div_ric_np <- ggscatterstats(df,
y = richness, x = diversity_v2,
marginal = FALSE,
type = "nonparametric",
point.args = list(fill="gray", alpha = 0.2),
smooth.line.args =
list(method = "gam", formula = y ~ s(x, bs = "cs"),
color = "blue"))
cor_div_ric_np
ggsave(
filename = "figs/cor_den_rich_np.png",
plot = cor_den_rich_np,
width = 8,
height = 8,
device = "png"
)
ggsave(
filename = "figs/cor_den_div_np.png",
plot = cor_den_div_np,
width = 8,
height = 8,
device = "png"
)
ggsave(
filename = "figs/cor_div_ric_np.png",
plot = cor_div_ric_np,
width = 8,
height = 8,
device = "png"
)
mylabel <- c(
den = "Abundance (n ind / 100 m)",
div = "Diversity (Shannon index)",
riq = "Richness (species number)")
ct <- corr_test(df, x = density, y = richness, type = "parametric")
cor_den_rich_p <- ggplot(df, aes(x=density, y=richness)) +
geom_point(col="gray", size=.3, alpha=.2) +
theme_minimal() +
geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"),
color = "blue",
size =.5) +
labs(subtitle = ggplot2::expr(paste(
widehat(italic("r"))["Pearson"], "=0.727, ", italic("p"), "<", "0.001")),
x = mylabel["den"],
y = mylabel["riq"])
cor_den_rich_p
ct <- corr_test(df, x = density, y = diversity_v2, type = "parametric")
cor_den_div_p <- ggplot(df, aes(x = density, y = diversity_v2)) +
geom_point(col="gray", size=.3, alpha=0.2) +
theme_minimal() +
geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"),
color = "blue",
size =.5) +
labs(subtitle = ggplot2::expr(paste(
widehat(italic("r"))["Pearson"], "=0.773, ", italic("p"), "<", "0.001")),
x = mylabel["den"],
y = mylabel["div"])
cor_den_div_p
ct <- corr_test(df, x = diversity_v2, y = richness, type = "parametric")
cor_div_ric_p <- ggplot(df, aes(x = diversity_v2, y = richness)) +
geom_point(col="gray", size=.3, alpha=0.2) +
theme_minimal() +
geom_smooth(method = "gam",
formula = y ~ s(x, bs = "cs"),
color = "blue",
size =.5) +
labs(subtitle = ggplot2::expr(paste(
widehat(italic("r"))["Pearson"], "=0.673, ", italic("p"), "<", "0.001")),
x = mylabel["div"],
y = mylabel["riq"])
cor_div_ric_p
ggsave(
filename = "figs/cor_den_rich_p.png",
plot = cor_den_rich_p,
width = 8,
height = 8,
device = "png"
)
ggsave(
filename = "figs/cor_den_div_p.png",
plot = cor_den_div_p,
width = 8,
height = 8,
device = "png"
)
ggsave(
filename = "figs/cor_div_ric_p.png",
plot = cor_div_ric_p,
width = 8,
height = 8,
device = "png"
)
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] statsExpressions_1.3.1 here_1.0.1 ggstatsplot_0.9.1
[4] ggpubr_0.4.0 rgdal_1.5-23 fasterize_1.0.3
[7] raster_3.4-5 sp_1.4-5 forcats_0.5.1
[10] stringr_1.4.0 dplyr_1.0.6 purrr_0.3.4
[13] readr_1.4.0 tidyr_1.1.3 tibble_3.1.2
[16] ggplot2_3.3.5 tidyverse_1.3.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] TH.data_1.0-10 colorspace_2.0-2 ggsignif_0.6.3
[4] ellipsis_0.3.2 rio_0.5.16 rprojroot_2.0.2
[7] estimability_1.3 parameters_0.17.0 fs_1.5.0
[10] mc2d_0.1-18 rstudioapi_0.13 farver_2.1.0
[13] MatrixModels_0.4-1 fansi_0.4.2 mvtnorm_1.1-1
[16] lubridate_1.7.10 xml2_1.3.2 codetools_0.2-18
[19] splines_4.0.2 knitr_1.31 zeallot_0.1.0
[22] jsonlite_1.7.2 broom_0.7.9 dbplyr_2.1.1
[25] effectsize_0.6.0.1 compiler_4.0.2 httr_1.4.2
[28] emmeans_1.5.4 backports_1.2.1 assertthat_0.2.1
[31] Matrix_1.3-2 fastmap_1.1.0 cli_2.5.0
[34] later_1.1.0.1 htmltools_0.5.2 tools_4.0.2
[37] coda_0.19-4 gtable_0.3.0 glue_1.4.2
[40] Rcpp_1.0.7 carData_3.0-4 cellranger_1.1.0
[43] jquerylib_0.1.3 vctrs_0.3.8 nlme_3.1-152
[46] insight_0.17.0 xfun_0.30 ps_1.5.0
[49] openxlsx_4.2.3 rvest_1.0.0 lifecycle_1.0.1
[52] gtools_3.8.2 rstatix_0.6.0 getPass_0.2-2
[55] MASS_7.3-53 zoo_1.8-8 scales_1.1.1.9000
[58] BayesFactor_0.9.12-4.3 ragg_1.1.1 hms_1.0.0
[61] promises_1.2.0.1 parallel_4.0.2 sandwich_3.0-0
[64] rematch2_2.1.2 yaml_2.2.1 curl_4.3.2
[67] pbapply_1.4-3 sass_0.4.1 reshape_0.8.8
[70] stringi_1.7.4 highr_0.8 paletteer_1.3.0
[73] bayestestR_0.11.5 zip_2.1.1 systemfonts_1.0.0
[76] rlang_0.4.12 pkgconfig_2.0.3 evaluate_0.14
[79] lattice_0.20-41 labeling_0.4.2 patchwork_1.1.1
[82] processx_3.5.1 tidyselect_1.1.1 plyr_1.8.6
[85] magrittr_2.0.1 R6_2.5.1 generics_0.1.0
[88] multcomp_1.4-16 DBI_1.1.1 mgcv_1.8-33
[91] pillar_1.6.1 haven_2.3.1 whisker_0.4
[94] foreign_0.8-81 withr_2.5.0 survival_3.2-7
[97] datawizard_0.4.0 abind_1.4-5 performance_0.8.0
[100] WRS2_1.1-3 modelr_0.1.8 crayon_1.4.1
[103] car_3.0-10 utf8_1.1.4 correlation_0.8.0
[106] rmarkdown_2.14 grid_4.0.2 readxl_1.3.1
[109] data.table_1.14.0 callr_3.7.0 git2r_0.28.0
[112] reprex_2.0.0 digest_0.6.27 xtable_1.8-4
[115] httpuv_1.5.5 textshaping_0.3.2 munsell_0.5.0
[118] bslib_0.3.1