Last updated: 2024-02-29

Checks: 7 0

Knit directory: LocksofLineage/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231117) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0c8f572. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/updated_names_analysis.Rmd) and HTML (docs/updated_names_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0c8f572 Sarah E Taylor 2024-02-29 changed axis labels on heatmaps
html 385c10f Sarah E Taylor 2024-02-29 Build site.
Rmd 5c2d3c1 Sarah E Taylor 2024-02-29 added upset plot
html 4e1c9c0 Sarah E Taylor 2024-02-29 Build site.
Rmd b54f044 Sarah E Taylor 2024-02-29 Recoded the traits and re-did the logistic regressions and odds ratio matrices

Recoding the data

data <- read_csv("data/Raw_Data/data_to_use.csv")
Rows: 238 Columns: 17
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (16): family, Genus, species, subspecies, Sexual_dimorphism, Sexual_Dimo...
dbl  (1): Size_Dimorphism

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# 5 species were recorded as maybe having a natal coat because the sources were conflicting, for now they will be counted as not having a natal coat
# Cheirogaleus major, Macaca sylvanus, Procolobus pennantii, Presbytis femoralis, Pongo pygmaeus
data <- data %>%
  mutate(across(c(Sexual_dimorphism, Natal_coat, Sexual_dichromatism), ~if_else(. == "Yes", 1, 0)))
# Reclassifying how we distinguish natal coat types
data <- data %>%
  mutate(Simple_Natal_Coat_Type = case_when(
    Natal_Coat_Type %in% c("Con to dad", "con to both", "con to mom") ~ "conspicuous",
    Natal_Coat_Type == "incon" ~ "inconspicuous",
    TRUE ~ "none"  # This will catch all other cases not specified above
  ))

# Add a column with all conspicuous natal coats as 1 and inconspicuous as 0
data <- data %>%
  mutate(
    Natal_Coat_Conspicuous = ifelse(Simple_Natal_Coat_Type == "conspicuous", 1, 0),
    Natal_Coat_Inconspicuous = ifelse(Simple_Natal_Coat_Type == "inconspicuous", 1, 0),
    Natal_Coat_Present = ifelse(Simple_Natal_Coat_Type %in% c("conspicuous", "inconspicuous"), 1, 0)
  )

#Natal coats can be inconspicuous (close in color to parents) or conspicuous (obviously a different color). #When they are conspicuous they can be contrasting to either the mothers coats or the fathers or both. 
# This is recoding the different types of conspicuous natal coats and sexual dichromatism from separate traits into a continuous change ie infant -> adult female (change/no change), infant -> adult male (change/no change), if both change is another category. If a natal coat is conspicuous to dad it is similar or inconspicuous to mom so the males change when they mature.

data <- data %>%
  mutate(Maturation_Color_Change = case_when(
    Natal_Coat_Type == "Con to dad" ~ "Males only",
    Natal_Coat_Type == "con to both" ~ "Both", 
    Natal_Coat_Type == "con to mom" ~ "Females only",
    TRUE ~ "None"))

# Add binary columns for the different maturation changes
data <- data %>%
  mutate(Maturation_Males_Only = ifelse(Maturation_Color_Change == "Males only", 1, 0),
         Maturation_Females_Only = ifelse(Maturation_Color_Change == "Females only", 1, 0),
         Maturation_Both = ifelse(Maturation_Color_Change == "Both", 1, 0),
         Maturation_None = ifelse(Maturation_Color_Change == "None", 1, 0))
data <- data %>%
  mutate(Sexual_Dichromatism_Complete = ifelse(Sexual_dichromatism_type == "Complete", 1, 0),
         Sexual_Dichromatism_Partial = ifelse(Sexual_dichromatism_type == "Partial", 1, 0),
         Sexual_Dichromatism_Present = ifelse(Sexual_dichromatism_type %in% c("Complete", "Partial"), 1, 0))
write_csv(data, "data/recoded_data.csv")

Format data for phylolm


Phylogenetic tree: mammaltree 

  Number of tips: 5987 
  Number of nodes: 5986 
  Branch lengths:
    mean: 2.680715 
    variance: 24.17565 
    distribution summary:
       Min.     1st Qu.      Median     3rd Qu.        Max. 
  0.0000000   0.5284341   1.3073255   2.9454665 106.6007500 
  No root edge.
  First ten tip labels: X_Shuotherium 
                        X_Pseudotribos
                        X_Asfaltomylos
                        X_Obdurodon
                        Zaglossus_bartoni
                        Zaglossus_bruijnii
                        Zaglossus_attenboroughi
                        Tachyglossus_aculeatus
                        Ornithorhynchus_anatinus
                        X_Teinolophos
  No node labels.
Rows: 238 Columns: 29
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (15): family, Genus, species, subspecies, Sexual_Dimorph_type, Location,...
dbl (14): Sexual_dimorphism, Natal_coat, Sexual_dichromatism, Size_Dimorphis...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# A tibble: 6 × 29
  family   Genus species subsp…¹ Sexua…² Sexua…³ Locat…⁴ Direc…⁵ Natal…⁶ Natal…⁷
  <chr>    <chr> <chr>   <chr>     <dbl> <chr>   <chr>   <chr>     <dbl> <chr>  
1 cercopi… alle… nigrov… <NA>          0 <NA>    <NA>    <NA>          1 incon  
2 cheirog… allo… tricho… <NA>          0 <NA>    <NA>    <NA>          0 <NA>   
3 cebidae  alou… belzeb… <NA>          0 <NA>    <NA>    <NA>          0 <NA>   
4 cebidae  alou… caraya  <NA>          1 males … Head    M             1 Con to…
5 cebidae  alou… guariba <NA>          1 male s… Head    M             1 incon  
6 cebidae  alou… pallia… pallia…       1 F: les… Head, … F             1 incon  
# … with 19 more variables: NC_description <chr>, Sexual_dichromatism <dbl>,
#   Sexual_dichromatism_type <chr>, Where <chr>, Darker <chr>,
#   SDC_description <chr>, Size_Dimorphism <dbl>, Simple_Natal_Coat_Type <chr>,
#   Natal_Coat_Conspicuous <dbl>, Natal_Coat_Inconspicuous <dbl>,
#   Natal_Coat_Present <dbl>, Maturation_Color_Change <chr>,
#   Maturation_Males_Only <dbl>, Maturation_Females_Only <dbl>,
#   Maturation_Both <dbl>, Maturation_None <dbl>, …
#combine genus and species names and capitalize first letter
Binary_traits_combined = Binary_traits %>% unite("species",`Genus`, `species`) %>% mutate(species = str_to_title(species))
head(Binary_traits_combined)
# A tibble: 6 × 28
  family species subsp…¹ Sexua…² Sexua…³ Locat…⁴ Direc…⁵ Natal…⁶ Natal…⁷ NC_de…⁸
  <chr>  <chr>   <chr>     <dbl> <chr>   <chr>   <chr>     <dbl> <chr>   <chr>  
1 cerco… Alleno… <NA>          0 <NA>    <NA>    <NA>          1 incon   no tre…
2 cheir… Alloce… <NA>          0 <NA>    <NA>    <NA>          0 <NA>    <NA>   
3 cebid… Alouat… <NA>          0 <NA>    <NA>    <NA>          0 <NA>    <NA>   
4 cebid… Alouat… <NA>          1 males … Head    M             1 Con to… infant…
5 cebid… Alouat… <NA>          1 male s… Head    M             1 incon   possib…
6 cebid… Alouat… pallia…       1 F: les… Head, … F             1 incon   incons…
# … with 18 more variables: Sexual_dichromatism <dbl>,
#   Sexual_dichromatism_type <chr>, Where <chr>, Darker <chr>,
#   SDC_description <chr>, Size_Dimorphism <dbl>, Simple_Natal_Coat_Type <chr>,
#   Natal_Coat_Conspicuous <dbl>, Natal_Coat_Inconspicuous <dbl>,
#   Natal_Coat_Present <dbl>, Maturation_Color_Change <chr>,
#   Maturation_Males_Only <dbl>, Maturation_Females_Only <dbl>,
#   Maturation_Both <dbl>, Maturation_None <dbl>, …
# prune tree for species in data
species_not_in_tree=setdiff(mammaltree$tip.label, Binary_traits_combined$species)
pruned.tree<-drop.tip(mammaltree,species_not_in_tree)
summary(pruned.tree)

Phylogenetic tree: pruned.tree 

  Number of tips: 235 
  Number of nodes: 234 
  Branch lengths:
    mean: 2.864158 
    variance: 17.90887 
    distribution summary:
       Min.     1st Qu.      Median     3rd Qu.        Max. 
 0.04705822  0.88148065  1.69536613  3.05008500 49.61463191 
  No root edge.
  First ten tip labels: Nycticebus_pygmaeus 
                        Nycticebus_coucang
                        Loris_tardigradus
                        Galagoides_thomasi
                        Galago_matschiei
                        Galago_moholi
                        Galago_senegalensis
                        Galago_gallarum
                        Otolemur_garnettii
                        Otolemur_crassicaudatus
  No node labels.
#prune data for species in tree
data_pruned <- Binary_traits_combined %>% filter(species %in% pruned.tree$tip.label)
head(data_pruned)
# A tibble: 6 × 28
  family species subsp…¹ Sexua…² Sexua…³ Locat…⁴ Direc…⁵ Natal…⁶ Natal…⁷ NC_de…⁸
  <chr>  <chr>   <chr>     <dbl> <chr>   <chr>   <chr>     <dbl> <chr>   <chr>  
1 cerco… Alleno… <NA>          0 <NA>    <NA>    <NA>          1 incon   no tre…
2 cheir… Alloce… <NA>          0 <NA>    <NA>    <NA>          0 <NA>    <NA>   
3 cebid… Alouat… <NA>          0 <NA>    <NA>    <NA>          0 <NA>    <NA>   
4 cebid… Alouat… <NA>          1 males … Head    M             1 Con to… infant…
5 cebid… Alouat… <NA>          1 male s… Head    M             1 incon   possib…
6 cebid… Alouat… pallia…       1 F: les… Head, … F             1 incon   incons…
# … with 18 more variables: Sexual_dichromatism <dbl>,
#   Sexual_dichromatism_type <chr>, Where <chr>, Darker <chr>,
#   SDC_description <chr>, Size_Dimorphism <dbl>, Simple_Natal_Coat_Type <chr>,
#   Natal_Coat_Conspicuous <dbl>, Natal_Coat_Inconspicuous <dbl>,
#   Natal_Coat_Present <dbl>, Maturation_Color_Change <chr>,
#   Maturation_Males_Only <dbl>, Maturation_Females_Only <dbl>,
#   Maturation_Both <dbl>, Maturation_None <dbl>, …
# get the order of the tip labels
tip_order <- pruned.tree$tip.label

# Match the order of species in the dataframe to the order of tip labels in the tree
ordered_indices <- match(tip_order, data_pruned$species)

# Reorder the dataframe based on the indices obtained
data_pruned_ordered <- Binary_traits_combined[ordered_indices, ]
#put data into useful form for phylolm
colnames(data_pruned_ordered) = gsub(" ", "_", colnames(data_pruned))
data_pruned_rownames = column_to_rownames(data_pruned_ordered, var = "species")
head(data_pruned_rownames)
                              family subspecies Sexual_dimorphism
Simias_concolor      cercopithecidae       <NA>                 0
Miopithecus_talapoin cercopithecidae       <NA>                 0
Lophocebus_albigena  cercopithecidae       <NA>                 0
Galago_senegalensis      galagonidae       <NA>                 0
Galago_gallarum          galagonidae       <NA>                 0
Galago_matschiei         galagonidae       <NA>                 0
                     Sexual_Dimorph_type Location Direction Natal_coat
Simias_concolor                     <NA>     <NA>      <NA>          1
Miopithecus_talapoin                <NA>     <NA>      <NA>          1
Lophocebus_albigena                 <NA>     <NA>      <NA>          1
Galago_senegalensis                 <NA>     <NA>      <NA>          0
Galago_gallarum                     <NA>     <NA>      <NA>          0
Galago_matschiei                    <NA>     <NA>      <NA>          0
                     Natal_Coat_Type
Simias_concolor                incon
Miopithecus_talapoin           incon
Lophocebus_albigena            incon
Galago_senegalensis             <NA>
Galago_gallarum                 <NA>
Galago_matschiei                <NA>
                                                                                                                                                                                                                    NC_description
Simias_concolor                                                                                                                                                                                            lighter face in infants
Miopithecus_talapoin                                                                                                        no treves 31,33,39, juveniles lack the black maxillary patches and have less yellow in the pelage hill
Lophocebus_albigena  l.a.johnstoni no treves 28,33,43, in hill this subspecies was uniformly black and got more brown as it aged, infant is darker in zenkeri subspecies, overall the infants are darker with less color variation
Galago_senegalensis                                                                                                                                                                                                   no treves 67
Galago_gallarum                                                                                                                                                                                                               <NA>
Galago_matschiei                                                                                                                                                                                                              <NA>
                     Sexual_dichromatism Sexual_dichromatism_type    Where
Simias_concolor                        0                     <NA>     <NA>
Miopithecus_talapoin                   1                  Partial     Body
Lophocebus_albigena                    1                  Partial Multiple
Galago_senegalensis                    0                     <NA>     <NA>
Galago_gallarum                        0                     <NA>     <NA>
Galago_matschiei                       0                     <NA>     <NA>
                     Darker
Simias_concolor        <NA>
Miopithecus_talapoin      M
Lophocebus_albigena       M
Galago_senegalensis    <NA>
Galago_gallarum        <NA>
Galago_matschiei       <NA>
                                                                                                                   SDC_description
Simias_concolor                                                                                                maybe? rowe 838, 80
Miopithecus_talapoin                                                                          females are less richly colored hill
Lophocebus_albigena  F: paler around ears, hind-neck, and mantle, fewer white rings on mantle hairs, underparts reddish black hill
Galago_senegalensis                                                                                                           <NA>
Galago_gallarum                                                                                                               <NA>
Galago_matschiei                                                                                                              <NA>
                     Size_Dimorphism Simple_Natal_Coat_Type
Simias_concolor                    1          inconspicuous
Miopithecus_talapoin               1          inconspicuous
Lophocebus_albigena                1          inconspicuous
Galago_senegalensis                1                   none
Galago_gallarum                    0                   none
Galago_matschiei                   0                   none
                     Natal_Coat_Conspicuous Natal_Coat_Inconspicuous
Simias_concolor                           0                        1
Miopithecus_talapoin                      0                        1
Lophocebus_albigena                       0                        1
Galago_senegalensis                       0                        0
Galago_gallarum                           0                        0
Galago_matschiei                          0                        0
                     Natal_Coat_Present Maturation_Color_Change
Simias_concolor                       1                    None
Miopithecus_talapoin                  1                    None
Lophocebus_albigena                   1                    None
Galago_senegalensis                   0                    None
Galago_gallarum                       0                    None
Galago_matschiei                      0                    None
                     Maturation_Males_Only Maturation_Females_Only
Simias_concolor                          0                       0
Miopithecus_talapoin                     0                       0
Lophocebus_albigena                      0                       0
Galago_senegalensis                      0                       0
Galago_gallarum                          0                       0
Galago_matschiei                         0                       0
                     Maturation_Both Maturation_None
Simias_concolor                    0               1
Miopithecus_talapoin               0               1
Lophocebus_albigena                0               1
Galago_senegalensis                0               1
Galago_gallarum                    0               1
Galago_matschiei                   0               1
                     Sexual_Dichromatism_Complete Sexual_Dichromatism_Partial
Simias_concolor                                NA                          NA
Miopithecus_talapoin                            0                           1
Lophocebus_albigena                             0                           1
Galago_senegalensis                            NA                          NA
Galago_gallarum                                NA                          NA
Galago_matschiei                               NA                          NA
                     Sexual_Dichromatism_Present
Simias_concolor                                0
Miopithecus_talapoin                           1
Lophocebus_albigena                            1
Galago_senegalensis                            0
Galago_gallarum                                0
Galago_matschiei                               0
write_csv(data_pruned_rownames, "data/data_formatted_phylolm.csv")

Run the Logistic Regressions

# Create the phylolm function
run_phylolm_analyses <- function(data, phylo_tree, independent_vars, dependent_vars){ 
  results <- list()
  for (ind_var in independent_vars){
    for (dep_var in dependent_vars){
      formula <- as.formula(paste(dep_var, "~", ind_var))
      model <- phyloglm(formula, data=data, phy=phylo_tree, method = "logistic_MPLE")
      results[[paste(ind_var, dep_var, sep = "_vs_")]] <- summary(model)
  }
  }
  return(results)
}

#Function to extract model stats, odds ratio, p-value
extract_model_stats <- function(results_list, independent_vars, dependent_vars) {
  # Initialize a matrix to store the odds ratios
  odds_ratios <- matrix(NA, 
                        nrow = length(dependent_vars), 
                        ncol = length(independent_vars),
                        dimnames = list(dependent_vars, independent_vars))
  p_values <- matrix(NA, 
                     nrow = length(dependent_vars), 
                     ncol = length(independent_vars),
                     dimnames = list(dependent_vars, independent_vars))
  
  # Iterate through the results to extract coefficients
  for (dep_var in dependent_vars) {
    for (ind_var in independent_vars) {
      # Construct the result name used as the key in the results list
      result_key <- paste(ind_var, dep_var, sep = "_vs_")
      
      # Check if the result exists and extract the coefficients
      if (result_key %in% names(results_list)) {
        # Extract the model summary
        model_summary <- results_list[[result_key]]
        
        # Check if the model summary is indeed a list with a coefficients data frame
        if (is.list(model_summary) && "coefficients" %in% names(model_summary)) {
          # Extract the estimate for the independent variable
          if (ind_var %in% rownames(model_summary$coefficients)) {
            estimate <- model_summary$coefficients[ind_var, "Estimate"]
            p_value <- model_summary$coefficients[ind_var, "p.value"]
            odds_ratios[dep_var, ind_var] <- exp(estimate)
            p_values[dep_var, ind_var] <- p_value
          }
        }
      }
    }
  }
  
  return(list(odds_ratios = odds_ratios, p_values = p_values))
}
data <- data_pruned_rownames
phylo_tree <- pruned.tree
independent_vars <- c("Natal_Coat_Conspicuous", "Natal_Coat_Inconspicuous", "Natal_Coat_Present")
dependent_vars <- c("Sexual_Dichromatism_Complete", "Sexual_Dichromatism_Partial", "Sexual_Dichromatism_Present", "Maturation_Males_Only", "Maturation_Females_Only", "Maturation_Both")
Natal_on_Dichromatism_results <- run_phylolm_analyses(data,phylo_tree, independent_vars, dependent_vars)
Natal_on_Dichromatism_model_stats <- extract_model_stats(Natal_on_Dichromatism_results, independent_vars, dependent_vars)
Natal_on_Dichromatism_odds_ratio_matrix <- Natal_on_Dichromatism_model_stats$odds_ratios
Natal_on_Dichromatism_p_value_matrix <- Natal_on_Dichromatism_model_stats$p_values
data <- data_pruned_rownames
phylo_tree <- pruned.tree
independent_vars <- c("Sexual_Dichromatism_Complete", "Sexual_Dichromatism_Partial", "Sexual_Dichromatism_Present", "Maturation_Males_Only", "Maturation_Females_Only", "Maturation_Both")
dependent_vars <- c("Natal_Coat_Conspicuous", "Natal_Coat_Inconspicuous", "Natal_Coat_Present")
Dichromatism_on_Natal_results <- run_phylolm_analyses(data,phylo_tree, independent_vars, dependent_vars)
Dichromatism_on_Natal_model_stats <- extract_model_stats(Dichromatism_on_Natal_results, independent_vars, dependent_vars)
Dichromatism_on_Natal_odds_ratio_matrix <- Dichromatism_on_Natal_model_stats$odds_ratios
Dichromatism_on_Natal_p_value_matrix <- Dichromatism_on_Natal_model_stats$p_values
data <- data_pruned_rownames
phylo_tree <- pruned.tree
independent_vars <- c("Sexual_dimorphism", "Size_Dimorphism")
dependent_vars <- c("Sexual_Dichromatism_Complete", "Sexual_Dichromatism_Partial", "Sexual_Dichromatism_Present", "Maturation_Males_Only", "Maturation_Females_Only", "Maturation_Both","Natal_Coat_Conspicuous", "Natal_Coat_Inconspicuous", "Natal_Coat_Present")
Dimorphism_on_Natal_and_Dichrom_results <- run_phylolm_analyses(data,phylo_tree, independent_vars, dependent_vars)
Dimorphism_on_Natal_and_Dichrom_model_stats <- extract_model_stats(Dimorphism_on_Natal_and_Dichrom_results, independent_vars, dependent_vars)
Dimorphism_on_Natal_and_Dichrom_odds_ratio_matrix <- Dimorphism_on_Natal_and_Dichrom_model_stats$odds_ratios
Dimorphism_on_Natal_and_Dichrom_p_value_matrix <- Dimorphism_on_Natal_and_Dichrom_model_stats$p_values

Visualizations

# Function to determine significance symbols based on p-values
get_significance_symbol <- function(p_value) {
  ifelse(p_value < 0.001, '***',
         ifelse(p_value < 0.01, '**',
                ifelse(p_value < 0.05, '*', '')))
}
  
# Function to create a heatmap with significance symbols
create_heatmap <- function(odds_ratio_matrix, p_value_matrix, title_prefix) {
  # Melt the odds ratio matrix and p-value matrix into data frames
  df_odds <- melt(odds_ratio_matrix)
  df_pvals <- melt(p_value_matrix)
  
  # Add column names for merging
  colnames(df_odds) <- c("RowTraits", "ColTraits", "value")
  colnames(df_pvals) <- c("RowTraits", "ColTraits", "p_value")
  
  # Merge the data frames
  df_merged <- merge(df_odds, df_pvals, by = c("RowTraits", "ColTraits"))
  
  # Apply logarithmic transformation to the odds ratio values
  df_merged$value_log <- log(df_merged$value + 1)
  
  # Calculate significance symbols
  df_merged$significance <- get_significance_symbol(df_merged$p_value)
  
  # Create the heatmap
  heatmap <- ggplot(df_merged, aes(RowTraits, ColTraits, fill = value_log)) + 
    geom_tile() +
    scale_fill_gradient2(low = "white", high = "red", mid = "blue", midpoint = log(1 + 1), space = "Lab", name="Log Odds Ratio") +
    geom_text(aes(label = sprintf("%.2f", value)), size = 3, vjust = -1) +
    geom_text(aes(label = significance), size = 3, vjust = 1) +
    theme_minimal() +
    labs(title = paste(title_prefix, "Log Scale"), x = "Dependent Characteristics", y = "Independent Characteristics") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text(angle = 45, vjust = 1))
  
  return(heatmap)
}

# usage:
heatmap1 <- create_heatmap(Natal_on_Dichromatism_odds_ratio_matrix, Natal_on_Dichromatism_p_value_matrix, "Effect of Natal Coat on Sexual Dichromatism")
heatmap2 <- create_heatmap(Dichromatism_on_Natal_odds_ratio_matrix, Dichromatism_on_Natal_p_value_matrix, "Effect of Sexual Dichromatism on Natal Coat")
heatmap3 <- create_heatmap( Dimorphism_on_Natal_and_Dichrom_odds_ratio_matrix, Dimorphism_on_Natal_and_Dichrom_p_value_matrix, "Sexual Dimorphism Impacting other Characteristics")

# Print heatmaps side by side
grid.arrange(heatmap1, heatmap2, heatmap3, ncol = 3)

Version Author Date
385c10f Sarah E Taylor 2024-02-29
# Define the traits
set_attributes <- c(
  'Natal_Coat_Conspicuous', 
  'Natal_Coat_Inconspicuous', 
  'Natal_Coat_Present',
  'Sexual_Dichromatism_Complete', 
  'Sexual_Dichromatism_Partial', 
  'Sexual_Dichromatism_Present',
  'Maturation_Males_Only', 
  'Maturation_Females_Only', 
  'Maturation_Both',
  'Sexual_dimorphism')

# Create the plot
upset(
    data_pruned_rownames,
    set_attributes,
    base_annotations=list(
        'Intersection size'=intersection_size(
            counts=TRUE,
            mapping=aes(fill=family) 
        ) 
    ),
    width_ratio=0.1
)
Warning in upset_data(data, intersect, mode = mode, encode_sets = encode_sets,
: Converting non-logical columns to binary: Natal_Coat_Conspicuous,
Natal_Coat_Inconspicuous, Natal_Coat_Present, Sexual_Dichromatism_Complete,
Sexual_Dichromatism_Partial, Sexual_Dichromatism_Present,
Maturation_Males_Only, Maturation_Females_Only, Maturation_Both,
Sexual_dimorphism
Warning in upset_data(data, intersect, mode = mode, encode_sets = encode_sets,
: Detected missing values in the columns indicating sets, coercing to FALSE

Version Author Date
385c10f Sarah E Taylor 2024-02-29

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ComplexUpset_1.3.3 reshape2_1.4.4     gridExtra_2.3      phytools_2.0-3    
 [5] maps_3.4.1         ggtree_3.6.2       phylolm_2.6.2      lubridate_1.9.2   
 [9] forcats_1.0.0      stringr_1.5.0      purrr_1.0.1        tidyr_1.3.0       
[13] tibble_3.1.8       ggplot2_3.4.4      tidyverse_2.0.0    ape_5.7           
[17] readr_2.1.4        dplyr_1.1.0        workflowr_1.7.1   

loaded via a namespace (and not attached):
 [1] nlme_3.1-160            fs_1.6.1                bit64_4.0.5            
 [4] doParallel_1.0.17       httr_1.4.4              rprojroot_2.0.4        
 [7] numDeriv_2016.8-1.1     tools_4.2.1             bslib_0.4.2            
[10] utf8_1.2.2              R6_2.5.1                DBI_1.1.3              
[13] lazyeval_0.2.2          colorspace_2.0-3        withr_2.5.0            
[16] phangorn_2.11.1         mnormt_2.1.1            tidyselect_1.2.0       
[19] processx_3.8.3          bit_4.0.5               compiler_4.2.1         
[22] git2r_0.32.0            cli_3.6.2               expm_0.999-7           
[25] labeling_0.4.2          sass_0.4.5              scales_1.2.1           
[28] quadprog_1.5-8          callr_3.7.3             digest_0.6.30          
[31] yulab.utils_0.0.6       rmarkdown_2.20          pkgconfig_2.0.3        
[34] htmltools_0.5.7         parallelly_1.36.0       highr_0.10             
[37] fastmap_1.1.0           rlang_1.1.2             rstudioapi_0.14        
[40] optimParallel_1.0-2     farver_2.1.1            gridGraphics_0.5-1     
[43] jquerylib_0.1.4         generics_0.1.3          combinat_0.0-8         
[46] jsonlite_1.8.8          vroom_1.6.1             magrittr_2.0.3         
[49] ggplotify_0.1.0         patchwork_1.1.2         Matrix_1.5-3           
[52] Rcpp_1.0.11             munsell_0.5.0           fansi_1.0.3            
[55] lifecycle_1.0.3         scatterplot3d_0.3-44    stringi_1.7.8          
[58] whisker_0.4.1           yaml_2.3.7              clusterGeneration_1.3.8
[61] MASS_7.3-58.1           plyr_1.8.9              grid_4.2.1             
[64] parallel_4.2.1          listenv_0.9.0           promises_1.2.1         
[67] crayon_1.5.2            lattice_0.20-45         hms_1.1.2              
[70] knitr_1.42              ps_1.7.2                pillar_1.8.1           
[73] igraph_1.5.1            future.apply_1.11.0     codetools_0.2-18       
[76] fastmatch_1.1-3         glue_1.6.2              evaluate_0.23          
[79] getPass_0.2-2           ggfun_0.0.9             vctrs_0.5.2            
[82] treeio_1.22.0           tzdb_0.3.0              httpuv_1.6.11          
[85] foreach_1.5.2           gtable_0.3.1            future_1.33.0          
[88] cachem_1.0.6            xfun_0.41               tidytree_0.4.2         
[91] coda_0.19-4             later_1.3.1             iterators_1.0.14       
[94] aplot_0.1.9             timechange_0.2.0        globals_0.16.2         
[97] ellipsis_0.3.2