Last updated: 2019-11-18

Checks: 7 0

Knit directory: transcriptome_cll/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190511) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/2018-03-05_IGHV.RData
    Untracked:  data/patmeta_170324.RData
    Untracked:  output/IGHV1_69.svg
    Untracked:  output/cluster1000exprgenes.pdf
    Untracked:  output/cluster500exprgenes.pdf
    Untracked:  output/desRes_15112019.RData
    Untracked:  output/figures/hist_mutations.svg
    Untracked:  output/figures/overview_mutations.pdf
    Untracked:  output/figures/r_objects/
    Untracked:  output/figures/sum_diffGenes_0.05_2.pdf
    Untracked:  output/figures/sum_diffGenes_noTsig.pdf
    Untracked:  output/figures/sum_diffGenes_noTsig_IGHVTri12.pdf

Unstaged changes:
    Modified:   analysis/trisomy12.Rmd
    Modified:   output/diff_genes/ATM_diffGenes.csv
    Modified:   output/diff_genes/BRAF_diffGenes.csv
    Modified:   output/diff_genes/MED12_diffGenes.csv
    Modified:   output/diff_genes/NOTCH1_diffGenes.csv
    Modified:   output/diff_genes/SF3B1_diffGenes.csv
    Modified:   output/diff_genes/TP53_diffGenes.csv
    Modified:   output/diff_genes/del11q22.3_diffGenes.csv
    Modified:   output/diff_genes/del13q14_diffGenes.csv
    Modified:   output/diff_genes/del17p13_diffGenes.csv
    Modified:   output/diff_genes/del8p12_diffGenes.csv
    Modified:   output/diff_genes/gain8q24_diffGenes.csv
    Modified:   output/diff_genes/trisomy12_diffGenes.csv
    Modified:   output/figures/pca_Meth_top150.svg

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html e20c885 aluetge 2019-11-14 Build site.
Rmd 7a81840 aluetge 2019-11-14 wflow_publish(“analysis/summary_de_genes.Rmd”)
html 794365a aluetge 2019-11-14 Build site.
Rmd e8e7a32 aluetge 2019-11-14 wflow_publish(“analysis/summary_de_genes.Rmd”)
html f9c1040 aluetge 2019-11-14 Build site.
Rmd 225f170 aluetge 2019-11-14 wflow_publish(“analysis/summary_de_genes.Rmd”)

Summary DE genes by variants

Aim: Generate a summary plot giving an overview on the number of differntially expressed genes / number upreagulated / number downregulated genes and chromosomal distribution for CNVs.

libraries

suppressPackageStartupMessages({
  library(tidyverse)
  library(ggplot2)
  library(here)
  library(ggpubr)
  library(ggsci)
  library(RColorBrewer)
  library(circlize)
  library(reshape2)
  library(ggsci)
  library(DESeq2)
})

data

data_dir <- here("data")
output_dir <- here("output")
figure_dir <- here("output/figures")

#dds data set. gene expression data + patmetadata
load(paste0(data_dir, "/ddsrnaCLL_150218.RData"))

variants <- c( "trisomy12", "del13q14", "del8p12", "gain8q24", "del11q22.3", "del17p13", "BRAF", "NOTCH1", "SF3B1","TP53", "ATM", "MED12","IGHV")

Summarize de genes in a table

#Function to summarize de genes
variant_stats <- function(variant, chr){
  
  diff_genes <-read.csv(file=paste0(output_dir, "/diff_genes/", variant, "_diffGenes.csv"))
  sig_genes <- as.tibble(diff_genes) %>% filter(padj < 0.01) 
  up_genes <- sig_genes %>% filter(log2FoldChange > 0) %>% mutate(chrom = rowData(ddsCLL)$chromosome[which(rownames(ddsCLL) %in% X)])
  dn_genes <- sig_genes %>% filter(log2FoldChange < 0) %>% mutate(chrom = rowData(ddsCLL)$chromosome[which(rownames(ddsCLL) %in% X)])
  chr_up <- ifelse(!is.na(chr), length(which(up_genes$chrom %in% chr)), 0)
  chr_dn <- ifelse(!is.na(chr), length(which(dn_genes$chrom %in% chr)), 0)
  
  summary <- tibble(
    variant = variant,
    n_genes = nrow(sig_genes),
    up_genes = nrow(up_genes),
    dn_genes = nrow(dn_genes),
    nr_up = chr_up,
    nr_dn = chr_dn,
    nr_chrom = chr_dn + chr_up,
    nr_other = n_genes - chr_dn - chr_up
  )
  }

# Variant chromosomal location
chromo <- c( "12", "13", "8", "8", "11", "17", NA, NA, NA, NA, NA, NA, NA)
input <- cbind(variants, chromo)

summary <- mapply(variant_stats, variants, chromo)
Warning: `as.tibble()` is deprecated, use `as_tibble()` (but mind the new semantics).
This warning is displayed once per session.
sum_dat <- data.frame(matrix(unlist(summary), nrow=13, byrow=T),stringsAsFactors=FALSE)
colnames(sum_dat) <- c("variant", "n_genes", "up_genes", "dn_genes", "nr_up", "nr_dn", "nr_chrom", "nr_other")
sum_order <- as.tibble(sum_dat) %>% arrange(desc(-1*as.numeric(n_genes))) %>% dplyr::select(variant)

#sum_dat_long <- melt(sum_dat[,c("variant","up_genes", "dn_genes")], id.vars = c("variant")) #, variable_name = c("up_genes", "dn_genes"))

sum_dat_long <- melt(sum_dat[,c("variant","nr_other", "nr_chrom")], id.vars = c("variant")) #, variable_name = c("up_genes", "dn_genes"))

colnames(sum_dat_long) <- c("variant", "location", "genes")
sum_dat_long$dir_color <-paste0(sum_dat_long$variant, "_", sum_dat_long$location)

sum_dat_long$genes <- as.numeric(as.character(sum_dat_long$genes))
sum_dat_long <- as.tibble(sum_dat_long) %>% arrange(desc(genes)) %>% mutate(group=ifelse(variant %in% c("trisomy12", "IGHV"), 1, 2))

Plots

Summary all variants

col_pal1 <- pal_igv(palette = c("default"), alpha = 1)(13)
col_pal2 <- pal_igv(palette = c("default"), alpha = 0.4)(13)

color <- c(col_pal1, col_pal2)
color <- sort(color)

#pdf(file=paste0(figure_dir, "/sum_diffGenes_0.05_2.pdf"), width=8, height=5)
ggbarplot(sum_dat_long[order(match(sum_dat_long$variant, sum_order$variant)),], "variant", "genes",
  fill = "dir_color", palette = color,
  label = FALSE,  font.x =23 ,font.y = 23, font.tickslab = 18, x.text.angle = 90, legend = "none") 

Version Author Date
f9c1040 aluetge 2019-11-14
#dev.off()

IGHV and trisomy12

sum_dat_long1 <- as.tibble(sum_dat_long) %>% filter(variant %in% c("trisomy12", "IGHV"))

#pdf(file=paste0(figure_dir, "/sum_diffGenes_noTsig_IGHVTri12.pdf"), width=5, height=2.3)
p1 <- ggbarplot(sum_dat_long1[order(match(sum_dat_long1$variant, sum_order$variant)),], "variant", "genes",
  fill = "dir_color", palette = color[c(1:4)],
  label = FALSE,  font.x =23 ,font.y = 23, font.tickslab = 18, x.text.angle = 0, legend = "none", rotate = T) 
#dev.off()

p1

Version Author Date
f9c1040 aluetge 2019-11-14
saveRDS(p1, file = paste0(output_dir, "/figures/r_objects/summary_de_genes_IGHV_tri12.rds"))

All other

sum_dat_long2 <- as.tibble(sum_dat_long) %>% filter(!variant %in% c("trisomy12", "IGHV"))

#pdf(file=paste0(figure_dir, "/sum_diffGenes_noTsig.pdf"), width=6, height=7.5)
p2 <- ggbarplot(sum_dat_long2[order(match(sum_dat_long2$variant, sum_order$variant)),], "variant", "genes",
  fill = "dir_color", palette = color[c(5:26)],
  label = FALSE,  font.x =23 ,font.y = 23, font.tickslab = 18, x.text.angle = 0, legend = "none", rotate = T) 
#dev.off()


p2

Version Author Date
f9c1040 aluetge 2019-11-14
saveRDS(p2, file = paste0(output_dir, "/figures/r_objects/summary_de_genes_all.rds"))

summary table

#pdf(file=paste0(output_dir,"/sum_diffGenes_table.pdf"), width=5, height=7.5)
sum_dat
      variant n_genes up_genes dn_genes nr_up nr_dn nr_chrom nr_other
1   trisomy12    3679     1806     1873   520    14      534     3145
2    del13q14     818      253      565     6    25       31      787
3     del8p12      60       19       41     4    29       33       27
4    gain8q24      74       56       18    38    11       49       25
5  del11q22.3     215       74      141     3    47       50      165
6    del17p13     338      161      177    20   108      128      210
7        BRAF     210      170       40     0     0        0      210
8      NOTCH1      44       12       32     0     0        0       44
9       SF3B1     510      308      202     0     0        0      510
10       TP53     227      110      117     0     0        0      227
11        ATM      21       14        7     0     0        0       21
12      MED12      24       14       10     0     0        0       24
13       IGHV    3557     2108     1449     0     0        0     3557
#dev.off()

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

locale:
 [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8    
 [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8   
 [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] DESeq2_1.24.0               SummarizedExperiment_1.14.0
 [3] DelayedArray_0.10.0         BiocParallel_1.18.0        
 [5] matrixStats_0.54.0          Biobase_2.44.0             
 [7] GenomicRanges_1.36.0        GenomeInfoDb_1.20.0        
 [9] IRanges_2.18.1              S4Vectors_0.22.0           
[11] BiocGenerics_0.30.0         reshape2_1.4.3             
[13] circlize_0.4.6              RColorBrewer_1.1-2         
[15] ggsci_2.9                   ggpubr_0.2                 
[17] magrittr_1.5                here_0.1                   
[19] forcats_0.4.0               stringr_1.4.0              
[21] dplyr_0.8.1                 purrr_0.3.2                
[23] readr_1.3.1                 tidyr_0.8.3                
[25] tibble_2.1.3                ggplot2_3.1.1              
[27] tidyverse_1.2.1            

loaded via a namespace (and not attached):
 [1] colorspace_1.4-1       rprojroot_1.3-2        htmlTable_1.13.1      
 [4] XVector_0.24.0         GlobalOptions_0.1.0    base64enc_0.1-3       
 [7] fs_1.3.1               rstudioapi_0.10        bit64_0.9-7           
[10] AnnotationDbi_1.46.0   lubridate_1.7.4        xml2_1.2.0            
[13] splines_3.6.0          geneplotter_1.62.0     knitr_1.23            
[16] Formula_1.2-3          jsonlite_1.6           workflowr_1.4.0       
[19] broom_0.5.2            annotate_1.62.0        cluster_2.1.0         
[22] compiler_3.6.0         httr_1.4.0             backports_1.1.4       
[25] assertthat_0.2.1       Matrix_1.2-17          lazyeval_0.2.2        
[28] cli_1.1.0              acepack_1.4.1          htmltools_0.3.6       
[31] tools_3.6.0            gtable_0.3.0           glue_1.3.1            
[34] GenomeInfoDbData_1.2.1 Rcpp_1.0.1             cellranger_1.1.0      
[37] nlme_3.1-140           xfun_0.7               rvest_0.3.4           
[40] XML_3.98-1.20          zlibbioc_1.30.0        scales_1.0.0          
[43] hms_0.4.2              yaml_2.2.0             memoise_1.1.0         
[46] gridExtra_2.3          rpart_4.1-15           latticeExtra_0.6-28   
[49] stringi_1.4.3          RSQLite_2.1.1          genefilter_1.66.0     
[52] checkmate_1.9.3        shape_1.4.4            rlang_0.3.4           
[55] pkgconfig_2.0.2        bitops_1.0-6           evaluate_0.14         
[58] lattice_0.20-38        labeling_0.3           htmlwidgets_1.3       
[61] bit_1.1-14             tidyselect_0.2.5       plyr_1.8.4            
[64] R6_2.4.0               generics_0.0.2         Hmisc_4.2-0           
[67] DBI_1.0.0              pillar_1.4.1           haven_2.1.0           
[70] whisker_0.3-2          foreign_0.8-71         withr_2.1.2           
[73] survival_2.44-1.1      RCurl_1.95-4.12        nnet_7.3-12           
[76] modelr_0.1.4           crayon_1.3.4           rmarkdown_1.13        
[79] locfit_1.5-9.1         grid_3.6.0             readxl_1.3.1          
[82] data.table_1.12.2      blob_1.1.1             git2r_0.25.2          
[85] digest_0.6.19          xtable_1.8-4           munsell_0.5.0