Last updated: 2021-03-21
Checks: 7 0
Knit directory: transcriptome_cll/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190511)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/figures/r_objects/BRAF/enrichment/
Untracked files:
Untracked: docs/figure/del11q22.Rmd/
Untracked: output/figures/r_objects/del11q22/de_genes/CLDN3.rds
Untracked: output/figures/r_objects/del11q22/de_genes/IGHE.rds
Untracked: output/figures/r_objects/del11q22/de_genes/TFCP2L1.rds
Untracked: output/figures/r_objects/epistasis/de_genes/CD38.rds
Unstaged changes:
Modified: output/enrichment/del11q22.3_gsea.rds
Modified: output/figures/paper_fig/figure_epi.pdf
Modified: output/figures/paper_fig/figure_epi.svg
Modified: output/figures/paper_fig/generate_figures.Rmd
Modified: output/figures/r_objects/del11q22/de_genes/ACAT1.rds
Modified: output/figures/r_objects/del11q22/de_genes/AIRE.rds
Modified: output/figures/r_objects/del11q22/de_genes/ALG9.rds
Modified: output/figures/r_objects/del11q22/de_genes/ALKBH8.rds
Modified: output/figures/r_objects/del11q22/de_genes/ATM.rds
Modified: output/figures/r_objects/del11q22/de_genes/C11orf57.rds
Modified: output/figures/r_objects/del11q22/de_genes/CUL5.rds
Modified: output/figures/r_objects/del11q22/de_genes/CWF19L2.rds
Modified: output/figures/r_objects/del11q22/de_genes/DDX10.rds
Modified: output/figures/r_objects/del11q22/de_genes/DPY19L2.rds
Modified: output/figures/r_objects/del11q22/de_genes/IGHV3-11.rds
Modified: output/figures/r_objects/del11q22/de_genes/IGHV4-34.rds
Modified: output/figures/r_objects/del11q22/de_genes/IGHV4-39.rds
Modified: output/figures/r_objects/del11q22/de_genes/KBTBD3.rds
Modified: output/figures/r_objects/del11q22/de_genes/NPAT.rds
Modified: output/figures/r_objects/del11q22/de_genes/NT5E.rds
Modified: output/figures/r_objects/del11q22/de_genes/PPP2R1B.rds
Modified: output/figures/r_objects/del11q22/de_genes/RBM7.rds
Modified: output/figures/r_objects/del11q22/de_genes/REXO2.rds
Modified: output/figures/r_objects/del11q22/de_genes/SIK2.rds
Modified: output/figures/r_objects/del11q22/de_genes/TEAD1.rds
Modified: output/figures/r_objects/del11q22/de_genes/TMPRSS5.rds
Modified: output/figures/r_objects/del11q22/de_genes/TTC12.rds
Modified: output/figures/r_objects/del11q22/de_genes/USP28.rds
Modified: output/figures/r_objects/del11q22/de_genes/ZW10.rds
Modified: output/figures/r_objects/del11q22/del11q22_enrichment_dn.rds
Modified: output/figures/r_objects/del11q22/del11q22_enrichment_up.rds
Modified: output/figures/r_objects/del11q22/del11q22_heatmap.rds
Modified: output/figures/r_objects/epistasis/de_genes/ABLIM2.rds
Modified: output/figures/r_objects/epistasis/de_genes/BCL2A1.rds
Modified: output/figures/r_objects/epistasis/de_genes/CAMK2N1.rds
Modified: output/figures/r_objects/epistasis/de_genes/CHAD.rds
Modified: output/figures/r_objects/epistasis/de_genes/CRIM1.rds
Modified: output/figures/r_objects/epistasis/de_genes/E2F2.rds
Modified: output/figures/r_objects/epistasis/de_genes/EBF1.rds
Modified: output/figures/r_objects/epistasis/de_genes/EBF4.rds
Modified: output/figures/r_objects/epistasis/de_genes/EML6.rds
Modified: output/figures/r_objects/epistasis/de_genes/ENPP3.rds
Modified: output/figures/r_objects/epistasis/de_genes/EPHB1.rds
Modified: output/figures/r_objects/epistasis/de_genes/EPHB6.rds
Modified: output/figures/r_objects/epistasis/de_genes/FAM212A.rds
Modified: output/figures/r_objects/epistasis/de_genes/FGD6.rds
Modified: output/figures/r_objects/epistasis/de_genes/FGF2.rds
Modified: output/figures/r_objects/epistasis/de_genes/GEN1.rds
Modified: output/figures/r_objects/epistasis/de_genes/GP5.rds
Modified: output/figures/r_objects/epistasis/de_genes/JAG1.rds
Modified: output/figures/r_objects/epistasis/de_genes/LEF1.rds
Modified: output/figures/r_objects/epistasis/de_genes/PPP1R14A.rds
Modified: output/figures/r_objects/epistasis/de_genes/RAI14.rds
Modified: output/figures/r_objects/epistasis/de_genes/SLC4A8.rds
Modified: output/figures/r_objects/epistasis/de_genes/SYBU.rds
Modified: output/figures/r_objects/epistasis/de_genes/TCTN1.rds
Modified: output/figures/r_objects/epistasis/de_genes/TIMELESS.rds
Modified: output/figures/r_objects/epistasis/de_genes/TMPRSS11E.rds
Modified: output/figures/r_objects/epistasis/enrich_dot2.rds
Modified: output/figures/r_objects/epistasis/enrich_dot_buffering.rds
Modified: output/figures/r_objects/epistasis/enrich_dot_hm.rds
Modified: output/figures/r_objects/epistasis/enrich_dot_inversion.rds
Modified: output/figures/r_objects/epistasis/enrich_dot_supression.rds
Modified: output/figures/r_objects/epistasis/enrich_dot_synergy.rds
Modified: output/figures/r_objects/epistasis/enrich_net_kegg.rds
Modified: output/figures/r_objects/epistasis/epistasis_heatmap.rds
Modified: output/figures/r_objects/epistasis/epistasis_scheme.rds
Modified: output/figures/r_objects/epistasis/epistasis_scheme_lolli.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | f3ed263 | aluetge | 2021-01-14 | code for supplementary figures |
html | f3ed263 | aluetge | 2021-01-14 | code for supplementary figures |
html | adccf9e | aluetge | 2019-11-19 | Build site. |
Rmd | dc58826 | aluetge | 2019-11-19 | wflow_publish(c(“analysis/IGHV.Rmd”, “analysis/trisomy12.Rmd”, “analysis/Notch1.Rmd”, “analysis/TP53.Rmd”)) |
html | 0418f09 | aluetge | 2019-11-17 | Build site. |
Rmd | d5d9635 | aluetge | 2019-11-17 | wflow_publish(“analysis/TP53.Rmd”) |
html | e6f3dd0 | aluetge | 2019-11-13 | Build site. |
Rmd | 109e2cf | aluetge | 2019-11-13 | wflow_publish(c(“analysis/Notch1.Rmd”, “analysis/SF3B1.Rmd”, “analysis/TP53.Rmd”)) |
html | 239b1ce | aluetge | 2019-11-10 | Build site. |
Rmd | 17fcdb5 | aluetge | 2019-11-10 | wflow_publish(c(“analysis/BRAF.Rmd”, “analysis/del11q22.Rmd”, “analysis/Del17p13.Rmd”, “analysis/TP53.Rmd”)) |
html | cc24f92 | aluetge | 2019-07-28 | Build site. |
Rmd | b20d1a9 | aluetge | 2019-06-27 | add variants |
load packages
library(DESeq2)
library(tidyverse)
library(ggsci)
library(matrixStats)
library(piano)
library(reshape2)
library(genefilter)
library(Biobase)
library(ComplexHeatmap)
library(ggplot2)
library(gtable)
library(grid)
library(circlize)
library(gridExtra)
library(ggpubr)
library(RColorBrewer)
library(clusterProfiler)
library(msigdbr)
library(org.Hs.eg.db)
library(enrichplot)
library(here)
load data
data_dir <- here("data")
output_dir <- here("output")
figure_dir <- here("output/figures")
#dds data set. gene expression data + patmetadata
load(paste0(data_dir, "/ddsrnaCLL_150218.RData"))
variant <- "TP53"
#filter for patients without NA in variant
ddsCLL <- ddsCLL[, !is.na(colData(ddsCLL)[,variant])]
#differentially expressed genes between TP53 groups (see differential expression.html)
diff_all <- read.csv(file=paste0(output_dir, "/diff_genes/", variant, "_diffGenes.csv"))
rownames(diff_all) <- diff_all$X
diff_all <- diff_all[which(diff_all$padj < 0.01 ),-1]
diff <- diff_all
mutStatus <- data.frame(colData(ddsCLL)) %>% arrange(TP53)
colnames(ddsCLL) <-colData(ddsCLL)$PatID
ddsCLL <- ddsCLL[, mutStatus$PatID]
#expression data
ddsCLL <- estimateSizeFactors(ddsCLL)
RNAnorm <- varianceStabilizingTransformation(ddsCLL, blind = T)
Expression matrix
#filter for sign. genes in variant
exprMat <- assay(RNAnorm)
exprVariant <- exprMat[rownames(diff),]
colnames(exprVariant) <- colData(ddsCLL)$PatID
exprVariant.new <- log2(exprVariant)
exprVariant.new <- t(scale(t(exprVariant.new)))
exprVariant.new[exprVariant.new > 4] <- 4
exprVariant.new[exprVariant.new < -4] <- -4
rownames(exprVariant.new) <- rowData(RNAnorm[rownames(diff),])$symbol
#colors
colors = colorRamp2(c(-4,-2,0,2,4), c("#2166ac","#4393c3", "#f7f7f7", "#d6604d","#b2182b"))
annocol <- get_palette("jco", 10)
annocolor <- list(TP53 = c("1" = annocol[8], "0" = annocol[9]))
rowcolors <-colorRampPalette(brewer.pal(5, "Set1"))(5)
rowcolors[6] <- "white"
feature <- as.data.frame(colData(ddsCLL)[,c(variant)])
colnames(feature) <- c(variant)
ha_col <- HeatmapAnnotation(df = feature, col = annocolor, annotation_height = unit(c(rep(1.9, 1)), "cm"),
simple_anno_size = unit(1, "cm"),
annotation_name_gp = gpar(fontsize = 22, fontface = "bold"),
annotation_legend_param = list(title_gp = gpar(fontsize = 23),
labels_gp = gpar(fontsize = 18),
grid_height = unit(1.2, "cm"),
grid_width = unit(1.2, "cm")))
#Annotate top 50 genes
diff <- diff_all[which(abs(diff_all$stat) > 6),]
sub_names <- unique(diff$Symbol)
geneIDs <- which(rownames(exprVariant.new) %in% sub_names)
rownames(exprVariant.new)[-geneIDs] <- ""
h1 <- Heatmap(exprVariant.new ,
km = 2,
gap = unit(0.5, "cm"),
cluster_columns = F,
clustering_distance_rows = "pearson",
clustering_method_rows = "ward.D2",
column_title = paste0("Gene signature: ", variant),
col = colors,
column_title_gp = gpar(fontsize = 25, fontface = "bold"),
heatmap_legend_param = list(title = "expr",
title_gp = gpar(fontsize = 23),
grid_height = unit(1.5, "cm"),
grid_width = unit(1.2, "cm"),
gap = unit(2, "cm"),
labels_gp = gpar(fontsize = 18)),
column_dend_height = unit(1, "cm"),
show_row_dend = FALSE,
show_column_names = FALSE ,
show_row_names = TRUE,
row_names_gp = gpar(fontsize = 17),
top_annotation = ha_col)
#svg(filename=paste0(figure_dir, "/", variant, "_gene_expr.svg"), width=30, height=45)
#pdf(file=paste0(figure_dir, "/", variant, "_gene_expr.pdf"), width=22, height=25)
draw(h1 )
#dev.off()
saveRDS(h1, file = paste0(output_dir, "/figures/r_objects/TP53/TP53_heatmap.rds"))
gene_count <- function(gene_nam){
geneEnsID <- rownames(ddsCLL)[which(rowData(ddsCLL)$symbol %in% gene_nam)]
gc <- plotCounts(ddsCLL, gene = geneEnsID, intgroup = variant, returnData=TRUE)
p <- ggboxplot(gc, x = variant, y = "count",
color = variant,
size = 1.2,
palette = "jco",
outlier.shape = NA,
add = "jitter",
add.params = list(size = 2.5),
yscale = "log10",
title = paste(gene_nam),
font.x = 20, font.y = 20, font.legend = 20,
ylab = "normalized counts") + font("xy.text", size = 20) + font("title", size = 20, face = "bold")
saveRDS(p, file = paste0(output_dir, "/figures/r_objects/TP53/de_genes/", gene_nam, ".rds"))
p
}
diff <- diff_all[which(abs(diff_all$stat) > 4.5),]
geneList <- as.character(diff$Symbol)
geneList <- geneList[-which(geneList %in% "")]
lapply(geneList, gene_count)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[16]]
[[17]]
[[18]]
[[19]]
[[20]]
[[21]]
[[22]]
[[23]]
[[24]]
[[25]]
[[26]]
[[27]]
[[28]]
[[29]]
[[30]]
[[31]]
[[32]]
[[33]]
[[34]]
[[35]]
[[36]]
[[37]]
[[38]]
[[39]]
[[40]]
[[41]]
[[42]]
[[43]]
[[44]]
[[45]]
[[46]]
[[47]]
[[48]]
[[49]]
[[50]]
[[51]]
[[52]]
[[53]]
[[54]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[55]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[56]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[57]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[58]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[59]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[60]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
[[61]]
Version | Author | Date |
---|---|---|
adccf9e | aluetge | 2019-11-19 |
Gene sets
#load gene set collection
#Hallmark
gsc <- loadGSC("/home/almut/Dokumente/masterarbeit/data/h.all.v6.0.symbols.gmt", type="gmt")
#Kegg
gsc_Kegg <- loadGSC("/home/almut/Dokumente/masterarbeit/data/c2.cp.kegg.v6.0.symbols.gmt", type="gmt")
#get all de outputs
load(paste0(output_dir,"/desRes_250720.RData"))
difftab <- function(condition){
dataTab <- data.frame(res_list[[condition]])
dataTab$ID <- rownames(dataTab)
#filter using pvalues
dataTab <- dataTab %>%
arrange(padj) %>%
mutate(Symbol = rowData(ddsCLL[ID,])$symbol)# %>%
#filter(abs(log2FoldChange) > 2)
dataTab <- dataTab[!duplicated(dataTab$Symbol),]
dataTab <- dataTab[!is.na(dataTab$Symbol),]
rownames(dataTab) <- dataTab$ID
dataTab
}
diff_res <- difftab(variant)
#clusterProfiler
diff_res <- diff_res[-which(diff_res$Symbol %in% c("", NA)),]
gene_list <- diff_res$stat %>% set_names(diff_res$Symbol)
gene_list <- sort(gene_list, decreasing = TRUE)
gene_lfc <- diff_res$log2FoldChange %>% set_names(diff_res$Symbol)
gene_lfc <- sort(gene_lfc, decreasing = TRUE)
de_gene <- diff_res %>% filter(padj < 0.01)
de_gene <- de_gene$Symbol
de_ens <- diff_res %>% filter(padj < 0.01)
de_ens <- de_ens$ID
#Get Gene IDs
gene_id <- bitr(de_ens, fromType = "ENSEMBL",
toType = c("ENTREZID", "SYMBOL"),
OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning in bitr(de_ens, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 11.54% of input gene IDs are fail to map...
gene_list_id <- bitr(diff_res$ID, fromType = "ENSEMBL",
toType = c("ENTREZID", "SYMBOL"),
OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.06% of input gene IDs are fail to map...
names(gene_list_id) <- c("ID", "ENTREZID", "Symbol")
diff_id <- left_join(gene_list_id, diff_res)
Joining, by = c("ID", "Symbol")
gene_list_id <- diff_id$stat %>% set_names(diff_id$ENTREZID)
gene_list_id <- sort(gene_list_id, decreasing = TRUE)
gene_lfc_id <- diff_id$log2FoldChange %>% set_names(diff_id$ENTREZID)
gene_lfc_id <- sort(gene_lfc_id, decreasing = TRUE)
#convert gsc
m_t2g <- msigdbr(species = "Homo sapiens", category = "H") %>%
dplyr::select(gs_name, human_gene_symbol)
#Hallmark
em2 <- GSEA(gene_list, TERM2GENE = m_t2g, pvalueCutoff = 0.1)
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (0% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
leading edge analysis...
done...
em <- enricher(de_gene, TERM2GENE = m_t2g)
#Kegg
kk <- enrichKEGG(gene_id$ENTREZID,
organism = 'hsa',
pvalueCutoff = 0.2)
kk2 <- gseKEGG(geneList = gene_list_id,
organism = 'hsa',
nPerm = 1000,
minGSSize = 50,
pvalueCutoff = 0.2,
verbose = FALSE)
kk2x <- setReadable(kk2, 'org.Hs.eg.db', 'ENTREZID')
Visualize ClusterProfiler results
barplot(kk, showCategory=5)
barplot(em, showCategory=5)
dot1 <- clusterProfiler::dotplot(em2, showCategory=10) + ggtitle("GSEA for TP53") +
theme_pubr() +
theme(legend.position="right") +
theme(plot.title = element_text(face = "bold"))
wrong orderBy parameter; set to default `orderBy = "x"`
dot1
dotplot(em, showCategory=10) + ggtitle("Enrichment for TP53")
wrong orderBy parameter; set to default `orderBy = "x"`
dotplot(kk2, showCategory=10) + ggtitle("GSEA for TP53")
wrong orderBy parameter; set to default `orderBy = "x"`
dot2 <- clusterProfiler::dotplot(kk, showCategory=10) + ggtitle("Enrichment for TP53") +
theme_pubr() +
theme(legend.position="right") +
theme(plot.title = element_text(face = "bold"))
wrong orderBy parameter; set to default `orderBy = "x"`
dot2
ridgeplot(em2)
Picking joint bandwidth of 0.302
ridgeplot(kk2)
Picking joint bandwidth of 0.291
gseaplot2(em2, geneSetID = 3, title = em2$Description[3])
gseaplot2(kk2, geneSetID = 2, title = kk2$Description[2])
saveRDS(dot1, file = paste0(output_dir, "/figures/r_objects/TP53/enrich_dot_hm.rds"))
saveRDS(dot2, file = paste0(output_dir, "/figures/r_objects/TP53/enrich_dot2.rds"))
network plot
# Networks Hallmark
em2_sub <- em2
em2_sub@result <- em2@result[which(em2@result$Description %in% c("HALLMARK_OXIDATIVE_PHOSPHORYLATION",
"HALLMARK_DNA_REPAIR",
"HALLMARK_G2M_CHECKPOINT")),]
p_net <- cnetplot(em2_sub, categorySize="pvalue", foldChange=gene_lfc) +
scale_colour_gradientn(colors = c("#581845", "#900C3F", "#C70039", "#FF5733", "#FFC300", "#DAF7A6")) +
guides(size = FALSE) +
labs(color = "logFC")
Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.
p_net
# Networks KEGG
kk2_sub <- kk2x
kk2_sub@result <- kk2x@result[which(kk2x@result$Description %in% c("p53 signaling pathway",
"Oxidative phosphorylation",
"Transcriptional misregulation in cancer"
)),]
pnet_kegg <- cnetplot(kk2_sub, categorySize="pvalue", foldChange=gene_lfc) +
scale_color_gradient(high="blue", low="red") +
guides(size = FALSE) +
labs(color = "logFC")
Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.
pnet_kegg
saveRDS(pnet_kegg, file = paste0(output_dir, "/figures/r_objects/TP53/enrich_net_kegg.rds"))
saveRDS(p_net, file = paste0(output_dir, "/figures/r_objects/TP53/enrich_net_hm.rds"))
heatplot
heatplot(em2, foldChange=gene_lfc, showCategory = 3)
heatplot(kk2x, foldChange=gene_lfc, showCategory = 3 )
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.7 LTS
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
locale:
[1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
[3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
[5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] here_0.1 enrichplot_1.4.0
[3] org.Hs.eg.db_3.8.2 AnnotationDbi_1.46.0
[5] msigdbr_7.0.1 clusterProfiler_3.12.0
[7] RColorBrewer_1.1-2 ggpubr_0.2
[9] magrittr_1.5 gridExtra_2.3
[11] circlize_0.4.6 gtable_0.3.0
[13] ComplexHeatmap_2.0.0 genefilter_1.66.0
[15] reshape2_1.4.3 piano_2.0.2
[17] ggsci_2.9 forcats_0.4.0
[19] stringr_1.4.0 dplyr_0.8.1
[21] purrr_0.3.2 readr_1.3.1
[23] tidyr_0.8.3 tibble_2.1.3
[25] ggplot2_3.1.1 tidyverse_1.2.1
[27] DESeq2_1.24.0 SummarizedExperiment_1.14.0
[29] DelayedArray_0.10.0 BiocParallel_1.18.0
[31] matrixStats_0.54.0 Biobase_2.44.0
[33] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0
[35] IRanges_2.18.1 S4Vectors_0.22.0
[37] BiocGenerics_0.30.0
loaded via a namespace (and not attached):
[1] shinydashboard_0.7.1 tidyselect_0.2.5 RSQLite_2.1.1
[4] htmlwidgets_1.3 munsell_0.5.0 DT_0.17
[7] withr_2.1.2 colorspace_1.4-1 GOSemSim_2.10.0
[10] knitr_1.23 rstudioapi_0.10 DOSE_3.10.2
[13] labeling_0.3 git2r_0.25.2 slam_0.1-45
[16] urltools_1.7.3 GenomeInfoDbData_1.2.1 polyclip_1.10-0
[19] bit64_0.9-7 farver_2.0.3 rprojroot_1.3-2
[22] generics_0.0.2 xfun_0.7 sets_1.0-18
[25] R6_2.4.0 clue_0.3-57 graphlayouts_0.6.0
[28] locfit_1.5-9.1 bitops_1.0-6 fgsea_1.10.0
[31] gridGraphics_0.5-0 assertthat_0.2.1 promises_1.0.1
[34] scales_1.0.0 ggraph_2.0.2 nnet_7.3-15
[37] tidygraph_1.1.2 workflowr_1.4.0 rlang_0.3.4
[40] GlobalOptions_0.1.0 splines_3.6.3 lazyeval_0.2.2
[43] acepack_1.4.1 broom_0.5.2 europepmc_0.3
[46] checkmate_1.9.3 BiocManager_1.30.4 yaml_2.2.0
[49] modelr_0.1.4 backports_1.1.4 httpuv_1.5.1
[52] qvalue_2.16.0 Hmisc_4.2-0 tools_3.6.3
[55] relations_0.6-8 ggplotify_0.0.5 gplots_3.0.1.1
[58] ggridges_0.5.2 Rcpp_1.0.1 plyr_1.8.4
[61] base64enc_0.1-3 visNetwork_2.0.7 progress_1.2.2
[64] zlibbioc_1.30.0 RCurl_1.95-4.12 prettyunits_1.0.2
[67] rpart_4.1-15 GetoptLong_0.1.7 viridis_0.5.1
[70] cowplot_0.9.4 haven_2.1.0 ggrepel_0.8.1
[73] cluster_2.1.1 fs_1.3.1 data.table_1.12.2
[76] DO.db_2.9 triebeard_0.3.0 whisker_0.3-2
[79] hms_0.4.2 shinyjs_1.0 mime_0.7
[82] evaluate_0.14 xtable_1.8-4 XML_3.98-1.20
[85] readxl_1.3.1 shape_1.4.4 compiler_3.6.3
[88] KernSmooth_2.23-15 crayon_1.3.4 htmltools_0.3.6
[91] later_0.8.0 Formula_1.2-3 geneplotter_1.62.0
[94] lubridate_1.7.4 DBI_1.0.0 tweenr_1.0.1
[97] MASS_7.3-53.1 Matrix_1.3-2 cli_1.1.0
[100] marray_1.62.0 gdata_2.18.0 igraph_1.2.4.1
[103] pkgconfig_2.0.2 rvcheck_0.1.8 foreign_0.8-76
[106] xml2_1.2.0 annotate_1.62.0 XVector_0.24.0
[109] rvest_0.3.4 digest_0.6.19 rmarkdown_1.13
[112] cellranger_1.1.0 fastmatch_1.1-0 htmlTable_1.13.1
[115] shiny_1.3.2 gtools_3.8.1 rjson_0.2.20
[118] nlme_3.1-152 jsonlite_1.6 viridisLite_0.3.0
[121] limma_3.40.2 pillar_1.4.1 lattice_0.20-38
[124] httr_1.4.0 survival_2.44-1.1 GO.db_3.8.2
[127] glue_1.3.1 UpSetR_1.4.0 png_0.1-7
[130] bit_1.1-14 ggforce_0.3.1 stringi_1.4.3
[133] blob_1.1.1 latticeExtra_0.6-28 caTools_1.17.1.2
[136] memoise_1.1.0