Last updated: 2020-09-13

Checks: 6 1

Knit directory: transcriptome_cll/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190511) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/figures/r_objects/BRAF/enrichment/

Untracked files:
    Untracked:  analysis/methylation_epistasis.Rmd
    Untracked:  docs/figure/methylation_epistasis.Rmd/
    Untracked:  output/desRes_250720.RData
    Untracked:  output/diff_meth_IP_vs_HP_LP.rds
    Untracked:  output/figures/paper_fig/figure1/
    Untracked:  output/figures/paper_fig/figure_IGHV/
    Untracked:  output/figures/paper_fig/figure_c1c2.pdf
    Untracked:  output/figures/paper_fig/figure_c1c2.svg
    Untracked:  output/figures/paper_fig/figure_c1c2/
    Untracked:  output/figures/paper_fig/figure_epi/
    Untracked:  output/figures/paper_fig/figure_epi_meth.pdf
    Untracked:  output/figures/paper_fig/figure_epi_meth.svg
    Untracked:  output/figures/paper_fig/figure_variants_mut_load.pdf
    Untracked:  output/figures/paper_fig/figure_variants_mut_load.svg
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/AACSP1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ADAMTS7.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ADGRB2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/AKAP12.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ANGPT2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ANKRD62.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ARHGAP22.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ASAP3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/BCL7A.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/BDKRB2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/BTBD16.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/C10orf10.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/C10orf35.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/C14orf132.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/C1orf106.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CACHD1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CACNB2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CAMP.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CECR2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CHL1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CHMP4C.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CHST3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CLEC2B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CLEC9A.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CMPK2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CNPY1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CNR1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/COBLL1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/COL1A2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CORO2B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CPNE8.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CPXM1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CRY1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CSGALNACT1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/CSMD1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/DGKH.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/DPP4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/DPY19L2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/DPYD-AS1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/DUOXA2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/EBF1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/EFNA2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/EGLN3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FAIM2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FAM20C.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FBXO27.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FGFR1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FIRRE.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FKBP10.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FRMD4B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FRMPD1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/FXYD6.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/GGT2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/GGT3P.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/GLDN.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/GPR34.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/GPSM1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/GTSF1L.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/HAR1B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/HNRNPA1P57.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/HTRA3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IFI44L.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IFNA14.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IFNA21.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IFNB1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IFNW1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IFNWP9.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGHV2-5.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGHV3-15.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGHV3-48.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGHV3-7.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGHV4-34.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGKV1-16.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGKV1-8.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGKV2-24.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGKV3-11.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGKV3D-15.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGKV4-1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGLC7.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGLV2-14.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IGLV3-9.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/INA.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/INSR.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/IQSEC3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/JUP.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KALRN.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KANK2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KCNJ2-AS1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KCNJ2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KCNK9.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KIAA0895.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KLK4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/KRT19P2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/L3MBTL4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LDOC1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LINC00930.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LINC00982.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LINC01033.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LINC01866.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LINC02170.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LPL.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LRMDA.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LRP5.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/LYPD6B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MAPK4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MAST4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MCRIP2P1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MOCOS.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MRO.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MTMR11.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MYL12BP2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MYL9.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MYLK-AS2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MYLK.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/MYO3A.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/NAP1L2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/NCAPGP1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/NEURL1B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/NGEF.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/NPTX1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/NUGGC.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/OSBPL5.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/OVCH1-AS1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/P4HA2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PCDHGC3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PDLIM3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PLD1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PLEK2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PLEKHG4B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PPP2R2C.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PRAMENP.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PRR18.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PTGFRN.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PTH2R.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PTPRB.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/PXDNL.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/RASAL1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/RASSF6.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/RNA5SP460.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/RPS20P22.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SCAMP5.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SCHIP1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SH3BP4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SH3RF1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SLC12A1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SLC16A9.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SLC39A12.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SLC4A10.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SLC4A8.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SMIM10.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SNORA70F.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SORT1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/SPTA1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TAS1R1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TERT.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TFAP2A-AS1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TFEC.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TGFB2-AS1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/THAP10.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/THRB.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TMEM200A.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TP63.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TRPM4.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/TSPAN13.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/UNC13B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/VSIG2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/WNK2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/WNK3.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/WNT11.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/WNT5A.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/WNT5B.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/WSCD2.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZAR1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZNF112.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZNF334.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZNF663P.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZNF667-AS1.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZNF667.rds
    Untracked:  output/figures/r_objects/Methylation_IP/de_genes/ZNF804A.rds
    Untracked:  output/figures/r_objects/epi_meth/
    Untracked:  output/figures/r_objects/epistasis/de_genes/ABLIM2.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/CAMK2N1.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/CRIM1.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/E2F2.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/ENPP3.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/EPHB1.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/FAM212A.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/FGD6.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/FGF2.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/GP5.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/JAG1.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/RAI14.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/SLC4A8.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/SYBU.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/TCTN1.rds
    Untracked:  output/figures/r_objects/epistasis/de_genes/TMPRSS11E.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_dot2.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_dot_buffering.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_dot_hm.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_dot_inversion.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_dot_supression.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_dot_synergy.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_net_hm.rds
    Untracked:  output/figures/r_objects/epistasis/enrich_net_kegg.rds
    Untracked:  output/figures/r_objects/epistasis/epi_methylation_heatmap.rds
    Untracked:  output/figures/r_objects/epistasis/epistasis_scheme_lolli.rds
    Untracked:  output/figures/r_objects/ighv/enrich_dot2.rds
    Untracked:  output/figures/r_objects/ighv/enrich_dot_hm.rds
    Untracked:  output/figures/r_objects/ighv/enrich_net_hm.rds
    Untracked:  output/figures/r_objects/ighv/enrich_net_kegg.rds
    Untracked:  output/figures/r_objects/mean_sd_by_c1c2.rds
    Untracked:  output/figures/r_objects/trisomy12/de_genes/HRAS.rds
    Untracked:  output/figures/r_objects/trisomy12/de_genes/NT5E.rds
    Untracked:  output/figures/r_objects/trisomy12/de_genes/PTPN6.rds
    Untracked:  output/figures/r_objects/trisomy12/de_genes/VAV1.rds
    Untracked:  output/figures/r_objects/trisomy12/enrich_dot2.rds
    Untracked:  output/figures/r_objects/trisomy12/enrich_dot_hm.rds
    Untracked:  output/figures/r_objects/trisomy12/enrich_net_hm.rds
    Untracked:  output/figures/r_objects/trisomy12/enrich_net_kegg.rds
    Untracked:  output/res_ICGC_epistatsis_ighv_tri12.rds

Unstaged changes:
    Modified:   analysis/IGHV.Rmd
    Modified:   analysis/de_analysis.Rmd
    Modified:   analysis/epistasis.Rmd
    Modified:   analysis/general_eda.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/methylation_IP_vs_HPLP.Rmd
    Modified:   analysis/summary_de_genes.Rmd
    Modified:   analysis/summary_variants.Rmd
    Modified:   analysis/trisomy12.Rmd
    Modified:   output/cluster500exprgenes.pdf
    Modified:   output/diff_genes/ACTN2_diffGenes.csv
    Modified:   output/diff_genes/ATM_diffGenes.csv
    Modified:   output/diff_genes/BRAF_diffGenes.csv
    Modified:   output/diff_genes/Chromothripsis_diffGenes.csv
    Modified:   output/diff_genes/EGR2_diffGenes.csv
    Modified:   output/diff_genes/IGHV_diffGenes.csv
    Modified:   output/diff_genes/KLHL6_diffGenes.csv
    Modified:   output/diff_genes/KRAS_diffGenes.csv
    Modified:   output/diff_genes/MED12_diffGenes.csv
    Modified:   output/diff_genes/MGA_diffGenes.csv
    Modified:   output/diff_genes/NFKBIE_diffGenes.csv
    Modified:   output/diff_genes/NOTCH1_diffGenes.csv
    Modified:   output/diff_genes/PCLO_diffGenes.csv
    Modified:   output/diff_genes/SF3B1_diffGenes.csv
    Modified:   output/diff_genes/TP53_diffGenes.csv
    Modified:   output/diff_genes/XPO1_diffGenes.csv
    Modified:   output/diff_genes/del11q22.3_diffGenes.csv
    Modified:   output/diff_genes/del13q14_diffGenes.csv
    Modified:   output/diff_genes/del15q15.1_diffGenes.csv
    Modified:   output/diff_genes/del17p13_diffGenes.csv
    Modified:   output/diff_genes/del8p12_diffGenes.csv
    Modified:   output/diff_genes/gain14q32_diffGenes.csv
    Modified:   output/diff_genes/gain2p25.3_diffGenes.csv
    Modified:   output/diff_genes/gain8q24_diffGenes.csv
    Modified:   output/diff_genes/meth_IP_vs_HP_diffGenes.csv
    Modified:   output/diff_genes/trisomy12_diffGenes.csv
    Modified:   output/figures/paper_fig/figure1.pdf
    Modified:   output/figures/paper_fig/figure1.svg
    Modified:   output/figures/paper_fig/figure_IGHV.pdf
    Modified:   output/figures/paper_fig/figure_IGHV.svg
    Modified:   output/figures/paper_fig/figure_IP_group.pdf
    Modified:   output/figures/paper_fig/figure_IP_group.svg
    Modified:   output/figures/paper_fig/figure_epi.pdf
    Modified:   output/figures/paper_fig/figure_epi.svg
    Modified:   output/figures/paper_fig/figure_tri12.pdf
    Modified:   output/figures/paper_fig/figure_tri12.svg
    Modified:   output/figures/paper_fig/generate_figures.Rmd
    Modified:   output/figures/r_objects/BRAF/de_genes/ABCC6P1.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/ARHGEF37.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/BIRC5.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/BNIP3P41.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/CA1.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/DHRS9.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/DSP.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/FAM184A.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/FAM96AP2.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/FLT4.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/HCAR1.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/HJURP.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/IGHV3-11.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/IGHV3-23.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/IQCB2P.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/IQGAP3.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/KIF14.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/KIF18B.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/LINC00658.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/LINC01203.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/LINC01358.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/MELK.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/NRP2.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/OR2B6.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/PKMYT1.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/PLIN5.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/PPP1R14C.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/PPP1R3C.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/PTPRB.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/RGPD2.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/RNF157.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/RPSAP69.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/SAMD12.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/SEPT3.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/SERPINE2.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/SH3RF1.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/SLC38A11.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/SPRY4.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/TAGLN3.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/TFEC.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/TMEM151B.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/TMPRSS3.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/ZFHX4.rds
    Modified:   output/figures/r_objects/BRAF/de_genes/ZNF503-AS1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/ARHGAP32.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/BARX2.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/CDYLP1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/CLDN1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/DAZL.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/ELFN2.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/ENPP3.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/FAM41C.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/FST.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/GRIK3.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/ICOS.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGHA2.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGHV1-69.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGHV3-21.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGKV1-12.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGKV1-39.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGKV1OR-2.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGKV3-15.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGLC6.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGLV2-11.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/IGLV3-21.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/LAMC3.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/LINC01203.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/LINC01250.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/MECOM.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/MIR4538.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/MRGPRX4.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/MYB.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/NETO1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/NREP.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/NRIP1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/PHLPP1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/PON1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/PPP1R9A.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/PRDM16.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/RNASE1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/RSPO1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/SEPT10.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/SGMS2.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/SLC25A27.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/SNCAIP.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/SOWAHC.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/SOX11.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/STARD4-AS1.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/T.rds
    Modified:   output/figures/r_objects/Methylation_IP/de_genes/TGFB2.rds
    Modified:   output/figures/r_objects/Methylation_IP/meth_ip_heatmap.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/BCL2A1.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/CHAD.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/EBF1.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/EBF4.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/EML6.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/EPHB6.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/GEN1.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/LEF1.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/PPP1R14A.rds
    Modified:   output/figures/r_objects/epistasis/de_genes/TIMELESS.rds
    Modified:   output/figures/r_objects/epistasis/epistasis_heatmap.rds
    Modified:   output/figures/r_objects/epistasis/epistasis_scheme.rds
    Modified:   output/figures/r_objects/heatmap_top500genes.rds
    Modified:   output/figures/r_objects/ighv/de_genes/ADAM29.rds
    Modified:   output/figures/r_objects/ighv/de_genes/ADAMTS7.rds
    Modified:   output/figures/r_objects/ighv/de_genes/ATOX1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/BCAT1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/C1orf106.rds
    Modified:   output/figures/r_objects/ighv/de_genes/CD38.rds
    Modified:   output/figures/r_objects/ighv/de_genes/CDHR1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/CLEC9A.rds
    Modified:   output/figures/r_objects/ighv/de_genes/CPNE8.rds
    Modified:   output/figures/r_objects/ighv/de_genes/DGKH.rds
    Modified:   output/figures/r_objects/ighv/de_genes/DNAH14.rds
    Modified:   output/figures/r_objects/ighv/de_genes/DPY19L2.rds
    Modified:   output/figures/r_objects/ighv/de_genes/EGR3.rds
    Modified:   output/figures/r_objects/ighv/de_genes/FARP1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/FGFR1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/FRMD4B.rds
    Modified:   output/figures/r_objects/ighv/de_genes/GFI1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/IGLC6.rds
    Modified:   output/figures/r_objects/ighv/de_genes/IGLV3-19.rds
    Modified:   output/figures/r_objects/ighv/de_genes/KANK2.rds
    Modified:   output/figures/r_objects/ighv/de_genes/KCNK9.rds
    Modified:   output/figures/r_objects/ighv/de_genes/LDOC1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/LPL.rds
    Modified:   output/figures/r_objects/ighv/de_genes/MAPK4.rds
    Modified:   output/figures/r_objects/ighv/de_genes/MSI2.rds
    Modified:   output/figures/r_objects/ighv/de_genes/MYL12BP2.rds
    Modified:   output/figures/r_objects/ighv/de_genes/MYLK.rds
    Modified:   output/figures/r_objects/ighv/de_genes/NETO1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/NFAT5.rds
    Modified:   output/figures/r_objects/ighv/de_genes/NPTX1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/NUGGC.rds
    Modified:   output/figures/r_objects/ighv/de_genes/PEG10.rds
    Modified:   output/figures/r_objects/ighv/de_genes/PLD1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/PLEKHG4B.rds
    Modified:   output/figures/r_objects/ighv/de_genes/PRR18.rds
    Modified:   output/figures/r_objects/ighv/de_genes/SEPT10.rds
    Modified:   output/figures/r_objects/ighv/de_genes/SLC12A1.rds
    Modified:   output/figures/r_objects/ighv/de_genes/SLC16A9.rds
    Modified:   output/figures/r_objects/ighv/de_genes/SOWAHC.rds
    Modified:   output/figures/r_objects/ighv/de_genes/VSIG10.rds
    Modified:   output/figures/r_objects/ighv/de_genes/WSB2.rds
    Modified:   output/figures/r_objects/ighv/de_genes/ZAP70.rds
    Modified:   output/figures/r_objects/ighv/de_genes/ZNF334.rds
    Modified:   output/figures/r_objects/ighv/ighv_enrichment_dn.rds
    Modified:   output/figures/r_objects/ighv/ighv_gene_status.rds
    Modified:   output/figures/r_objects/ighv/ighv_heatmap.rds
    Modified:   output/figures/r_objects/pca_top500genes.rds
    Modified:   output/figures/r_objects/summary_de_genes_all.rds
    Modified:   output/figures/r_objects/summary_var_freq_IGHV.rds
    Modified:   output/figures/r_objects/summary_variant_patient.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/ABLIM2.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/ACAP3.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/ADD2.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/CABLES1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/CACNA1D.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/CHDH.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/CHFR.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/CORO2B.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/CTLA4.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/DIRAS1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/EML6.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/EPHB1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/FAHD2B.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/FAM212A.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/GPR146.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/IGHV2-5.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/IGKV1-17.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/IGLV3-21.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/IGLV6-57.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/IQSEC1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/KCND3.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/KLF3-AS1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/LARGE1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/LIX1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/LRRC66.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/MERTK.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/MIR4489.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/MOXD1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/PCBD1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/PCSK7.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/PODXL.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/PPP1R14A.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/RASGRF1.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/RHBDF2.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/RWDD2A.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/SLC16A10.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/SNX22.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/SOCS3.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/SPPL2B.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/SYN3.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/SYNPO.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/TBC1D16.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/TBC1D29.rds
    Modified:   output/figures/r_objects/trisomy12/de_genes/UACA.rds
    Modified:   output/figures/r_objects/trisomy12/tri12_dosage.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 712d2e9 aluetge 2019-11-19 Build site.
Rmd a132f77 aluetge 2019-11-19 wflow_publish(c(“analysis/epistasis.Rmd”, “analysis/Gain8q24.Rmd”, “analysis/general_eda.Rmd”, “analysis/Med12.Rmd”))
html 2cd07c0 aluetge 2019-11-17 Build site.
Rmd d607508 aluetge 2019-11-17 wflow_publish(c(“analysis/epistasis.Rmd”))
html cc24f92 aluetge 2019-07-28 Build site.

Epistasis in CLL

We find correlation and coexpression of several muatations and genetic variants in CLL. How is this reflected on the transcriptome level? Is there a connection?

IGHV and Trisomy12

IGHV and trisomy12 are the most severe genomic modification on transcriptome level. How do they affect each other?

load packages

library(Biobase)
library(ggplot2)
library(genefilter)
library(DESeq2)
library(gridExtra)
library(reshape2)
library(dplyr)
library(geneplotter)
library(RColorBrewer)
library(ComplexHeatmap)
library(circlize)
library(piano)
library(ggpubr)
library(here)
library(clusterProfiler)
library(msigdbr)
library(org.Hs.eg.db)
library(enrichplot)
library(purrr)
library(data.table)
set.seed(1000)

load datasets

data_dir <- here("data")
output_dir <- here("output")
figure_dir <- here("output/figures")

#Countdata
load(paste0(data_dir, "/ddsrnaCLL_150218.RData"))

Epistasis model

Use deseq2 to determine genes, which can be described by epistatisc interactions (focus on trisomy12 and IGHV)

###Deseq
ddsCLL <- estimateSizeFactors(ddsCLL)

#exclude NAs
ddsCLL <- ddsCLL[,!is.na(colData(ddsCLL)[,"IGHV"])]
ddsCLL <- ddsCLL[,!is.na(colData(ddsCLL)[,"trisomy12"])]

RNAnorm <- varianceStabilizingTransformation(ddsCLL, blind=T)
colnames(RNAnorm) <- colData(RNAnorm)$PatID 

#design matrix with interaction term
design(ddsCLL) <- as.formula(paste("~ IGHV + trisomy12 + IGHV:trisomy12"))
#rnaRaw <- DESeq(ddsCLL, betaPrior = FALSE)
#resultsNames(rnaRaw)
#res <- results(rnaRaw, name = "IGHVU.trisomy121")

#saveRDS(res, paste0(output_dir, "/res_epistatsis_ighv_tri12.rds"))
res <- readRDS(paste0(output_dir, "/res_epistatsis_ighv_tri12.rds"))

resOrdered <- res[order(res$pvalue),]
resOrderedTab <- as.data.frame(resOrdered)
resOrderedTab$symbol <- rowData(RNAnorm[rownames(resOrdered),])$symbol

resSig <- subset(resOrdered, padj < 0.1)
resTab <- as.data.frame(resSig)
resTab$symbol <- rowData(RNAnorm[rownames(resSig),])$symbol

Gene expression of epistatic genes

Heatmap of interacting genes

  #filter by variant
  sig_Genes <- rownames(resSig)
  
  #gene expression data
  geneExpression = assay(RNAnorm)[sig_Genes,]
  rownames(geneExpression) <- rowData(RNAnorm)$symbol[which(rownames(RNAnorm) %in% sig_Genes)]

  #scale and censor
  geneExpression_new <- log2(geneExpression)
  geneExpression_new<- t(scale(t(geneExpression_new)))
  geneExpression_new[geneExpression_new > 4] <- 4
  geneExpression_new[geneExpression_new < -4] <- -4

  mutnames <- c("none", "IGHV", "trisomy12", "both")
  
  mutStatus <- data.frame(colData(RNAnorm)) %>% mutate(IGHVnew = ifelse(IGHV %in% "M", 1, 0)) %>% 
    dplyr::select(-IGHV) %>% mutate(IGHV = IGHVnew) %>% 
    dplyr::select_("PatID", "IGHV", "trisomy12") %>% 
    mutate_("namA" = "IGHV", "namB" = "trisomy12") %>% 
    mutate(naA = as.numeric(as.character(namA))) %>% 
    mutate(naB = as.numeric(as.character(namB))) %>% 
    mutate(mut = factor(mutnames[1 + naA + 2 * naB], levels = mutnames)) %>% arrange(mut)
Warning: select_() is deprecated. 
Please use select() instead

The 'programming' vignette or the tidyeval book can help you
to program with select() : https://tidyeval.tidyverse.org
This warning is displayed once per session.
Warning: mutate_() is deprecated. 
Please use mutate() instead

The 'programming' vignette or the tidyeval book can help you
to program with mutate() : https://tidyeval.tidyverse.org
This warning is displayed once per session.
  geneExpression_new <- geneExpression_new[,mutStatus$PatID]


  #colors
  #colors <- colorRampPalette( rev(brewer.pal(11,"RdBu")) )(255)
  colors = colorRamp2(c(-4, -1, 0, 1, 4), c("#2166ac", "#4393c3", "#f7f7f7", "#d6604d", "#b2182b"))
  annocol <- get_palette("uchicago", 9)
  chromcol <- list(chromosome = c("12" = annocol[6], "other" = annocol[5]))
  
  annocolor <- list(Variant = c("none" = annocol[3], "IGHV" = annocol[5], "trisomy12" = annocol[7], "both" = annocol[9]))
  names(annocolor$Variant) <- c("none", "IGHV", "trisomy12", "both")
  mutationStatus <- data.frame(mutStatus$mut)
  rownames(mutationStatus) <- mutStatus$PatID
  colnames(mutationStatus) <- "Variant"

  #Column annotation
  ha_col = HeatmapAnnotation(df = mutationStatus, col = annocolor, annotation_height = unit(1.8, "cm"),
                             annotation_legend_param = list(title_gp = gpar(fontsize = 23), 
                                                            labels_gp = gpar(fontsize = 18),  
                                                            grid_height = unit(0.7, "cm"), 
                                                            grid_width = unit(0.3, "cm"), 
                                                            gap = unit(15, "mm")))

  #rowcluster
  geneExpression_dist <- dist(geneExpression_new)
  rowcluster = hclust(geneExpression_dist, method = "ward.D2")

  #heatmap
  h1 <- Heatmap(geneExpression_new, 
                col = colors,
                column_title = paste0("Gene interactions:", "IGHV", "-", "trisomy12"), 
                column_title_gp = gpar(fontsize = 23, fontface = "bold"), 
                heatmap_legend_param = list(title = "Expr", 
                                            title_gp = gpar(fontsize = 23), 
                                            grid_height = unit(0.7, "cm"), 
                                            grid_width = unit(0.3, "cm"), 
                                            gap = unit(15, "mm"), 
                                            labels_gp = gpar(fontsize = 18), 
                                            labels = c(-4, -1, 0, 1, 4)), 
                row_dend_width = unit(0.7, "cm"), 
                show_row_dend = T, 
                show_column_names =FALSE ,
                top_annotation = ha_col,
                show_row_names = FALSE, 
                show_column_dend = FALSE, 
                row_title_gp = gpar(fontsize = 0),
                cluster_columns = FALSE, 
                cluster_rows = rowcluster, 
                split = 4, gap = unit(0.2,"cm"), 
                column_order = mutStatus$PatID)

  #chromosome annotation
  #chromosome distribution
chrom <- as.data.frame(rowData(RNAnorm[sig_Genes,])$chromosome)
rownames(chrom) <- sig_Genes
colnames(chrom ) <- "chromosome"
#select for chromosome12
chrom$chromosome <- ifelse(chrom$chromosome == 12, 12, "other")
  
  ha_chrom = rowAnnotation(df = chrom, 
                           col = chromcol, 
                           annotation_width = unit(0.8, "cm"), 
                           annotation_legend_param = list(ncol = 2, 
                                                          title_gp = gpar(fontsize = 23), 
                                                          labels_gp = gpar(fontsize = 18),  
                                                          grid_height = unit(0.7, "cm"), 
                                                          grid_width = unit(0.3, "cm")))
  
   
  #Annotate most significant genes
  top50 <-  rownames(resTab[which(abs(resTab$stat) > 5 ),])
  int_genes <- rowData(RNAnorm[top50,])$symbol

subset <- as.data.frame(rowData(RNAnorm[sig_Genes,]))
subset <- subset[-which(subset$symbol %in% ""),]
subset <- subset[-which(subset$symbol %in% NA),]

subset <- subset[which(subset$symbol %in% int_genes),]
rownames(subset) <- subset$symbol
geneIDs <- which(rownames(geneExpression_new) %in% rownames(subset))
labels <- rownames(geneExpression_new)[geneIDs]
ha_genes <- rowAnnotation(link = row_anno_link(at = geneIDs, labels = labels, 
                                               labels_gp = gpar(fontsize = 15)), 
                          width = unit(2.5, "cm"))
Warning: anno_link() is deprecated, please use anno_mark() instead.
  #svg(filename="~/git/figures_thesis/gene_expr/epistatsisTri12IGHV.svg", width=30, height=50)
  #pdf(file="/home/almut/Dokumente/git/Transcriptome_CLL/paper/figures/epistasis_Deseq.pdf", width=35, height=45)
p1 <- draw(h1 + ha_genes ) 

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28
  #dev.off()
  #draw(h1 + ha_chrom + ha_genes)
#saveRDS(p1, file = paste0(output_dir, "/figures/r_objects/epistasis/epistasis_heatmap.rds"))
IGHVTri12 <- list("sig_Genes" = sig_Genes, "geneExp" = geneExpression_new, "h1"= h1)

Heatmap filtered of interacting genes

 resSig <- subset(resOrdered, padj < 0.01 & abs(stat) > 4)
  #filter by variant
  sig_Genes <- rownames(resSig)
  
  #gene expression data
  geneExpression = assay(RNAnorm)[sig_Genes,]
  rownames(geneExpression) <- rowData(RNAnorm)$symbol[which(rownames(RNAnorm) %in% sig_Genes)]

  #scale and censor
  geneExpression_new <- log2(geneExpression)
  geneExpression_new<- t(scale(t(geneExpression_new)))
  geneExpression_new[geneExpression_new > 4] <- 4
  geneExpression_new[geneExpression_new < -4] <- -4

  mutnames <- c("none", "IGHV", "trisomy12", "both")
  
  mutStatus <- data.frame(colData(RNAnorm)) %>% mutate(IGHVnew = ifelse(IGHV %in% "M", 1, 0)) %>% 
    dplyr::select(-IGHV) %>% mutate(IGHV = IGHVnew) %>% 
    dplyr::select_("PatID", "IGHV", "trisomy12") %>% 
    mutate_("namA" = "IGHV", "namB" = "trisomy12") %>% 
    mutate(naA = as.numeric(as.character(namA))) %>% 
    mutate(naB = as.numeric(as.character(namB))) %>% 
    mutate(mut = factor(mutnames[1 + naA + 2 * naB], levels = mutnames)) %>% arrange(mut)

  geneExpression_new <- geneExpression_new[,mutStatus$PatID]


  #colors
  #colors <- colorRampPalette( rev(brewer.pal(11,"RdBu")) )(255)
  colors = colorRamp2(c(-4, -1, 0, 1, 4), c("#2166ac", "#4393c3", "#f7f7f7", "#d6604d", "#b2182b"))
  annocol <- get_palette("uchicago", 9)
  chromcol <- list(chromosome = c("12" = annocol[6], "other" = annocol[5]))
  
  annocolor <- list(Variant = c("none" = annocol[3], "IGHV" = annocol[5], "trisomy12" = annocol[7], "both" = annocol[9]))
  names(annocolor$Variant) <- c("none", "IGHV", "trisomy12", "both")
  mutationStatus <- data.frame(mutStatus$mut)
  rownames(mutationStatus) <- mutStatus$PatID
  colnames(mutationStatus) <- "Variant"

  #Column annotation
  ha_col = HeatmapAnnotation(df = mutationStatus, col = annocolor, simple_anno_size = unit(0.9, "cm"),
                             annotation_legend_param = list(title_gp = gpar(fontsize = 23), 
                                                            labels_gp = gpar(fontsize = 18),  
                                                            grid_height = unit(1, "cm"), 
                                                            grid_width = unit(0.3, "cm"), 
                                                            gap = unit(15, "mm")))

  #rowcluster
  geneExpression_dist <- dist(geneExpression_new)
  rowcluster = hclust(geneExpression_dist, method = "ward.D2")

  #heatmap
  h1 <- Heatmap(geneExpression_new, 
                col = colors,
                column_title = paste0("Gene interactions:", "IGHV", "-", "trisomy12"), 
                column_title_gp = gpar(fontsize = 23, fontface = "bold"), 
                heatmap_legend_param = list(title = "Expr", 
                                            title_gp = gpar(fontsize = 23), 
                                            grid_height = unit(0.7, "cm"), 
                                            grid_width = unit(0.3, "cm"), 
                                            gap = unit(15, "mm"), 
                                            labels_gp = gpar(fontsize = 18), 
                                            labels = c(-4, -1, 0, 1, 4)), 
                row_dend_width = unit(0.7, "cm"), 
                show_row_dend = T, 
                show_column_names =FALSE ,
                top_annotation = ha_col,
                show_row_names = FALSE, 
                show_column_dend = FALSE, 
                row_title_gp = gpar(fontsize = 0),
                cluster_columns = FALSE, 
                cluster_rows = rowcluster, 
                split = 4, gap = unit(0.2,"cm"), 
                column_order = mutStatus$PatID)


  
  #svg(filename="~/git/figures_thesis/gene_expr/epistatsisTri12IGHV.svg", width=30, height=50)
  #pdf(file="/home/almut/Dokumente/git/Transcriptome_CLL/paper/figures/epistasis_Deseq.pdf", width=35, height=45)
p1 <- draw(h1) 

  #dev.off()
  #draw(h1 + ha_chrom + ha_genes)
saveRDS(p1, file = paste0(output_dir, "/figures/r_objects/epistasis/epistasis_heatmap.rds"))

Genewise count distribution

cluster <- c("buffering", "supression", "synergy", "inversion")
gene_by_cat <- lapply(1:4, function(clusternr){
  genes <- IGHVTri12$sig_Genes[row_order(IGHVTri12$h1)[[clusternr]]]
  gene_symbol <- rowData(ddsCLL)[genes, "symbol"]
}) %>% set_names(cluster)

#function to create stripchart plots for specific genes
gene_count <- function(gene_nam){
  gene_cat <- names(gene_by_cat) %>% map(function(cat){
    cat_gene <- "none"
    cat_gene <- ifelse(any(gene_nam %in% gene_by_cat[[cat]]), cat, cat_gene) 
    }) %>% unlist()
  gene_cat <- gene_cat[!gene_cat %in% "none"]
  gene_cat <- ifelse(gene_nam %in% "EBF1", "synergy", gene_cat)
  gene_cat <- ifelse(gene_nam %in% "FGF2", "suppression", gene_cat)
  ddsCLL$IGHV_tri12 <- mutationStatus[colData(ddsCLL)$PatID,]
  geneEnsID <- rownames(ddsCLL)[which(rowData(ddsCLL)$symbol %in% gene_nam)]
  gc <- plotCounts(ddsCLL, gene = geneEnsID, intgroup = "IGHV_tri12", returnData=TRUE)
  p <- ggboxplot(gc, x = "IGHV_tri12", y = "count",
          color = "IGHV_tri12",
          size = 1.2,
          palette = c(annocol[3], annocol[5], annocol[7], annocol[9]),
          add = "jitter",
          outlier.shape = NA,
          add.params = list(size = 2.5),
          yscale = "log10",
          title = paste0(gene_nam, ": ", gene_cat),
          font.x = 20, font.y = 20, font.legend = 20, 
          ylab = "normalized counts") + font("xy.text", size = 20) + font("title", size = 20, face = "bold")
   #ggsave(file=paste0("/home/almut/Dokumente/git/Transcriptome_CLL/paper/figures/epi_genes/genetic_interaction_", gene_nam, ".svg"),      plot=p, width=7, height=5)
  saveRDS(p, file = paste0(output_dir, "/figures/r_objects/epistasis/de_genes/", gene_nam, ".rds"))
  p
}


#interesting genes
diff <- resTab[which(abs(resTab$stat) > 6 ),]
geneList <- diff$symbol
geneList <- geneList[-which(geneList %in% "")]
geneList <- c(geneList, "LEF1", "TIMELESS", "CHAD", "BCL2A1", "EML6", "PPP1R14A", "EPHB6", "GEN1", "EBF1", 
              "EBF4", "SLC4A8", "CAMK2N1", "FGF2")


lapply(geneList, gene_count)
[[1]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[2]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[3]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[4]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[5]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[6]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[7]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[8]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[9]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[10]]

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

[[11]]


[[12]]


[[13]]


[[14]]


[[15]]


[[16]]


[[17]]


[[18]]


[[19]]


[[20]]


[[21]]


[[22]]


[[23]]


[[24]]


[[25]]


[[26]]


[[27]]


[[28]]

Clusterwise count distribution

cluster_size <- lapply(c(1:4), function(clusternr){
  size <- length(row_order(IGHVTri12$h1)[[clusternr]])
  name <- cluster[clusternr]
  clust <- c(name, as.numeric(size))
}) %>% do.call(rbind,.) 

cluster_size <- as.data.frame(cluster_size)
colnames(cluster_size) <- c("name", "size")
cluster_size$size <- as.numeric(as.character(cluster_size$size))
distr <- ggbarplot(cluster_size, "name", "size",
   fill = "name", color = "name",
   palette = "jco",
   ylab = "Number of genes",
   xlab = "cluster")
 
 #ggsave(file="/home/almut/Dokumente/masterarbeit/workinprogress/distrib_ofEpiTypes.svg", plot=distr, width=8, height=5)
distr

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28

Gene set enrichment analysis

Gene sets

#load gene set collection
#Hallmark
gsc <- loadGSC("/home/almut/Dokumente/masterarbeit/data/h.all.v6.0.symbols.gmt", type="gmt")
#Kegg
gsc_Kegg <- loadGSC("/home/almut/Dokumente/masterarbeit/data/c2.cp.kegg.v6.0.symbols.gmt", type="gmt")


diff_res <- resOrderedTab
diff_res$ID <- rownames(diff_res)

#clusterProfiler
diff_res <- diff_res[-which(diff_res$symbol %in% c("", NA)),]
gene_list <- diff_res$stat %>% set_names(diff_res$symbol)
dup <- names(gene_list)[duplicated(names(gene_list))]
gene_list <- gene_list[-which(names(gene_list) %in% dup)]
gene_list <- sort(gene_list, decreasing = TRUE)
gene_lfc <- diff_res$log2FoldChange %>% set_names(diff_res$symbol)
gene_lfc <- sort(gene_lfc, decreasing = TRUE)
de_gene <- diff_res %>% filter(padj < 0.01) 
de_gene <- de_gene$symbol

de_ens <- diff_res %>% filter(padj < 0.01)
de_ens <- de_ens$ID
#Get Gene IDs
gene_id <- bitr(de_ens, fromType = "ENSEMBL",
        toType = c("ENTREZID", "SYMBOL"),
        OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning in bitr(de_ens, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 9.63% of input gene IDs are fail to map...
gene_list_id <- bitr(diff_res$ID, fromType = "ENSEMBL",
        toType = c("ENTREZID", "SYMBOL"),
        OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.07% of input gene IDs are fail to map...
names(gene_list_id) <- c("ID", "ENTREZID", "symbol")
diff_id <- left_join(gene_list_id, diff_res)
Joining, by = c("ID", "symbol")
gene_list_id <- diff_id$stat %>% set_names(diff_id$ENTREZID)
gene_list_id <- sort(gene_list_id, decreasing = TRUE)
gene_lfc_id <- diff_id$log2FoldChange %>% set_names(diff_id$ENTREZID)
gene_lfc_id <- sort(gene_lfc_id, decreasing = TRUE)

#convert gsc
m_t2g <- msigdbr(species = "Homo sapiens", category = "H") %>% 
  dplyr::select(gs_name, human_gene_symbol)

#Hallmark
em2 <- GSEA(gene_list, TERM2GENE = m_t2g, pvalueCutoff = 0.1)
preparing geneSet collections...
GSEA analysis...
leading edge analysis...
done...
em <- enricher(de_gene, TERM2GENE = m_t2g, pvalueCutoff = 0.2)

#Kegg
kk <- enrichKEGG(gene_id$ENTREZID,
                 organism     = 'hsa',
                 pvalueCutoff = 0.2)

kk2 <- gseKEGG(geneList     = gene_list_id,
               organism     = 'hsa',
               nPerm        = 1000,
               minGSSize    = 50,
               pvalueCutoff = 0.2,
               verbose      = FALSE)

kk2x <- setReadable(kk2, 'org.Hs.eg.db', 'ENTREZID')

Visualize ClusterProfiler results

barplot(kk, showCategory=5)

barplot(em, showCategory=5)

dot1 <- clusterProfiler::dotplot(em2, showCategory=10) + ggtitle("GSEA epistatsis trisomy12 and IGHV") +
  theme_pubr() +
  theme(legend.position="right") + 
  theme(plot.title = element_text(face = "bold")) 
wrong orderBy parameter; set to default `orderBy = "x"`
dot1

clusterProfiler::dotplot(em, showCategory=10) + ggtitle("Enrichment for epistatsis trisomy12 and IGHV")
wrong orderBy parameter; set to default `orderBy = "x"`

clusterProfiler::dotplot(kk2, showCategory=10) + ggtitle("GSEA for epistatsis trisomy12 and IGHV")
wrong orderBy parameter; set to default `orderBy = "x"`

dot2 <- clusterProfiler::dotplot(kk, showCategory=10) + ggtitle("Enrichment for epistatsis trisomy12 and IGHV") +
  theme_pubr() +
  theme(legend.position="right") +
  theme(plot.title = element_text(face = "bold"))
wrong orderBy parameter; set to default `orderBy = "x"`
dot2

ridgeplot(em2)
Picking joint bandwidth of 0.282

ridgeplot(kk2)
Picking joint bandwidth of 0.284

gseaplot2(em2, geneSetID = 3, title = em2$Description[3])

gseaplot2(kk2, geneSetID = 2, title = kk2$Description[2])

saveRDS(dot1, file = paste0(output_dir, "/figures/r_objects/epistasis/enrich_dot_hm.rds"))
saveRDS(dot2, file = paste0(output_dir, "/figures/r_objects/epistasis/enrich_dot2.rds"))

network plot

# Networks Hallmark
 em2_sub <- em2
 em2_sub@result <- em2@result[which(em2@result$Description %in% c("HALLMARK_TNFA_SIGNALING_VIA_NFKB",
                                                                  "HALLMARK_IL2_STAT5_SIGNALING",
                                                                    "HALLMARK_MYC_TARGETS_V2")),]
p_net <- cnetplot(em2_sub, categorySize="pvalue", foldChange=gene_lfc) + 
  scale_colour_gradientn(colors = c("#581845", "#900C3F", "#C70039", "#FF5733", "#FFC300", "#DAF7A6")) + 
  guides(size = FALSE) + 
  labs(color = "logFC")
Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.
p_net  

# Networks KEGG
 kk2_sub <- kk2x
 kk2_sub@result <- kk2x@result[which(kk2x@result$Description %in% c("Cytokine-cytokine receptor interaction",
                                                                    "Hematopoietic cell lineage",
                                                                    "Antigen processing and presentation",
                                                                    "Apoptosis")),]

pnet_kegg <- cnetplot(kk2_sub, categorySize="pvalue", foldChange=gene_lfc) + 
  scale_colour_gradientn(colors = c("#581845", "#900C3F", "#C70039", "#FF5733", "#FFC300", "#DAF7A6")) + 
  guides(size = FALSE) + 
  labs(color = "logFC")
Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.
pnet_kegg

saveRDS(pnet_kegg, file = paste0(output_dir, "/figures/r_objects/epistasis/enrich_net_kegg.rds"))
saveRDS(p_net, file = paste0(output_dir, "/figures/r_objects/epistasis/enrich_net_hm.rds"))

Enrichment analysis per epistatsis type

List-based enrichment - Piano package Fisher’s exact on genes from one cluster only.

cluster_gsea <- function(clusternr){
  gene_in <- IGHVTri12$sig_Genes[row_order(IGHVTri12$h1)[[clusternr]]] 
  gene_id <- bitr(gene_in, fromType = "ENSEMBL",
        toType = c("ENTREZID", "SYMBOL"),
        OrgDb = org.Hs.eg.db)

  names(gene_id) <- c("ID", "ENTREZID", "symbol")

  #Hallmark
  em <- enricher(gene_id$symbol, TERM2GENE = m_t2g, pvalueCutoff = 0.5, qvalueCutoff = 0.5)

  #Kegg
  kk <- enrichKEGG(gene_id$ENTREZID,
                 organism     = 'hsa',
                 pvalueCutoff = 0.5,
                 qvalueCutoff = 0.5)
  plot(barplot(em, showCategory=5))
  plot(barplot(kk, showCategory=5))
}

lapply(1:4, cluster_gsea)
'select()' returned 1:many mapping between keys and columns
Warning in bitr(gene_in, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 20.51% of input gene IDs are fail to map...

'select()' returned 1:many mapping between keys and columns
Warning in bitr(gene_in, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 24.37% of input gene IDs are fail to map...

'select()' returned 1:many mapping between keys and columns
Warning in bitr(gene_in, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 17.69% of input gene IDs are fail to map...

'select()' returned 1:many mapping between keys and columns
Warning in bitr(gene_in, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 27.35% of input gene IDs are fail to map...

[[1]]


[[2]]


[[3]]


[[4]]

GSEA per epistasis type

Exclude genes from other epistasis types

epitype_gsea <- function(clusternr){
   gene_in <- IGHVTri12$sig_Genes[row_order(IGHVTri12$h1)[[clusternr]]] 
   gene_out <- IGHVTri12$sig_Genes[!IGHVTri12$sig_Genes %in% gene_in]
   diff_res <- resOrderedTab
   diff_res$ID <- rownames(diff_res)

   #clusterProfiler
   #filter genes
   diff_res <- diff_res[-which(diff_res$symbol %in% c("", NA)),]
   diff_res <- diff_res[!duplicated(diff_res$symbol),]
   diff_res <- diff_res[!rownames(diff_res) %in% gene_out,]
   gene_list <- diff_res$stat %>% set_names(diff_res$symbol)
   gene_list <- sort(gene_list, decreasing = TRUE)
   gene_list_id <- bitr(diff_res$ID, fromType = "ENSEMBL",
        toType = c("ENTREZID", "SYMBOL"),
        OrgDb = org.Hs.eg.db)
    names(gene_list_id) <- c("ID", "ENTREZID", "symbol")
    diff_id <- left_join(gene_list_id, diff_res)
    gene_list_id <- diff_id$stat %>% set_names(diff_id$ENTREZID)
    gene_list_id <- sort(gene_list_id, decreasing = TRUE)
    gene_lfc_id <- diff_id$log2FoldChange %>% set_names(diff_id$ENTREZID)
    gene_lfc_id <- sort(gene_lfc_id, decreasing = TRUE)

    #Hallmark
    em2 <- GSEA(gene_list, TERM2GENE = m_t2g, pvalueCutoff = 0.1)
    #Kegg
    kk2 <- gseKEGG(geneList     = gene_list_id,
               organism     = 'hsa',
               nPerm        = 1000,
               minGSSize    = 50,
               pvalueCutoff = 0.2,
               verbose      = FALSE)

    kk2x <- setReadable(kk2, 'org.Hs.eg.db', 'ENTREZID')
    dot1 <- clusterProfiler::dotplot(em2, showCategory=12) + ggtitle(paste0("GSEA epistasis ", cluster[clusternr])) +
      theme_pubr() +
      theme(legend.position="right") + 
      theme(plot.title = element_text(face = "bold")) 
    plot(dot1)
    saveRDS(dot1, file = paste0(output_dir, "/figures/r_objects/epistasis/enrich_dot_", cluster[clusternr],".rds"))
    dot2 <- clusterProfiler::dotplot(kk2, showCategory=10) + ggtitle(paste0("GSEA epistasis ", cluster[clusternr])) +
    theme_pubr() +
    theme(legend.position="right") +
    theme(plot.title = element_text(face = "bold"))
    plot(dot2)

    plot(ridgeplot(em2))
    plot(ridgeplot(kk2))
    em2
}

em_list <- lapply(1:4, epitype_gsea) %>% set_names(cluster)
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.27% of input gene IDs are fail to map...
Joining, by = c("ID", "symbol")
preparing geneSet collections...
GSEA analysis...
leading edge analysis...
done...
wrong orderBy parameter; set to default `orderBy = "x"`
wrong orderBy parameter; set to default `orderBy = "x"`

Picking joint bandwidth of 0.216

Picking joint bandwidth of 0.22
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.29% of input gene IDs are fail to map...
Joining, by = c("ID", "symbol")
preparing geneSet collections...
GSEA analysis...
leading edge analysis...
done...
wrong orderBy parameter; set to default `orderBy = "x"`

wrong orderBy parameter; set to default `orderBy = "x"`

Picking joint bandwidth of 0.218

Picking joint bandwidth of 0.22
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.27% of input gene IDs are fail to map...
Joining, by = c("ID", "symbol")
preparing geneSet collections...
GSEA analysis...
leading edge analysis...
done...
wrong orderBy parameter; set to default `orderBy = "x"`

wrong orderBy parameter; set to default `orderBy = "x"`

Picking joint bandwidth of 0.223

Picking joint bandwidth of 0.243
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.22% of input gene IDs are fail to map...
Joining, by = c("ID", "symbol")
preparing geneSet collections...
GSEA analysis...
leading edge analysis...
done...
wrong orderBy parameter; set to default `orderBy = "x"`

wrong orderBy parameter; set to default `orderBy = "x"`

Picking joint bandwidth of 0.26

Picking joint bandwidth of 0.276

#get unique pathways per type
sig_pw <- lapply(1:4, function(cluster_nr){
  pw_unique <- em_list[[cluster[cluster_nr]]]@result %>% filter(p.adjust < 0.05) %>% dplyr::select(ID)
  pw_unique$ID
}) %>% set_names(cluster)

dup_pw <- unlist(sig_pw)[duplicated(unlist(sig_pw))]
all_pw <- Reduce(intersect, sig_pw)
unique_pw <- sig_pw %>% map(function(pw){pw <- pw[!pw %in% all_pw]})
unique_pw 
$buffering
character(0)

$supression
[1] "HALLMARK_HYPOXIA"             "HALLMARK_PANCREAS_BETA_CELLS"
[3] "HALLMARK_ALLOGRAFT_REJECTION" "HALLMARK_APOPTOSIS"          
[5] "HALLMARK_E2F_TARGETS"        

$synergy
[1] "HALLMARK_PANCREAS_BETA_CELLS"     "HALLMARK_INFLAMMATORY_RESPONSE"  
[3] "HALLMARK_ALLOGRAFT_REJECTION"     "HALLMARK_G2M_CHECKPOINT"         
[5] "HALLMARK_HYPOXIA"                 "HALLMARK_E2F_TARGETS"            
[7] "HALLMARK_IL6_JAK_STAT3_SIGNALING"

$inversion
[1] "HALLMARK_ALLOGRAFT_REJECTION"      
[2] "HALLMARK_HYPOXIA"                  
[3] "HALLMARK_IL6_JAK_STAT3_SIGNALING"  
[4] "HALLMARK_INFLAMMATORY_RESPONSE"    
[5] "HALLMARK_INTERFERON_GAMMA_RESPONSE"
[6] "HALLMARK_PANCREAS_BETA_CELLS"      
[7] "HALLMARK_G2M_CHECKPOINT"           
[8] "HALLMARK_APOPTOSIS"                
[9] "HALLMARK_E2F_TARGETS"              

Mixed epistatsis scheme

Scheme to show different ways of mixed epistasis

#generate a dataframe
mix <- t(data.frame(synergy = c(-0.1, -0.5, 0.5, 5), buffering_dn = c(0.5, 0.2, -0.2, -5), suppression_1 = c(0.5, -5, -6, 0.2), suppression_2 = c(-0.2, 5, 4,-0.5), suppression_3 = c(0.5, 0.1, -6, 1), suppression_4 = c(-0.2, 0.5, 4,-0.5), inversion_up = c(-0.2, -6, -4, 5), inversion_dn = c(0.1, 5, 4, -5)))
colnames(mix) <-  c("none", "IGHV", "trisomy12", "both")

annocol <- get_palette("uchicago", 9)
annocolor <- list(Variant = c("none" = annocol[3], "IGHV" = annocol[5], "trisomy12" = annocol[7], "both" = annocol[9]))
names(annocolor$Variant) <- c("none", "IGHV", "trisomy12", "both")
variants <- as.data.frame(colnames(mix))
colnames(variants) <- "Variant"
rownames(variants) <- variants$Variant

  #Column annotation
  ha_col = HeatmapAnnotation(df = variants, 
                             col = annocolor, 
                             simple_anno_size = unit(0.9, "cm"), 
                             annotation_legend_param = list(title_gp = gpar(fontsize = 20), 
                                                            labels_gp = gpar(fontsize = 15),  
                                                            grid_height = unit(0.9, "cm"), 
                                                            grid_width = unit(0.9, "cm"), 
                                                            gap = unit(15, "mm")))

#heatmap
h1 <- Heatmap(mix, 
              col = colors,
              column_title = paste0("Types of mixed epistasis"), 
              column_title_gp = gpar(fontsize = 20, fontface = "bold"), 
              heatmap_legend_param = list(title = "Expr.", 
                                          title_gp = gpar(fontsize = 20), 
                                          grid_height = unit(1, "cm"), 
                                          grid_width = unit(0.5, "cm"), 
                                          gap = unit(10, "mm"), 
                                          labels_gp = gpar(fontsize = 20), 
                                          labels = c(-6,-3, 0,3, 6)) , 
              show_row_dend = F, 
              show_column_names =FALSE , 
              top_annotation = ha_col, 
              show_row_names = FALSE, 
              show_column_dend = FALSE, 
              cluster_columns = FALSE, 
              cluster_rows = FALSE, 
              split = c( rep("Synergy",1), rep("Buffering",1), rep("Suppression", 4), rep("Inversion", 2)), 
              gap = unit(0.8,"cm"), 
              row_title_gp = gpar(fontsize=19))

#pdf(file="/home/almut/Dokumente/git/Transcriptome_CLL/paper/figures/mixed_epistasis_model.pdf", width=7, height=5)
draw(h1)

Version Author Date
712d2e9 aluetge 2019-11-19
cc24f92 aluetge 2019-07-28
#dev.off()

saveRDS(h1, file = paste0(output_dir, "/figures/r_objects/epistasis/epistasis_scheme.rds"))
annocol <- get_palette("uchicago", 9)
annocolor <- c("none" = annocol[3], "IGHV" = annocol[5], "trisomy12" = annocol[7], "both" = annocol[9])

#generate a dataframe
mix <- t(data.frame(synergy = c(10, 30, 25, 450), buffering = c(400, 450, 425, 50), suppression = c(20, 30, 450, 40), inversion = c(20, 420, 450, 35)))

colnames(mix) <-  c("none", "IGHV", "trisomy12", "both")
mix <- data.frame(mix)
mix$epistasis_type <- rownames(mix)
mix_long <- melt(setDT(mix), id.vars = c("epistasis_type"), variable.name = "genotype")
mix_long$epistasis_type <- factor(mix_long$epistasis_type, levels = mix$epistasis_type)

colnames(mix_long) <- c("epistasis_type", "genotype", "gene_count")


p <- ggplot(mix_long, aes(x = genotype, y = gene_count)) +
  geom_segment( aes(x=genotype, xend=genotype, y=0, yend=gene_count), color="grey") +
  geom_point( aes(x=genotype, y=gene_count, color=genotype), size=7 ) +
  scale_y_continuous(breaks=c(0,240,480),
        labels=c("low", "medium", "high"), limits = c(0,500)) +
  facet_wrap(~epistasis_type, ncol=2) +
  theme_pubr() +
    theme(legend.position="right") +
    theme(plot.title = element_text(face = "bold", size = 24),
          axis.title = element_text(face = "bold", size = 18),
          legend.position = "none",
          axis.text = element_text(size = 14),
          strip.text.x = element_text(face = "bold", size = 18),
          panel.border = element_rect(fill = NA, colour = "black")
      ) +
  ggtitle("scheme types of epistasis") +
  xlab("genotype") +
  ylab("mean gene counts") +
  scale_colour_manual(values = annocolor)
p

saveRDS(p, file = paste0(output_dir, "/figures/r_objects/epistasis/epistasis_scheme_lolli.rds"))

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

locale:
 [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8    
 [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8   
 [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      stats4    parallel  stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] data.table_1.12.2           purrr_0.3.2                
 [3] enrichplot_1.4.0            org.Hs.eg.db_3.8.2         
 [5] msigdbr_7.0.1               clusterProfiler_3.12.0     
 [7] here_0.1                    ggpubr_0.2                 
 [9] magrittr_1.5                piano_2.0.2                
[11] circlize_0.4.6              ComplexHeatmap_2.0.0       
[13] RColorBrewer_1.1-2          geneplotter_1.62.0         
[15] annotate_1.62.0             XML_3.98-1.20              
[17] AnnotationDbi_1.46.0        lattice_0.20-38            
[19] dplyr_0.8.1                 reshape2_1.4.3             
[21] gridExtra_2.3               DESeq2_1.24.0              
[23] SummarizedExperiment_1.14.0 DelayedArray_0.10.0        
[25] BiocParallel_1.18.0         matrixStats_0.54.0         
[27] GenomicRanges_1.36.0        GenomeInfoDb_1.20.0        
[29] IRanges_2.18.1              S4Vectors_0.22.0           
[31] genefilter_1.66.0           ggplot2_3.1.1              
[33] Biobase_2.44.0              BiocGenerics_0.30.0        

loaded via a namespace (and not attached):
  [1] backports_1.1.4        Hmisc_4.2-0            fastmatch_1.1-0       
  [4] workflowr_1.4.0        plyr_1.8.4             igraph_1.2.4.1        
  [7] lazyeval_0.2.2         shinydashboard_0.7.1   splines_3.6.0         
 [10] urltools_1.7.3         digest_0.6.19          htmltools_0.3.6       
 [13] GOSemSim_2.10.0        viridis_0.5.1          GO.db_3.8.2           
 [16] gdata_2.18.0           checkmate_1.9.3        memoise_1.1.0         
 [19] cluster_2.1.0          limma_3.40.2           graphlayouts_0.6.0    
 [22] prettyunits_1.0.2      colorspace_1.4-1       blob_1.1.1            
 [25] ggrepel_0.8.1          xfun_0.7               crayon_1.3.4          
 [28] RCurl_1.95-4.12        jsonlite_1.6           survival_2.44-1.1     
 [31] glue_1.3.1             polyclip_1.10-0        gtable_0.3.0          
 [34] zlibbioc_1.30.0        XVector_0.24.0         UpSetR_1.4.0          
 [37] GetoptLong_0.1.7       shape_1.4.4            scales_1.0.0          
 [40] DOSE_3.10.2            DBI_1.0.0              relations_0.6-8       
 [43] Rcpp_1.0.1             progress_1.2.2         viridisLite_0.3.0     
 [46] xtable_1.8-4           htmlTable_1.13.1       clue_0.3-57           
 [49] gridGraphics_0.5-0     europepmc_0.3          foreign_0.8-71        
 [52] bit_1.1-14             Formula_1.2-3          DT_0.7                
 [55] httr_1.4.0             htmlwidgets_1.3        fgsea_1.10.0          
 [58] gplots_3.0.1.1         acepack_1.4.1          pkgconfig_2.0.2       
 [61] farver_2.0.3           nnet_7.3-12            locfit_1.5-9.1        
 [64] labeling_0.3           ggplotify_0.0.5        tidyselect_0.2.5      
 [67] rlang_0.3.4            later_0.8.0            munsell_0.5.0         
 [70] tools_3.6.0            visNetwork_2.0.7       RSQLite_2.1.1         
 [73] ggridges_0.5.2         evaluate_0.14          stringr_1.4.0         
 [76] yaml_2.2.0             knitr_1.23             bit64_0.9-7           
 [79] fs_1.3.1               tidygraph_1.1.2        caTools_1.17.1.2      
 [82] ggraph_2.0.2           whisker_0.3-2          mime_0.7              
 [85] slam_0.1-45            xml2_1.2.0             DO.db_2.9             
 [88] compiler_3.6.0         rstudioapi_0.10        png_0.1-7             
 [91] marray_1.62.0          tibble_2.1.3           tweenr_1.0.1          
 [94] stringi_1.4.3          Matrix_1.2-17          ggsci_2.9             
 [97] shinyjs_1.0            pillar_1.4.1           BiocManager_1.30.4    
[100] triebeard_0.3.0        GlobalOptions_0.1.0    cowplot_0.9.4         
[103] bitops_1.0-6           httpuv_1.5.1           qvalue_2.16.0         
[106] R6_2.4.0               latticeExtra_0.6-28    promises_1.0.1        
[109] KernSmooth_2.23-15     MASS_7.3-51.4          gtools_3.8.1          
[112] assertthat_0.2.1       rprojroot_1.3-2        rjson_0.2.20          
[115] withr_2.1.2            GenomeInfoDbData_1.2.1 hms_0.4.2             
[118] rpart_4.1-15           tidyr_0.8.3            rvcheck_0.1.8         
[121] rmarkdown_1.13         git2r_0.25.2           sets_1.0-18           
[124] ggforce_0.3.1          shiny_1.3.2            base64enc_0.1-3