Last updated: 2021-01-08

Checks: 6 1

Knit directory: transcriptome_cll/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190511) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    output/figures/r_objects/BRAF/enrichment/

Untracked files:
    Untracked:  output/figures/r_objects/SF3B1/de_genes/AHSP.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/ARHGEF16.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/C6orf223.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/CAMK4.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/CAMSAP2.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/CDH1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/CKM.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/CPT1C.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/E2F4.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/ELOVL7.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/EPDR1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/FAM184A.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/FOSL1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/HAVCR1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/HPCAL4.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/IFI44L.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/IGKV1-17.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/IGKV1-33.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/IL22RA1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/KIF27.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/KIF7.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/KIFC1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/LINC02102.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/LINC02298.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/LMOD1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/LOXL2.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/MX1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/NEDD4.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/NRIR.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/PALD1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/PLXNB1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/RAI1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/RIBC2.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/RLN3.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/RNF112.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/S100A2.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/SLC4A1AP.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/SOX8.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/TFCP2L1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/TGM1.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/TNXB.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/TPM3P7.rds
    Untracked:  output/figures/r_objects/SF3B1/de_genes/USP18.rds
    Untracked:  output/figures/r_objects/SF3B1/enrich_dot2.rds
    Untracked:  output/figures/r_objects/SF3B1/enrich_dot_hm.rds
    Untracked:  output/figures/r_objects/SF3B1/enrich_net_hm.rds
    Untracked:  output/figures/r_objects/SF3B1/enrich_net_kegg.rds

Unstaged changes:
    Modified:   analysis/SF3B1.Rmd
    Modified:   output/enrichment/SF3B1_gsea.rds
    Modified:   output/figures/r_objects/SF3B1/SF3B1_enrichment_dn.rds
    Modified:   output/figures/r_objects/SF3B1/SF3B1_enrichment_up.rds
    Modified:   output/figures/r_objects/SF3B1/SF3B1_heatmap.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/ADAM11.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/BNIP3P41.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/CRYBA4.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/CRYBB1.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/FBLN2.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/FBN1.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/FOXRED1.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/FSTL3.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/GYPB.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/HBG2.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/IFI27.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/IGHV3-21.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/LRRC75A-AS1.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/MICF.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/NLRP2B.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/P2RX6.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/PIPOX.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/PLEKHG4B.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/PRSS50.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/PSD2.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/RASSF6.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/SHB.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/SLC22A14.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/SRRM5.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/TAS1R1.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/UQCC1.rds
    Modified:   output/figures/r_objects/SF3B1/de_genes/WIF1.rds
    Modified:   output/figures/r_objects/ighv/ighv_heatmap.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 41af4bf aluetge 2019-11-19 Build site.
Rmd 7c994cf aluetge 2019-11-19 wflow_publish(c(“analysis/del11q22.Rmd”, “analysis/SF3B1.Rmd”, “analysis/trisomy12.Rmd”))
html 026e8e9 aluetge 2019-11-18 Build site.
html e6f3dd0 aluetge 2019-11-13 Build site.
Rmd 109e2cf aluetge 2019-11-13 wflow_publish(c(“analysis/Notch1.Rmd”, “analysis/SF3B1.Rmd”, “analysis/TP53.Rmd”))
html 3514378 aluetge 2019-05-17 Build site.
Rmd 5de142b aluetge 2019-05-17 Add more variants

SF3B1 signature

Differentially expressed genes

1. Differential expression analysis

load packages

library(DESeq2)
library(tidyverse)
library(ggsci)
library(matrixStats)
library(piano)
library(reshape2)
library(genefilter)
library(Biobase)
library(ComplexHeatmap)
library(ggplot2)
library(gtable)
library(grid)
library(circlize)
library(gridExtra)
library(ggpubr)
library(RColorBrewer)
library(clusterProfiler)
library(msigdbr)
library(org.Hs.eg.db)
library(enrichplot)
library(here)

load data

data_dir <- here("data")
output_dir <- here("output")
figure_dir <- here("output/figures")

#dds data set. gene expression data + patmetadata
load(paste0(data_dir, "/ddsrnaCLL_150218.RData"))

variant <- "SF3B1"
#filter for patients without NA in variant
ddsCLL <- ddsCLL[, !is.na(colData(ddsCLL)[,variant])]

#differentially expressed genes between SF3B1 groups (see differential expression.html)
diff_all <- read.csv(file=paste0(output_dir, "/diff_genes/", variant, "_diffGenes.csv"))


rownames(diff_all) <- diff_all$X
diff_all <- diff_all[which(diff_all$padj < 0.01 ),-1]
diff <- diff_all[which( abs(diff_all$stat) > 5),]


mutStatus <- data.frame(colData(ddsCLL)) %>% arrange(SF3B1)
colnames(ddsCLL) <-colData(ddsCLL)$PatID
ddsCLL <- ddsCLL[, mutStatus$PatID]

#expression data
ddsCLL <- estimateSizeFactors(ddsCLL)
RNAnorm <- varianceStabilizingTransformation(ddsCLL, blind = T)

Expression matrix

#filter for sign. genes in variant
exprMat <- assay(RNAnorm)
exprVariant <- exprMat[rownames(diff),]
colnames(exprVariant) <- colData(ddsCLL)$PatID
exprVariant.new <- log2(exprVariant)
exprVariant.new <- t(scale(t(exprVariant.new)))
exprVariant.new[exprVariant.new > 4] <- 4
exprVariant.new[exprVariant.new < -4] <- -4
rownames(exprVariant.new) <- rowData(RNAnorm[rownames(diff),])$symbol

Expression signature

#colors
colors = colorRamp2(c(-4,-1,0,1,4), c("#2166ac","#4393c3", "#f7f7f7", "#d6604d","#b2182b"))
annocol <- get_palette("jco", 10)
annocolor <- list(SF3B1 = c("1" = annocol[8], "0" = annocol[9]))
rowcolors <-colorRampPalette(brewer.pal(5, "Set1"))(5)
rowcolors[6] <- "white"


feature <- as.data.frame(colData(ddsCLL)[,c(variant)])
colnames(feature) <- c(variant)  

ha_col <- HeatmapAnnotation(df = feature, col = annocolor, annotation_height = unit(c(rep(1.9, 1)), "cm"), 
                            simple_anno_size = unit(1, "cm"),
                            annotation_name_gp = gpar(fontsize = 22, fontface = "bold"),
                            annotation_legend_param = list(title_gp = gpar(fontsize = 23), 
                                                           labels_gp = gpar(fontsize = 18),  
                                                           grid_height = unit(1.2, "cm"), 
                                                           grid_width = unit(1.2, "cm")))


#Annotate top 50 genes
diff <- diff_all[which(abs(diff_all$stat) > 6),]
sub_names <- unique(diff$Symbol)
geneIDs <- which(rownames(exprVariant.new) %in% sub_names)
rownames(exprVariant.new)[-geneIDs] <- ""

h1 <- Heatmap(exprVariant.new ,                                                     
              km = 2,
              gap = unit(0.5, "cm"),
              cluster_columns = F,
              clustering_distance_rows = "pearson",
              clustering_method_rows = "ward.D2",
              column_title = paste0("Gene signature: ", variant),                      
              col = colors,
              column_title_gp = gpar(fontsize = 25, fontface = "bold"), 
              heatmap_legend_param = list(title = "expr", 
                                          title_gp = gpar(fontsize = 23), 
                                          grid_height = unit(1.5, "cm"), 
                                          grid_width = unit(1.2, "cm"), 
                                          gap = unit(2, "cm"), 
                                          labels_gp = gpar(fontsize = 18)), 
              column_dend_height = unit(1, "cm"),
              show_row_dend = FALSE, 
              show_column_names = FALSE , 
              show_row_names = TRUE, 
              row_names_gp = gpar(fontsize = 17),
              top_annotation = ha_col)


#svg(filename=paste0(figure_dir, "/", variant, "_gene_expr.svg"), width=30, height=45)
#pdf(file=paste0(figure_dir, "/", variant, "_gene_expr.pdf"), width=22, height=25)

draw(h1) 

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17
#dev.off()
saveRDS(h1, file = paste0(output_dir, "/figures/r_objects/SF3B1/SF3B1_heatmap.rds"))

Sample and gene specific expression - top genes

#function to create stripchart plots for specific genes
gene_count <- function(gene_nam){
   geneEnsID <- rownames(ddsCLL)[which(rowData(ddsCLL)$symbol %in% gene_nam)]
  gc <- plotCounts(ddsCLL, gene = geneEnsID, intgroup = variant, returnData=TRUE)
  p <- ggboxplot(gc, x = variant, y = "count",
          color = variant,
          size = 1.2,
          palette = "jco",
          outlier.shape = NA, 
          add = "jitter",
          add.params = list(size = 2.5),
          yscale = "log10",
          title = paste(gene_nam),
          font.x = 20, font.y = 20, font.legend = 20, 
          ylab = "normalized counts") + font("xy.text", size = 20) + font("title", size = 20, face = "bold")
  saveRDS(p, file = paste0(output_dir, "/figures/r_objects/SF3B1/de_genes/", gene_nam, ".rds"))
  p
}

diff <- diff_all[which(diff_all$stat > 5),]
geneList <- as.character(diff$Symbol)



lapply(geneList, gene_count)
[[1]]

Version Author Date
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[2]]

Version Author Date
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[3]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[4]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[5]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[6]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[7]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[8]]

Version Author Date
41af4bf aluetge 2019-11-19
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[9]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[10]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[11]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[12]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[13]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[14]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[15]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[16]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[17]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[18]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[19]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[20]]

Version Author Date
41af4bf aluetge 2019-11-19
026e8e9 aluetge 2019-11-18
e6f3dd0 aluetge 2019-11-13
3514378 aluetge 2019-05-17

[[21]]

Version Author Date
41af4bf aluetge 2019-11-19

[[22]]

Version Author Date
41af4bf aluetge 2019-11-19

[[23]]

Version Author Date
41af4bf aluetge 2019-11-19

[[24]]


[[25]]


[[26]]


[[27]]


[[28]]


[[29]]


[[30]]


[[31]]


[[32]]


[[33]]


[[34]]


[[35]]


[[36]]


[[37]]


[[38]]


[[39]]


[[40]]


[[41]]


[[42]]


[[43]]


[[44]]


[[45]]


[[46]]


[[47]]


[[48]]


[[49]]


[[50]]


[[51]]


[[52]]


[[53]]


[[54]]


[[55]]


[[56]]


[[57]]


[[58]]


[[59]]


[[60]]


[[61]]


[[62]]


[[63]]


[[64]]


[[65]]


[[66]]


[[67]]


[[68]]


[[69]]


[[70]]

Gene set enrichment analysis

Gene sets

#load gene set collection
#Hallmark
gsc <- loadGSC("/home/almut/Dokumente/masterarbeit/data/h.all.v6.0.symbols.gmt", type="gmt")
#Kegg
gsc_Kegg <- loadGSC("/home/almut/Dokumente/masterarbeit/data/c2.cp.kegg.v6.0.symbols.gmt", type="gmt")


#get all de outputs
load(paste0(output_dir,"/desRes_250720.RData"))
difftab <- function(condition){
  dataTab <- data.frame(res_list[[condition]])
  dataTab$ID <- rownames(dataTab)
  #filter using pvalues
  dataTab <- dataTab %>%
    arrange(padj) %>%
    mutate(Symbol = rowData(ddsCLL[ID,])$symbol)# %>%
    #filter(abs(log2FoldChange) > 2)
  dataTab <- dataTab[!duplicated(dataTab$Symbol),]
  dataTab <- dataTab[!is.na(dataTab$Symbol),]
  rownames(dataTab) <- dataTab$ID
   dataTab
}

diff_res <- difftab(variant)

#clusterProfiler
diff_res <- diff_res[-which(diff_res$Symbol %in% c("", NA)),]
gene_list <- diff_res$stat %>% set_names(diff_res$Symbol)
gene_list <- sort(gene_list, decreasing = TRUE)
gene_lfc <- diff_res$log2FoldChange %>% set_names(diff_res$Symbol)
gene_lfc <- sort(gene_lfc, decreasing = TRUE)
de_gene <- diff_res %>% filter(padj < 0.01) 
de_gene <- de_gene$Symbol

de_ens <- diff_res %>% filter(padj < 0.01)
de_ens <- de_ens$ID
#Get Gene IDs
gene_id <- bitr(de_ens, fromType = "ENSEMBL",
        toType = c("ENTREZID", "SYMBOL"),
        OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Warning in bitr(de_ens, fromType = "ENSEMBL", toType = c("ENTREZID",
"SYMBOL"), : 11.89% of input gene IDs are fail to map...
gene_list_id <- bitr(diff_res$ID, fromType = "ENSEMBL",
        toType = c("ENTREZID", "SYMBOL"),
        OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Warning in bitr(diff_res$ID, fromType = "ENSEMBL", toType = c("ENTREZID", :
18.07% of input gene IDs are fail to map...
names(gene_list_id) <- c("ID", "ENTREZID", "Symbol")
diff_id <- left_join(gene_list_id, diff_res)
Joining, by = c("ID", "Symbol")
gene_list_id <- diff_id$stat %>% set_names(diff_id$ENTREZID)
gene_list_id <- sort(gene_list_id, decreasing = TRUE)
gene_lfc_id <- diff_id$log2FoldChange %>% set_names(diff_id$ENTREZID)
gene_lfc_id <- sort(gene_lfc_id, decreasing = TRUE)

#convert gsc
m_t2g <- msigdbr(species = "Homo sapiens", category = "H") %>% 
  dplyr::select(gs_name, human_gene_symbol)

#Hallmark
em2 <- GSEA(gene_list, TERM2GENE = m_t2g, pvalueCutoff = 0.1)
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (0% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
leading edge analysis...
done...
em <- enricher(de_gene, TERM2GENE = m_t2g)

#Kegg
kk <- enrichKEGG(gene_id$ENTREZID,
                 organism     = 'hsa',
                 pvalueCutoff = 0.2)

kk2 <- gseKEGG(geneList     = gene_list_id,
               organism     = 'hsa',
               nPerm        = 1000,
               minGSSize    = 50,
               pvalueCutoff = 0.2,
               verbose      = FALSE)

kk2x <- setReadable(kk2, 'org.Hs.eg.db', 'ENTREZID')

Visualize ClusterProfiler results

barplot(kk, showCategory=5)

barplot(em, showCategory=5)

dot1 <- clusterProfiler::dotplot(em2, showCategory=10) + ggtitle("GSEA for SF3B1") +
  theme_pubr() +
  theme(legend.position="right") + 
  theme(plot.title = element_text(face = "bold")) 
wrong orderBy parameter; set to default `orderBy = "x"`
dot1

dotplot(em, showCategory=10) + ggtitle("Enrichment for SF3B1")
wrong orderBy parameter; set to default `orderBy = "x"`

dotplot(kk2, showCategory=10) + ggtitle("GSEA for SF3B1")
wrong orderBy parameter; set to default `orderBy = "x"`

dot2 <- clusterProfiler::dotplot(kk, showCategory=10) + ggtitle("Enrichment for SF3B1") +
  theme_pubr() +
  theme(legend.position="right") +
  theme(plot.title = element_text(face = "bold"))
wrong orderBy parameter; set to default `orderBy = "x"`
dot2

ridgeplot(em2)
Picking joint bandwidth of 0.366

ridgeplot(kk2)
Picking joint bandwidth of 0.306

gseaplot2(em2, geneSetID = 3, title = em2$Description[3])

gseaplot2(kk2, geneSetID = 2, title = kk2$Description[2])

saveRDS(dot1, file = paste0(output_dir, "/figures/r_objects/SF3B1/enrich_dot_hm.rds"))
saveRDS(dot2, file = paste0(output_dir, "/figures/r_objects/SF3B1/enrich_dot2.rds"))

network plot

# Networks Hallmark
 em2_sub <- em2
 em2_sub@result <- em2@result[which(em2@result$Description %in% c("HALLMARK_TNFA_SIGNALING_VIA_NFKB",
                                                                    "HALLMARK_INTERFERON_ALPHA_RESPONSE",
                                                                    "HALLMARK_APOPTOSIS")),]
p_net <- cnetplot(em2_sub, categorySize="pvalue", foldChange=gene_lfc) + 
  scale_colour_gradientn(colors = c("#581845", "#900C3F", "#C70039", "#FF5733", "#FFC300", "#DAF7A6")) + 
  guides(size = FALSE) + 
  labs(color = "logFC")
Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.
p_net  

# Networks KEGG
 kk2_sub <- kk2x
 kk2_sub@result <- kk2x@result[which(kk2x@result$Description %in% c("Cytokine-cytokine receptor interaction",
                                                                    "Phosphatidylinositol signaling system"
                                                                    )),]

pnet_kegg <- cnetplot(kk2_sub, categorySize="pvalue", foldChange=gene_lfc) + 
  scale_color_gradient(high="blue", low="red") +
  guides(size = FALSE) + 
  labs(color = "logFC")
Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.
pnet_kegg

saveRDS(pnet_kegg, file = paste0(output_dir, "/figures/r_objects/SF3B1/enrich_net_kegg.rds"))
saveRDS(p_net, file = paste0(output_dir, "/figures/r_objects/SF3B1/enrich_net_hm.rds"))

heatplot

heatplot(em2, foldChange=gene_lfc, showCategory = 3)

heatplot(kk2x, foldChange=gene_lfc, showCategory = 3 ) 


sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.7 LTS

Matrix products: default
BLAS:   /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0

locale:
 [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8    
 [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8   
 [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] here_0.1                    enrichplot_1.4.0           
 [3] org.Hs.eg.db_3.8.2          AnnotationDbi_1.46.0       
 [5] msigdbr_7.0.1               clusterProfiler_3.12.0     
 [7] RColorBrewer_1.1-2          ggpubr_0.2                 
 [9] magrittr_1.5                gridExtra_2.3              
[11] circlize_0.4.6              gtable_0.3.0               
[13] ComplexHeatmap_2.0.0        genefilter_1.66.0          
[15] reshape2_1.4.3              piano_2.0.2                
[17] ggsci_2.9                   forcats_0.4.0              
[19] stringr_1.4.0               dplyr_0.8.1                
[21] purrr_0.3.2                 readr_1.3.1                
[23] tidyr_0.8.3                 tibble_2.1.3               
[25] ggplot2_3.1.1               tidyverse_1.2.1            
[27] DESeq2_1.24.0               SummarizedExperiment_1.14.0
[29] DelayedArray_0.10.0         BiocParallel_1.18.0        
[31] matrixStats_0.54.0          Biobase_2.44.0             
[33] GenomicRanges_1.36.0        GenomeInfoDb_1.20.0        
[35] IRanges_2.18.1              S4Vectors_0.22.0           
[37] BiocGenerics_0.30.0        

loaded via a namespace (and not attached):
  [1] shinydashboard_0.7.1   tidyselect_0.2.5       RSQLite_2.1.1         
  [4] htmlwidgets_1.3        munsell_0.5.0          DT_0.7                
  [7] withr_2.1.2            colorspace_1.4-1       GOSemSim_2.10.0       
 [10] knitr_1.23             rstudioapi_0.10        DOSE_3.10.2           
 [13] labeling_0.3           git2r_0.25.2           slam_0.1-45           
 [16] urltools_1.7.3         GenomeInfoDbData_1.2.1 polyclip_1.10-0       
 [19] bit64_0.9-7            farver_2.0.3           rprojroot_1.3-2       
 [22] generics_0.0.2         xfun_0.7               sets_1.0-18           
 [25] R6_2.4.0               clue_0.3-57            graphlayouts_0.6.0    
 [28] locfit_1.5-9.1         bitops_1.0-6           fgsea_1.10.0          
 [31] gridGraphics_0.5-0     assertthat_0.2.1       promises_1.0.1        
 [34] scales_1.0.0           ggraph_2.0.2           nnet_7.3-14           
 [37] tidygraph_1.1.2        workflowr_1.4.0        rlang_0.3.4           
 [40] GlobalOptions_0.1.0    splines_3.6.3          lazyeval_0.2.2        
 [43] acepack_1.4.1          broom_0.5.2            europepmc_0.3         
 [46] checkmate_1.9.3        BiocManager_1.30.4     yaml_2.2.0            
 [49] modelr_0.1.4           backports_1.1.4        httpuv_1.5.1          
 [52] qvalue_2.16.0          Hmisc_4.2-0            tools_3.6.3           
 [55] relations_0.6-8        ggplotify_0.0.5        gplots_3.0.1.1        
 [58] ggridges_0.5.2         Rcpp_1.0.1             plyr_1.8.4            
 [61] base64enc_0.1-3        visNetwork_2.0.7       progress_1.2.2        
 [64] zlibbioc_1.30.0        RCurl_1.95-4.12        prettyunits_1.0.2     
 [67] rpart_4.1-15           GetoptLong_0.1.7       viridis_0.5.1         
 [70] cowplot_0.9.4          haven_2.1.0            ggrepel_0.8.1         
 [73] cluster_2.1.0          fs_1.3.1               data.table_1.12.2     
 [76] DO.db_2.9              triebeard_0.3.0        whisker_0.3-2         
 [79] hms_0.4.2              shinyjs_1.0            mime_0.7              
 [82] evaluate_0.14          xtable_1.8-4           XML_3.98-1.20         
 [85] readxl_1.3.1           shape_1.4.4            compiler_3.6.3        
 [88] KernSmooth_2.23-15     crayon_1.3.4           htmltools_0.3.6       
 [91] later_0.8.0            Formula_1.2-3          geneplotter_1.62.0    
 [94] lubridate_1.7.4        DBI_1.0.0              tweenr_1.0.1          
 [97] MASS_7.3-53            Matrix_1.3-0           cli_1.1.0             
[100] marray_1.62.0          gdata_2.18.0           igraph_1.2.4.1        
[103] pkgconfig_2.0.2        rvcheck_0.1.8          foreign_0.8-76        
[106] xml2_1.2.0             annotate_1.62.0        XVector_0.24.0        
[109] rvest_0.3.4            digest_0.6.19          rmarkdown_1.13        
[112] cellranger_1.1.0       fastmatch_1.1-0        htmlTable_1.13.1      
[115] shiny_1.3.2            gtools_3.8.1           rjson_0.2.20          
[118] nlme_3.1-151           jsonlite_1.6           viridisLite_0.3.0     
[121] limma_3.40.2           pillar_1.4.1           lattice_0.20-38       
[124] httr_1.4.0             survival_2.44-1.1      GO.db_3.8.2           
[127] glue_1.3.1             UpSetR_1.4.0           png_0.1-7             
[130] bit_1.1-14             ggforce_0.3.1          stringi_1.4.3         
[133] blob_1.1.1             latticeExtra_0.6-28    caTools_1.17.1.2      
[136] memoise_1.1.0