Last updated: 2022-11-24

Checks: 7 0

Knit directory: workflowr-policy-landscape/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220505) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version dbe46b2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   Policy_landscape_workflowr.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/5_For_and_not_for_profit_comparison.Rmd) and HTML (docs/5_For_and_not_for_profit_comparison.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fb90a00 Andrew Beckerman 2022-11-24 Build site.
Rmd e08d7ac Andrew Beckerman 2022-11-24 more organising and editing of workflowR mappings
html e08d7ac Andrew Beckerman 2022-11-24 more organising and editing of workflowR mappings
html 0a21152 zuzannazagrodzka 2022-09-21 Build site.
html 796aa8e zuzannazagrodzka 2022-09-21 Build site.
Rmd efb1202 zuzannazagrodzka 2022-09-21 Publish other files

There are two questions we did not address formally in the manuscript because of too small sample size.

  • What language do for-profit and not-for-profit publishers use in their mission statements and aims?
  • What organisations use more common language to the UNESCO Recommendations in Open Science and which use business words?

We conducted the same language analysis that were conducted on the main stakeholders groups to compare for-profit vs. not-for-profit publishers and nonOA journals vs. OA journals.

R Step and Packages

# Clearing R
rm(list=ls())

# Libraries used for text/data analysis
library(tidyverse) 
library(dplyr)
library(tidytext)

# Libraries used to create plots
library(ggplot2)

# Library to create a table when converting to html
library("kableExtra") 

Importing data

# Documents data
df_corpuses <- read_csv("./output/created_datasets/cleaned_data.csv")
Rows: 22822 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (10): txt, filename, name, doc_type, stakeholder, sentence_doc, orig_wor...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_words <- df_corpuses

# Dictionary data 100 words per dictionary
# all_dict <- read_csv("./output/created_datasets/freq_dict_total_100.csv")
# All words
all_dict <- read_csv("./output/created_datasets/freq_dict_total_all.csv")
Rows: 9587 Columns: 6
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): word
dbl (5): present_in_dict, present_BUS, present_UNESCO, present_book, sum

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Data Prep and Cleaning

# Data preparation

# Changing name of the dictionary variable
new_dictionary <- all_dict

## Getting a data set with the words
data_words <- df_corpuses

dim(data_words)
[1] 22822    10
colnames(data_words)
 [1] "txt"           "filename"      "name"          "doc_type"     
 [5] "stakeholder"   "sentence_doc"  "orig_word"     "word_mix"     
 [9] "word"          "org_subgroups"
unique(data_words$org_subgroups)
[1] "advocates"            "funders"              "journals_nonOA"      
[4] "journals_OA"          "publishers_nonProfit" "publishers_Profit"   
[7] "repositories"         "societies"           
# Merging and removing duplicates
data_words <- data_words %>% 
  rename(document = name) %>% 
  select(document, org_subgroups, word) %>% 
  left_join(new_dictionary, by = c("word" = "word")) %>% # merging
  filter(org_subgroups %in% c("publishers_nonProfit", "publishers_Profit", "journals_nonOA", "journals_OA"))


# Transforming the data frame
# data_words <- transform(data_words, present_BUS = as.numeric(present_BUS), 
                    # present_UNESCO = as.numeric(present_UNESCO), 
                    # present_book = as.numeric(present_book))

# Adding a column with stakeholder and word together to allow merging later
data_words$stake_word <- paste(data_words$org_subgroups, "_", data_words$word)
# Adding a column with a document name and word together to allow merging later
data_words$doc_word <- paste(data_words$document, "_", data_words$word)
# Adding a column that will be used later to calculate the total of unique words in the document (dictionaries without removed words)
data_words$doc_pres <- 1

# Adding two columns that will be used later to calculate the total of unique words in the document (new dictionaries with removed common words)
# Replace NAs with 0 in all absence/presence columns
data_words_ND <- data_words %>%
  mutate_at(vars(present_BUS, present_UNESCO, present_book, sum), ~replace_na(., 0)) # replacing NAs
  
head(as.data.frame(data_words_ND,3))
             document  org_subgroups      word present_in_dict present_BUS
1 American Naturalist journals_nonOA inception               1           0
2 American Naturalist journals_nonOA  maintain              NA           0
3 American Naturalist journals_nonOA  position              NA           0
4 American Naturalist journals_nonOA     world              NA           0
5 American Naturalist journals_nonOA   premier              NA           0
6 American Naturalist journals_nonOA      peer              NA           0
  present_UNESCO present_book sum                 stake_word
1              0            1   1 journals_nonOA _ inception
2              0            0   0  journals_nonOA _ maintain
3              0            0   0  journals_nonOA _ position
4              0            0   0     journals_nonOA _ world
5              0            0   0   journals_nonOA _ premier
6              0            0   0      journals_nonOA _ peer
                         doc_word doc_pres
1 American Naturalist _ inception        1
2  American Naturalist _ maintain        1
3  American Naturalist _ position        1
4     American Naturalist _ world        1
5   American Naturalist _ premier        1
6      American Naturalist _ peer        1
colnames(data_words_ND)
 [1] "document"        "org_subgroups"   "word"            "present_in_dict"
 [5] "present_BUS"     "present_UNESCO"  "present_book"    "sum"            
 [9] "stake_word"      "doc_word"        "doc_pres"       
## Preparing columns used to creating ternary plots
# Select columns of my interest (stakeholders) and aggregate 
  
data_words_ND <- data_words_ND %>% 
  select(document, org_subgroups, word, present_BUS, present_UNESCO, present_book, doc_pres, sum) # selecting columns, sum - column with the information about in how many dictionaries a certain word occurs

df_sum_pres_ND <- aggregate(x = data_words_ND[,4:8], by = list(data_words_ND$document), FUN = sum, na.rm = TRUE)
  
# By doing aggregate I lost info about the org_subgroups the doc come from, I want to add it
df_doc_ord <- data_words_ND %>% 
  select(document, org_subgroups) %>% 
  distinct(document, .keep_all = TRUE)
  
df_sum_pres_ND <- df_sum_pres_ND %>% 
  left_join(df_doc_ord, by = c("Group.1" = "document")) %>% 
  rename(document = Group.1)

# Creating % columns in a new df_sum_proc_ND data frame 
df_sum_proc_ND <- df_sum_pres_ND
# View(df_sum_proc_ND)

df_sum_proc_ND$proc_BUS <-df_sum_proc_ND$present_BUS/df_sum_proc_ND$doc_pres*100
df_sum_proc_ND$proc_UNESCO <- df_sum_proc_ND$present_UNESCO/df_sum_proc_ND$doc_pres*100
df_sum_proc_ND$proc_book <- df_sum_proc_ND$present_book/df_sum_proc_ND$doc_pres*100


# Additional information about the data
# Stakeholders (2 from each of the stakeholders) that shared the highest no of words with UNESCO recommendation

UNESCO_stak_top <- df_sum_proc_ND %>% 
  group_by(org_subgroups) %>% 
  arrange(desc(proc_UNESCO)) %>% 
  slice_head(n=2) %>% 
  select(org_subgroups, document, proc_UNESCO)

UNESCO_stak_top %>% 
  kbl(caption = "Stakeholders that shared the higest no of words with UNESCO recommendation:") %>% 
  kable_classic("hover", full_width = T)
Stakeholders that shared the higest no of words with UNESCO recommendation:
org_subgroups document proc_UNESCO
journals_nonOA Ecology Letters 9.677419
journals_nonOA Frontiers in Ecology and the Environment 8.411215
journals_OA Frontiers in Ecology and Evolution 13.636364
journals_OA Conservation Letters 8.823529
publishers_nonProfit Resilience Alliance 12.060301
publishers_nonProfit BioOne 10.447761
publishers_Profit Cell Press 9.292035
publishers_Profit Springer Nature 8.196721
# Stakeholders (2 from each of the stakeholders) that shared the highest no of words with business dictionary

business_stak_top <- df_sum_proc_ND %>% 
  group_by(org_subgroups) %>% 
  arrange(desc(proc_BUS)) %>% 
  slice_head(n=2) %>% 
  select(org_subgroups, document, proc_BUS)

business_stak_top %>% 
  kbl(caption = "Stakeholders that shared the higest no of words with business dictionary:") %>% 
  kable_classic("hover", full_width = T)
Stakeholders that shared the higest no of words with business dictionary:
org_subgroups document proc_BUS
journals_nonOA Evolution 21.212121
journals_nonOA Ecology 8.212560
journals_OA Evolution Letters 6.349206
journals_OA Biogeosciences 5.917160
publishers_nonProfit Resilience Alliance 5.527638
publishers_nonProfit Annual Reviews 4.666667
publishers_Profit Elsevier 3.433476
publishers_Profit Pensoft 3.092783
# Stakeholders (2 from each of the stakeholders) that shared the highest no of words with book dictionary (control)

book_stak_top <-  df_sum_proc_ND %>% 
  group_by(org_subgroups) %>% 
  arrange(desc(proc_book)) %>% 
  slice_head(n=2) %>% 
  select(org_subgroups, document, proc_book)

book_stak_top %>% 
  kbl(caption = "Stakeholders that shared the higest no of words with book dictionary (control):") %>% 
  kable_classic("hover", full_width = T)
Stakeholders that shared the higest no of words with book dictionary (control):
org_subgroups document proc_book
journals_nonOA Conservation Biology 18.81188
journals_nonOA Trends in Ecology & Evolution 18.07229
journals_OA Evolution Letters 22.22222
journals_OA Remote Sensing in Ecology and Conservation 20.38835
publishers_nonProfit The University of Chicago Press 22.36025
publishers_nonProfit The Royal Society Publishing 20.83333
publishers_Profit Cell Press 16.37168
publishers_Profit Wiley 12.84916

Creating graphs

no <- nrow(df_sum_proc_ND)
no
[1] 45
# Plotting them separately book
df_sum_proc_ND_book = data.frame(
  document = rep(df_sum_proc_ND$document,1),
  org_subgroups = rep(df_sum_proc_ND$org_subgroups,1),
  type = c(rep("Book",no)),
  perc = c(df_sum_proc_ND$proc_book),
  perc2 = c(df_sum_proc_ND$proc_book))

sum_df_sum_proc_ND_book = 
  df_sum_proc_ND_book %>%
  group_by(org_subgroups, type) %>%
  # dplyr::summarise(perc = mean(perc), SD = sd(perc2))
  dplyr::summarise(perc = median(perc), SD = sd(perc2))
`summarise()` has grouped output by 'org_subgroups'. You can override using the
`.groups` argument.
ggplot() +
  geom_point(data = df_sum_proc_ND_book, aes(x = perc, y = org_subgroups), alpha = 0.1, position = position_jitter()) +
  geom_pointrange(data = sum_df_sum_proc_ND_book, aes(x = perc, xmin = perc - SD, xmax = perc + SD, y = org_subgroups)) +
  facet_grid(type~.) +
  labs(x = "Document words occuring in dictionary (%)", y = "") +
  scale_colour_discrete(guide = "none") +
  theme_classic()

Version Author Date
796aa8e zuzannazagrodzka 2022-09-21
# Plotting them separately Business
df_sum_proc_ND_BUS = data.frame(
  document = rep(df_sum_proc_ND$document,1),
  org_subgroups = rep(df_sum_proc_ND$org_subgroups,1),
  type = c(rep("Business",no)),
  perc = c(df_sum_proc_ND$proc_BUS),
  perc2 = c(df_sum_proc_ND$proc_BUS))

sum_df_sum_proc_ND_BUS = 
  df_sum_proc_ND_BUS %>%
  group_by(org_subgroups, type) %>%
  # dplyr::summarise(perc = mean(perc), SD = sd(perc2))
  dplyr::summarise(perc = median(perc), SD = sd(perc2))
`summarise()` has grouped output by 'org_subgroups'. You can override using the
`.groups` argument.
ggplot() +
  geom_point(data = df_sum_proc_ND_BUS, aes(x = perc, y = org_subgroups), alpha = 0.1, position = position_jitter()) +
  geom_pointrange(data = sum_df_sum_proc_ND_BUS, aes(x = perc, xmin = perc - SD, xmax = perc + SD, y = org_subgroups)) +
  facet_grid(type~.) +
  labs(x = "Document words occuring in dictionary (%)", y = "") +
  scale_colour_discrete(guide = "none") +
  theme_classic()

Version Author Date
796aa8e zuzannazagrodzka 2022-09-21
# Plotting them separately UNESCO
df_sum_proc_ND_UNESCO = data.frame(
  document = rep(df_sum_proc_ND$document,1),
  org_subgroups = rep(df_sum_proc_ND$org_subgroups,1),
  type = c(rep("UNESCO",no)),
  perc = c(df_sum_proc_ND$proc_UNESCO),
  perc2 = c(df_sum_proc_ND$proc_UNESCO))

sum_df_sum_proc_ND_UNESCO = 
  df_sum_proc_ND_UNESCO %>%
  group_by(org_subgroups, type) %>%
  # dplyr::summarise(perc = mean(perc), SD = sd(perc2))
  dplyr::summarise(perc = median(perc), SD = sd(perc2))
`summarise()` has grouped output by 'org_subgroups'. You can override using the
`.groups` argument.
ggplot() +
  geom_point(data = df_sum_proc_ND_UNESCO, aes(x = perc, y = org_subgroups), alpha = 0.1, position = position_jitter()) +
  geom_pointrange(data = sum_df_sum_proc_ND_UNESCO, aes(x = perc, xmin = perc - SD, xmax = perc + SD, y = org_subgroups)) +
  facet_grid(type~.) +
  labs(x = "Document words occuring in dictionary (%)", y = "") +
  scale_colour_discrete(guide = "none") +
  theme_classic()

Version Author Date
796aa8e zuzannazagrodzka 2022-09-21

Session information

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4 tidytext_0.3.4   forcats_0.5.2    stringr_1.4.1   
 [5] dplyr_1.0.10     purrr_0.3.5      readr_2.1.3      tidyr_1.2.1     
 [9] tibble_3.1.8     ggplot2_3.3.6    tidyverse_1.3.2  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2            lubridate_1.8.0     bit64_4.0.5        
 [4] webshot_0.5.4       httr_1.4.4          rprojroot_2.0.3    
 [7] SnowballC_0.7.0     tools_4.2.1         backports_1.4.1    
[10] bslib_0.4.0         utf8_1.2.2          R6_2.5.1           
[13] DBI_1.1.3           colorspace_2.0-3    withr_2.5.0        
[16] tidyselect_1.2.0    processx_3.7.0      bit_4.0.4          
[19] compiler_4.2.1      git2r_0.30.1        cli_3.4.1          
[22] rvest_1.0.3         xml2_1.3.3          labeling_0.4.2     
[25] sass_0.4.2          scales_1.2.1        callr_3.7.2        
[28] systemfonts_1.0.4   digest_0.6.29       rmarkdown_2.16     
[31] svglite_2.1.0       pkgconfig_2.0.3     htmltools_0.5.3    
[34] highr_0.9           dbplyr_2.2.1        fastmap_1.1.0      
[37] rlang_1.0.6         readxl_1.4.1        rstudioapi_0.14    
[40] farver_2.1.1        jquerylib_0.1.4     generics_0.1.3     
[43] jsonlite_1.8.3      vroom_1.6.0         tokenizers_0.2.3   
[46] googlesheets4_1.0.1 magrittr_2.0.3      Matrix_1.4-1       
[49] Rcpp_1.0.9          munsell_0.5.0       fansi_1.0.3        
[52] lifecycle_1.0.3     stringi_1.7.8       whisker_0.4        
[55] yaml_2.3.6          grid_4.2.1          parallel_4.2.1     
[58] promises_1.2.0.1    crayon_1.5.2        lattice_0.20-45    
[61] haven_2.5.1         hms_1.1.2           knitr_1.40         
[64] ps_1.7.1            pillar_1.8.1        reprex_2.0.2       
[67] glue_1.6.2          evaluate_0.16       getPass_0.2-2      
[70] modelr_0.1.9        vctrs_0.5.0         tzdb_0.3.0         
[73] httpuv_1.6.6        cellranger_1.1.0    gtable_0.3.1       
[76] assertthat_0.2.1    cachem_1.0.6        xfun_0.33          
[79] broom_1.0.1         janeaustenr_1.0.0   later_1.3.0        
[82] googledrive_2.0.0   viridisLite_0.4.1   gargle_1.2.1       
[85] ellipsis_0.3.2     

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4 tidytext_0.3.4   forcats_0.5.2    stringr_1.4.1   
 [5] dplyr_1.0.10     purrr_0.3.5      readr_2.1.3      tidyr_1.2.1     
 [9] tibble_3.1.8     ggplot2_3.3.6    tidyverse_1.3.2  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2            lubridate_1.8.0     bit64_4.0.5        
 [4] webshot_0.5.4       httr_1.4.4          rprojroot_2.0.3    
 [7] SnowballC_0.7.0     tools_4.2.1         backports_1.4.1    
[10] bslib_0.4.0         utf8_1.2.2          R6_2.5.1           
[13] DBI_1.1.3           colorspace_2.0-3    withr_2.5.0        
[16] tidyselect_1.2.0    processx_3.7.0      bit_4.0.4          
[19] compiler_4.2.1      git2r_0.30.1        cli_3.4.1          
[22] rvest_1.0.3         xml2_1.3.3          labeling_0.4.2     
[25] sass_0.4.2          scales_1.2.1        callr_3.7.2        
[28] systemfonts_1.0.4   digest_0.6.29       rmarkdown_2.16     
[31] svglite_2.1.0       pkgconfig_2.0.3     htmltools_0.5.3    
[34] highr_0.9           dbplyr_2.2.1        fastmap_1.1.0      
[37] rlang_1.0.6         readxl_1.4.1        rstudioapi_0.14    
[40] farver_2.1.1        jquerylib_0.1.4     generics_0.1.3     
[43] jsonlite_1.8.3      vroom_1.6.0         tokenizers_0.2.3   
[46] googlesheets4_1.0.1 magrittr_2.0.3      Matrix_1.4-1       
[49] Rcpp_1.0.9          munsell_0.5.0       fansi_1.0.3        
[52] lifecycle_1.0.3     stringi_1.7.8       whisker_0.4        
[55] yaml_2.3.6          grid_4.2.1          parallel_4.2.1     
[58] promises_1.2.0.1    crayon_1.5.2        lattice_0.20-45    
[61] haven_2.5.1         hms_1.1.2           knitr_1.40         
[64] ps_1.7.1            pillar_1.8.1        reprex_2.0.2       
[67] glue_1.6.2          evaluate_0.16       getPass_0.2-2      
[70] modelr_0.1.9        vctrs_0.5.0         tzdb_0.3.0         
[73] httpuv_1.6.6        cellranger_1.1.0    gtable_0.3.1       
[76] assertthat_0.2.1    cachem_1.0.6        xfun_0.33          
[79] broom_1.0.1         janeaustenr_1.0.0   later_1.3.0        
[82] googledrive_2.0.0   viridisLite_0.4.1   gargle_1.2.1       
[85] ellipsis_0.3.2