Last updated: 2019-05-21
Checks: 5 1
Knit directory: MSTPsummerstatistics/
This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20180927)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/introR.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 4ce8e85 | Anthony Hung | 2019-05-21 | bandersnatch add |
html | 4ce8e85 | Anthony Hung | 2019-05-21 | bandersnatch add |
html | 096760a | Anthony Hung | 2019-05-18 | Build site. |
html | da98ae8 | Anthony Hung | 2019-05-17 | Build site. |
html | bb90220 | Anthony Hung | 2019-05-17 | commit before publishing |
Rmd | 239723e | Anthony Hung | 2019-05-08 | Update learning objectives |
html | 239723e | Anthony Hung | 2019-05-08 | Update learning objectives |
html | 2ec7944 | Anthony Hung | 2019-05-06 | Build site. |
html | 536085f | Anthony Hung | 2019-05-06 | Build site. |
html | ee75486 | Anthony Hung | 2019-05-04 | Build site. |
html | 5ea5f30 | Anthony Hung | 2019-04-29 | Build site. |
html | e0e8156 | Anthony Hung | 2019-04-29 | Build site. |
html | e746cf5 | Anthony Hung | 2019-04-28 | Build site. |
Rmd | 133df4a | Anthony Hung | 2019-04-28 | introR |
html | 133df4a | Anthony Hung | 2019-04-28 | introR |
html | 22b3720 | Anthony Hung | 2019-04-26 | Build site. |
html | ddb3114 | Anthony Hung | 2019-04-26 | Build site. |
html | 413d065 | Anthony Hung | 2019-04-26 | Build site. |
html | 6b98d6c | Anthony Hung | 2019-04-26 | Build site. |
Rmd | 9f13e70 | Anthony Hung | 2019-04-25 | finish CLT |
html | 9f13e70 | Anthony Hung | 2019-04-25 | finish CLT |
Here, we introduce R, a statistical programming language. Doing statistics within a programming language brings many advantages, including allowing one to organize all analyses into program files that can be rerun to replicate analyses. In addition to using R, we will be using RStudio, an integrated development environment (IDE), which assists us in working with R and outputs of our code as we develop it. Our objective today is to get everyone up to speed with working knowledge of R and programming to be able to do exercises as a part of the rest of the course.
Both R and RStudio are freely available online.
Download the appropriate “base” version of R for your operating system from CRAN: https://cran.r-project.org/
Install the software with default settings.
Download the appropriate RStudio version for your operating system: https://www.rstudio.com/products/rstudio/download/#download
Follow along in your R console with the code in each of the code chunks as we explore the different aspects of R! Clicking on the github logo on the top right corner of the webpage will take you to the repository for this website, where you can download the R markdown file for this page to load into RStudio to follow along.
Many familiar operators work in R, allowing you to work with numbers like you would in a calculator. Operators such as inequalities also work, returning “TRUE” if the proposed logical expression is true and “FALSE” otherwise.
2+4 #addition
[1] 6
2-4 #subtraction
[1] -2
2*4 #multiplication
[1] 8
2/4 #division
[1] 0.5
2^4 #exponentiation
[1] 16
log(2) #the default log base is the natural log
[1] 0.6931472
2 < 4
[1] TRUE
2 > 4
[1] FALSE
2 >= 4 #greater than or equal to
[1] FALSE
2 == 2 #is equal to (notice that there are two equal signs, as a single equal sign denotes assignment)
[1] TRUE
2 != 4 #is not equal to
[1] TRUE
2 != 4 | 2 + 2 == 4 #OR
[1] TRUE
2 != 4 & 2 + 2 == 4 #AND
[1] TRUE
"Red" == "Red"
[1] TRUE
In addition to being able to work with actual numbers, R works in objects, which can represent anything from numbers to strings to vectors to matrices. Everything in R is an object. The best practice for assigning variable names to objects is the “<-” operator. After objects are created, they are stored in in the “Environment” tab in your RStudio console and can be called upon to perform different operations.
R has many data structures, including:
R has 6 atomic vector types, or classes. Atomic means that a vector only contains elements of one class (i.e. the elements inside the vector do not come from mutliple classes).
a <- 2
b <- 3
a + b
[1] 5
class(a) #the "class" function tells you what class of object a is
[1] "numeric"
d <- c(1,2,3,4,5) #the "c" function concatenates the arguments contained within it into a vector
d
[1] 1 2 3 4 5
d <- c(d, 1) #The "c" function also allows you to append items to an existing vector
d
[1] 1 2 3 4 5 1
class(d)
[1] "numeric"
d[3] #brackets allow you index vectors or matrices. Here, we call the third value from our d vector.
[1] 3
#Matrices are just like vectors, but with two dimensions
my_matrix <- matrix(seq(1:9), ncol = 3)
my_matrix
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
#vectors and matrices can only contain objects of one class. If you include objects of multiple types into the same vector, R will perform coersion to force all the objects contained in the vector into a shared class
x <- c(1.7, "a")
x
[1] "1.7" "a"
class("a")
[1] "character"
class(1.7)
[1] "numeric"
class(x)
[1] "character"
y <- c(TRUE, 2)
y
[1] 1 2
z <- c("a", TRUE)
z
[1] "a" "TRUE"
#If you would like to store objects of multiple classes into one object, a list can accomodate such a task.
x_y_z_list <- list(x,y,z)
x_y_z_list
[[1]]
[1] "1.7" "a"
[[2]]
[1] 1 2
[[3]]
[1] "a" "TRUE"
#to index an element in a list, use double brackets [[]]. You can further index elements within an element of a list.
x_y_z_list[[1]]
[1] "1.7" "a"
x_y_z_list[[1]][2]
[1] "a"
#elements in a list can be assigned names
x_y_z_list <- list(a=x, b=y, c=z)
x_y_z_list
$a
[1] "1.7" "a"
$b
[1] 1 2
$c
[1] "a" "TRUE"
#Dataframes are a very commonly used type of object in R. You can think of a dataframe as a rectangular combination of lists.
#The below code stores the stated values in a dataframe which contains employee ids, names, salaries, and start dates for 5 employees
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
emp.data
emp_id emp_name salary start_date
1 1 Rick 623.30 2012-01-01
2 2 Dan 515.20 2013-09-23
3 3 Michelle 611.00 2014-11-15
4 4 Ryan 729.00 2014-05-11
5 5 Gary 843.25 2015-03-27
emp.data$emp_id #the $ operator calls on a certain column of a dataframe
[1] 1 2 3 4 5
class(emp.data$emp_id) #As noted earlier, a dataframe can be thought of as a rectangular list, combining different data classes together, each in a different column.
[1] "integer"
class(emp.data$salary)
[1] "numeric"
emp.data$emp_name[emp.data$salary > 620] #You can combine logical operators, brackets, and the $ sign to subset your dataframe in any way you choose! Here, we print out all the employee names for employees who have a salary greater than 620.
[1] "Rick" "Ryan" "Gary"
ls() #ls lists all the variable names that have been assigned to objects in your workspace
[1] "a" "b" "d" "emp.data" "my_matrix"
[6] "x" "x_y_z_list" "y" "z"
In addition to the basic functions provided in R, oftentimes we will be working with packages that contain functions written by other people to perform common tasks or specific analyses. Packages can also contain datasets. We can load these packages into our R environment after installing them in R.
usePackage <- function(p)
{
if (!is.element(p, installed.packages()[,1]))
install.packages(p, dep = TRUE)
require(p, character.only = TRUE)
}
usePackage("gapminder")#This code installs the gapminder packages, which contains vital statistics data from multiple countries. install.packages() is the function that will install a package for you if you know it's name.
Loading required package: gapminder
library("gapminder") #After installing the package, we need to tell R to load it into our current environment with this function.
head(gapminder) #The package gapminder contains a dataset called gapminder. We can use the "head" function to print out the first 6 rows of this dataset.
# A tibble: 6 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
?gapminder #the ? operator lauches a help page to describe a particular function, including the arguments it takes. Whenever using a new function, it is good practice to first explore it through ?.
Oftentimes, we may want to perform the same operation or function many many times. Rather than having to explicitly write out each individual operation, we can make use of loops. For example, let’s say that we want to raise the number 2 to the power of each integer from 0 to 20. We could either write out 2^0, 2^1, 2^2 …, or make use of a for loop to condense our code while getting the same result.
2^0
[1] 1
2^1
[1] 2
2^2
[1] 4
2^3
[1] 8
# ...
#This is a for loop. in the parentheses after the for function, we specify over what range of values we want to loop over, and assign a dummy variable name to take on each of those values in sequence. Within the curly braces, we state what operation we want to perform over all the values taken on by the dummy variable.
for(i in 0:20){
print(2^i)
}
[1] 1
[1] 2
[1] 4
[1] 8
[1] 16
[1] 32
[1] 64
[1] 128
[1] 256
[1] 512
[1] 1024
[1] 2048
[1] 4096
[1] 8192
[1] 16384
[1] 32768
[1] 65536
[1] 131072
[1] 262144
[1] 524288
[1] 1048576
Another way to avoid writing out or copy-pasting the same exact thing over and over again when working with data is to write a function to contain a certain combination of operations you find yourself running mutliple times. For example, you may find yourself needing to calculate the Hardy-Weinberg Equillibrium genotype frequencies of a population given the allele frequencies. We can wrap up all the code that you would need to calculate this in a function that we can call upon again and again.
calc_HWE_geno <- function(p = 0.5){
q <- 1-p
pp <- p^2
pq <- 2*p*q
qq <- q^2
return(c(pp, pq, qq))
}
calc_HWE_geno(p = 0.1)
[1] 0.01 0.18 0.81
#note that in our UDF we assigned a default value to p (p = 0.5). This means that if we do not specify a value for our argument of p, it will default to using that value.
calc_HWE_geno()
[1] 0.25 0.50 0.25
In addition to mathematical operations, R can help with data visualization. Base R has a few useful plotting functions, but popular packages such as ggplot2 give more customization and control to the user.
hist(gapminder$lifeExp)
Version | Author | Date |
---|---|---|
133df4a | Anthony Hung | 2019-04-28 |
boxplot(lifeExp ~ continent, data = gapminder) #box plot for the life expectancies of all years per continent
Version | Author | Date |
---|---|---|
133df4a | Anthony Hung | 2019-04-28 |
R has many functions that use a random number generator to generate an output. For example, the r____ functions (e.g. rbinom, runif) pull numbers from a probability distribution of your choice. In order to create reproducible analyses, it is often advantageous to be able to reliably obtain the same “random” number after running the same function over again. In order to do so, we can set a seed for the random number generator.
runif(1,0,1) #runif pulls a number from the uniform distribution with a set of given parameters
[1] 0.1944457
runif(1,0,1) #we can see that running runif twice gives you differnt results
[1] 0.205278
set.seed(1234) #setting a seed allows us to obtain reproducible results from functions that use the random number generator
runif(1,0,1)
[1] 0.1137034
set.seed(1234)
runif(1,0,1)
[1] 0.1137034
Finally, let us address probably one of the most important points when working with statistics in science: how to get the data you have collected into your R environment. For this part of the lesson, we will be working with the bandersnatch.csv file (created by Katie Long) located here: https://raw.githubusercontent.com/anthonyhung/MSTPsummerstatistics/master/data/bandersnatch.csv. If you would like to have your own copy of this dataset, you can open up a terminal window and run the commands.
cd ~/Desktop
mkdir data
cd data
wget https://raw.githubusercontent.com/anthonyhung/MSTPsummerstatistics/master/data/bandersnatch.csv
mkdir: data: File exists
--2019-05-21 15:45:12-- https://raw.githubusercontent.com/anthonyhung/MSTPsummerstatistics/master/data/bandersnatch.csv
Resolving raw.githubusercontent.com... 151.101.184.133
Connecting to raw.githubusercontent.com|151.101.184.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 13511471 (13M) [text/plain]
Saving to: ‘bandersnatch.csv.3’
0K .......... .......... .......... .......... .......... 0% 3.86M 3s
50K .......... .......... .......... .......... .......... 0% 8.51M 2s
100K .......... .......... .......... .......... .......... 1% 21.0M 2s
150K .......... .......... .......... .......... .......... 1% 15.1M 2s
200K .......... .......... .......... .......... .......... 1% 6.71M 2s
250K .......... .......... .......... .......... .......... 2% 30.1M 1s
300K .......... .......... .......... .......... .......... 2% 7.82M 1s
350K .......... .......... .......... .......... .......... 3% 2.92M 2s
400K .......... .......... .......... .......... .......... 3% 51.4M 2s
450K .......... .......... .......... .......... .......... 3% 53.2M 1s
500K .......... .......... .......... .......... .......... 4% 41.9M 1s
550K .......... .......... .......... .......... .......... 4% 32.3M 1s
600K .......... .......... .......... .......... .......... 4% 4.65M 1s
650K .......... .......... .......... .......... .......... 5% 36.0M 1s
700K .......... .......... .......... .......... .......... 5% 64.6M 1s
750K .......... .......... .......... .......... .......... 6% 9.46M 1s
800K .......... .......... .......... .......... .......... 6% 2.12M 1s
850K .......... .......... .......... .......... .......... 6% 47.9M 1s
900K .......... .......... .......... .......... .......... 7% 48.8M 1s
950K .......... .......... .......... .......... .......... 7% 45.7M 1s
1000K .......... .......... .......... .......... .......... 7% 61.3M 1s
1050K .......... .......... .......... .......... .......... 8% 17.8M 1s
1100K .......... .......... .......... .......... .......... 8% 12.1M 1s
1150K .......... .......... .......... .......... .......... 9% 10.2M 1s
1200K .......... .......... .......... .......... .......... 9% 53.9M 1s
1250K .......... .......... .......... .......... .......... 9% 11.2M 1s
1300K .......... .......... .......... .......... .......... 10% 8.88M 1s
1350K .......... .......... .......... .......... .......... 10% 9.93M 1s
1400K .......... .......... .......... .......... .......... 10% 11.7M 1s
1450K .......... .......... .......... .......... .......... 11% 9.24M 1s
1500K .......... .......... .......... .......... .......... 11% 12.5M 1s
1550K .......... .......... .......... .......... .......... 12% 40.9M 1s
1600K .......... .......... .......... .......... .......... 12% 11.0M 1s
1650K .......... .......... .......... .......... .......... 12% 10.1M 1s
1700K .......... .......... .......... .......... .......... 13% 10.8M 1s
1750K .......... .......... .......... .......... .......... 13% 11.6M 1s
1800K .......... .......... .......... .......... .......... 14% 10.7M 1s
1850K .......... .......... .......... .......... .......... 14% 9.02M 1s
1900K .......... .......... .......... .......... .......... 14% 24.1M 1s
1950K .......... .......... .......... .......... .......... 15% 8.90M 1s
2000K .......... .......... .......... .......... .......... 15% 10.5M 1s
2050K .......... .......... .......... .......... .......... 15% 10.6M 1s
2100K .......... .......... .......... .......... .......... 16% 8.76M 1s
2150K .......... .......... .......... .......... .......... 16% 7.06M 1s
2200K .......... .......... .......... .......... .......... 17% 7.97M 1s
2250K .......... .......... .......... .......... .......... 17% 37.3M 1s
2300K .......... .......... .......... .......... .......... 17% 9.98M 1s
2350K .......... .......... .......... .......... .......... 18% 9.80M 1s
2400K .......... .......... .......... .......... .......... 18% 9.08M 1s
2450K .......... .......... .......... .......... .......... 18% 10.3M 1s
2500K .......... .......... .......... .......... .......... 19% 9.58M 1s
2550K .......... .......... .......... .......... .......... 19% 11.7M 1s
2600K .......... .......... .......... .......... .......... 20% 41.7M 1s
2650K .......... .......... .......... .......... .......... 20% 10.5M 1s
2700K .......... .......... .......... .......... .......... 20% 2.74M 1s
2750K .......... .......... .......... .......... .......... 21% 14.8M 1s
2800K .......... .......... .......... .......... .......... 21% 52.8M 1s
2850K .......... .......... .......... .......... .......... 21% 56.6M 1s
2900K .......... .......... .......... .......... .......... 22% 61.9M 1s
2950K .......... .......... .......... .......... .......... 22% 21.1M 1s
3000K .......... .......... .......... .......... .......... 23% 10.7M 1s
3050K .......... .......... .......... .......... .......... 23% 9.59M 1s
3100K .......... .......... .......... .......... .......... 23% 10.2M 1s
3150K .......... .......... .......... .......... .......... 24% 11.5M 1s
3200K .......... .......... .......... .......... .......... 24% 10.3M 1s
3250K .......... .......... .......... .......... .......... 25% 51.8M 1s
3300K .......... .......... .......... .......... .......... 25% 11.3M 1s
3350K .......... .......... .......... .......... .......... 25% 8.92M 1s
3400K .......... .......... .......... .......... .......... 26% 11.2M 1s
3450K .......... .......... .......... .......... .......... 26% 11.6M 1s
3500K .......... .......... .......... .......... .......... 26% 12.2M 1s
3550K .......... .......... .......... .......... .......... 27% 9.63M 1s
3600K .......... .......... .......... .......... .......... 27% 38.2M 1s
3650K .......... .......... .......... .......... .......... 28% 9.69M 1s
3700K .......... .......... .......... .......... .......... 28% 12.9M 1s
3750K .......... .......... .......... .......... .......... 28% 8.24M 1s
3800K .......... .......... .......... .......... .......... 29% 16.2M 1s
3850K .......... .......... .......... .......... .......... 29% 10.6M 1s
3900K .......... .......... .......... .......... .......... 29% 9.59M 1s
3950K .......... .......... .......... .......... .......... 30% 42.3M 1s
4000K .......... .......... .......... .......... .......... 30% 9.14M 1s
4050K .......... .......... .......... .......... .......... 31% 11.0M 1s
4100K .......... .......... .......... .......... .......... 31% 11.8M 1s
4150K .......... .......... .......... .......... .......... 31% 12.6M 1s
4200K .......... .......... .......... .......... .......... 32% 11.9M 1s
4250K .......... .......... .......... .......... .......... 32% 11.6M 1s
4300K .......... .......... .......... .......... .......... 32% 48.6M 1s
4350K .......... .......... .......... .......... .......... 33% 11.2M 1s
4400K .......... .......... .......... .......... .......... 33% 8.96M 1s
4450K .......... .......... .......... .......... .......... 34% 9.01M 1s
4500K .......... .......... .......... .......... .......... 34% 9.88M 1s
4550K .......... .......... .......... .......... .......... 34% 8.33M 1s
4600K .......... .......... .......... .......... .......... 35% 11.9M 1s
4650K .......... .......... .......... .......... .......... 35% 31.1M 1s
4700K .......... .......... .......... .......... .......... 35% 12.2M 1s
4750K .......... .......... .......... .......... .......... 36% 13.3M 1s
4800K .......... .......... .......... .......... .......... 36% 11.4M 1s
4850K .......... .......... .......... .......... .......... 37% 11.0M 1s
4900K .......... .......... .......... .......... .......... 37% 15.8M 1s
4950K .......... .......... .......... .......... .......... 37% 9.97M 1s
5000K .......... .......... .......... .......... .......... 38% 28.8M 1s
5050K .......... .......... .......... .......... .......... 38% 15.9M 1s
5100K .......... .......... .......... .......... .......... 39% 11.3M 1s
5150K .......... .......... .......... .......... .......... 39% 8.14M 1s
5200K .......... .......... .......... .......... .......... 39% 18.5M 1s
5250K .......... .......... .......... .......... .......... 40% 19.4M 1s
5300K .......... .......... .......... .......... .......... 40% 18.5M 1s
5350K .......... .......... .......... .......... .......... 40% 18.2M 1s
5400K .......... .......... .......... .......... .......... 41% 8.89M 1s
5450K .......... .......... .......... .......... .......... 41% 12.6M 1s
5500K .......... .......... .......... .......... .......... 42% 7.49M 1s
5550K .......... .......... .......... .......... .......... 42% 14.0M 1s
5600K .......... .......... .......... .......... .......... 42% 39.5M 1s
5650K .......... .......... .......... .......... .......... 43% 12.2M 1s
5700K .......... .......... .......... .......... .......... 43% 21.7M 1s
5750K .......... .......... .......... .......... .......... 43% 28.7M 1s
5800K .......... .......... .......... .......... .......... 44% 8.48M 1s
5850K .......... .......... .......... .......... .......... 44% 7.76M 1s
5900K .......... .......... .......... .......... .......... 45% 17.8M 1s
5950K .......... .......... .......... .......... .......... 45% 27.7M 1s
6000K .......... .......... .......... .......... .......... 45% 14.3M 1s
6050K .......... .......... .......... .......... .......... 46% 40.9M 1s
6100K .......... .......... .......... .......... .......... 46% 8.46M 1s
6150K .......... .......... .......... .......... .......... 46% 9.26M 1s
6200K .......... .......... .......... .......... .......... 47% 33.0M 1s
6250K .......... .......... .......... .......... .......... 47% 6.61M 1s
6300K .......... .......... .......... .......... .......... 48% 15.2M 1s
6350K .......... .......... .......... .......... .......... 48% 13.6M 1s
6400K .......... .......... .......... .......... .......... 48% 51.6M 1s
6450K .......... .......... .......... .......... .......... 49% 11.9M 1s
6500K .......... .......... .......... .......... .......... 49% 6.34M 1s
6550K .......... .......... .......... .......... .......... 50% 22.2M 1s
6600K .......... .......... .......... .......... .......... 50% 29.8M 1s
6650K .......... .......... .......... .......... .......... 50% 10.5M 1s
6700K .......... .......... .......... .......... .......... 51% 21.3M 1s
6750K .......... .......... .......... .......... .......... 51% 37.1M 1s
6800K .......... .......... .......... .......... .......... 51% 11.9M 1s
6850K .......... .......... .......... .......... .......... 52% 35.7M 1s
6900K .......... .......... .......... .......... .......... 52% 9.92M 1s
6950K .......... .......... .......... .......... .......... 53% 30.9M 1s
7000K .......... .......... .......... .......... .......... 53% 7.91M 1s
7050K .......... .......... .......... .......... .......... 53% 14.6M 1s
7100K .......... .......... .......... .......... .......... 54% 24.4M 0s
7150K .......... .......... .......... .......... .......... 54% 11.8M 0s
7200K .......... .......... .......... .......... .......... 54% 9.83M 0s
7250K .......... .......... .......... .......... .......... 55% 6.96M 0s
7300K .......... .......... .......... .......... .......... 55% 13.8M 0s
7350K .......... .......... .......... .......... .......... 56% 21.5M 0s
7400K .......... .......... .......... .......... .......... 56% 9.81M 0s
7450K .......... .......... .......... .......... .......... 56% 17.7M 0s
7500K .......... .......... .......... .......... .......... 57% 76.5M 0s
7550K .......... .......... .......... .......... .......... 57% 9.11M 0s
7600K .......... .......... .......... .......... .......... 57% 27.0M 0s
7650K .......... .......... .......... .......... .......... 58% 10.7M 0s
7700K .......... .......... .......... .......... .......... 58% 18.2M 0s
7750K .......... .......... .......... .......... .......... 59% 5.37M 0s
7800K .......... .......... .......... .......... .......... 59% 43.1M 0s
7850K .......... .......... .......... .......... .......... 59% 16.7M 0s
7900K .......... .......... .......... .......... .......... 60% 8.75M 0s
7950K .......... .......... .......... .......... .......... 60% 18.2M 0s
8000K .......... .......... .......... .......... .......... 61% 33.2M 0s
8050K .......... .......... .......... .......... .......... 61% 25.7M 0s
8100K .......... .......... .......... .......... .......... 61% 15.1M 0s
8150K .......... .......... .......... .......... .......... 62% 9.88M 0s
8200K .......... .......... .......... .......... .......... 62% 11.3M 0s
8250K .......... .......... .......... .......... .......... 62% 25.9M 0s
8300K .......... .......... .......... .......... .......... 63% 18.2M 0s
8350K .......... .......... .......... .......... .......... 63% 34.4M 0s
8400K .......... .......... .......... .......... .......... 64% 67.4M 0s
8450K .......... .......... .......... .......... .......... 64% 12.5M 0s
8500K .......... .......... .......... .......... .......... 64% 6.57M 0s
8550K .......... .......... .......... .......... .......... 65% 30.2M 0s
8600K .......... .......... .......... .......... .......... 65% 6.15M 0s
8650K .......... .......... .......... .......... .......... 65% 30.9M 0s
8700K .......... .......... .......... .......... .......... 66% 15.4M 0s
8750K .......... .......... .......... .......... .......... 66% 16.6M 0s
8800K .......... .......... .......... .......... .......... 67% 66.6M 0s
8850K .......... .......... .......... .......... .......... 67% 9.63M 0s
8900K .......... .......... .......... .......... .......... 67% 32.7M 0s
8950K .......... .......... .......... .......... .......... 68% 7.83M 0s
9000K .......... .......... .......... .......... .......... 68% 9.79M 0s
9050K .......... .......... .......... .......... .......... 68% 12.0M 0s
9100K .......... .......... .......... .......... .......... 69% 31.1M 0s
9150K .......... .......... .......... .......... .......... 69% 8.08M 0s
9200K .......... .......... .......... .......... .......... 70% 75.8M 0s
9250K .......... .......... .......... .......... .......... 70% 13.9M 0s
9300K .......... .......... .......... .......... .......... 70% 25.8M 0s
9350K .......... .......... .......... .......... .......... 71% 9.09M 0s
9400K .......... .......... .......... .......... .......... 71% 27.1M 0s
9450K .......... .......... .......... .......... .......... 71% 10.4M 0s
9500K .......... .......... .......... .......... .......... 72% 36.0M 0s
9550K .......... .......... .......... .......... .......... 72% 39.8M 0s
9600K .......... .......... .......... .......... .......... 73% 8.71M 0s
9650K .......... .......... .......... .......... .......... 73% 29.0M 0s
9700K .......... .......... .......... .......... .......... 73% 3.63M 0s
9750K .......... .......... .......... .......... .......... 74% 23.9M 0s
9800K .......... .......... .......... .......... .......... 74% 22.1M 0s
9850K .......... .......... .......... .......... .......... 75% 16.7M 0s
9900K .......... .......... .......... .......... .......... 75% 21.7M 0s
9950K .......... .......... .......... .......... .......... 75% 29.1M 0s
10000K .......... .......... .......... .......... .......... 76% 10.7M 0s
10050K .......... .......... .......... .......... .......... 76% 35.1M 0s
10100K .......... .......... .......... .......... .......... 76% 9.26M 0s
10150K .......... .......... .......... .......... .......... 77% 36.9M 0s
10200K .......... .......... .......... .......... .......... 77% 9.89M 0s
10250K .......... .......... .......... .......... .......... 78% 43.7M 0s
10300K .......... .......... .......... .......... .......... 78% 29.6M 0s
10350K .......... .......... .......... .......... .......... 78% 5.18M 0s
10400K .......... .......... .......... .......... .......... 79% 76.2M 0s
10450K .......... .......... .......... .......... .......... 79% 13.0M 0s
10500K .......... .......... .......... .......... .......... 79% 24.8M 0s
10550K .......... .......... .......... .......... .......... 80% 9.68M 0s
10600K .......... .......... .......... .......... .......... 80% 31.6M 0s
10650K .......... .......... .......... .......... .......... 81% 9.56M 0s
10700K .......... .......... .......... .......... .......... 81% 30.1M 0s
10750K .......... .......... .......... .......... .......... 81% 36.2M 0s
10800K .......... .......... .......... .......... .......... 82% 9.13M 0s
10850K .......... .......... .......... .......... .......... 82% 34.9M 0s
10900K .......... .......... .......... .......... .......... 82% 6.36M 0s
10950K .......... .......... .......... .......... .......... 83% 5.27M 0s
11000K .......... .......... .......... .......... .......... 83% 57.6M 0s
11050K .......... .......... .......... .......... .......... 84% 79.8M 0s
11100K .......... .......... .......... .......... .......... 84% 9.65M 0s
11150K .......... .......... .......... .......... .......... 84% 47.5M 0s
11200K .......... .......... .......... .......... .......... 85% 42.9M 0s
11250K .......... .......... .......... .......... .......... 85% 11.4M 0s
11300K .......... .......... .......... .......... .......... 86% 33.0M 0s
11350K .......... .......... .......... .......... .......... 86% 10.2M 0s
11400K .......... .......... .......... .......... .......... 86% 42.5M 0s
11450K .......... .......... .......... .......... .......... 87% 8.39M 0s
11500K .......... .......... .......... .......... .......... 87% 30.4M 0s
11550K .......... .......... .......... .......... .......... 87% 39.5M 0s
11600K .......... .......... .......... .......... .......... 88% 11.4M 0s
11650K .......... .......... .......... .......... .......... 88% 10.0M 0s
11700K .......... .......... .......... .......... .......... 89% 23.0M 0s
11750K .......... .......... .......... .......... .......... 89% 27.6M 0s
11800K .......... .......... .......... .......... .......... 89% 8.60M 0s
11850K .......... .......... .......... .......... .......... 90% 52.4M 0s
11900K .......... .......... .......... .......... .......... 90% 40.6M 0s
11950K .......... .......... .......... .......... .......... 90% 8.37M 0s
12000K .......... .......... .......... .......... .......... 91% 24.3M 0s
12050K .......... .......... .......... .......... .......... 91% 7.77M 0s
12100K .......... .......... .......... .......... .......... 92% 15.9M 0s
12150K .......... .......... .......... .......... .......... 92% 14.2M 0s
12200K .......... .......... .......... .......... .......... 92% 20.4M 0s
12250K .......... .......... .......... .......... .......... 93% 23.1M 0s
12300K .......... .......... .......... .......... .......... 93% 18.3M 0s
12350K .......... .......... .......... .......... .......... 93% 33.7M 0s
12400K .......... .......... .......... .......... .......... 94% 5.67M 0s
12450K .......... .......... .......... .......... .......... 94% 67.7M 0s
12500K .......... .......... .......... .......... .......... 95% 16.4M 0s
12550K .......... .......... .......... .......... .......... 95% 24.0M 0s
12600K .......... .......... .......... .......... .......... 95% 10.8M 0s
12650K .......... .......... .......... .......... .......... 96% 36.2M 0s
12700K .......... .......... .......... .......... .......... 96% 9.91M 0s
12750K .......... .......... .......... .......... .......... 97% 41.0M 0s
12800K .......... .......... .......... .......... .......... 97% 30.8M 0s
12850K .......... .......... .......... .......... .......... 97% 11.7M 0s
12900K .......... .......... .......... .......... .......... 98% 39.5M 0s
12950K .......... .......... .......... .......... .......... 98% 6.88M 0s
13000K .......... .......... .......... .......... .......... 98% 40.3M 0s
13050K .......... .......... .......... .......... .......... 99% 8.64M 0s
13100K .......... .......... .......... .......... .......... 99% 7.17M 0s
13150K .......... .......... .......... .......... .... 100% 9.96M=1.0s
2019-05-21 15:45:13 (12.9 MB/s) - ‘bandersnatch.csv.3’ saved [13511471/13511471]
Now that we have a copy of the data in a data directory on our desktop, we can load it into R using a relative or absolute directory path and the read.csv function.
data <- read.csv("~/Desktop/data/bandersnatch.csv")
#let's take a look at the dataset we've just loaded
head(data)
Color Fur Baseline.Frumiosity Post.Frumiosity
1 Red Nude 4.477127 11.46590
2 Red Nude 4.113727 11.09354
3 Red Nude 4.806221 11.81268
4 Red Nude 5.357348 12.36704
5 Red Nude 5.951754 12.96135
6 Red Nude 3.593995 10.62375
summary(data)
Color Fur Baseline.Frumiosity Post.Frumiosity
Blue:200000 Furry:200000 Min. :-1.108 Min. : 1.887
Red :200000 Nude :200000 1st Qu.: 4.001 1st Qu.: 4.044
Median : 6.980 Median : 8.976
Mean : 6.001 Mean : 9.001
3rd Qu.: 8.961 3rd Qu.:13.956
Max. : 9.174 Max. :16.192
#what is the difference between these two function calls?
head(read.csv("~/Desktop/data/bandersnatch.csv", header = T))
Color Fur Baseline.Frumiosity Post.Frumiosity
1 Red Nude 4.477127 11.46590
2 Red Nude 4.113727 11.09354
3 Red Nude 4.806221 11.81268
4 Red Nude 5.357348 12.36704
5 Red Nude 5.951754 12.96135
6 Red Nude 3.593995 10.62375
head(read.csv("~/Desktop/data/bandersnatch.csv", header = F))
V1 V2 V3 V4
1 Color Fur Baseline Frumiosity Post-Frumiosity
2 Red Nude 4.477127244 11.46590322
3 Red Nude 4.113726932 11.09353649
4 Red Nude 4.806220524 11.81268077
5 Red Nude 5.357347878 12.36703951
6 Red Nude 5.951754455 12.96134984
#let's look at the structure of the data
class(data)
[1] "data.frame"
class(data$Color)
[1] "factor"
class(data$Baseline.Frumiosity)
[1] "numeric"
#let's make some plots with the data
hist(data$Baseline.Frumiosity)
hist(data$Post.Frumiosity)
plot(data$Baseline.Frumiosity, data$Post.Frumiosity)
#we can also write data files and export them using R
data$Size <- rnorm(nrow(data))
write.csv(data, "~/Desktop/data/new_bandersnatch.csv")
Write a function called calc_KE that takes as arguments the mass (in kg) and velocity (in m/s) of an object and returns the kinetic energy (in Joules) of an object. Use it to find the KE of a 0.5 kg rock moving at 1.2 m/s.
Working with the gapminder dataset, find the country with the highest life expectancy in 1962.
Based on the plots we made of the bandersnatch data, there seems to be something going on that could potentially be interesting. Find out what might explain the structure in the data we see.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gapminder_0.3.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.18 knitr_1.20 whisker_0.3-2 magrittr_1.5
[5] workflowr_1.3.0 rlang_0.2.2 fansi_0.3.0 stringr_1.3.1
[9] tools_3.5.1 utf8_1.1.4 cli_1.0.0 git2r_0.23.0
[13] htmltools_0.3.6 yaml_2.2.0 rprojroot_1.3-2 digest_0.6.16
[17] assertthat_0.2.1 tibble_1.4.2 crayon_1.3.4 fs_1.2.7
[21] glue_1.3.0 evaluate_0.11 rmarkdown_1.10 stringi_1.2.4
[25] compiler_3.5.1 pillar_1.3.0 backports_1.1.2