Last updated: 2020-10-26

Checks: 7 0

Knit directory: 2020_cts_bn/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200907) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 89af6df. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/

Untracked files:
    Untracked:  analysis/3-report.Rmd
    Untracked:  data/cts_dat.sav
    Untracked:  data/cts_dat.xlsx
    Untracked:  data/cts_dat2.sav
    Untracked:  data/cts_dat_mod.xlsx
    Untracked:  output/dat.RDS
    Untracked:  output/report.html

Unstaged changes:
    Deleted:    .Rprofile
    Deleted:    .gitattributes
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/3-network.Rmd) and HTML (docs/3-network.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 89af6df bernard-liew 2020-10-26 initial commit
Rmd fe17d91 bernard-liew 2020-10-26 initial analysis

Load package

if (!require("pacman")) install.packages("pacman")
Loading required package: pacman
Warning: package 'pacman' was built under R version 3.6.1
pacman::p_load(tidyverse,
               qgraph,
               stats,
               bootnet,
               igraph,
               mgm,
               NetworkComparisonTest,
               rio,
               furrr,
               cowplot,
               huge,
               EGAnet)

Clean data

Import data

dat <- readRDS ("output/dat.RDS")

Collapse variables

dat <- dat %>%
  mutate (ppt_medn_base = (ppt_medn_aff_base + ppt_medn_naff_base)/2,
          ppt_uln_base = (ppt_uln_aff_base + ppt_uln_naff_base)/2,
          ppt_radn_base = (ppt_radn_aff_base + ppt_radn_naff_base)/2,
          ppt_neck_base = (ppt_neck_aff_base + ppt_neck_naff_base)/2,
          ppt_cts_base = (ppt_cts_aff_base + ppt_cts_naff_base)/2,
          ppt_ta_base = (ppt_ta_aff_base + ppt_ta_naff_base)/2) %>%
  select (-c(ppt_medn_aff_base:ppt_ta_naff_base))

Get baseline variables

dat_base <- dat[, grepl ("base", names (dat))] %>%
  select (-worst_pain_base) %>%
  rename (func = cts_func_base,
          severity = cts_severe_base)
names (dat_base) <- str_remove_all (names(dat_base), "_base|ppt_|mean_")

dat_base
    pain func severity dep  medn   uln  radn  neck   cts    ta
1      5 2.50     2.90   5  89.0 289.0 158.0 113.5 359.0 256.5
2      8 2.10     1.90   4 156.0 217.5 263.0 182.0 459.0 338.5
3      4 2.30     2.72   9 184.5 343.5 262.5 200.0 360.0 313.5
4      4 2.25     2.72   4  80.5 160.5 152.5 103.5 262.0 110.5
5      5 2.50     2.00   4 109.5 186.5 131.5  88.0 220.0 193.5
6      7 2.37     2.80   6 277.0 376.5 284.5 247.5 547.0 404.0
7      7 2.37     2.18   8 136.0 309.5 153.0 123.5 359.5 254.0
8      4 2.12     2.45   2 153.0 263.0 160.0 118.5 247.0 230.0
9      5 2.00     2.36   5 118.5 211.0 171.5 111.5 344.5 280.0
10     4 2.25     3.09   3 228.5 396.0 302.5 149.5 474.0 314.0
11     4 2.37     3.00   8 122.5 246.5 150.0 181.5 238.0 255.5
12     6 2.23     2.18   3 181.0 252.5 274.5 197.5 372.0 316.5
13     7 4.25     3.63   9 112.0 139.0 114.5  57.0 130.5 171.0
14     8 3.50     3.27   5 181.0 272.5 224.5 191.5 503.0 300.0
15     5 2.87     2.18   5 258.5 336.0 227.0 148.0 468.5 392.5
16     6 2.25     2.10   8 217.0 276.5 205.0 136.0 397.5 284.0
17     5 2.12     3.36   4 243.5 399.5 301.0 138.5 281.0 343.5
18     7 2.12     2.27   3 213.0 351.0 309.5 202.0 381.5 377.5
19     5 2.37     4.00   2 251.5 273.0 234.0 193.0 473.0 287.5
20     6 2.37     2.72   2 183.0 331.0 243.0 207.0 369.5 346.5
21     5 2.25     2.90   4 123.5 270.0 185.0 134.5 282.5 234.0
22     4 2.25     2.18   3 175.0 320.5 157.5 147.0 326.0 230.0
23     3 2.00     2.36   6 131.0 133.5 125.5 116.0 283.5 165.0
24     3 2.25     2.09   7 294.5 458.5 305.0 306.0 511.0 385.0
25     4 1.87     2.63   4 179.5 393.0 231.5 117.5 330.0 207.5
26     4 2.25     1.50   1 180.5 275.5 194.0 214.0 306.0 323.5
27     6 2.62     4.25   1 186.0 276.5 201.5 150.5 374.0 409.5
28     4 2.12     2.09   3 245.0 367.0 272.5 191.5 585.0 357.0
29     4 2.25     2.63   2 157.0 192.0 148.0 186.0 339.5 210.0
30     7 2.62     2.72   6 167.5 254.0 187.0 158.0 326.0 356.0
31     5 2.75     2.45   4  96.0 249.5 143.0 100.5 198.5 169.5
32     5 1.75     2.27   1 217.5 292.0 258.5 192.0 421.0 463.0
33     3 2.62     2.18   2 157.0 205.5 198.5 124.5 259.0 298.0
34     3 1.87     2.10   0 145.0 339.5 140.0 120.5 306.0 265.0
35     5 2.12     2.10   2 172.5 282.5 268.0 159.0 304.0 287.5
36     4 3.12     2.81   3 257.5 418.0 266.0 253.0 576.0 450.0
37     5 1.87     2.63   3 235.5 332.5 267.5 136.5 370.5 461.5
38     4 2.62     1.54   2 249.5 378.5 347.0 199.0 460.5 431.0
39     7 2.00     2.09   2 242.0 295.5 277.5 167.5 371.0 366.0
40     3 2.25     2.18   3 164.5 289.5 238.5 246.0 528.5 376.5
41     4 2.37     2.45   3 159.0 265.0 197.5 138.5 371.0 474.5
42     5 3.00     2.90   4 154.0 271.5 183.5 133.0 238.0 233.0
43     6 2.12     2.27   1 110.0 323.0 150.5 121.5 222.5 176.0
44     2 2.62     5.00   4 184.0 256.5 152.0 130.5 294.0 269.5
45     3 1.87     2.00   0 264.0 407.5 319.0 210.0 543.0 420.0
46     5 1.37     2.10   0 161.5 198.5 185.0 156.0 426.0 399.0
47     4 2.00     1.81   1 180.0 394.5 164.0 146.5 432.0 358.5
48     6 1.50     2.00   4 110.0 128.0 132.5 108.0 152.5 143.0
49     5 2.12     2.46   6 170.0 238.5 210.5 131.0 260.5 356.0
50     4 2.25     2.45   2 263.5 362.5 283.5 196.5 384.5 517.5
51     3 2.00     1.81   1 136.5 115.5 168.0  90.0 225.0 208.5
52     1 1.25     1.27   4 257.5 319.0 212.5 134.5 477.0 341.5
53     6 3.50     3.72   3 248.0 305.0 258.0 201.5 303.0 303.5
54     6 3.00     2.81   8 195.0 328.5 276.5 250.0 302.5 321.0
55     6 3.25     2.72   7 200.0 234.0 166.5 207.5 306.5 284.0
56     6 1.25     3.18   6 190.5 296.0 184.0 189.5 297.0 286.5
57     5 2.50     2.63   7 203.0 309.0 221.0 198.0 308.0 320.0
58     7 1.87     2.36   3 215.5 309.5 236.5 197.0 317.0 317.0
59     7 2.87     2.45   6 239.5 272.0 278.0 200.0 302.5 308.0
60     6 3.75     3.36   4 162.5 246.0 193.0 132.5 289.5 247.0
61     6 3.25     3.45   8 170.0 196.5 190.0 143.5 240.0 257.5
62     7 2.00     3.45   2 239.5 317.5 230.0 191.5 207.0 316.0
63     7 2.60     2.45   2 214.5 324.5 230.0 217.0 273.5 300.5
64     6 3.25     3.43   8 154.0 229.5 190.0 130.5 201.0 264.0
65     7 3.50     3.54   6 163.0 220.0 207.0 136.0 207.5 232.5
66     2 2.25     1.72   4 262.0 345.5 284.5 227.0 363.5 372.5
67     7 2.50     3.60   4 239.5 381.0 296.5 222.5 403.5 369.0
68     6 2.87     2.90   7 198.5 317.5 246.5 196.5 349.5 300.0
69     5 2.00     2.36   8 210.5 295.0 240.5 153.5 295.0 354.0
70     6 2.25     3.18   2 204.0 339.5 217.5 211.0 329.0 239.0
71     5 1.87     2.36   2 241.5 332.5 273.0 219.0 404.5 298.0
72     6 3.25     3.00   6 171.0 233.5 224.0 170.0 269.5 234.0
73     6 3.25     3.00   4 232.0 331.5 228.5 172.0 320.0 277.5
74     6 2.12     2.27   3 241.0 342.0 272.0 211.5 403.0 302.0
75     7 2.37     2.81   6 255.5 338.0 283.5 210.5 377.0 323.5
76     5 2.50     2.54   6 217.0 217.0 247.0 214.5 276.5 340.0
77     7 2.75     2.81   2 202.0 372.0 268.5 230.5 297.0 373.0
78     7 2.25     3.72   4 166.0 223.0 197.0 119.5 465.0 370.5
79     6 1.75     2.54   1 190.5 381.5 246.5 239.0 434.5 414.0
80     7 2.37     2.45   4 259.0 350.5 307.0 250.5 346.0 398.0
81     6 2.12     3.45   2 249.0 373.5 281.0 230.5 397.5 320.0
82     7 2.75     2.81   5 205.5 325.5 283.0 178.5 309.0 298.5
83     3 2.25     2.90   4 223.0 296.0 273.5 215.5 444.0 383.5
84     3 1.12     2.63   1 242.5 407.5 323.0 217.0 514.0 476.5
85     2 2.25     3.10   2 245.5 302.0 223.5 233.5 488.0 485.5
86     4 1.62     2.63   4 210.0 325.5 232.5 176.0 326.0 379.0
87     4 2.87     4.00   7 132.0 207.5 161.0 117.0 216.0 300.0
88     5 2.50     2.18   1 209.0 363.0 192.0 206.0 536.0 446.0
89     2 1.12     1.63   0 172.5 357.0 255.0 216.0 234.5 345.5
90     3 2.25     2.10   6 144.0 252.0 167.5 195.0 308.5 284.0
91     7 2.00     3.90   1 161.0 301.5 219.0 197.5 290.5 263.5
92     3 2.25     2.27   5 223.0 410.5 215.0 220.0 384.0 376.0
93     1 2.12     2.45   5 224.5 392.0 215.5 235.5 528.0 516.5
94     8 3.12     3.18   6 104.0 209.5 156.0  78.5 147.0 186.0
95     0 1.50     1.45   0 103.5 203.5 223.0 141.5 284.5 273.0
96     7 2.37     2.00   4 266.0 333.0 248.5 150.5 526.0 453.0
97     6 2.25     1.72   3 176.0 316.5 189.0 180.0 326.5 317.5
98     1 1.87     1.81   2 234.5 363.5 248.5 189.5 491.0 423.0
99     5 2.37     3.00   1 147.5 270.0 211.0 140.0 282.5 273.0
100    8 3.75     3.36   7 174.0 150.5 191.5 116.5 155.5 157.5
101    3 2.12     2.10   0 134.5 271.5 191.5 105.5 260.5 359.5
102    4 2.87     2.00   1 236.0 375.0 206.5 202.5 483.0 373.0
103    8 1.87     3.45   4 147.5 253.0 202.0 148.0 207.5 267.0
104    5 1.62     2.10   2 248.0 465.5 256.5 226.0 409.0 502.0
105    4 2.25     3.36   9 232.0 363.0 383.0 231.5 557.5 540.0
dat_base %>%
  pivot_longer(cols = everything (),
               names_to = "var",
               values_to = "val") %>%
  ggplot () +
  geom_histogram (aes (val)) +
  facet_wrap (~ var, ncol = 5, scales = "free_x")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Get pain, cts

dat_pain <- dat[, grepl ("func|severe|mean|grp|emg", names (dat))]
names (dat_pain) <- str_remove_all (names(dat_pain), "_base|cts_|mean_")
dat_pain$grp <- factor (dat_pain$grp)

dat_base %>%
  pivot_longer(cols = everything (),
               names_to = "var",
               values_to = "val") %>%
  ggplot () +
  geom_histogram (aes (val)) +
  facet_wrap (~ var, ncol = 5, scales = "free_x")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Network analysis

On baseline data

stats_type <- c("edge", "strength", "betweenness", "expectedInfluence", "closeness")

df <- dat_base
df[, map_lgl (df, is.numeric)] <- huge.npn (df[, map_lgl (df, is.numeric)])
Conducting the nonparanormal (npn) transformation via shrunkun ECDF....done.
df <- map_df (df, as.numeric)
n_var <- ncol (df)

nw <- estimateNetwork(df, 
                    default="EBICglasso",
                    corMethod = "cor",
                    tuning = 0.5,
                    lambda.min.ratio = 0.001,
                    corArgs =
                      list(method = "pearson",
                           use = "pairwise.complete.obs"))
Estimating Network. Using package::function:
  - qgraph::EBICglasso for EBIC model selection
    - using glasso::glasso
Warning in EBICglassoCore(S = S, n = n, gamma = gamma, penalize.diagonal =
penalize.diagonal, : A dense regularized network was selected (lambda < 0.1 *
lambda.max). Recent work indicates a possible drop in specificity. Interpret the
presence of the smallest edges with care. Setting threshold = TRUE will enforce
higher specificity, at the cost of sensitivity.
centr <- centralityTable(nw)
# 
# centr_stb <- bootnet(nw, 
#                      default="EBICglasso",
#                      corMethod = "cor",
#                       tuning = 0.5,
#                       lambda.min.ratio = 0.001,
#                       nBoots = 1000,
#                       type = "case",
#                       statistics = stats_type,
#                       corArgs =
#                         list(method = "pearson",
#                              use = "pairwise.complete.obs"))
# 
# cor_stb <-  corStability (centr_stb)
# 
# edgewts <- bootnet(nw, 
#                    default="EBICglasso",
#                     corMethod = "cor",
#                     tuning = 0.5,
#                     lambda.min.ratio = 0.001,
#                     nBoots = 1000,
#                     statistics = stats_type,
#                     corArgs =
#                       list(method = "pearson",
#                            use = "pairwise.complete.obs"))
# 
# mgm_fit <-  mgm (df,
#                 type= rep('g', 10),
#                 level=rep(1,10))
# 
#                
# pred <-  predict(mgm_fit, df)

Plot network

plot (nw)

Plot centrality

centralityPlot(nw)
Note: z-scores are shown on x-axis rather than raw centrality indices.

# plot (centr_stb, statistics = c("closeness", "strength", "betweenness"))
# cor_stb
# plot (edgewts)
# cor_stb

On pain data

df <- dat_pain
df[, map_lgl (df, is.numeric)] <- huge.npn (df[, map_lgl (df, is.numeric)])
Conducting the nonparanormal (npn) transformation via shrunkun ECDF....done.
df <- map_df (df, as.numeric)
n_var <- ncol (df)

nw <- estimateNetwork(df, 
                    default="EBICglasso",
                    corMethod = "cor",
                    tuning = 0.5,
                    lambda.min.ratio = 0.001,
                    corArgs =
                      list(method = "pearson",
                           use = "pairwise.complete.obs"))
Estimating Network. Using package::function:
  - qgraph::EBICglasso for EBIC model selection
    - using glasso::glasso
centr <- centralityTable(nw)
# 
# centr_stb <- bootnet(nw, 
#                      default="EBICglasso",
#                      corMethod = "cor",
#                       tuning = 0.5,
#                       lambda.min.ratio = 0.001,
#                       nBoots = 1000,
#                       type = "case",
#                       statistics = stats_type,
#                       corArgs =
#                         list(method = "pearson",
#                              use = "pairwise.complete.obs"))
# 
# cor_stb <-  corStability (centr_stb)
# 
# edgewts <- bootnet(nw, 
#                    default="EBICglasso",
#                     corMethod = "cor",
#                     tuning = 0.5,
#                     lambda.min.ratio = 0.001,
#                     nBoots = 1000,
#                     statistics = stats_type,
#                     corArgs =
#                       list(method = "pearson",
#                            use = "pairwise.complete.obs"))
# 
# mgm_fit <-  mgm (df,
#                 type= rep('g', 10),
#                 level=rep(1,10))
# 
#                
# pred <-  predict(mgm_fit, df)

Plot network

plot (nw)

Plot centrality

centralityPlot(nw)
Note: z-scores are shown on x-axis rather than raw centrality indices.

# plot (centr_stb, statistics = c("closeness", "strength", "betweenness"))
# cor_stb
# plot (edgewts)
# cor_stb

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United Kingdom.1252 
[2] LC_CTYPE=English_United Kingdom.1252   
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C                           
[5] LC_TIME=English_United Kingdom.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] EGAnet_0.9.6                huge_1.3.4.1               
 [3] cowplot_1.0.0               furrr_0.1.0                
 [5] future_1.12.0               rio_0.5.16                 
 [7] NetworkComparisonTest_2.2.1 mgm_1.2-10                 
 [9] igraph_1.2.4.2              bootnet_1.4.3              
[11] qgraph_1.6.5                forcats_0.4.0              
[13] stringr_1.4.0               dplyr_1.0.2                
[15] purrr_0.3.3                 readr_1.3.1                
[17] tidyr_1.0.2                 tibble_3.0.3               
[19] ggplot2_3.2.1               tidyverse_1.3.0            
[21] pacman_0.5.1               

loaded via a namespace (and not attached):
  [1] R.utils_2.8.0        tidyselect_1.1.0     lme4_1.1-21         
  [4] htmlwidgets_1.5.1    grid_3.6.0           munsell_0.5.0       
  [7] codetools_0.2-16     withr_2.1.2          colorspace_1.4-1    
 [10] NetworkToolbox_1.4.0 knitr_1.27           rstudioapi_0.11     
 [13] stats4_3.6.0         listenv_0.7.0        labeling_0.3        
 [16] git2r_0.27.1         mnormt_1.5-5         farver_2.0.3        
 [19] rprojroot_1.3-2      vctrs_0.3.4          generics_0.0.2      
 [22] xfun_0.7             R6_2.4.0             doParallel_1.0.15   
 [25] smacof_2.1-1         assertthat_0.2.1     promises_1.0.1      
 [28] scales_1.1.1         nnet_7.3-12          gtable_0.3.0        
 [31] globals_0.12.4       weights_1.0.1        workflowr_1.6.2     
 [34] rlang_0.4.7          splines_3.6.0        lazyeval_0.2.2      
 [37] acepack_1.4.1        wordcloud_2.6        broom_0.5.4         
 [40] checkmate_1.9.3      yaml_2.2.0           reshape2_1.4.3      
 [43] abind_1.4-5          modelr_0.1.5         d3Network_0.5.2.1   
 [46] backports_1.1.4      httpuv_1.5.2         Hmisc_4.2-0         
 [49] tools_3.6.0          psych_1.8.12         lavaan_0.6-5        
 [52] ellipsis_0.3.0       RColorBrewer_1.1-2   polynom_1.4-0       
 [55] Rcpp_1.0.2           plyr_1.8.4           base64enc_0.1-3     
 [58] rpart_4.1-15         pbapply_1.4-0        haven_2.2.0         
 [61] cluster_2.0.9        fs_1.3.0             survey_3.36         
 [64] magrittr_1.5         data.table_1.12.8    openxlsx_4.1.4      
 [67] reprex_0.3.0         mvtnorm_1.0-10       matrixcalc_1.0-3    
 [70] whisker_0.3-2        mitml_0.3-7          hms_0.5.3           
 [73] evaluate_0.14        jpeg_0.1-8           readxl_1.3.1        
 [76] gridExtra_2.3        shape_1.4.4          compiler_3.6.0      
 [79] ellipse_0.4.1        mice_3.7.0           crayon_1.3.4        
 [82] minqa_1.2.4          R.oo_1.22.0          htmltools_0.4.0     
 [85] corpcor_1.6.9        later_0.8.0          Formula_1.2-3       
 [88] lubridate_1.7.4      DBI_1.0.0            relaimpo_2.2-3      
 [91] dbplyr_1.4.4         MASS_7.3-51.4        boot_1.3-22         
 [94] IsingSampler_0.2.1   Matrix_1.2-17        IsingFit_0.3.1      
 [97] car_3.0-2            cli_2.0.1            heplots_1.3-5       
[100] mitools_2.4          R.methodsS3_1.7.1    gdata_2.18.0        
[103] parallel_3.6.0       pan_1.6              BDgraph_2.63        
[106] pkgconfig_2.0.2      foreign_0.8-71       xml2_1.2.2          
[109] foreach_1.4.4        pbivnorm_0.6.0       rvest_0.3.5         
[112] digest_0.6.19        rmarkdown_2.3        cellranger_1.1.0    
[115] htmlTable_1.13.1     curl_4.3             gtools_3.8.1        
[118] jomo_2.6-7           rjson_0.2.20         nloptr_1.2.1        
[121] lifecycle_0.2.0      nlme_3.1-139         glasso_1.11         
[124] jsonlite_1.6         carData_3.0-2        fansi_0.4.0         
[127] pillar_1.4.3         lattice_0.20-38      httr_1.4.1          
[130] plotrix_3.7-5        survival_2.44-1.1    glue_1.4.2          
[133] networktools_1.2.3   zip_2.0.4            fdrtool_1.2.15      
[136] png_0.1-7            iterators_1.0.10     candisc_0.8-3       
[139] glmnet_3.0-1         class_7.3-15         stringi_1.4.3       
[142] nnls_1.4             blob_1.2.1           latticeExtra_0.6-28 
[145] eigenmodel_1.11      e1071_1.7-1