Last updated: 2020-08-21

Checks: 5 1

Knit directory: ChromatinSplicingQTLs/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191126) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


Introduction

This analysis is an example to demonstrate how I will set up Rmarkdowns for this project. See about for more description. In this example I will make a QQ-plot of H3K4me3 P-values (from Gruber et al), grouped by whether the SNP is an eQTL ( GEUVADIS data ). In the code directory, the snakemake has already downloaded and or processed the data from these publications. I expect that SNPs that are eQTLs will have smaller P-values for H3K4me3.

First load necessary libraries and read in data…

library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────── tidyverse 1.3.0 ──
✔ ggplot2 3.2.1     ✔ purrr   0.3.4
✔ tibble  2.1.3     ✔ dplyr   0.8.3
✔ tidyr   1.1.0     ✔ stringr 1.4.0
✔ readr   1.3.1     ✔ forcats 0.4.0
── Conflicts ───────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(knitr)

Grubert.H3K4me3.QTLs <- read.delim("../code/PlotGruberQTLs/Data/localQTLs_H3K4ME3.FDR0.1.hg38.bedpe", col.names=c("SNP_chr", "SNP_pos", "SNP_stop", "Peak_Chr", "Peak_start", "Peak_stop", "Name", "Score", "strand1", "stand2"), stringsAsFactors = F) %>%
  separate(col = "Name", into=c("PEAKid","SNPrsid","beta","p.value","FDR_TH","pvalTH","pass.pvalTH","mod","peak.state"), sep = ";", convert = T) %>%
  mutate(SNP_pos = as.numeric(SNP_pos))

head(Grubert.H3K4me3.QTLs) %>% kable()
SNP_chr SNP_pos SNP_stop Peak_Chr Peak_start Peak_stop PEAKid SNPrsid beta p.value FDR_TH pvalTH pass.pvalTH mod peak.state Score strand1 stand2
chr10 98266058 98266059 chr10 98267895 98268846 1 rs10748723 0.2032748 0.2292467 0.1 0.0009998 fail H3K4ME3 TSS . . .
chr10 98268012 98268013 chr10 98267895 98268846 1 rs10786407 -0.1114408 0.6567359 0.1 0.0009998 fail H3K4ME3 TSS . . .
chr10 98268054 98268055 chr10 98267895 98268846 1 rs10883055 -0.1188379 0.6095054 0.1 0.0009998 fail H3K4ME3 TSS . . .
chr10 98266369 98266370 chr10 98267895 98268846 1 rs11189529 -0.6061942 0.0009072 0.1 0.0009998 pass H3K4ME3 TSS . . .
chr10 98266356 98266357 chr10 98267895 98268846 1 rs114440225 -0.2236145 0.5527621 0.1 0.0009998 fail H3K4ME3 TSS . . .
chr10 98269803 98269804 chr10 98267895 98268846 1 rs1325500 -0.5212768 0.0047903 0.1 0.0009998 fail H3K4ME3 TSS . . .
GEUVADIS.eQTLs <- read.delim("../data/QTLBase.GEUVADIS.eQTLs.hg38.txt.gz", stringsAsFactors = F) %>%
  mutate(SNP_chr=paste0("chr",SNP_chr)) %>%
  filter(!SNP_chr == "chr6") %>% #blunt way to filter out MHC locus
  mutate(SNP_pos = as.numeric(SNP_pos))  %>%
  mutate(SNP=paste(SNP_chr, SNP_pos))

head(GEUVADIS.eQTLs) %>% kable()
SNP_chr SNP_pos Mapped_gene Trait_chr Trait_start Trait_end Pvalue Sourceid SNP
chr4 76939335 NAAA 4 76834813 76862166 0.0e+00 418 chr4 76939335
chr4 76939335 CXCL10 4 76942271 76944650 0.0e+00 418 chr4 76939335
chr4 144902942 GYPE 4 144792017 144826716 0.0e+00 418 chr4 144902942
chr4 83899764 SCD5 4 83550692 83719949 0.0e+00 418 chr4 83899764
chr4 88310523 HSD17B11 4 88257667 88312340 3.1e-06 418 chr4 88310523
chr4 84144189 PLAC8 4 84011201 84058228 1.0e-07 418 chr4 84144189

Peruse data a little.

hist(Grubert.H3K4me3.QTLs$p.value)

Ok, good look histogram of P-values for H3K4me3 QTLs. What about eQTLs from GEUVADIS which I downlaoded from QTLbase

hist(GEUVADIS.eQTLs$Pvalue)

Ok.. those P-values are all very very small. It seems the P values from QTLbase are only for significant eQTLs. So now let’s make a QQ-plot for H3K4me3 QTL P-values, based on whether the snp is an eQTL.

H3K4me3_QQ <- Grubert.H3K4me3.QTLs %>%
  dplyr::select(p.value, SNP_chr, SNP_chr, SNP_pos) %>%
  filter(!SNP_chr == "chr6") %>%
  mutate(SNP=paste(SNP_chr, SNP_pos)) %>%
  mutate(SNPIsEqtl= SNP %in% GEUVADIS.eQTLs$SNP) %>%
  group_by(SNPIsEqtl) %>%
  mutate(ExpectedP=percent_rank(p.value)) %>%
  sample_n(400) %>% #Just sample 400 random points from each group to be quick
  ggplot(aes(x=-log10(ExpectedP), y=-log10(p.value), color=SNPIsEqtl)) +
  geom_point() +
  geom_abline() +
  theme_bw()
H3K4me3_QQ

As expected, SNPs that are eQTLs have more significant P-value inflation for H3K4me3 genetic effects.


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] knitr_1.23      forcats_0.4.0   stringr_1.4.0   dplyr_0.8.3    
 [5] purrr_0.3.4     readr_1.3.1     tidyr_1.1.0     tibble_2.1.3   
 [9] ggplot2_3.2.1   tidyverse_1.3.0

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.0 xfun_0.8         haven_2.3.1      lattice_0.20-38 
 [5] colorspace_1.4-1 vctrs_0.3.1      generics_0.0.2   htmltools_0.3.6 
 [9] yaml_2.2.0       rlang_0.4.6      later_0.8.0      pillar_1.4.2    
[13] withr_2.1.2      glue_1.3.1       DBI_1.1.0        dbplyr_1.4.2    
[17] modelr_0.1.8     readxl_1.3.1     lifecycle_0.1.0  munsell_0.5.0   
[21] gtable_0.3.0     workflowr_1.6.2  cellranger_1.1.0 rvest_0.3.5     
[25] evaluate_0.14    labeling_0.3     httpuv_1.5.1     highr_0.8       
[29] broom_0.5.2      Rcpp_1.0.3       promises_1.0.1   backports_1.1.4 
[33] scales_1.1.0     jsonlite_1.6     farver_2.0.1     fs_1.3.1        
[37] hms_0.5.3        digest_0.6.20    stringi_1.4.3    grid_3.6.1      
[41] rprojroot_1.3-2  cli_1.1.0        tools_3.6.1      magrittr_1.5    
[45] lazyeval_0.2.2   crayon_1.3.4     pkgconfig_2.0.2  ellipsis_0.2.0.1
[49] xml2_1.3.2       reprex_0.3.0     lubridate_1.7.4  rstudioapi_0.10 
[53] assertthat_0.2.1 rmarkdown_1.13   httr_1.4.1       R6_2.4.0        
[57] nlme_3.1-140     git2r_0.26.1     compiler_3.6.1