Last updated: 2022-06-08

Checks: 6 1

Knit directory: ChromatinSplicingQTLs/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191126) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.20220606_PlotColocsForIntuitions.Rmd.swp
    Ignored:    analysis/.Rhistory
    Ignored:    code/.DS_Store
    Ignored:    code/.RData
    Ignored:    code/._.DS_Store
    Ignored:    code/._README.md
    Ignored:    code/._report.html
    Ignored:    code/.ipynb_checkpoints/
    Ignored:    code/.snakemake/
    Ignored:    code/Alignments/
    Ignored:    code/ENCODE/
    Ignored:    code/ExpressionAnalysis/
    Ignored:    code/FastqFastp/
    Ignored:    code/FastqFastpSE/
    Ignored:    code/Genotypes/
    Ignored:    code/IntronSlopes/
    Ignored:    code/Misc/
    Ignored:    code/MiscCountTables/
    Ignored:    code/Multiqc/
    Ignored:    code/Multiqc_chRNA/
    Ignored:    code/PeakCalling/
    Ignored:    code/Phenotypes/
    Ignored:    code/PlotGruberQTLs/
    Ignored:    code/PlotQTLs/
    Ignored:    code/ProCapAnalysis/
    Ignored:    code/QC/
    Ignored:    code/QTLs/
    Ignored:    code/ReferenceGenome/
    Ignored:    code/Rplots.pdf
    Ignored:    code/Session.vim
    Ignored:    code/SplicingAnalysis/
    Ignored:    code/TODO
    Ignored:    code/Tehranchi/
    Ignored:    code/bigwigs/
    Ignored:    code/bigwigs_FromNonWASPFilteredReads/
    Ignored:    code/config/.DS_Store
    Ignored:    code/config/._.DS_Store
    Ignored:    code/config/.ipynb_checkpoints/
    Ignored:    code/debug.ipynb
    Ignored:    code/debug_python.ipynb
    Ignored:    code/deepTools/
    Ignored:    code/featureCounts/
    Ignored:    code/gwas_summary_stats/
    Ignored:    code/hyprcoloc/
    Ignored:    code/igv_session.xml
    Ignored:    code/log
    Ignored:    code/logs/
    Ignored:    code/notebooks/.ipynb_checkpoints/
    Ignored:    code/rules/.ipynb_checkpoints/
    Ignored:    code/rules/OldRules/
    Ignored:    code/rules/notebooks/
    Ignored:    code/scratch/
    Ignored:    code/scripts/.ipynb_checkpoints/
    Ignored:    code/scripts/GTFtools_0.8.0/
    Ignored:    code/scripts/liftOverBedpe/liftOverBedpe.py
    Ignored:    code/snakemake.log
    Ignored:    code/snakemake.sbatch.log
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._20220414203249_JASPAR2022_combined_matrices_25818_jaspar.txt
    Ignored:    data/._ColorsForPhenotypes.xlsx
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-10.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-11.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-2.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-3.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-4.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-5.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-6.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-7.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022-8.csv
    Ignored:    data/GWAS_catalog_summary_stats_sources/._list_gwas_summary_statistics_6_Apr_2022.csv

Untracked files:
    Untracked:  code/snakemake_profiles/slurm/__pycache__/

Unstaged changes:
    Modified:   analysis/20220606_PlotColocsForIntuitions.Rmd
    Modified:   code/scripts/GenometracksByGenotype

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 9c30891 Benjmain Fair 2022-06-08 update hhyprcoloc output

Introduction

In a previous notebook I explored the genewise hyprcoloc output, and noted that 30min and 60min 4sU colocalize (with all default parameters/thresholds) 80% of the time that they are tested. I expect this to be closer to 100%, and we should get similarly high colocalization with eQTL from polyA RNA-seq. Perhaps just by filtering for colocalizations above some threshold we can get more believable results. I could/should technically re-run hyprcoloc with different parameters, but before I do that, to understand the results better, let’s see how these colocalization rates change after filter for different posterior probabilities for colocalization.

Analysis

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.2.1     ✔ purrr   0.3.3
✔ tibble  3.0.4     ✔ dplyr   1.0.2
✔ tidyr   1.1.2     ✔ stringr 1.4.0
✔ readr   1.4.0     ✔ forcats 0.5.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(viridis)
Loading required package: viridisLite
library(gplots)

Attaching package: 'gplots'
The following object is masked from 'package:stats':

    lowess
library(data.table)

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
library(qvalue)
# library(purrr)

sample_n_of <- function(data, size, ...) {
  dots <- quos(...)
  
  group_ids <- data %>% 
    group_by(!!! dots) %>% 
    group_indices()
  
  sampled_groups <- sample(unique(group_ids), size)
  
  data %>% 
    filter(group_ids %in% sampled_groups)
}

dat <- Sys.glob("../code/hyprcoloc/Results/ForColoc/MolColocTest*_*/results.txt.gz") %>%
  setNames(str_replace(., "../code/hyprcoloc/Results/ForColoc/MolColocTest(.*?)_(.+?)/results.txt.gz", "\\1_0.\\2")) %>%
  lapply(read_tsv) %>%
  bind_rows(.id="Threshold")

── Column specification ────────────────────────────────────────────────────────
cols(
  GeneLocus = col_character(),
  HyprcolocIteration = col_double(),
  PosteriorColocalizationPr = col_double(),
  RegionalAssociationPr = col_double(),
  TopCandidateSNP = col_character(),
  ProportionPosteriorPrExplainedByTopSNP = col_double(),
  Trait = col_character()
)

── Column specification ────────────────────────────────────────────────────────
cols(
  GeneLocus = col_character(),
  HyprcolocIteration = col_double(),
  PosteriorColocalizationPr = col_double(),
  RegionalAssociationPr = col_double(),
  TopCandidateSNP = col_character(),
  ProportionPosteriorPrExplainedByTopSNP = col_double(),
  Trait = col_character()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  GeneLocus = col_character(),
  HyprcolocIteration = col_double(),
  PosteriorColocalizationPr = col_double(),
  RegionalAssociationPr = col_double(),
  TopCandidateSNP = col_character(),
  ProportionPosteriorPrExplainedByTopSNP = col_double(),
  Trait = col_character()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  GeneLocus = col_character(),
  HyprcolocIteration = col_double(),
  PosteriorColocalizationPr = col_double(),
  RegionalAssociationPr = col_double(),
  TopCandidateSNP = col_character(),
  ProportionPosteriorPrExplainedByTopSNP = col_double(),
  Trait = col_character()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  GeneLocus = col_character(),
  HyprcolocIteration = col_double(),
  PosteriorColocalizationPr = col_double(),
  RegionalAssociationPr = col_double(),
  TopCandidateSNP = col_character(),
  ProportionPosteriorPrExplainedByTopSNP = col_double(),
  Trait = col_character()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  GeneLocus = col_character(),
  HyprcolocIteration = col_double(),
  PosteriorColocalizationPr = col_double(),
  RegionalAssociationPr = col_double(),
  TopCandidateSNP = col_character(),
  ProportionPosteriorPrExplainedByTopSNP = col_double(),
  Trait = col_character()
)
PeaksToTSS <- Sys.glob("../code/Misc/PeaksClosestToTSS/*_assigned.tsv.gz") %>%
  setNames(str_replace(., "../code/Misc/PeaksClosestToTSS/(.+?)_assigned.tsv.gz", "\\1")) %>%
  lapply(read_tsv) %>%
  bind_rows(.id="ChromatinMark") %>%
  mutate(GenePeakPair = paste(gene, peak, sep = ";")) %>%
  distinct(ChromatinMark, peak, gene, .keep_all=T)

── Column specification ────────────────────────────────────────────────────────
cols(
  chrom = col_character(),
  TSS_start = col_double(),
  gene = col_character(),
  strand = col_character(),
  peak = col_character(),
  distance = col_double()
)

── Column specification ────────────────────────────────────────────────────────
cols(
  chrom = col_character(),
  TSS_start = col_double(),
  gene = col_character(),
  strand = col_character(),
  peak = col_character(),
  distance = col_double()
)


── Column specification ────────────────────────────────────────────────────────
cols(
  chrom = col_character(),
  TSS_start = col_double(),
  gene = col_character(),
  strand = col_character(),
  peak = col_character(),
  distance = col_double()
)
dat %>%
  distinct(Threshold, GeneLocus, TopCandidateSNP, .keep_all = T) %>%
  pull(PosteriorColocalizationPr) %>% hist()

dat %>%
  separate(Trait, into=c("PC", "P"), sep=";") %>%
  pull(PC) %>% unique() %>% sort()
 [1] "chRNA.Expression_cheRNA"             "chRNA.Expression_eRNA"              
 [3] "chRNA.Expression_lncRNA"             "chRNA.Expression_snoRNA"            
 [5] "chRNA.Expression.Splicing"           "chRNA.IER"                          
 [7] "chRNA.IR"                            "chRNA.IRjunctions"                  
 [9] "chRNA.Slopes"                        "chRNA.Splicing"                     
[11] "CTCF"                                "Expression.Splicing"                
[13] "Expression.Splicing.Subset_YRI"      "H3K27AC"                            
[15] "H3K36ME3"                            "H3K4ME1"                            
[17] "H3K4ME3"                             "MetabolicLabelled.30min"            
[19] "MetabolicLabelled.30min.IER"         "MetabolicLabelled.30min.IR"         
[21] "MetabolicLabelled.30min.IRjunctions" "MetabolicLabelled.30min.Splicing"   
[23] "MetabolicLabelled.60min"             "MetabolicLabelled.60min.IER"        
[25] "MetabolicLabelled.60min.IR"          "MetabolicLabelled.60min.IRjunctions"
[27] "MetabolicLabelled.60min.Splicing"    "polyA.IER"                          
[29] "polyA.IR"                            "polyA.IR.Subset_YRI"                
[31] "polyA.IRjunctions"                   "polyA.Splicing"                     
[33] "polyA.Splicing.Subset_YRI"           "ProCap"                             
dat %>%
  separate(Trait, into=c("PC", "P"), sep=";") %>%
  count(Threshold, PC) %>%
  ggplot(aes(x=PC, y=n)) +
  geom_col() +
  facet_wrap(~Threshold) +
  theme_bw() +
  labs(title = "Number of Loci:molQTL pairs attempted to colocalize in total") +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))

Carlos wants to know: - how many sQTL and irQTLs coloc with polyA eQTLs? And how many coloc with polyA eQTL but not polyA sQTL?

dat.forcarlos <- dat %>%
    filter(!str_detect(Threshold, "eQTL")) %>%
    separate(Trait, into=c("PC", "P"), sep=";", remove = F) %>%
    # pull(PC) %>% unique()
    filter(PC %in% c("Expression.Splicing.Subset_YRI", "polyA.Splicing.Subset_YRI", "polyA.IER", "chRNA.Expression.Splicing", "chRNA.Splicing", "chRNA.IER"))

dat.forcarlos %>%
    count(PC, Threshold) %>%
    ggplot(aes(x=PC, y=n)) +
    geom_col() +
    facet_wrap(~Threshold) +
    labs(title="Number features attempted for coloc at different P thresholds", y="NumFeatures", x="PhenotypeClass") +
    theme(axis.text.x=element_text(angle=45, hjust=1))

dat.forcarlos %>%
    filter(!is.na(TopCandidateSNP)) %>%
    group_by(GeneLocus, TopCandidateSNP, Threshold) %>%
    mutate(Contains_eQTL = any(PC == "Expression.Splicing.Subset_YRI")) %>%
    mutate(Contains_sQTL = any(PC %in% c("polyA.Splicing.Subset_YRI", "polyA.IER",  "chRNA.Splicing", "chRNA.IER"))) %>%
    mutate(Contains_chRNA_specific_sQTL = any(PC %in% c("chRNA.Splicing", "chRNA.IER"))
           & !any(PC %in% c("polyA.Splicing.Subset_YRI", "polyA.IER"))) %>%
    ungroup() %>%
    distinct(Threshold, GeneLocus, TopCandidateSNP, .keep_all=T) %>%
    filter(Contains_eQTL) %>%
    group_by(Threshold) %>%
    summarise(
              Num_eQTL = sum(Contains_eQTL),
              Num_sQTL_coloc_eQTL = sum(Contains_sQTL),
              Num_chRNA_specific_sQTL_coloc_eQTL = sum(Contains_chRNA_specific_sQTL)
    ) %>%
    gather(key="eQTL_type", value="count", -Threshold) %>%
    ggplot(aes(x=eQTL_type, y=count)) +
    geom_col() +
    geom_text(aes(label=count), color="black", angle=90, hjust=1) +
    facet_wrap(~Threshold, scales="free_y") +
    labs(title="Num eQTL coloc with sQTL") +
    theme_classic() +
    theme(axis.text.x=element_text(angle=45, hjust=1))
`summarise()` ungrouping output (override with `.groups` argument)

Below is some code for making files, and then some code for running my script to plot some colocalizations. I will plot 5 loci where metabolic labelled samples did not coloc, 5 where they did, 5 where promoterQTL/eQTL coloc, 5 where non-promoter QTL coloc, 5 where sQTL/eQTL coloc, and 5 where sQTL/eQTL don’t coloc.

dat.ToPlotColocs <- dat %>%
    filter(Threshold == "_0.001") %>%
    separate(Trait, into=c("PC", "P"), sep=";", remove = F) %>%
    left_join(PeaksToTSS %>% select(ChromatinMark, peak, gene), by=c("PC"="ChromatinMark", "P"="peak")) %>%
    mutate( PC = case_when(
                           gene == GeneLocus ~ paste(PC, "AtPromoter" ,sep="_"),
                           !is.na(gene) ~ paste(PC, "AtDistalPromoter" ,sep="_"),
                           TRUE ~ PC
                           ) )

# both metabolic coloc
Targets <- dat.ToPlotColocs  %>%
    filter(!is.na(TopCandidateSNP)) %>%
    group_by(GeneLocus, TopCandidateSNP) %>%
    filter(any(str_detect(PC, "MetabolicLabelled.30min")) & any(str_detect(PC, "MetabolicLabelled.60min"))) %>%
    ungroup() %>%
    pull(GeneLocus) %>% unique()
dat.ToPlotColocs %>%
    filter(Threshold == "_0.001") %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min", "Expression.Splicing.Subset_YRI", "H3K27AC", "H3K27AC_AtPromoter", "H3K27AC_AtDistalPromoter")) %>%
    filter(GeneLocus %in% Targets) %>%
    sample_n_of(10, GeneLocus) %>%
    select(-Threshold) %>%
    write_tsv("scratch/ColocExamples/GroupMetabolicColoc.tsv")


# metabolic don't coloc
Targets <- dat.ToPlotColocs  %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min")) %>%
    group_by(GeneLocus) %>%
    filter(any(str_detect(PC, "MetabolicLabelled.30min")) & any(str_detect(PC, "MetabolicLabelled.60min"))) %>%
    ungroup() %>%
    group_by(GeneLocus, TopCandidateSNP) %>%
    filter(
           (is.na(TopCandidateSNP) & PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min")) | (sum(str_detect(PC, "MetabolicLabelled")) == 1)
    ) %>%
    ungroup() %>%
    pull(GeneLocus) %>% unique()
Targets <- dat.ToPlotColocs %>%
    filter(GeneLocus %in% TestedTargets) %>%
    filter(is.na(TopCandidateSNP))
dat.ToPlotColocs %>%
    filter(Threshold == "_0.001") %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min", "Expression.Splicing.Subset_YRI", "H3K27AC", "H3K27AC_AtPromoter", "H3K27AC_AtDistalPromoter")) %>%
    filter(GeneLocus %in% Targets) %>%
    sample_n_of(10, GeneLocus) %>%
    select(-Threshold) %>%
    write_tsv("scratch/ColocExamples/GroupMetabolicNotColoc.tsv")

# Promoter and eqtl coloc TODO
Targets <- dat.ToPlotColocs %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min", "Expression.Splicing.Subset_YRI", "H3K27AC", "H3K27AC_AtPromoter", "H3K27AC_AtDistalPromoter")) %>%
    filter(!is.na(TopCandidateSNP)) %>%
    group_by(GeneLocus, TopCandidateSNP) %>%
    filter(any(PC == "Expression.Splicing.Subset_YRI") & any(PC == "H3K27AC_AtPromoter")) %>%
    ungroup() %>%
    pull(GeneLocus) %>% unique()
dat.ToPlotColocs %>%
    filter(Threshold == "_0.001") %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min", "Expression.Splicing.Subset_YRI", "H3K27AC", "H3K27AC_AtPromoter", "H3K27AC_AtDistalPromoter")) %>%
    filter(GeneLocus %in% Targets) %>%
    sample_n_of(10, GeneLocus) %>%
    select(-Threshold) %>%
    write_tsv("scratch/ColocExamples/GroupPromoterEqtlColoc.tsv")

# Promoter and eqtl don't coloc
Targets <- dat.ToPlotColocs %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min", "Expression.Splicing.Subset_YRI", "H3K27AC", "H3K27AC_AtPromoter", "H3K27AC_AtDistalPromoter")) %>%
    filter(!is.na(TopCandidateSNP)) %>%
    group_by(GeneLocus, TopCandidateSNP) %>%
    filter(any(PC == "Expression.Splicing.Subset_YRI") & any(PC == "H3K27AC_AtPromoter")) %>%
    ungroup() %>%
    pull(GeneLocus) %>% unique()
dat.ToPlotColocs %>%
    filter(Threshold == "_0.001") %>%
    filter(PC %in% c("MetabolicLabelled.30min", "MetabolicLabelled.60min", "Expression.Splicing.Subset_YRI", "H3K27AC", "H3K27AC_AtPromoter", "H3K27AC_AtDistalPromoter")) %>%
    filter(GeneLocus %in% Targets) %>%
    sample_n_of(10, GeneLocus) %>%
    select(-Threshold) %>%
    write_tsv("scratch/ColocExamples/GroupPromoterEqtlColoc.tsv")

dat %>%
  count(Threshold, GeneLocus) %>%
  ggplot(aes(x=n, color=Threshold)) +
  stat_ecdf() +
  coord_cartesian(xlim=c(0,10)) +
  theme_bw()

dat.tidy



dat %>%
  filter(Threshold == "_0.01") %>%
  select(-Threshold) %>%
  # add_count(GeneLocus, TopCandidateSNP) %
  ) %>%
  write_tsv("../code/scratch/TestHyprcolocPlots.tsv")
conda activate r_essentials
echo "hello world"

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] qvalue_2.10.0     data.table_1.12.8 gplots_3.0.1      viridis_0.5.1    
 [5] viridisLite_0.3.0 forcats_0.5.0     stringr_1.4.0     dplyr_1.0.2      
 [9] purrr_0.3.3       readr_1.4.0       tidyr_1.1.2       tibble_3.0.4     
[13] ggplot2_3.2.1     tidyverse_1.2.1  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.3         lubridate_1.7.9.2  gtools_3.5.0       assertthat_0.2.1  
 [5] rprojroot_1.3-2    digest_0.6.27      plyr_1.8.4         R6_2.4.1          
 [9] cellranger_1.1.0   backports_1.1.5    evaluate_0.14      httr_1.4.2        
[13] pillar_1.4.7       rlang_0.4.9        lazyeval_0.2.2     readxl_1.3.1      
[17] rstudioapi_0.10    gdata_2.18.0       whisker_0.3-2      rmarkdown_2.6     
[21] labeling_0.3       splines_3.4.3      munsell_0.5.0      broom_0.7.3       
[25] compiler_3.4.3     httpuv_1.5.2       modelr_0.1.8       xfun_0.20         
[29] pkgconfig_2.0.3    htmltools_0.4.0    tidyselect_1.1.0   gridExtra_2.3     
[33] workflowr_1.5.0    fansi_0.4.0        crayon_1.3.4       withr_2.1.2       
[37] later_1.0.0        bitops_1.0-6       grid_3.4.3         jsonlite_1.6      
[41] gtable_0.3.0       lifecycle_0.2.0    git2r_0.26.1       magrittr_1.5      
[45] scales_1.1.0       KernSmooth_2.23-15 cli_2.0.0          stringi_1.4.3     
[49] farver_2.0.1       reshape2_1.4.3     fs_1.3.1           promises_1.1.0    
[53] xml2_1.2.0         ellipsis_0.3.0     generics_0.1.0     vctrs_0.3.6       
[57] tools_3.4.3        glue_1.4.2         hms_0.5.3          yaml_2.2.0        
[61] colorspace_2.0-0   caTools_1.17.1     rvest_0.3.6        knitr_1.26        
[65] haven_2.3.1