Last updated: 2020-09-09
Checks: 6 1
Knit directory: Comparative_eQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190319)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: WorkingManuscript.zip
Ignored: WorkingManuscript/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis_temp/.DS_Store
Ignored: big_data/
Ignored: code/.DS_Store
Ignored: code/snakemake_workflow/.DS_Store
Ignored: code/snakemake_workflow/.Rhistory
Ignored: data/.DS_Store
Ignored: data/PastAnalysesDataToKeep/.DS_Store
Ignored: figures/
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/20200907_Response_Point_09.Rmd
Untracked: output/CellProportionPhenotypesNormalizedForGWAS.tab
Unstaged changes:
Modified: analysis/20200907_Response_OriginalComments.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e3ed68f | Benjmain Fair | 2020-09-09 | update site, address reviewers |
html | e3ed68f | Benjmain Fair | 2020-09-09 | update site, address reviewers |
The reviews are in. I will address each point, one by one, but on this site I will only show work for the points for which I did additional new analyses for. Each of those points has its own link to my new analysis.
This is a solid study, with a large sample size, identifying quantitative trait loci (eQTLs) in humans and chimpanzees, using gene expression data from primary heart samples. The authors complemented the analysis of gene expression with a comparative eQTL mapping, as opposed to relying on mean expression levels, as most comparative studies like this one do. Also unlike many studies focused on mapping associations between genetic and gene regulatory variation, the authors paid attention to the group dispersion/variance of gene expression among samples as well as the evolutionary processes that shape the differences in gene regulation between individuals. The calculation of power for discovering differentially expressed genes as a function of sample size at the beginning of the paper is a thoughtful analysis that is useful to many in the community. All of the analyses are extremely thorough and well-executed. The statistical tests are appropriate and rigorous. Results are interpreted in a conservative fashion.
The main limitation is that the authors are not able to conclusively disambiguate between different causes of dispersion. Genetics, cell type, and technical variation may all contribute to dispersion. The authors state this very clearly throughout the manuscript. In part, this may reflect the authors’ underselling their results somewhat. But in part, this really does reflect reality: Cell type is a major confounder that may provide false signals in other analyses.
The reviewers suggested a number of potential additions to clarify current results or build upon them. I will leave it up to the authors to decide which are worth including in their revision.
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.5.0 Rcpp_1.0.5 rprojroot_1.3-2 digest_0.6.23
[5] later_1.0.0 R6_2.4.1 backports_1.1.5 git2r_0.26.1
[9] magrittr_1.5 evaluate_0.14 stringi_1.4.3 rlang_0.4.1
[13] fs_1.3.1 promises_1.1.0 whisker_0.4 rmarkdown_1.18
[17] tools_3.6.1 stringr_1.4.0 glue_1.3.1 httpuv_1.5.2
[21] xfun_0.11 yaml_2.2.0 compiler_3.6.1 htmltools_0.4.0
[25] knitr_1.26