Last updated: 2019-08-06

Checks: 6 1

Knit directory: Comparative_eQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/20190521_eQTL_CrossSpeciesEnrichment_cache/
    Ignored:    analysis_temp/.DS_Store
    Ignored:    code/.DS_Store
    Ignored:    code/snakemake_workflow/.DS_Store
    Ignored:    code/snakemake_workflow/rules/.eQTL_analysis.smk.swp
    Ignored:    data/.DS_Store
    Ignored:    data/PastAnalysesDataToKeep/.DS_Store
    Ignored:    docs/.DS_Store
    Ignored:    docs/assets/.DS_Store

Unstaged changes:
    Modified:   analysis/20190521_eQTL_CrossSpeciesEnrichment.Rmd
    Modified:   analysis/20190627_DiffContactsEgenes.Rmd
    Modified:   analysis/20190708_DiffContactsEgenes_CisWindowControlled.Rmd
    Modified:   analysis/20190716_VarianceInsteadOfEgenes.Rmd
    Modified:   analysis/index.Rmd
    Modified:   code/snakemake_workflow/Session.vim
    Modified:   code/snakemake_workflow/rules/eQTL_analysis.smk

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd e9747fe Benjmain Fair 2019-07-24 update site
html e9747fe Benjmain Fair 2019-07-24 update site
Rmd 34e6b4f Benjmain Fair 2019-07-11 update site
html 34e6b4f Benjmain Fair 2019-07-11 update site

library(tidyverse)
library(knitr)
library(corrplot)
library(gplots)
library(pROC)
library(qvalue)
library(reshape2)
library(gridExtra)
SampleA<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_A-21792_10kb_norm.gz"), sep='\t')
SampleB<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_B-28126_10kb_norm.gz"), sep='\t')
SampleC<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_C-3649_10kb_norm.gz"), sep='\t')
SampleD<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_D-40300_10kb_norm.gz"), sep='\t')
SampleE<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_E-28815_10kb_norm.gz"), sep='\t')
SampleF<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_F-28834_10kb_norm.gz"), sep='\t')
SampleG<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_G-3624_10kb_norm.gz"), sep='\t')
SampleH<- read.csv(gzfile("../data/IttaiHomerInteractionScoresInCisWindows/adj_bins_25_H-3651_10kb_norm.gz"), sep='\t')

HumanInteractions <- data.frame(H.Score = rowSums(cbind(SampleA, SampleB, SampleE, SampleF))) %>%
  rownames_to_column() %>%
  mutate(HumanID = gsub("(.+?)\\..+?", "\\1", rowname, perl=T))


ChimpInteractions <- data.frame(C.Score = rowSums(cbind(SampleC, SampleD, SampleG, SampleH))) %>%
  rownames_to_column("ChimpID")

Ok now read in eQTL data…

eQTLs <- read.table(gzfile("../data/PastAnalysesDataToKeep/20190521_eQTLs_250kB_10MAF.txt.gz"), header=T)

# List of chimp tested genes
ChimpTestedGenes <- rownames(read.table('../output/ExpressionMatrix.un-normalized.txt.gz', header=T, check.names=FALSE, row.names = 1))

ChimpToHumanGeneMap <- read.table("../data/Biomart_export.Hsap.Ptro.orthologs.txt.gz", header=T, sep='\t', stringsAsFactors = F)
kable(head(ChimpToHumanGeneMap))
Gene.stable.ID Transcript.stable.ID Chimpanzee.gene.stable.ID Chimpanzee.gene.name Chimpanzee.protein.or.transcript.stable.ID Chimpanzee.homology.type X.id..target.Chimpanzee.gene.identical.to.query.gene X.id..query.gene.identical.to.target.Chimpanzee.gene dN.with.Chimpanzee dS.with.Chimpanzee Chimpanzee.orthology.confidence..0.low..1.high.
ENSG00000198888 ENST00000361390 ENSPTRG00000042641 MT-ND1 ENSPTRP00000061407 ortholog_one2one 94.6541 94.6541 0.0267 0.5455 1
ENSG00000198763 ENST00000361453 ENSPTRG00000042626 MT-ND2 ENSPTRP00000061406 ortholog_one2one 96.2536 96.2536 0.0185 0.7225 1
ENSG00000210127 ENST00000387392 ENSPTRG00000042642 MT-TA ENSPTRT00000076396 ortholog_one2one 100.0000 100.0000 NA NA NA
ENSG00000198804 ENST00000361624 ENSPTRG00000042657 MT-CO1 ENSPTRP00000061408 ortholog_one2one 98.8304 98.8304 0.0065 0.5486 1
ENSG00000198712 ENST00000361739 ENSPTRG00000042660 MT-CO2 ENSPTRP00000061402 ortholog_one2one 97.7974 97.7974 0.0106 0.5943 1
ENSG00000228253 ENST00000361851 ENSPTRG00000042653 MT-ATP8 ENSPTRP00000061400 ortholog_one2one 94.1176 94.1176 0.0325 0.3331 1
# Of this ortholog list, how many genes are one2one
table(ChimpToHumanGeneMap$Chimpanzee.homology.type)

ortholog_many2many  ortholog_one2many   ortholog_one2one 
              2278              19917             140351 
OneToOneMap <- ChimpToHumanGeneMap %>%
  filter(Chimpanzee.homology.type=="ortholog_one2one")

HumanLeadSnps <- read.table(gzfile('../data/Heart_Left_Ventricle.v7.250kB.leadsnps.txt.gz'), col.names = c("gene", "snp", "tss.dist", "ma_samples", "ma_count", "maf", "p", "slope", "slope_se"))


# Read gtex heart egene list
# Only consider those that were tested in both species and are one2one orthologs
GtexHeartEgenes <- read.table("../data/Heart_Left_Ventricle.v7.egenes.txt.gz", header=T, sep='\t', stringsAsFactors = F) %>% 
  left_join(HumanLeadSnps, by=c("gene_id"="gene")) %>%
  mutate(gene_id_stable = gsub(".\\d+$","",gene_id)) %>%
  filter(gene_id_stable %in% OneToOneMap$Gene.stable.ID) %>%
  mutate(chimp_id = plyr::mapvalues(gene_id_stable, OneToOneMap$Gene.stable.ID,  OneToOneMap$Chimpanzee.gene.stable.ID, warn_missing = F)) %>%
  filter(chimp_id %in% ChimpTestedGenes)

ChimpToHuman.ID <- function(Chimp.ID){
  #function to convert chimp ensembl to human ensembl gene ids
  return(
    plyr::mapvalues(Chimp.ID, OneToOneMap$Chimpanzee.gene.stable.ID, OneToOneMap$Gene.stable.ID, warn_missing = F)
  )}

First question: do the ~300 chimp eGenes have more contacts in their cis-window in chimp

Chimp_OrderedGenes <- eQTLs %>%
    mutate(HumanID = ChimpToHuman.ID(gene)) %>%
    group_by(gene) %>% 
    dplyr::slice(which.min(qvalue)) %>%
    filter(gene %in% GtexHeartEgenes$chimp_id) %>%
    left_join(GtexHeartEgenes, by=c("gene"="chimp_id")) %>%
    dplyr::select(gene, qvalue, p, qval, HumanID) %>% as.data.frame() %>%
    filter(qvalue <0.1) %>%
    mutate(ChimpRank = dense_rank(qvalue)) %>%
    mutate(ChimpRelativeRank = ChimpRank/max(ChimpRank)) %>%
    mutate(HumanRank = dense_rank(qval)) %>%
    mutate(HumanRelativeRank = HumanRank/max(HumanRank)) %>%
    mutate(RankDifference = HumanRank-ChimpRank)

# OneToOneMap %>%
#   inner_join(HumanInteractions, by=c("Gene.stable.ID"="HumanId")) %>% dim()
#   inner_join(ChimpInteractions, by=c("Chimpanzee.gene.stable.ID"="ChimpID")) %>% dim()
#   right_join(Chimp_OrderedGenes, by=c("Chimpanzee.gene.stable.ID"="gene")) %>% dim()

Chimp_OrderedGenes.WithContactInfo <- Chimp_OrderedGenes %>%
  left_join(HumanInteractions, by=c("HumanID")) %>%
  left_join(ChimpInteractions, by=c("gene"="ChimpID")) %>% 
  mutate(InteractionDifference=H.Score - C.Score)

  
ggplot(Chimp_OrderedGenes.WithContactInfo, aes(x=InteractionDifference)) +
  stat_ecdf(geom = "step") +
  xlab("Difference in contacts over chimp eGene cis-windows\n(Positive means more contact in chimp)") +
  ylab("Cumulative frequency") +
  theme_bw()

Version Author Date
34e6b4f Benjmain Fair 2019-07-11
ggplot(Chimp_OrderedGenes.WithContactInfo, aes(x=RankDifference, y=InteractionDifference)) +
  geom_point() +
  theme_bw() +
  xlab("Rank Difference in eGene significance\nMore in human <--  --> More in chimp") +
  ylab("Differential contacts in cis window\nMore in human <--  --> More in chimp") +
  geom_smooth(method='lm',formula=y~x)

Version Author Date
e9747fe Benjmain Fair 2019-07-24
34e6b4f Benjmain Fair 2019-07-11
cor.test(x=Chimp_OrderedGenes.WithContactInfo$RankDifference, y=Chimp_OrderedGenes.WithContactInfo$InteractionDifference, method="pearson")

    Pearson's product-moment correlation

data:  Chimp_OrderedGenes.WithContactInfo$RankDifference and Chimp_OrderedGenes.WithContactInfo$InteractionDifference
t = 2.9425, df = 167, p-value = 0.003719
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.07351685 0.36087812
sample estimates:
     cor 
0.222013 
contacts.v.eGene.lm = lm(InteractionDifference ~ RankDifference, data=Chimp_OrderedGenes.WithContactInfo)
summary(contacts.v.eGene.lm)

Call:
lm(formula = InteractionDifference ~ RankDifference, data = Chimp_OrderedGenes.WithContactInfo)

Residuals:
     Min       1Q   Median       3Q      Max 
-129.435  -27.841   -3.962   29.701  223.897 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)    -1.06751    5.49755  -0.194  0.84627   
RankDifference  0.13526    0.04597   2.942  0.00372 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54.52 on 167 degrees of freedom
  (111 observations deleted due to missingness)
Multiple R-squared:  0.04929,   Adjusted R-squared:  0.0436 
F-statistic: 8.658 on 1 and 167 DF,  p-value: 0.003719
plot(contacts.v.eGene.lm)

Version Author Date
e9747fe Benjmain Fair 2019-07-24
34e6b4f Benjmain Fair 2019-07-11

Version Author Date
e9747fe Benjmain Fair 2019-07-24
34e6b4f Benjmain Fair 2019-07-11

Version Author Date
e9747fe Benjmain Fair 2019-07-24
34e6b4f Benjmain Fair 2019-07-11

Version Author Date
e9747fe Benjmain Fair 2019-07-24
34e6b4f Benjmain Fair 2019-07-11

With this procedure, the correlation was weaker. The earlier observation, that chimp eGenes have more dna contacts in their cis-windows in chimp, is not robustly detected.

The perhaps more sensitive way to ask a slightly different question, is this: do chimp eQTL snps (or conversely human eQTL snps), have more contacts between TSS and SNP in its respective species?


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gridExtra_2.3   reshape2_1.4.3  qvalue_2.14.1   pROC_1.15.0    
 [5] gplots_3.0.1.1  corrplot_0.84   knitr_1.23      forcats_0.4.0  
 [9] stringr_1.4.0   dplyr_0.8.1     purrr_0.3.2     readr_1.3.1    
[13] tidyr_0.8.3     tibble_2.1.3    ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] gtools_3.8.1       tidyselect_0.2.5   xfun_0.7          
 [4] splines_3.5.1      haven_2.1.0        lattice_0.20-38   
 [7] colorspace_1.4-1   generics_0.0.2     htmltools_0.3.6   
[10] yaml_2.2.0         rlang_0.3.4        pillar_1.4.1      
[13] glue_1.3.1         withr_2.1.2        modelr_0.1.4      
[16] readxl_1.3.1       plyr_1.8.4         munsell_0.5.0     
[19] gtable_0.3.0       workflowr_1.4.0    cellranger_1.1.0  
[22] rvest_0.3.4        caTools_1.17.1.2   evaluate_0.14     
[25] labeling_0.3       highr_0.8          broom_0.5.2       
[28] Rcpp_1.0.1         KernSmooth_2.23-15 scales_1.0.0      
[31] backports_1.1.4    gdata_2.18.0       jsonlite_1.6      
[34] fs_1.3.1           hms_0.4.2          digest_0.6.19     
[37] stringi_1.4.3      grid_3.5.1         rprojroot_1.3-2   
[40] bitops_1.0-6       cli_1.1.0          tools_3.5.1       
[43] magrittr_1.5       lazyeval_0.2.2     crayon_1.3.4      
[46] whisker_0.3-2      pkgconfig_2.0.2    xml2_1.2.0        
[49] lubridate_1.7.4    assertthat_0.2.1   rmarkdown_1.13    
[52] httr_1.4.0         rstudioapi_0.10    R6_2.4.0          
[55] nlme_3.1-140       git2r_0.25.2       compiler_3.5.1