Last updated: 2019-08-21
Checks: 6 1
Knit directory: Comparative_eQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190319)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/20190521_eQTL_CrossSpeciesEnrichment_cache/
Ignored: analysis_temp/.DS_Store
Ignored: code/.DS_Store
Ignored: code/snakemake_workflow/.DS_Store
Ignored: data/.DS_Store
Ignored: data/PastAnalysesDataToKeep/.DS_Store
Ignored: docs/.DS_Store
Ignored: docs/assets/.DS_Store
Untracked files:
Untracked: analysis/20190821_eGeneTissueCount.Rmd
Untracked: docs/figure/20190716_VarianceInsteadOfEgenes.Rmd/
Untracked: docs/figure/20190821_eGeneTissueCount.Rmd/
Unstaged changes:
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
library(tidyverse)
library(knitr)
Are eGenes that are shared between humans and chimps more likely to be eGenes in many tissues?
From a table of eGene qvalues across all GTEx tissues (GTEx v7 release), first get distribution of how many tissues each gene has a qval under some threshold
GTEx <- read.table("../data/AllGTExTissues.egenes.txt", header=T, sep='\t')
Threshold=0.1
TissueEgeneCount <- data.frame(TissueCount=rowSums(GTEx[,-1]<=Threshold, na.rm=T), Gene.stable.ID=gsub("\\.\\d+", "", GTEx$gene_id, perl=T))
hist(TissueEgeneCount$TissueCount, breaks=50)
From my data, plot this distribution (as a cumulative dist) after stratifying into human-specific eGenes, versus shared eGenes.
eQTLs <- read.table(gzfile("../data/PastAnalysesDataToKeep/20190521_eQTLs_250kB_10MAF.txt.gz"), header=T)
kable(head(eQTLs))
snps | gene | beta | statistic | pvalue | FDR | qvalue |
---|---|---|---|---|---|---|
ID.1.126459696.ACCCTAGTAAG.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465687.TTGT.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465750.TG.CT | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465756.T.C | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465766.C.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465774.G.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
# List of chimp tested genes
ChimpTestedGenes <- rownames(read.table('../output/ExpressionMatrix.un-normalized.txt.gz', header=T, check.names=FALSE, row.names = 1))
ChimpToHumanGeneMap <- read.table("../data/Biomart_export.Hsap.Ptro.orthologs.txt.gz", header=T, sep='\t', stringsAsFactors = F)
kable(head(ChimpToHumanGeneMap))
Gene.stable.ID | Transcript.stable.ID | Chimpanzee.gene.stable.ID | Chimpanzee.gene.name | Chimpanzee.protein.or.transcript.stable.ID | Chimpanzee.homology.type | X.id..target.Chimpanzee.gene.identical.to.query.gene | X.id..query.gene.identical.to.target.Chimpanzee.gene | dN.with.Chimpanzee | dS.with.Chimpanzee | Chimpanzee.orthology.confidence..0.low..1.high. |
---|---|---|---|---|---|---|---|---|---|---|
ENSG00000198888 | ENST00000361390 | ENSPTRG00000042641 | MT-ND1 | ENSPTRP00000061407 | ortholog_one2one | 94.6541 | 94.6541 | 0.0267 | 0.5455 | 1 |
ENSG00000198763 | ENST00000361453 | ENSPTRG00000042626 | MT-ND2 | ENSPTRP00000061406 | ortholog_one2one | 96.2536 | 96.2536 | 0.0185 | 0.7225 | 1 |
ENSG00000210127 | ENST00000387392 | ENSPTRG00000042642 | MT-TA | ENSPTRT00000076396 | ortholog_one2one | 100.0000 | 100.0000 | NA | NA | NA |
ENSG00000198804 | ENST00000361624 | ENSPTRG00000042657 | MT-CO1 | ENSPTRP00000061408 | ortholog_one2one | 98.8304 | 98.8304 | 0.0065 | 0.5486 | 1 |
ENSG00000198712 | ENST00000361739 | ENSPTRG00000042660 | MT-CO2 | ENSPTRP00000061402 | ortholog_one2one | 97.7974 | 97.7974 | 0.0106 | 0.5943 | 1 |
ENSG00000228253 | ENST00000361851 | ENSPTRG00000042653 | MT-ATP8 | ENSPTRP00000061400 | ortholog_one2one | 94.1176 | 94.1176 | 0.0325 | 0.3331 | 1 |
# Of this ortholog list, how many genes are one2one
table(ChimpToHumanGeneMap$Chimpanzee.homology.type)
ortholog_many2many ortholog_one2many ortholog_one2one
2278 19917 140351
OneToOneMap <- ChimpToHumanGeneMap %>%
filter(Chimpanzee.homology.type=="ortholog_one2one") %>%
distinct(Chimpanzee.gene.stable.ID, .keep_all = TRUE) %>%
left_join(TissueEgeneCount, by="Gene.stable.ID")
# Read gtex heart egene list
# Only consider those that were tested in both species and are one2one orthologs
GtexHeartEgenes <- read.table("../data/Heart_Left_Ventricle.v7.egenes.txt.gz", header=T, sep='\t', stringsAsFactors = F) %>%
mutate(gene_id_stable = gsub(".\\d+$","",gene_id)) %>%
filter(gene_id_stable %in% OneToOneMap$Gene.stable.ID) %>%
mutate(chimp_id = plyr::mapvalues(gene_id_stable, OneToOneMap$Gene.stable.ID, OneToOneMap$Chimpanzee.gene.stable.ID, warn_missing = F)) %>%
filter(chimp_id %in% ChimpTestedGenes)
ChimpToHuman.ID <- function(Chimp.ID){
#function to convert chimp ensembl to human ensembl gene ids
return(
plyr::mapvalues(Chimp.ID, OneToOneMap$Chimpanzee.gene.stable.ID, OneToOneMap$Gene.stable.ID, warn_missing = F)
)}
HumanFDR <- 0.1
ChimpFDR <- 0.1
#Get chimp eQTLs
Chimp_eQTLs <- eQTLs %>%
filter(qvalue<ChimpFDR)
# Count chimp eGenes
length(unique(Chimp_eQTLs$gene))
[1] 336
# Count human eGenes
length(GtexHeartEgenes %>% filter(qval< HumanFDR) %>% pull(chimp_id))
[1] 5410
# Count number genes tested in both species (already filtered for 1to1 orthologs)
length(GtexHeartEgenes$gene_id_stable)
[1] 11586
#Change FDR thresholds or take top N eGenes by qvalue
HumanTopN <- 600
HumanFDR <- 0.1
ChimpFDR <- 0.1
# Filter human eGenes by qval threshold
HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% pull(chimp_id)
# Filter human eGenes by topN qval
# HumanSigGenes <- GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
# Filter human eGeness by qval threshold then topN betas
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% top_n(1000, abs(slope)) %>% pull(chimp_id)
HumanNonSigGenes <- GtexHeartEgenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
ChimpSigGenes <- GtexHeartEgenes %>%
filter(chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ChimpNonSigGenes <- GtexHeartEgenes %>%
filter(! chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
rownames(ContigencyTable) <- c("Chimp eGene", "Not Chimp eGene")
colnames(ContigencyTable) <- c("Human eGene", "Not human eGene")
#what is qval threshold for human eGene classification in this contigency table
print(GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% top_n(1, qval) %>% pull(qval))
[1] 5.83223e-12
#Contigency table of one to one orthologs tested in both chimps and humans of whether significant in humans, or chimps, or both, or neither
ContigencyTable
Human eGene Not human eGene
Chimp eGene 145 135
Not Chimp eGene 5265 6041
#One-sided Fisher test for greater overlap than expected by chance
fisher.test(ContigencyTable, alternative="greater")
Fisher's Exact Test for Count Data
data: ContigencyTable
p-value = 0.04779
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
1.002643 Inf
sample estimates:
odds ratio
1.232354
#Chimp eGenes vs non chimp eGenes
ToPlot <- GtexHeartEgenes %>%
mutate(group = case_when(
chimp_id %in% ChimpSigGenes ~ "chimp.eGene",
!chimp_id %in% ChimpSigGenes ~ "not.chimp.eGene")) %>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID"))
Chimp.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="greater")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
#Human eGenes vs non human eGenes
ToPlot <- GtexHeartEgenes %>%
mutate(group = case_when(
chimp_id %in% HumanSigGenes ~ "human.eGene",
!chimp_id %in% HumanSigGenes ~ "not.human.eGene")) %>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID"))
Human.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="greater")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
#Shared eGenes vs human-specific eGenes
ToPlot <- GtexHeartEgenes %>%
mutate(group = case_when(
chimp_id %in% intersect(HumanSigGenes, ChimpSigGenes) ~ "shared.eGene",
chimp_id %in% setdiff(HumanSigGenes, ChimpSigGenes) ~ "human.specific.eGene")) %>%
filter(chimp_id %in% union(intersect(HumanSigGenes, ChimpSigGenes), setdiff(HumanSigGenes, ChimpSigGenes)))%>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID"))
Shared.human.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="less")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
#Shared eGenes vs chimp-specific eGenes
ToPlot <- GtexHeartEgenes %>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID")) %>%
mutate(dN.dS = dN.with.Chimpanzee/dS.with.Chimpanzee) %>%
mutate(group = case_when(
chimp_id %in% intersect(HumanSigGenes, ChimpSigGenes) ~ "shared.eGene",
chimp_id %in% setdiff(ChimpSigGenes, HumanSigGenes) ~ "chimp.specific.eGene")) %>%
dplyr::filter(chimp_id %in% union(intersect(HumanSigGenes, ChimpSigGenes), setdiff(ChimpSigGenes, HumanSigGenes)))
Shared.chimp.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="less")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
Chimp.tissue.plot
Human.tissue.plot
Shared.human.tissue.plot
Shared.chimp.tissue.plot
Make same plots, but using top 600 human eGenes to classify heart eGene for purposes of species sharing.
#Change FDR thresholds or take top N eGenes by qvalue
HumanTopN <- 600
HumanFDR <- 0.1
ChimpFDR <- 0.1
# Filter human eGenes by qval threshold
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% pull(chimp_id)
# Filter human eGenes by topN qval
HumanSigGenes <- GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
# Filter human eGeness by qval threshold then topN betas
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% top_n(1000, abs(slope)) %>% pull(chimp_id)
HumanNonSigGenes <- GtexHeartEgenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
ChimpSigGenes <- GtexHeartEgenes %>%
filter(chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ChimpNonSigGenes <- GtexHeartEgenes %>%
filter(! chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
rownames(ContigencyTable) <- c("Chimp eGene", "Not Chimp eGene")
colnames(ContigencyTable) <- c("Human eGene", "Not human eGene")
#what is qval threshold for human eGene classification in this contigency table
print(GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% top_n(1, qval) %>% pull(qval))
[1] 5.83223e-12
#Contigency table of one to one orthologs tested in both chimps and humans of whether significant in humans, or chimps, or both, or neither
ContigencyTable
Human eGene Not human eGene
Chimp eGene 28 252
Not Chimp eGene 572 10734
#One-sided Fisher test for greater overlap than expected by chance
fisher.test(ContigencyTable, alternative="greater")
Fisher's Exact Test for Count Data
data: ContigencyTable
p-value = 0.0006395
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
1.444504 Inf
sample estimates:
odds ratio
2.084996
#Chimp eGenes vs non chimp eGenes
ToPlot <- GtexHeartEgenes %>%
mutate(group = case_when(
chimp_id %in% ChimpSigGenes ~ "chimp.eGene",
!chimp_id %in% ChimpSigGenes ~ "not.chimp.eGene")) %>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID"))
Chimp.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="greater")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
#Human eGenes vs non human eGenes
ToPlot <- GtexHeartEgenes %>%
mutate(group = case_when(
chimp_id %in% HumanSigGenes ~ "human.eGene",
!chimp_id %in% HumanSigGenes ~ "not.human.eGene")) %>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID"))
Human.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="greater")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
#Shared eGenes vs human-specific eGenes
ToPlot <- GtexHeartEgenes %>%
mutate(group = case_when(
chimp_id %in% intersect(HumanSigGenes, ChimpSigGenes) ~ "shared.eGene",
chimp_id %in% setdiff(HumanSigGenes, ChimpSigGenes) ~ "human.specific.eGene")) %>%
filter(chimp_id %in% union(intersect(HumanSigGenes, ChimpSigGenes), setdiff(HumanSigGenes, ChimpSigGenes)))%>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID"))
Shared.human.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="less")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
#Shared eGenes vs chimp-specific eGenes
ToPlot <- GtexHeartEgenes %>%
left_join(OneToOneMap, by=c("chimp_id"="Chimpanzee.gene.stable.ID")) %>%
mutate(dN.dS = dN.with.Chimpanzee/dS.with.Chimpanzee) %>%
mutate(group = case_when(
chimp_id %in% intersect(HumanSigGenes, ChimpSigGenes) ~ "shared.eGene",
chimp_id %in% setdiff(ChimpSigGenes, HumanSigGenes) ~ "chimp.specific.eGene")) %>%
dplyr::filter(chimp_id %in% union(intersect(HumanSigGenes, ChimpSigGenes), setdiff(ChimpSigGenes, HumanSigGenes)))
Shared.chimp.tissue.plot <- ggplot(ToPlot, aes(color=group,x=TissueCount)) +
stat_ecdf(geom = "step") +
ylab("Cumulative frequency") +
xlab("TissueCount") +
annotate("text", x = 40, y = 0.4, label = paste("Mann-Whitney\none-sided P =", signif(wilcox.test(data=ToPlot, TissueCount ~ group, alternative="less")$p.value, 2) )) +
theme_bw() +
theme(legend.position = c(.80, .2), legend.title=element_blank())
Chimp.tissue.plot
Human.tissue.plot
Shared.human.tissue.plot
Shared.chimp.tissue.plot
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] knitr_1.23 forcats_0.4.0 stringr_1.4.0 dplyr_0.8.1
[5] purrr_0.3.2 readr_1.3.1 tidyr_0.8.3 tibble_2.1.3
[9] ggplot2_3.1.1 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.1 highr_0.8 cellranger_1.1.0 plyr_1.8.4
[5] pillar_1.4.1 compiler_3.5.1 git2r_0.25.2 workflowr_1.4.0
[9] tools_3.5.1 digest_0.6.19 lubridate_1.7.4 jsonlite_1.6
[13] evaluate_0.14 nlme_3.1-140 gtable_0.3.0 lattice_0.20-38
[17] pkgconfig_2.0.2 rlang_0.3.4 cli_1.1.0 rstudioapi_0.10
[21] yaml_2.2.0 haven_2.1.0 xfun_0.7 withr_2.1.2
[25] xml2_1.2.0 httr_1.4.0 hms_0.4.2 generics_0.0.2
[29] fs_1.3.1 rprojroot_1.3-2 grid_3.5.1 tidyselect_0.2.5
[33] glue_1.3.1 R6_2.4.0 readxl_1.3.1 rmarkdown_1.13
[37] modelr_0.1.4 magrittr_1.5 backports_1.1.4 scales_1.0.0
[41] htmltools_0.3.6 rvest_0.3.4 assertthat_0.2.1 colorspace_1.4-1
[45] labeling_0.3 stringi_1.4.3 lazyeval_0.2.2 munsell_0.5.0
[49] broom_0.5.2 crayon_1.3.4