Last updated: 2019-04-03

Checks: 5 1

Knit directory: Comparative_eQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/20190321_Check-Kinship-And-PopulationStructure.Rmd
    Untracked:  analysis/20190325_MergingRNASeqLanes.Rmd
    Untracked:  analysis/20190326_Admixture.Rmd
    Untracked:  analysis/20190326_PCA.Rmd
    Untracked:  analysis/20190327_MakeFamAndCovariateFiles.Rmd
    Untracked:  analysis/20190327_MakeFamPhenotypeFile.Rmd
    Untracked:  docs/figure/20190321_Check-Kinship-And-PopulationStructure.Rmd/
    Untracked:  docs/figure/20190325_MergingRNASeqLanes.Rmd/
    Untracked:  docs/figure/20190326_PCA.Rmd/

Unstaged changes:
    Deleted:    ._workflowr.yml.swp
    Modified:   analysis/20190320_Check-RNAseq-PCs.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 8dd795f Benjmain Fair 2019-03-20 First analysis on workflowr
html 8dd795f Benjmain Fair 2019-03-20 First analysis on workflowr

library(corrplot)
library(ggfortify)
library(readxl)
library(tidyverse)
library(psych)
library(ggrepel)
library(knitr)
library(reshape2)
library(gplots)

RNA-seq data for each individual was pseudo-mapped/quantified by kallisto and merged into a matrix of TPM values.

# Read in count table, filtering out rows that are all zeros
CountTable <- read.table(gzfile('../output/CountTable.tpm.txt.gz'), header=T, check.names=FALSE, row.names = 1) %>%
  rownames_to_column('gene') %>% #hack to keep rownames despite dplyr filter step
  filter_if(is.numeric, any_vars(. > 0)) %>%
  column_to_rownames('gene')

kable(head(CountTable))
4X0095 4X0212 4X0267 4X0333 4X0339 4X0354 4X0357 4X0550 4x0025 4x0043 4x373 4x0430 4x0519 4x523 88A020 95A014 295 317 338 389 438 456 462 476 495 503 522 529 537 549 554 554_2 558 570 623 676 724 Little_R MD_And
ENSPTRT00000098376.1 0.0377317 0.272220 0.283268 0.0768681 0.0241551 0.489356 0.149515 0.0338373 0.159397 0.2715600 0.0718747 0.508540 0.487206 0.4750030 0.0341022 0.138268 0.2475900 0.0435386 0.299943 0.0288987 0.0332317 0.0316096 0.0338501 0.153948 0 0.1674910 0.2284390 0.245499 0.258301 0.1090800 0.0415181 0.1853400 0.034166 0.10919 0.0405918 0.0690902 0.0339912 0.0376673 0
ENSPTRT00000091526.1 0.0000000 0.000000 0.000000 0.0000000 0.0279624 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.1664070 0.000000 0.000000 0.3142130 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0553974 0.0000000 0.243596 0.108732 0.1894100 0.0000000 0.0000000 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000091354.1 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0741825 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.2960420 0.149597 0 0.0000000 0.0713518 0.000000 0.000000 0.0596237 0.0907759 0.0000000 0.000000 0.00000 0.0000000 0.0755299 0.0000000 0.0000000 0
ENSPTRT00000080032.1 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.1268190 0.0000000 0.000000 0.000000 0.4753460 0.0000000 0.000000 0.0495538 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0000000 0.0000000 0.196541 0.000000 0.0764113 0.0000000 0.2077310 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000096913.1 0.0781316 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.0937206 0.0000000 0.000000 0.000000 0.2810280 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0000000 0.0337880 0.145246 0.000000 0.0000000 0.0000000 0.0000000 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000079752.1 0.0873579 0.236346 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.7335140 0.0000000 0.098116 0.000000 0.1571070 0.0000000 0.000000 0.0409451 0.0000000 0.173610 0.0000000 0.0769393 0.0000000 0.0000000 0.000000 0 0.0000000 0.2266680 1.055580 0.000000 0.0631367 0.0000000 0.0858213 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
# Read admixture coefficients (K=4), and first 3 principle components, since some form of population substructure will likely be included in the expression modeling as a covariate.
AdmixtureCoeff <- read.table("../output/PopulationStructure/Admixture/MergedForAdmixture.4.Q.labelled") %>% 
  dplyr::rename(Individual.ID=V2) %>%
  select(-V1, -V3, -V4, -V5, -V6) %>%
  dplyr::rename(Admix.Western=V9, Admix.Eastern=V10, Admix.Central=V8, Admix.NigeriaCameroon=V7) #Renaming the admixture clusters after looking at plots with known subspecies
kable(head(AdmixtureCoeff))
Individual.ID Admix.NigeriaCameroon Admix.Central Admix.Western Admix.Eastern
549 1.0e-05 0.000010 0.999970 1e-05
570 1.3e-05 0.059266 0.940711 1e-05
389 1.0e-05 0.000010 0.999970 1e-05
456 1.1e-05 0.000010 0.999969 1e-05
623 1.0e-05 0.000010 0.999970 1e-05
438 1.0e-05 0.000010 0.999970 1e-05
GenotypePCs <- read.table("../output/PopulationStructure/pca.eigenvec", header=T) %>%
  select(IID, PC1, PC2, PC3) %>%
  dplyr::rename(Individual.ID=IID, GenotypePC1=PC1, GenotypePC2=PC2, GenotypePC3=PC3)
kable(head(GenotypePCs))
Individual.ID GenotypePC1 GenotypePC2 GenotypePC3
549 -0.1086080 -0.0185367 0.0047385
570 -0.0945861 -0.0228424 -0.0139375
389 -0.1102000 -0.0206677 0.0032202
456 -0.1080520 -0.0178848 0.0044265
623 -0.1098180 -0.0207351 0.0041487
438 -0.1081380 -0.0178263 0.0044915
# Read in other metadata
OtherMetadata <- as.data.frame(read_excel("../data/Metadata.xlsx"))
kable(head(OtherMetadata))
Individual.ID Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch
295 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2
317 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA
338 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA
389 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA
438 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA
456 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA
#Merge all metadata tables
Metadata <- OtherMetadata %>%
  left_join(GenotypePCs, by=c("Individual.ID")) %>%
  left_join(AdmixtureCoeff, by=c("Individual.ID"))
kable(head(Metadata))
Individual.ID Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch GenotypePC1 GenotypePC2 GenotypePC3 Admix.NigeriaCameroon Admix.Central Admix.Western Admix.Eastern
295 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2 -0.0820238 0.0482288 0.0152297 0.184097 1e-05 0.815883 1e-05
317 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA -0.1089350 -0.0190364 0.0051265 0.000011 1e-05 0.999969 1e-05
338 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA -0.1081330 -0.0180125 0.0048198 0.000010 1e-05 0.999970 1e-05
389 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA -0.1102000 -0.0206677 0.0032202 0.000010 1e-05 0.999970 1e-05
438 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA -0.1081380 -0.0178263 0.0044915 0.000010 1e-05 0.999970 1e-05
456 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA -0.1080520 -0.0178848 0.0044265 0.000011 1e-05 0.999969 1e-05

First, look at TPM distribution of a couple genes across samples, looking for normality. Plot normal-QQ plot of TPM. With and without a couple potential transformations.

RowNumber<-5000

# raw tpm
Phenotype <- as.numeric(CountTable[RowNumber,])
hist(Phenotype)

qqnorm(Phenotype)
qqline(Phenotype)

# log(tpm)
Phenotype <- log(as.numeric(CountTable[RowNumber,]))
hist(Phenotype)

qqnorm(Phenotype)
qqline(Phenotype)

Now I will more systematically test for normality for all genes after a few transformations…

# histogram of P-values of Shapiro test for normality of raw TPM for each gene.
df.shapiro <- CountTable %>%
  apply(1, shapiro.test)
Pvals<-unlist(lapply(df.shapiro, function(x) x$p.value))
hist(Pvals)

# ...After log-transform+pseudocount.
df.shapiro <- CountTable %>%
  +0.1 %>% log() %>%
  apply(1, shapiro.test)
Pvals<-unlist(lapply(df.shapiro, function(x) x$p.value))
hist(Pvals)

# Maybe the inflation of non-normal expression phenotypes is due to lots of rows with too many (0 + pseudocount) values.
# Retry after filtering all genes with any 0 counts, then log-transform.
df.shapiro <- CountTable %>%
  filter_all(all_vars(.>0)) %>% log() %>%
  apply(1, shapiro.test)
Pvals<-unlist(lapply(df.shapiro, function(x) x$p.value))
hist(Pvals)

# ...After filtering all genes with any 0 counts, then log-transform, and filter for only top 500 expressed genes
df.shapiro <- CountTable %>%
  filter_all(all_vars(.>0)) %>% log() %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(500) %>%
  select(-sumVar) %>%
  apply(1, shapiro.test)
Pvals<-unlist(lapply(df.shapiro, function(x) x$p.value))
hist(Pvals)

Data is generally not normal, even after considering only highly expressed genes after log-transformation. Probably too much structure/covariates that must be accounted for. For now I will keep exploring the data with log-transformed data, and consider if/how to more carefully transform the data later (eg quantile normalization) .

Plot correlation matrix… For this purpose I will consider log(TPM + 0.1 pseudocount) for top 5000 expressed genes.

CorMatrix <- CountTable %>%
  +0.1 %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(5000) %>%
  select(-sumVar) %>%
  log() %>%
  scale() %>%
  cor(method = c("spearman"))

RNAExtractionDate <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Extract_date))))
RNA.Library.prep.batch <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Library.prep.batch))))

# Heatmap of correlation. Row colors for RNA extraction batch, column colors for RNA library prep batch
heatmap.2(CorMatrix, trace="none", ColSideColors=RNAExtractionDate, RowSideColors = RNA.Library.prep.batch)

# What is mean correlation
mean(CorMatrix)
[1] 0.7765719

Now perform PCA, plot a few visualizations…

# pca with log-transformed count table (+ 0.1 pseudocount)
pca_results <- CountTable %>%
  +0.1 %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(2500) %>%
  select(-sumVar) %>%
  log() %>%
  t() %>%
  prcomp(center=T, scale. = T)

summary(pca_results)
Importance of components:
                           PC1      PC2      PC3     PC4     PC5     PC6
Standard deviation     39.2240 14.91153 10.40179 8.84746 8.19430 7.48033
Proportion of Variance  0.6154  0.08894  0.04328 0.03131 0.02686 0.02238
Cumulative Proportion   0.6154  0.70435  0.74763 0.77894 0.80580 0.82818
                           PC7     PC8     PC9    PC10    PC11    PC12
Standard deviation     6.53488 6.34844 6.20140 5.37654 4.99539 4.78658
Proportion of Variance 0.01708 0.01612 0.01538 0.01156 0.00998 0.00916
Cumulative Proportion  0.84526 0.86138 0.87677 0.88833 0.89831 0.90747
                          PC13    PC14    PC15    PC16    PC17    PC18
Standard deviation     4.70654 4.46198 4.16461 3.87579 3.72778 3.58367
Proportion of Variance 0.00886 0.00796 0.00694 0.00601 0.00556 0.00514
Cumulative Proportion  0.91634 0.92430 0.93124 0.93725 0.94280 0.94794
                          PC19    PC20    PC21   PC22    PC23   PC24
Standard deviation     3.44880 3.37702 3.21974 3.0002 2.95093 2.7392
Proportion of Variance 0.00476 0.00456 0.00415 0.0036 0.00348 0.0030
Cumulative Proportion  0.95270 0.95726 0.96141 0.9650 0.96849 0.9715
                          PC25    PC26    PC27    PC28    PC29    PC30
Standard deviation     2.64912 2.57087 2.51016 2.46120 2.41857 2.38343
Proportion of Variance 0.00281 0.00264 0.00252 0.00242 0.00234 0.00227
Cumulative Proportion  0.97430 0.97694 0.97946 0.98189 0.98423 0.98650
                          PC31    PC32    PC33    PC34    PC35    PC36
Standard deviation     2.30791 2.20390 2.15539 2.09649 2.07821 1.92604
Proportion of Variance 0.00213 0.00194 0.00186 0.00176 0.00173 0.00148
Cumulative Proportion  0.98863 0.99057 0.99243 0.99419 0.99592 0.99740
                          PC37    PC38      PC39
Standard deviation     1.83670 1.76876 2.137e-14
Proportion of Variance 0.00135 0.00125 0.000e+00
Cumulative Proportion  0.99875 1.00000 1.000e+00
# Merge with metadata
Merged <- merge(pca_results$x, Metadata, by.x = "row.names", by.y = "Individual.ID", all=TRUE)
kable(head(Merged))
Row.names PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38 PC39 Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch GenotypePC1 GenotypePC2 GenotypePC3 Admix.NigeriaCameroon Admix.Central Admix.Western Admix.Eastern
295 -4.450607 15.2199047 9.3873162 0.5827183 -7.6224986 -3.222932 -5.404917 0.3134311 -0.3214788 -4.5630865 -4.828557 5.6526248 2.3212618 2.6673775 1.400047 0.8472412 2.257820 0.3027499 -3.3323074 -2.8422269 -0.6284844 3.2564655 0.8079301 1.369027 0.3991908 -0.2891519 0.6906651 2.8398192 2.5887575 1.2545386 -0.7633684 -0.4762038 -8.201422 -3.665902 3.1000692 1.0102806 -1.3108538 -2.7839429 0 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2 -0.0820238 0.0482288 0.0152297 0.184097 1e-05 0.815883 1e-05
317 -20.947886 -0.1866276 1.1315354 -4.4728882 -10.3478542 2.970197 -7.365084 -2.6503314 -3.5838155 -0.1699361 -4.861849 -2.3330432 0.4854135 3.0749643 -0.681427 2.5396315 2.194052 -3.0257243 1.2224522 -1.8671535 6.8282946 0.4340354 -1.0807536 2.630316 -0.3770471 3.5102121 0.4763148 -1.0884944 0.8370963 0.1601286 -2.9919575 -0.9262152 3.136494 2.017123 6.2390268 -0.6661984 5.0210956 -0.0848085 0 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA -0.1089350 -0.0190364 0.0051265 0.000011 1e-05 0.999969 1e-05
338 -24.957253 -5.7497750 6.5689672 -2.5776571 14.4819469 6.685968 5.638185 -6.3434437 -11.3481854 -4.9016847 7.260506 -2.4206509 -4.9692652 -1.0649979 -3.206039 -2.2657695 3.109494 -3.5521152 2.6585544 -0.1265824 2.8437603 3.6784819 -0.5572758 -1.889896 8.1220151 -0.5054516 -0.3300081 0.2615871 2.0154483 -1.4111280 2.0639593 -1.5369087 -3.088290 3.186013 0.5388333 -0.1243136 -0.2179688 1.0522791 0 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA -0.1081330 -0.0180125 0.0048198 0.000010 1e-05 0.999970 1e-05
389 -11.110139 8.3594629 0.9078538 -4.4474043 -2.4928575 -3.891324 1.612010 -3.0056050 -1.9132874 -4.1360696 3.967365 -1.1839740 3.9305884 4.3514060 -5.022737 -1.5912500 -2.881446 -2.7652256 0.6892992 -5.1276789 -3.0001899 -4.8828397 -3.8604130 -2.481347 -2.1251274 1.3485938 -1.2175912 5.3063126 -1.9839867 0.9292217 2.8807922 -2.9988935 2.980931 1.892661 2.8918096 -1.1710940 -4.0513626 -2.2011283 0 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA -0.1102000 -0.0206677 0.0032202 0.000010 1e-05 0.999970 1e-05
438 -1.449858 15.0424731 3.0373196 -0.8557580 -5.6983462 7.139111 10.911910 1.7585953 -5.0411789 1.7735770 2.584722 -0.1268017 -5.0633962 0.4041424 -1.358687 -3.8590415 1.776126 5.9685110 -3.2313058 0.9378048 2.1280231 0.1732151 -0.6343212 -4.666408 1.3170280 0.3337715 -2.3545929 -0.4774521 -1.5078313 0.6497610 -4.4366366 -2.9485863 1.879969 -6.151146 -0.1397558 -4.0756488 0.1841345 0.2180296 0 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA -0.1081380 -0.0178263 0.0044915 0.000010 1e-05 0.999970 1e-05
456 -12.640425 7.7149310 2.5241961 -0.2219808 -0.1919491 7.569948 5.715943 -0.0626909 0.5118827 6.6526419 6.005654 4.6666608 -0.1857602 -4.4495838 -1.538733 0.5316151 -0.646229 5.5766602 -7.0312194 1.6193611 -0.0279770 2.0434047 0.7038654 -2.587560 -0.8531699 -0.1384010 0.3979715 0.8683074 -0.1545142 -1.2727081 2.1824296 6.3967276 1.867300 1.121430 5.3876835 3.5287367 -0.8599416 0.9209316 0 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA -0.1080520 -0.0178848 0.0044265 0.000011 1e-05 0.999969 1e-05
# Plot a couple PCs with a couple potential covariates
ggplot(Merged, aes(x=PC2, y=PC1, color=factor(RNA.Extract_date), label=Row.names)) + 
  geom_point() +
  geom_text_repel(size=2.5)

Version Author Date
8dd795f Benjmain Fair 2019-03-20
ggplot(Merged, aes(x=PC1, y=PC2, color=factor(RNA.Library.prep.batch), label=Row.names)) + 
  geom_point() +
  geom_text_repel(size=2.5)

Version Author Date
8dd795f Benjmain Fair 2019-03-20
ggplot(Merged, aes(x=PC2, y=PC1, color=RIN, label=Row.names)) + 
  geom_point() +
  geom_text_repel(size=2.5)

Version Author Date
8dd795f Benjmain Fair 2019-03-20

Can already see maybe something with the RNA extraction batch in first PC… Now I am going to look more systematically for significant correlations between potential observed confounders in the Metadata and the first 10 principle components. Will use Pearsons’s correlation to test continuous continuous confounders, will use anova for categorical confounders.

First the continuous confounders

# Grab first 10 PCs
PCs_to_test <- Merged[,2:11]
kable(head(PCs_to_test))
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
-4.450607 15.2199047 9.3873162 0.5827183 -7.6224986 -3.222932 -5.404917 0.3134311 -0.3214788 -4.5630865
-20.947886 -0.1866276 1.1315354 -4.4728882 -10.3478542 2.970197 -7.365084 -2.6503314 -3.5838155 -0.1699361
-24.957253 -5.7497750 6.5689672 -2.5776571 14.4819469 6.685968 5.638185 -6.3434437 -11.3481854 -4.9016847
-11.110139 8.3594629 0.9078538 -4.4474043 -2.4928575 -3.891324 1.612010 -3.0056050 -1.9132874 -4.1360696
-1.449858 15.0424731 3.0373196 -0.8557580 -5.6983462 7.139111 10.911910 1.7585953 -5.0411789 1.7735770
-12.640425 7.7149310 2.5241961 -0.2219808 -0.1919491 7.569948 5.715943 -0.0626909 0.5118827 6.6526419
# Grab potential continuous confounders that make sense to test
Continuous_confounders_to_test <- Merged[, c("RIN", "Age", "GenotypePC1", "GenotypePC2", "GenotypePC3", "Admix.Western", "Admix.Eastern", "Admix.Central", "Admix.NigeriaCameroon")]
kable(head(Continuous_confounders_to_test))
RIN Age GenotypePC1 GenotypePC2 GenotypePC3 Admix.Western Admix.Eastern Admix.Central Admix.NigeriaCameroon
7.3 40 -0.0820238 0.0482288 0.0152297 0.815883 1e-05 1e-05 0.184097
7.6 44 -0.1089350 -0.0190364 0.0051265 0.999969 1e-05 1e-05 0.000011
7.2 53 -0.1081330 -0.0180125 0.0048198 0.999970 1e-05 1e-05 0.000010
5.7 45 -0.1102000 -0.0206677 0.0032202 0.999970 1e-05 1e-05 0.000010
5.6 55 -0.1081380 -0.0178263 0.0044915 0.999970 1e-05 1e-05 0.000010
5.5 49 -0.1080520 -0.0178848 0.0044265 0.999969 1e-05 1e-05 0.000011
# Test
Spearman_test_results <- corr.test(Continuous_confounders_to_test, PCs_to_test, adjust="none", method="spearman")

MinP_floor <- floor(log10(min(Spearman_test_results$p)))
# Plot
Spearman_test_results$p %>%
  melt() %>%
  dplyr::rename(Pvalue = value, Principle.Component=Var2, Potential.Confounder=Var1) %>%
  ggplot(aes(x=Potential.Confounder, y=Principle.Component, fill=Pvalue)) + 
    geom_tile() +
    geom_text(aes(label = signif(Pvalue, 2))) +
    scale_fill_gradient(limits=c(10**MinP_floor, 1), breaks=10**seq(MinP_floor,0,1), trans = 'log', high="white", low="red" ) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

And the categorical confounders…

# Grab potential categorical confounders that make sense to test
Categorical_confounders_to_test <- Merged[,c("Viral.status", "SX","RNA.Extract_date", "RNA.Library.prep.batch", "Source")]
kable(head(Categorical_confounders_to_test))
Viral.status SX RNA.Extract_date RNA.Library.prep.batch Source
NA M 2018-10-10 5 Yerkes
NA M 2016-06-07 3 Yerkes
NA F 2016-06-07 3 Yerkes
NA M 2018-10-10 4 Yerkes
NA F 2016-06-22 2 Yerkes
NA F 2016-06-22 2 Yerkes
# Viral status will need to be reformatted to make factors that make sense for testing (example: HBV+, HBV- HCV+, HCV- are factors that make sense). Let's assume that NA means negative status.
Categorical_confounders_to_test$HBV_status <- grepl("HBV+", Categorical_confounders_to_test$Viral.status)
Categorical_confounders_to_test$HCV_status <- grepl("HCV+", Categorical_confounders_to_test$Viral.status)
Categorical_confounders_to_test <- Categorical_confounders_to_test[, -1 ]
kable(head(Categorical_confounders_to_test))
SX RNA.Extract_date RNA.Library.prep.batch Source HBV_status HCV_status
M 2018-10-10 5 Yerkes FALSE FALSE
M 2016-06-07 3 Yerkes FALSE FALSE
F 2016-06-07 3 Yerkes FALSE FALSE
M 2018-10-10 4 Yerkes FALSE FALSE
F 2016-06-22 2 Yerkes FALSE FALSE
F 2016-06-22 2 Yerkes FALSE FALSE
# Do one-way anova test as a loop.
# First initialize results matrix
Pvalues <- matrix(ncol = dim(PCs_to_test)[2], nrow = dim(Categorical_confounders_to_test)[2])
colnames(Pvalues) <- colnames(PCs_to_test)
rownames(Pvalues) <- colnames(Categorical_confounders_to_test)
for (confounder in seq_along(Categorical_confounders_to_test)) {
    for (PC in seq_along(PCs_to_test)) {
      res.aov <- aov(PCs_to_test[[PC]] ~ Categorical_confounders_to_test[[confounder]])
      pval <- summary(res.aov)[[1]][["Pr(>F)"]][1]
      Pvalues[confounder, PC] <- pval
    }
}
# Plot
MinP_floor <- floor(log10(min(Pvalues)))
Pvalues %>%
  melt() %>%
  dplyr::rename(Pvalue = value, Principle.Component=Var2, Potential.Confounder=Var1) %>%
  ggplot(aes(x=Potential.Confounder, y=Principle.Component, fill=Pvalue)) + 
    geom_tile() +
    geom_text(aes(label = signif(Pvalue, 2))) +
    scale_fill_gradient(limits=c(10**MinP_floor, 1), breaks=10**seq(MinP_floor,0,1), trans = 'log', high="white", low="red" ) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

Plot some of the significant PC-metadata associations for a better look…

ggplot(Merged, aes(x=factor(RNA.Extract_date), y=PC6, label=Label)) + 
  geom_boxplot() +
  geom_jitter(position=position_jitter(width=.2, height=0))

ggplot(Merged, aes(x=factor(RNA.Library.prep.batch), y=PC6)) + 
  geom_boxplot() +
  geom_jitter(position=position_jitter(width=.1, height=0))

ggplot(Merged, aes(factor(RNA.Extract_date))) + 
  geom_bar(aes(fill = factor(RNA.Library.prep.batch)))

Strongest effect seems to be related to batch… RNA library prep batch and RNA extraction batch (date) both covary with a top PC. Have to check with Claudia that the last batch was a different extraction method (Trizol vs RNEasy).

ggplot(Merged, aes(x=factor(Source), y=PC3)) + 
  geom_boxplot() +
  geom_jitter(position=position_jitter(width=.1, height=0))

ggplot(Merged, aes(x=RIN, y=PC3, label=Label, color=factor(Source))) +
  geom_point() +
  geom_text_repel(size=2.5)

Also, Source covaries with PC3, though we don’t have many observations for a lot of Source categories so it may not make be a good idea to directly model source.



sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gplots_3.0.1    reshape2_1.4.3  knitr_1.22      ggrepel_0.8.0  
 [5] psych_1.8.10    forcats_0.4.0   stringr_1.4.0   dplyr_0.8.0.1  
 [9] purrr_0.3.2     readr_1.3.1     tidyr_0.8.2     tibble_2.1.1   
[13] tidyverse_1.2.1 readxl_1.1.0    ggfortify_0.4.5 ggplot2_3.1.0  
[17] corrplot_0.84  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.1         lubridate_1.7.4    lattice_0.20-38   
 [4] gtools_3.8.1       assertthat_0.2.1   rprojroot_1.3-2   
 [7] digest_0.6.18      R6_2.4.0           cellranger_1.1.0  
[10] plyr_1.8.4         backports_1.1.3    evaluate_0.13     
[13] highr_0.8          httr_1.4.0         pillar_1.3.1      
[16] rlang_0.3.3        lazyeval_0.2.2     rstudioapi_0.10   
[19] gdata_2.18.0       whisker_0.3-2      rmarkdown_1.11    
[22] labeling_0.3       foreign_0.8-71     munsell_0.5.0     
[25] broom_0.5.1        compiler_3.5.1     modelr_0.1.4      
[28] xfun_0.6           pkgconfig_2.0.2    mnormt_1.5-5      
[31] htmltools_0.3.6    tidyselect_0.2.5   gridExtra_2.3     
[34] workflowr_1.2.0    crayon_1.3.4       withr_2.1.2       
[37] bitops_1.0-6       grid_3.5.1         nlme_3.1-137      
[40] jsonlite_1.6       gtable_0.3.0       git2r_0.24.0      
[43] magrittr_1.5       scales_1.0.0       KernSmooth_2.23-15
[46] cli_1.1.0          stringi_1.4.3      fs_1.2.6          
[49] xml2_1.2.0         generics_0.0.2     tools_3.5.1       
[52] glue_1.3.1         hms_0.4.2          parallel_3.5.1    
[55] yaml_2.2.0         colorspace_1.4-1   caTools_1.17.1.1  
[58] rvest_0.3.2        haven_2.1.0