Last updated: 2019-04-03

Checks: 5 1

Knit directory: Comparative_eQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/20190321_Check-Kinship-And-PopulationStructure.Rmd
    Untracked:  analysis/20190325_MergingRNASeqLanes.Rmd
    Untracked:  analysis/20190326_Admixture.Rmd
    Untracked:  analysis/20190326_PCA.Rmd
    Untracked:  analysis/20190327_MakeFamAndCovariateFiles.Rmd
    Untracked:  analysis/20190327_MakeFamPhenotypeFile.Rmd
    Untracked:  docs/figure/20190321_Check-Kinship-And-PopulationStructure.Rmd/
    Untracked:  docs/figure/20190325_MergingRNASeqLanes.Rmd/
    Untracked:  docs/figure/20190326_Admixture.Rmd/
    Untracked:  docs/figure/20190326_PCA.Rmd/

Unstaged changes:
    Deleted:    ._workflowr.yml.swp
    Modified:   analysis/20190320_Check-RNAseq-PCs.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


this shows how I will output a plink [.fam] file containing phenotypes for eQTL association testing with gemma. The phenotypes (expresion matrix) which will be log-transformed TPM values, filtering for genes which have non-zero TPM values for all samples. The Rscript version of this R code is included in the snakemake workflow to generate the [.fam] file using the knitr::purl() function.

library(tidyverse)
library(knitr)

Run this command to write this [.Rmd] into a [.R] that is included in the snakemake workflow for eQTL mapping:

# knitr::purl(input="../analysis/20190327_MakeFamPhenotypeFile.Rmd", output="../analysis/20190327_MakeFamPhenotypeFile.R")
# Use command line input to specify input and output if this is the Rscript version of this file (as opposed to Rmarkdown).
if(commandArgs()[4] == "--file=../../analysis/20190327_MakeFamPhenotypeFile.R"){
  args <- commandArgs(trailingOnly = T)
  CountFilepath <- args[1]
  EmptyFamFilepath <- args[2]
  PhenotypeOutFilepath <- args[3]
  PhenotypeListOutFilepath <- args[4]
  GenesBedFile <- args[5]
} else {
  CountFilepath <- '../output/CountTable.tpm.txt.gz'
  EmptyFamFilepath <- '../output/ForAssociationTesting.temp.fam'
  GenesBedFile <- '../data/cDNA.all.chromosomal.bed'
}
CountTable <- read.table(gzfile(CountFilepath), header=T, check.names=FALSE, row.names = 1)

# dimensions of count table
CountTable %>% dim()
[1] 50434    39
kable(head(CountTable))
4X0095 4X0212 4X0267 4X0333 4X0339 4X0354 4X0357 4X0550 4x0025 4x0043 4x373 4x0430 4x0519 4x523 88A020 95A014 295 317 338 389 438 456 462 476 495 503 522 529 537 549 554 554_2 558 570 623 676 724 Little_R MD_And
ENSPTRT00000098376.1 0.0377317 0.272220 0.283268 0.0768681 0.0241551 0.489356 0.149515 0.0338373 0.159397 0.2715600 0.0718747 0.508540 0.487206 0.4750030 0.0341022 0.138268 0.2475900 0.0435386 0.299943 0.0288987 0.0332317 0.0316096 0.0338501 0.153948 0 0.1674910 0.2284390 0.245499 0.258301 0.1090800 0.0415181 0.1853400 0.034166 0.10919 0.0405918 0.0690902 0.0339912 0.0376673 0
ENSPTRT00000091526.1 0.0000000 0.000000 0.000000 0.0000000 0.0279624 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.1664070 0.000000 0.000000 0.3142130 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0553974 0.0000000 0.243596 0.108732 0.1894100 0.0000000 0.0000000 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000091354.1 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0741825 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.2960420 0.149597 0 0.0000000 0.0713518 0.000000 0.000000 0.0596237 0.0907759 0.0000000 0.000000 0.00000 0.0000000 0.0755299 0.0000000 0.0000000 0
ENSPTRT00000080032.1 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.1268190 0.0000000 0.000000 0.000000 0.4753460 0.0000000 0.000000 0.0495538 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0000000 0.0000000 0.196541 0.000000 0.0764113 0.0000000 0.2077310 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000096913.1 0.0781316 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.0937206 0.0000000 0.000000 0.000000 0.2810280 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0000000 0.0337880 0.145246 0.000000 0.0000000 0.0000000 0.0000000 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000079752.1 0.0873579 0.236346 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.7335140 0.0000000 0.098116 0.000000 0.1571070 0.0000000 0.000000 0.0409451 0.0000000 0.173610 0.0000000 0.0769393 0.0000000 0.0000000 0.000000 0 0.0000000 0.2266680 1.055580 0.000000 0.0631367 0.0000000 0.0858213 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
EmptyFamFile <- read.table(EmptyFamFilepath, col.names=c("FID", "IID", "Father", "Mother", "SX", "Pheno"), stringsAsFactors = F) %>%
  select(-Pheno)

# Will use GeneRegions to filter out non-autosomal genes
GeneChromosomes <- read.table(GenesBedFile, col.names=c("chromosome", "start", "stop", "gene", "score", "strand"), stringsAsFactors = F) %>%
  select(gene, chromosome)
kable(head(GeneChromosomes))
gene chromosome
ENSPTRT00000082924.1 10
ENSPTRT00000003967.6 10
ENSPTRT00000101968.1 10
ENSPTRT00000004081.5 10
ENSPTRT00000107469.1 10
ENSPTRT00000081834.1 10

Here I will consider how to filter genes for association testing

GeneSet1 <- CountTable %>%
  rownames_to_column('gene') %>%
  mutate(Mean = rowMeans(select(., -gene))) %>%
  filter(Mean>1) %>%
  pull(gene)

GeneSet2 <- CountTable %>%
  rownames_to_column('gene') %>%
  filter_if(is.numeric, all_vars(.>0)) %>%
  pull(gene)

#Number genes left after filter method1
length(GeneSet1)
[1] 15696
#Number genes left after filter method2
length(GeneSet2)
[1] 18924
#Number genes left after intersection of both methods
length(intersect(GeneSet1, GeneSet2))
[1] 13852

Seems like a reasonable (and inclusive) way to filter genes (rather than eQTL testing all ~50000 transcripts, many of which contain mostly 0’s) is to just choose the genes with no 0 TPM values in any samples.

For now I will also filter out non-autosomal genes.

PhenotypesToOutput <- CountTable %>%
  rownames_to_column('gene') %>%
  filter_if(is.numeric, all_vars(.>0)) %>%
  merge(GeneChromosomes, by="gene", all.x=T) %>%
  filter(!chromosome %in% c("X", "Y", "MT")) %>%
  select(-chromosome) %>%
  column_to_rownames('gene') %>%
  log() %>%
  t()

row.names(PhenotypesToOutput) <- colnames(CountTable)


Output.df <- EmptyFamFile %>%
  merge(PhenotypesToOutput, all.x=T, by.x="IID", by.y=0) %>% as.tibble()
Warning: `as.tibble()` is deprecated, use `as_tibble()` (but mind the new semantics).
This warning is displayed once per session.
Output.df
# A tibble: 39 x 18,287
   IID   FID   Father Mother    SX ENSPTRT00000000… ENSPTRT00000000…
   <chr> <chr>  <int>  <int> <int>            <dbl>            <dbl>
 1 295   Pan_…      0      0     0           -0.503            0.709
 2 317   Pan_…      0      0     0           -0.933            0.598
 3 338   Pan_…      0      0     0           -1.08             1.37 
 4 389   Pan_…      0      0     0           -0.779            0.648
 5 438   Pan_…      0      0     0           -0.871            0.778
 6 456   Pan_…      0      0     0           -0.516            0.791
 7 462   Pan_…      0      0     0           -0.674            1.06 
 8 476   Pan_…      0      0     0           -1.09             0.668
 9 495   Pan_…      0      0     0            0.221            0.852
10 4x00… Pan_…      0      0     0           -0.797            1.36 
# … with 29 more rows, and 18,280 more variables:
#   ENSPTRT00000000050.4 <dbl>, ENSPTRT00000000057.4 <dbl>,
#   ENSPTRT00000000060.3 <dbl>, ENSPTRT00000000069.4 <dbl>,
#   ENSPTRT00000000071.5 <dbl>, ENSPTRT00000000083.6 <dbl>,
#   ENSPTRT00000000093.4 <dbl>, ENSPTRT00000000100.4 <dbl>,
#   ENSPTRT00000000105.6 <dbl>, ENSPTRT00000000106.3 <dbl>,
#   ENSPTRT00000000114.4 <dbl>, ENSPTRT00000000116.4 <dbl>,
#   ENSPTRT00000000118.6 <dbl>, ENSPTRT00000000144.6 <dbl>,
#   ENSPTRT00000000145.7 <dbl>, ENSPTRT00000000149.3 <dbl>,
#   ENSPTRT00000000152.5 <dbl>, ENSPTRT00000000172.4 <dbl>,
#   ENSPTRT00000000176.6 <dbl>, ENSPTRT00000000180.5 <dbl>,
#   ENSPTRT00000000188.6 <dbl>, ENSPTRT00000000207.3 <dbl>,
#   ENSPTRT00000000210.3 <dbl>, ENSPTRT00000000215.6 <dbl>,
#   ENSPTRT00000000216.4 <dbl>, ENSPTRT00000000219.6 <dbl>,
#   ENSPTRT00000000222.5 <dbl>, ENSPTRT00000000227.5 <dbl>,
#   ENSPTRT00000000229.3 <dbl>, ENSPTRT00000000234.5 <dbl>,
#   ENSPTRT00000000237.5 <dbl>, ENSPTRT00000000238.4 <dbl>,
#   ENSPTRT00000000243.6 <dbl>, ENSPTRT00000000247.4 <dbl>,
#   ENSPTRT00000000254.4 <dbl>, ENSPTRT00000000258.6 <dbl>,
#   ENSPTRT00000000260.4 <dbl>, ENSPTRT00000000270.4 <dbl>,
#   ENSPTRT00000000275.3 <dbl>, ENSPTRT00000000278.5 <dbl>,
#   ENSPTRT00000000279.6 <dbl>, ENSPTRT00000000298.3 <dbl>,
#   ENSPTRT00000000302.7 <dbl>, ENSPTRT00000000303.5 <dbl>,
#   ENSPTRT00000000306.5 <dbl>, ENSPTRT00000000310.5 <dbl>,
#   ENSPTRT00000000316.4 <dbl>, ENSPTRT00000000323.4 <dbl>,
#   ENSPTRT00000000324.4 <dbl>, ENSPTRT00000000329.4 <dbl>,
#   ENSPTRT00000000334.4 <dbl>, ENSPTRT00000000335.3 <dbl>,
#   ENSPTRT00000000336.5 <dbl>, ENSPTRT00000000339.4 <dbl>,
#   ENSPTRT00000000341.6 <dbl>, ENSPTRT00000000343.4 <dbl>,
#   ENSPTRT00000000348.3 <dbl>, ENSPTRT00000000349.4 <dbl>,
#   ENSPTRT00000000351.3 <dbl>, ENSPTRT00000000352.5 <dbl>,
#   ENSPTRT00000000354.6 <dbl>, ENSPTRT00000000355.4 <dbl>,
#   ENSPTRT00000000357.4 <dbl>, ENSPTRT00000000361.5 <dbl>,
#   ENSPTRT00000000369.4 <dbl>, ENSPTRT00000000395.4 <dbl>,
#   ENSPTRT00000000411.6 <dbl>, ENSPTRT00000000424.4 <dbl>,
#   ENSPTRT00000000431.5 <dbl>, ENSPTRT00000000435.3 <dbl>,
#   ENSPTRT00000000438.4 <dbl>, ENSPTRT00000000439.4 <dbl>,
#   ENSPTRT00000000441.5 <dbl>, ENSPTRT00000000444.5 <dbl>,
#   ENSPTRT00000000445.4 <dbl>, ENSPTRT00000000459.3 <dbl>,
#   ENSPTRT00000000462.4 <dbl>, ENSPTRT00000000464.4 <dbl>,
#   ENSPTRT00000000465.4 <dbl>, ENSPTRT00000000466.6 <dbl>,
#   ENSPTRT00000000494.5 <dbl>, ENSPTRT00000000499.4 <dbl>,
#   ENSPTRT00000000501.5 <dbl>, ENSPTRT00000000502.5 <dbl>,
#   ENSPTRT00000000510.3 <dbl>, ENSPTRT00000000524.5 <dbl>,
#   ENSPTRT00000000525.4 <dbl>, ENSPTRT00000000526.5 <dbl>,
#   ENSPTRT00000000532.4 <dbl>, ENSPTRT00000000535.3 <dbl>,
#   ENSPTRT00000000537.4 <dbl>, ENSPTRT00000000542.6 <dbl>,
#   ENSPTRT00000000548.4 <dbl>, ENSPTRT00000000555.5 <dbl>,
#   ENSPTRT00000000557.4 <dbl>, ENSPTRT00000000558.5 <dbl>,
#   ENSPTRT00000000568.4 <dbl>, ENSPTRT00000000569.4 <dbl>,
#   ENSPTRT00000000571.4 <dbl>, ENSPTRT00000000572.5 <dbl>, …
GeneList <- data.frame(GeneList=colnames(Output.df)[-1:-5])
if(commandArgs()[4] == "--file=../../analysis/20190327_MakeFamPhenotypeFile.R"){
  write.table(Output.df, col.names = F, sep='\t', file=PhenotypeOutFilepath, row.names=F, quote=F)
  write.table(GeneList, col.names = F, sep='\t', file=PhenotypeListOutFilepath, row.names=F, quote=F)
}


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] knitr_1.22      forcats_0.4.0   stringr_1.4.0   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.2     tibble_2.1.1   
 [9] ggplot2_3.1.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.1       highr_0.8        cellranger_1.1.0 plyr_1.8.4      
 [5] pillar_1.3.1     compiler_3.5.1   git2r_0.24.0     workflowr_1.2.0 
 [9] tools_3.5.1      digest_0.6.18    lubridate_1.7.4  jsonlite_1.6    
[13] evaluate_0.13    nlme_3.1-137     gtable_0.3.0     lattice_0.20-38 
[17] pkgconfig_2.0.2  rlang_0.3.3      cli_1.1.0        rstudioapi_0.10 
[21] yaml_2.2.0       haven_2.1.0      xfun_0.6         withr_2.1.2     
[25] xml2_1.2.0       httr_1.4.0       hms_0.4.2        generics_0.0.2  
[29] fs_1.2.6         rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5
[33] glue_1.3.1       R6_2.4.0         fansi_0.4.0      readxl_1.1.0    
[37] rmarkdown_1.11   modelr_0.1.4     magrittr_1.5     backports_1.1.3 
[41] scales_1.0.0     htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.1
[45] colorspace_1.4-1 utf8_1.1.4       stringi_1.4.3    lazyeval_0.2.2  
[49] munsell_0.5.0    broom_0.5.1      crayon_1.3.4