Last updated: 2019-04-25

Checks: 5 1

Knit directory: Comparative_eQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/20190327_MakeCovariateFiles.Rmd
    Untracked:  analysis/20190421_RegressOutRNASeqPCs.Rmd

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


After checking previous QC analyses of genotypes and RNA-seq data, this markdown will describe covariates used in gene expression modeling and the associated Rscript will output those covariates in the format required for MatrixEQTL. Specifically, the covariates that will be output are {NumGenotypePCs}, {NumRNASeqPCs}, sex, and perhaps RIN score.

The Rscript version of this R markdown is included in the snakemake workflow to generate the [{NumGenotypePCs}.{NumRNASeqPCs}.covariates] file using the knitr::purl() function.

library(plyr)
library(tidyverse)
library(knitr)
library(readxl)

Run this command to write this [.Rmd] into a [.R] that is included in the snakemake workflow for eQTL mapping:

# knitr::purl(input="../analysis/20190327_MakeCovariateFiles.Rmd", output="../analysis/20190327_MakeCovariateFiles.R")
# Use command line input to specify input and output if this is the Rscript version of this file (as opposed to Rmarkdown).
if(commandArgs()[4] == "--file=../../analysis/20190327_MakeCovariateFiles.R"){
  args <- commandArgs(trailingOnly = T)
  EmptyFamFilepath <- args[1]
  MetadataExcel <- args[2]
  CountFilepath <- args[3]
  NumRS.PCs <- args[4]
  GenotypePCs <- args[5]
  NumGenotype.PCs <- args[6]
  OutputFile <- args[7]
  print (args)

} else {
  CountFilepath <- '../output/CountTable.tpm.txt.gz'
  EmptyFamFilepath <- '../output/ForAssociationTesting.temp.fam'
  MetadataExcel <- '../data/Metadata.xlsx'
  GenotypePCs <- '../output/PopulationStructure/pca.eigenvec'
  NumGenotype.PCs <- 3
  NumRS.PCs <- 3
}

Read in data:

CountTable <- read.table(gzfile(CountFilepath), header=T, check.names=FALSE, row.names = 1)

# dimensions of count table
CountTable %>% dim()
[1] 50434    39
kable(head(CountTable))
4X0095 4X0212 4X0267 4X0333 4X0339 4X0354 4X0357 4X0550 4x0025 4x0043 4x373 4x0430 4x0519 4x523 88A020 95A014 295 317 338 389 438 456 462 476 495 503 522 529 537 549 554 554_2 558 570 623 676 724 Little_R MD_And
ENSPTRT00000098376.1 0.0377317 0.272220 0.283268 0.0768681 0.0241551 0.489356 0.149515 0.0338373 0.159397 0.2715600 0.0718747 0.508540 0.487206 0.4750030 0.0341022 0.138268 0.2475900 0.0435386 0.299943 0.0288987 0.0332317 0.0316096 0.0338501 0.153948 0 0.1674910 0.2284390 0.245499 0.258301 0.1090800 0.0415181 0.1853400 0.034166 0.10919 0.0405918 0.0690902 0.0339912 0.0376673 0
ENSPTRT00000091526.1 0.0000000 0.000000 0.000000 0.0000000 0.0279624 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.1664070 0.000000 0.000000 0.3142130 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0553974 0.0000000 0.243596 0.108732 0.1894100 0.0000000 0.0000000 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000091354.1 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0741825 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.2960420 0.149597 0 0.0000000 0.0713518 0.000000 0.000000 0.0596237 0.0907759 0.0000000 0.000000 0.00000 0.0000000 0.0755299 0.0000000 0.0000000 0
ENSPTRT00000080032.1 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.1268190 0.0000000 0.000000 0.000000 0.4753460 0.0000000 0.000000 0.0495538 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0000000 0.0000000 0.196541 0.000000 0.0764113 0.0000000 0.2077310 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000096913.1 0.0781316 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.0937206 0.0000000 0.000000 0.000000 0.2810280 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0 0.0000000 0.0337880 0.145246 0.000000 0.0000000 0.0000000 0.0000000 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
ENSPTRT00000079752.1 0.0873579 0.236346 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.7335140 0.0000000 0.098116 0.000000 0.1571070 0.0000000 0.000000 0.0409451 0.0000000 0.173610 0.0000000 0.0769393 0.0000000 0.0000000 0.000000 0 0.0000000 0.2266680 1.055580 0.000000 0.0631367 0.0000000 0.0858213 0.000000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0
EmptyFamFile <- read.table(EmptyFamFilepath, col.names=c("FID", "IID", "Father", "Mother", "SX", "Pheno"), stringsAsFactors = F) %>%
  select(-Pheno)

GenotypePCs.df <- read.table(GenotypePCs, header=T) %>% 
  select(-c("FID")) %>%
  rename_all(paste0, ".GT")
kable(head(GenotypePCs.df))
IID.GT PC1.GT PC2.GT PC3.GT PC4.GT PC5.GT PC6.GT PC7.GT PC8.GT PC9.GT PC10.GT PC11.GT PC12.GT PC13.GT PC14.GT PC15.GT PC16.GT PC17.GT PC18.GT PC19.GT PC20.GT
549 -0.1085980 -0.0184943 0.0047314 -0.0150498 -0.0319818 -0.0004605 0.0584162 -0.0021767 0.0057926 -0.0138491 -0.0006760 0.0014917 0.0024960 0.0444586 0.0005304 0.0067183 0.0025586 0.0015872 -0.0116857 0.0076842
570 -0.0945827 -0.0228220 -0.0140236 0.1793750 0.0671347 -0.0111882 -0.1524830 -0.0101299 -0.0614712 0.2670480 -0.0468162 0.0399717 0.0258174 -0.0527277 0.0278379 -0.3333410 -0.1546580 -0.1739510 0.1237160 -0.0771322
389 -0.1101630 -0.0206061 0.0032451 0.0219085 -0.1004940 0.0090560 -0.3750780 0.0213782 0.0000433 0.0097597 0.0015130 -0.0013585 -0.0072876 -0.0176905 -0.0047013 0.0317992 -0.0091693 0.0133724 0.0038605 -0.0039837
456 -0.1080570 -0.0178108 0.0044597 -0.0103130 -0.0185596 -0.0001795 0.0344615 -0.0021105 0.0026981 -0.0058951 0.0012633 -0.0013892 0.0002392 -0.0089160 0.0013406 -0.0064834 0.0081531 -0.0025395 -0.0120499 0.0088498
623 -0.1098320 -0.0206678 0.0041903 -0.0137927 -0.1012860 0.0118115 -0.2853820 0.0216451 0.0220789 -0.0857080 0.0177347 -0.0161525 -0.0149519 0.0154757 -0.0131564 0.1546820 0.0570773 0.0793976 -0.0569467 0.0363648
438 -0.1081420 -0.0177823 0.0045724 -0.0108220 -0.0197756 -0.0009599 0.0394830 -0.0029283 0.0016249 -0.0085211 0.0021596 -0.0016848 -0.0013350 0.0038822 0.0014313 -0.0008248 0.0071914 0.0016188 -0.0128241 0.0102553
OtherMetadata <- as.data.frame(read_excel(MetadataExcel))
kable(head(OtherMetadata))
Individual.ID Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch
295 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2
317 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA
338 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA
389 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA
438 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA
456 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA
# RNA-seq PCA
pca_results <- CountTable %>%
  +0.1 %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(2500) %>%
  select(-sumVar) %>%
  log() %>%
  t() %>%
  prcomp(center=T, scale. = T)

RNASeqPCs.df <- pca_results$x %>% 
  as.data.frame %>% 
  rownames_to_column() %>%
  rename_all(paste0, ".RS")

Covariates <- EmptyFamFile %>%
  select(IID) %>%
  left_join(RNASeqPCs.df[0:NumRS.PCs+1], by=c("IID" = "rowname.RS")) %>%
  left_join(GenotypePCs.df[0:NumGenotype.PCs+1], by=c("IID" = "IID.GT")) %>%
  left_join(
    OtherMetadata %>% select(Individual.ID, SX),
    by = c("IID" = "Individual.ID")
  ) %>%
  mutate(SX = plyr::mapvalues(SX, from=c("M", "F"), to=c(0,1))) %>%
  t()
Warning: Column `IID`/`IID.GT` joining character vector and factor,
coercing into character vector
kable(head(Covariates))
IID 549 570 389 456 623 438 724 522 338 476 495 558 503 4x0430 317 676 4x373 4X0333 4X0095 554 4x523 88A020 95A014 4x0043 529 4X0550 4X0267 4X0357 462 554_2 4X0212 4x0025 4x0519 295 Little_R 537 4X0339 4X0354
PC1.RS -4.6671389 -26.1710828 -11.1101394 -12.6404247 -4.3640984 -1.4498584 -21.0578454 -12.4893238 -24.9572534 -11.9529579 50.9788389 84.9548137 -0.2127408 -35.1478044 -20.9478859 -18.0083558 -14.5603875 -24.9379189 -8.8393599 -24.3314095 -33.2376632 -11.2296681 -16.3502202 -16.9671933 41.7608044 -25.0626524 -29.0210945 4.6571111 -1.6699147 -10.7351772 -16.9547828 -39.5164346 -37.5044833 -4.4506068 108.2370478 113.2855069 72.4481625 64.4069774
PC2.RS -4.3375035 -21.6697827 8.3594629 7.7149310 11.4830846 15.0424731 0.1968575 8.8510347 -5.7497750 14.6417858 -10.8136469 3.0086759 24.7673589 -10.3794142 -0.1866276 -0.2689843 -8.5411432 -9.9294523 4.4755158 4.1510345 -26.0707696 12.9561345 1.3257869 -11.4492868 -7.1557796 1.5507298 3.3727728 13.1198594 2.5833339 10.0813352 2.3004992 -32.2372103 -12.8248016 15.2199047 -35.4712198 -14.5526529 42.8206393 -0.9346548
PC3.RS 4.2139684 9.7196123 0.9078538 2.5241961 13.6712695 3.0373196 0.9699229 5.1954610 6.5689672 -0.8687375 12.3040061 -1.0172486 10.2526758 -1.3376464 1.1315354 3.3802363 -8.0894655 -0.2424765 1.9887210 5.4549860 0.5869073 3.5973730 -2.0260809 -8.4029382 1.6618992 -8.1996543 0.8435924 -12.3538209 8.0436919 -2.7301627 -7.1071920 -12.3115231 1.9554952 9.3873162 16.0991363 3.1108955 -0.5672118 -46.8640748
PC1.GT -0.1085980 -0.0945827 -0.1101630 -0.1080570 -0.1098320 -0.1081420 -0.0378419 -0.1083980 -0.1081500 -0.1083960 0.0133693 -0.1090570 -0.1107340 -0.0422648 -0.1089490 -0.1051800 -0.1092620 -0.1094040 -0.1083620 -0.0522406 -0.0548972 -0.1083140 -0.1083140 -0.1081420 -0.0745853 -0.1082120 -0.1086980 -0.1090900 0.0696170 -0.1083110 -0.1085550 -0.1083620 -0.0691744 -0.0819553 -0.1082080 -0.1077380 -0.1097850 0.1400900
PC2.GT -0.0184943 -0.0228220 -0.0206061 -0.0178108 -0.0206678 -0.0177823 -0.0298039 -0.0179836 -0.0179254 -0.0182646 -0.0312946 -0.0192725 -0.0214998 -0.0288509 -0.0190248 -0.0222267 -0.0189720 -0.0193025 -0.0184038 0.0408846 -0.0254363 -0.0178967 -0.0184395 -0.0181587 0.0431692 -0.0186956 -0.0185368 -0.0191630 0.1020240 -0.0182602 -0.0185807 -0.0180731 -0.0264851 0.0484042 -0.0182170 -0.0182431 -0.0196049 -0.0831354

Write table if this is the Rscript form of this Rmarkdown

if(commandArgs()[4] == "--file=../../analysis/20190327_MakeCovariateFiles.R"){
  write.table(Covariates, col.names = F, sep='\t', file=OutputFile, row.names=T, quote=F)
}


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.1.0    knitr_1.22      forcats_0.4.0   stringr_1.4.0  
 [5] dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1     tidyr_0.8.2    
 [9] tibble_2.1.1    ggplot2_3.1.0   tidyverse_1.2.1 plyr_1.8.4     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.1       highr_0.8        cellranger_1.1.0 pillar_1.3.1    
 [5] compiler_3.5.1   git2r_0.24.0     workflowr_1.2.0  tools_3.5.1     
 [9] digest_0.6.18    lubridate_1.7.4  jsonlite_1.6     evaluate_0.13   
[13] nlme_3.1-137     gtable_0.3.0     lattice_0.20-38  pkgconfig_2.0.2 
[17] rlang_0.3.3      cli_1.1.0        rstudioapi_0.10  yaml_2.2.0      
[21] haven_2.1.0      xfun_0.6         withr_2.1.2      xml2_1.2.0      
[25] httr_1.4.0       hms_0.4.2        generics_0.0.2   fs_1.2.6        
[29] rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5 glue_1.3.1      
[33] R6_2.4.0         rmarkdown_1.11   modelr_0.1.4     magrittr_1.5    
[37] backports_1.1.3  scales_1.0.0     htmltools_0.3.6  rvest_0.3.2     
[41] assertthat_0.2.1 colorspace_1.4-1 stringi_1.4.3    lazyeval_0.2.2  
[45] munsell_0.5.0    broom_0.5.1      crayon_1.3.4