Last updated: 2019-04-25

Checks: 5 1

Knit directory: Comparative_eQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190319) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/20190327_MakeCovariateFiles.Rmd
    Untracked:  analysis/20190421_RegressOutRNASeqPCs.Rmd
    Untracked:  analysis_temp/
    Untracked:  docs/figure/20190412_Check_eQTLs.Rmd/
    Untracked:  docs/figure/20190424_Check_eQTLs.Rmd/

Unstaged changes:
    Deleted:    analysis/20190412_Check-Kinship-Matrices.Rmd
    Modified:   analysis/20190412_Check_eQTLs.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


library(corrplot)
library(ggfortify)
library(readxl)
library(tidyverse)
library(psych)
library(ggrepel)
library(knitr)
library(reshape2)
library(gplots)
library(matrixStats)

RNA-seq data for each individual was pseudo-mapped/quantified by kallisto and merged into a matrix of TPM values. Genes were filtered by some criteria (see link) to generate a table of phenotypes for association testing. Here I will assess if there is still an obvious batch affect (compared to my previous PCA analysis of the TPM count table) after I regress out the first (or first few PCs), since I will be included some of these PCs as covariates in the gene expression model.

# Read in count table, filtering out rows that are all zeros. Here the count-table is log transformed TPM values, with genes filtered just as they would be used for association testing
CountTable <- read.table(gzfile('../output/ForAssociationTesting.phenotypes.txt'), header=T, check.names=FALSE, row.names = 1)

kable(head(CountTable))
295 317 338 389 438 456 462 476 495 4x0025 4x0043 4X0095 4X0212 4X0267 4X0333 4X0339 4X0354 4X0357 4x0430 4x0519 4X0550 4x373 4x523 503 522 529 537 549 554 554_2 558 570 623 676 724 88A020 95A014 Little_R
ENSPTRT00000080965.1 -0.5513734 -0.2319409 -0.3714275 -0.2293842 -0.2919820 -0.5319812 -0.4041485 -0.4501398 0.2158047 0.6260347 -0.4391315 -0.4937964 -0.2494888 -0.2264954 0.1223681 -0.6938674 0.1409699 0.0916672 0.0029157 -0.0038353 -0.2298674 0.1747261 0.2190873 -0.8346923 -0.3647676 0.6106510 0.1053955 0.0129360 -0.0639307 0.1289823 0.1163776 0.1578495 -0.3695865 -0.1090986 0.1366528 -0.6287818 -0.1732885 -0.1616099
ENSPTRT00000018164.6 2.2754389 2.3703465 1.9695374 2.2495018 1.9178839 1.7583578 2.1810320 2.3566092 1.3547960 2.3260770 2.1149547 2.3333568 2.2967431 2.4703343 2.2777523 0.7855623 0.7971378 1.6284265 2.2682804 2.7909994 2.6200565 1.9562169 2.1513633 2.5980121 1.9711977 0.9955122 -0.2054019 1.9623893 2.0983639 2.1229248 0.4223026 2.2237139 2.4056289 1.5448119 2.6051829 2.2298348 2.3531736 0.7679346
ENSPTRT00000035805.5 1.3432720 2.4229426 1.6078026 1.2802308 1.2494890 1.1620940 2.4286273 1.6570788 0.8498175 3.1629317 1.5950225 1.1084141 1.5639927 1.6094279 1.9190644 -0.1917987 0.3655247 0.6789823 2.3933669 2.8951216 1.8714960 1.5946856 2.2466431 0.9846744 1.9114474 1.1238251 0.2178737 1.0662062 1.7802856 1.4300887 0.2772377 1.4347964 1.3889658 1.2945518 1.5695176 1.7592466 1.7533928 -0.2615687
ENSPTRT00000022320.6 1.3718810 1.2747034 1.1767917 1.0743333 0.9092581 1.2058840 1.7636154 1.3177987 1.3897160 2.0859516 0.8509284 1.5593460 1.2497384 1.7362168 1.3808269 0.8704771 1.0551792 1.3740041 1.3269158 1.5905079 0.7792469 1.7448775 0.9564418 0.6788403 1.7180394 0.4965543 0.0468931 1.3171747 1.5570387 1.1037093 0.6737095 3.1708698 1.1041569 2.3108608 1.8350600 1.5592324 1.4415895 -0.4678476
ENSPTRT00000100908.1 1.4421358 2.0734008 0.8252932 1.0169213 1.4859383 0.8487611 0.8566172 1.3527169 1.3148950 1.1739238 1.6326035 1.1883159 0.9224676 1.0194067 1.5432319 0.5191687 -0.0180153 1.3612381 1.0813101 1.4847405 1.5176340 1.4019585 1.9364960 1.1383008 0.6865001 -0.0887711 -0.8953931 0.0650946 1.5840504 0.7397874 0.8659023 1.7809041 0.3450921 1.0487881 1.8017577 1.3872814 1.8891720 -0.0173649
ENSPTRT00000077951.1 -1.0543007 -0.7363178 -1.1656307 -1.0718136 -0.9321051 -1.1157300 -1.4709289 -1.1321205 -1.7666708 -0.1907550 -1.1697292 -0.8051094 -1.0394673 -0.8731307 -1.0497993 -1.6565767 -1.6460708 -1.4270497 -0.6907740 -0.6518344 -0.9158408 -1.1643035 -1.2200819 -1.1188476 -1.1431537 -1.4926465 -3.2429892 -1.0023308 -1.2326055 -0.9340805 -2.3083708 -1.0819587 -0.5124136 -0.3536809 -0.9822676 -1.3268375 -1.3158769 -3.0581078
# Read Covariates file
Covariates <- read.table('../output/Covariates/3RS_10GT.covariates.txt', header=T, check.names = F, stringsAsFactors = F, row.names=1)

# Read admixture coefficients (K=4), and first 3 principle components, since some form of population substructure will likely be included in the expression modeling as a covariate.
AdmixtureCoeff <- read.table("../output/PopulationStructure/Admixture/MergedForAdmixture.4.Q.labelled") %>% 
  dplyr::rename(Individual.ID=V2) %>%
  select(-V1, -V3, -V4, -V5, -V6) %>%
  dplyr::rename(Admix.Western=V9, Admix.Eastern=V10, Admix.Central=V8, Admix.NigeriaCameroon=V7) #Renaming the admixture clusters after looking at plots with known subspecies
kable(head(AdmixtureCoeff))
Individual.ID Admix.NigeriaCameroon Admix.Central Admix.Western Admix.Eastern
549 1.0e-05 0.000010 0.999970 1e-05
570 1.3e-05 0.059266 0.940711 1e-05
389 1.0e-05 0.000010 0.999970 1e-05
456 1.1e-05 0.000010 0.999969 1e-05
623 1.0e-05 0.000010 0.999970 1e-05
438 1.0e-05 0.000010 0.999970 1e-05
GenotypePCs <- read.table("../output/PopulationStructure/pca.eigenvec", header=T) %>%
  select(IID, PC1, PC2, PC3) %>%
  dplyr::rename(Individual.ID=IID, GenotypePC1=PC1, GenotypePC2=PC2, GenotypePC3=PC3)
kable(head(GenotypePCs))
Individual.ID GenotypePC1 GenotypePC2 GenotypePC3
549 -0.1085980 -0.0184943 0.0047314
570 -0.0945827 -0.0228220 -0.0140236
389 -0.1101630 -0.0206061 0.0032451
456 -0.1080570 -0.0178108 0.0044597
623 -0.1098320 -0.0206678 0.0041903
438 -0.1081420 -0.0177823 0.0045724
# Read in other metadata
OtherMetadata <- as.data.frame(read_excel("../data/Metadata.xlsx"))
kable(head(OtherMetadata))
Individual.ID Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch
295 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2
317 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA
338 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA
389 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA
438 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA
456 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA
#Merge all metadata tables
Metadata <- OtherMetadata %>%
  left_join(GenotypePCs, by=c("Individual.ID")) %>%
  left_join(AdmixtureCoeff, by=c("Individual.ID"))
kable(head(Metadata))
Individual.ID Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch GenotypePC1 GenotypePC2 GenotypePC3 Admix.NigeriaCameroon Admix.Central Admix.Western Admix.Eastern
295 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2 -0.0819553 0.0484042 0.0151794 0.184097 1e-05 0.815883 1e-05
317 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA -0.1089490 -0.0190248 0.0051753 0.000011 1e-05 0.999969 1e-05
338 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA -0.1081500 -0.0179254 0.0048894 0.000010 1e-05 0.999970 1e-05
389 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA -0.1101630 -0.0206061 0.0032451 0.000010 1e-05 0.999970 1e-05
438 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA -0.1081420 -0.0177823 0.0045724 0.000010 1e-05 0.999970 1e-05
456 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA -0.1080570 -0.0178108 0.0044597 0.000011 1e-05 0.999969 1e-05

Check some of the gene expression phenotype distributions

#function to plot datapoints as violin plot with individual points labelled. I find this slightly more useful than histograms for plotting phenotype because I can see the distribution and also label points
MyPlot <- function(DataIn){
  ggplot(mapping=aes(x=1, y=DataIn, label=names(DataIn))) +
  geom_violin() +
  geom_text(position=position_jitter(width=0.25), alpha=1, size=2)
}

#Plot expression phenotypes for a few genes
MyPlot(unlist(CountTable[1,]))

MyPlot(unlist(CountTable[2,]))

MyPlot(unlist(CountTable[3,]))

MyPlot(unlist(CountTable[4,]))

MyPlot(unlist(CountTable[5,]))

MyPlot(unlist(CountTable[6,]))

MyPlot(unlist(CountTable[7,]))

MyPlot(unlist(CountTable[8,]))

MyPlot(unlist(CountTable[9,]))

MyPlot(unlist(CountTable[10,]))

#What is distribution of expression levels for all genes in the table
# Histogram of rowMeans. (Arithmetic mean of the log-transformed data)
hist(rowMeans(CountTable))

Plot correlation matrix… Should closely resemble the correlation matrix in this previous analysis, except that the previous correlation matrix included the top5000 expressed genes, while this one includes the top5000 genes of the genes that are included in the phenotype table for association testing.

CorMatrix <- CountTable %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(5000) %>%
  select(-sumVar) %>%
  scale() %>%
  cor(method = c("spearman"))

RNAExtractionDate <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Extract_date))))
The following `from` values were not present in `x`: MD_And
RNA.Library.prep.batch <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Library.prep.batch))))
The following `from` values were not present in `x`: MD_And
# Heatmap of correlation. Row colors for RNA extraction batch, column colors for RNA library prep batch
heatmap.2(CorMatrix, trace="none", ColSideColors=RNAExtractionDate, RowSideColors = RNA.Library.prep.batch)

# What is mean correlation
mean(CorMatrix)
[1] 0.8059961

Now regress out the first RNA-seq PC and recheck correlation matrix

# Regress out PC1

GetResiduals <- function(Y, X){
  df <- data.frame(c(Y),X)
  mylm <- lm(Y ~ ., data=df)
  return(mylm$residuals)
}

ResidualCountTable <- t(apply(CountTable,1,GetResiduals, t(Covariates[c("PC1.RS"),])))

CorMatrix <- ResidualCountTable %>% as.data.frame() %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(5000) %>%
  select(-sumVar) %>%
  scale() %>%
  cor(method = c("spearman"))

RNAExtractionDate <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Extract_date))))
The following `from` values were not present in `x`: MD_And
RNA.Library.prep.batch <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Library.prep.batch))))
The following `from` values were not present in `x`: MD_And
# Heatmap of correlation. Row colors for RNA extraction batch, column colors for RNA library prep batch
heatmap.2(CorMatrix, trace="none", ColSideColors=RNAExtractionDate, RowSideColors = RNA.Library.prep.batch)

# What is mean correlation
mean(CorMatrix)
[1] 0.2167298

Interpretation: The regressing first PC1 seems to take away the obvious batch effect that was present in the lower left of the original correlation matrix (The samples that were in that batch no longer cluster together in the lower left), however, regressing out first PC alone still leaves 2 clear clusters of samples.

In my first pass at eQTL mapping I including 3 PCs, let’s see how the correlation matrix clusters after regressing out all of these PCs. (Not iteratively regressing out, but all at once; take residuals from this model Y~PC1+PC2+PC3)

# Regress out PC1, PC2, and PC3

ResidualCountTable <- t(apply(CountTable,1,GetResiduals, t(Covariates[c("PC1.RS", "PC2.RS", "PC3.RS"),])))

CorMatrix <- ResidualCountTable %>% as.data.frame() %>%
  mutate(sumVar = rowSums(.)) %>%
  arrange(desc(sumVar)) %>%
  head(5000) %>%
  select(-sumVar) %>%
  scale() %>%
  cor(method = c("spearman"))

RNAExtractionDate <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Extract_date))))
The following `from` values were not present in `x`: MD_And
RNA.Library.prep.batch <- as.character(unclass(factor(plyr::mapvalues(row.names(CorMatrix), from=Metadata$Individual.ID, to=Metadata$RNA.Library.prep.batch))))
The following `from` values were not present in `x`: MD_And
# Heatmap of correlation. Row colors for RNA extraction batch, column colors for RNA library prep batch
heatmap.2(CorMatrix, trace="none", ColSideColors=RNAExtractionDate, RowSideColors = RNA.Library.prep.batch)

# What is mean correlation
mean(CorMatrix)
[1] 0.1172888

Clearly there is still residual structure in the data even after regressing out the top 3 PCs. Now I want to figure out if this residual structure is caused by any technical factors that I could justifiably adjust for (eg RIN score) or if it is genetic. I will now perform PCA on the residuals and see if they correlate to any of the observed technical factors or genetic population substructure that I previously looked at before regressing out PCs.

#First get a list of the same genes that were used in the original PCA analysis (top 2500 expressed genes)

GenesForPCA <- CountTable %>%
  rownames_to_column('gene') %>%
  mutate(sumVar = rowSums(select(.,-gene))) %>%
  arrange(desc(sumVar)) %>%
  head(2500) %>%
  pull(gene)

pca_results <- ResidualCountTable %>% as.data.frame() %>%
  rownames_to_column('gene') %>%
  filter(gene %in% GenesForPCA) %>%
  column_to_rownames('gene') %>%
  mutate(Variance = rowVars(as.matrix(.))) %>%
  filter(Variance>0) %>%
  select(-Variance) %>%
  t() %>%
  prcomp(center=T, scale. = T)

summary(pca_results)
Importance of components:
                           PC1     PC2     PC3     PC4     PC5     PC6
Standard deviation     42.6985 8.70349 7.77771 7.20705 6.58620 6.20179
Proportion of Variance  0.7322 0.03042 0.02429 0.02086 0.01742 0.01545
Cumulative Proportion   0.7322 0.76262 0.78691 0.80777 0.82519 0.84064
                           PC7     PC8     PC9    PC10   PC11    PC12
Standard deviation     5.38525 5.23972 5.02747 4.90940 4.7344 4.44945
Proportion of Variance 0.01165 0.01103 0.01015 0.00968 0.0090 0.00795
Cumulative Proportion  0.85228 0.86331 0.87346 0.88314 0.8921 0.90009
                          PC13    PC14   PC15    PC16    PC17    PC18
Standard deviation     4.25279 4.06900 4.0245 3.97194 3.82780 3.73073
Proportion of Variance 0.00726 0.00665 0.0065 0.00634 0.00588 0.00559
Cumulative Proportion  0.90736 0.91401 0.9205 0.92685 0.93273 0.93832
                          PC19    PC20    PC21   PC22    PC23    PC24
Standard deviation     3.70848 3.59657 3.57082 3.4581 3.40354 3.29980
Proportion of Variance 0.00552 0.00519 0.00512 0.0048 0.00465 0.00437
Cumulative Proportion  0.94384 0.94904 0.95416 0.9590 0.96362 0.96799
                          PC25    PC26    PC27    PC28    PC29    PC30
Standard deviation     3.23734 3.12198 3.02463 2.94894 2.85489 2.75365
Proportion of Variance 0.00421 0.00391 0.00367 0.00349 0.00327 0.00305
Cumulative Proportion  0.97220 0.97611 0.97979 0.98328 0.98655 0.98960
                          PC31    PC32    PC33    PC34     PC35      PC36
Standard deviation     2.67728 2.57653 2.50205 2.41617 2.01e-14 7.464e-15
Proportion of Variance 0.00288 0.00267 0.00251 0.00234 0.00e+00 0.000e+00
Cumulative Proportion  0.99248 0.99514 0.99766 1.00000 1.00e+00 1.000e+00
                            PC37      PC38
Standard deviation     5.681e-15 5.184e-15
Proportion of Variance 0.000e+00 0.000e+00
Cumulative Proportion  1.000e+00 1.000e+00
#Scree plot
screeplot(pca_results)

# Merge with metadata
Merged <- merge(pca_results$x, Metadata, by.x = "row.names", by.y = "Individual.ID", all=TRUE)
kable(head(Merged))
Row.names PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38 Source Individual.Name Yerkes.ID Label Notes FileID.(Library_Species_CellType_FlowCell) SX RNA.Library.prep.batch RNA.Sequencing.Lane Sequencing.Barcode RNA.Extract_date DNASeq_FastqIdentifier DNA.library.prep.batch DNA.Sequencing.Lane DNA.Sequencin.Barcode DNA.Extract_date Age X__1 Post.mortem.time.interval RIN Viral.status RNA.total.reads.mapped.to.genome RNA.total.reads.mapping.to.ortho.exons Subspecies DOB DOD DOB Estimated Age (DOD-DOB) OldLibInfo. RIN,RNA-extractdate,RNAbatch GenotypePC1 GenotypePC2 GenotypePC3 Admix.NigeriaCameroon Admix.Central Admix.Western Admix.Eastern
295 -50.430132 -2.3098435 2.4369275 -3.9747155 4.1379063 -15.0889535 7.5684829 -12.5989456 9.1740419 -0.1703849 -2.9391712 3.4073188 -5.6781127 -0.0438028 -5.4085602 2.3785468 0.9952793 1.9026303 3.5125444 -4.2340916 -3.6697595 -0.5426480 -0.4313764 -4.2924997 0.7051881 4.2004242 3.6811031 -4.4906383 -0.3435784 -1.1822404 -0.0878580 1.3669424 0.4949519 -0.3753532 0 0 0 0 Yerkes Duncan 295 295 NA 24_CM_3_L006.bam M 5 6 18 2018-10-10 YG3 1 1 NA 2018-09-01 40 NA 0.5 7.3 NA 45.67002 17.51562 verus/ellioti 24731 39386 NA 40 6.3,6/14/2016,2 -0.0819553 0.0484042 0.0151794 0.184097 1e-05 0.815883 1e-05
317 241.532847 -0.0316741 0.5375320 -0.7206688 0.9010903 -2.1914714 1.0462675 -1.7888688 1.3112178 0.1158945 -0.4524644 0.5905292 -0.7663165 0.0162050 -0.7884457 0.4414294 0.0387473 0.1202932 0.3926779 -0.4153662 -0.4185246 -0.1245901 -0.1342599 -0.7114382 0.1637270 0.6141035 0.5338902 -0.6323517 -0.0367285 -0.1392326 -0.0173996 0.1842514 0.0924651 -0.0445170 0 0 0 0 Yerkes Iyk 317 317 NA 11_CM_3_L004.bam M 3 4 4 2016-06-07 YG2 1 1 NA 2018-09-01 44 NA 2.5 7.6 NA 42.75617 17.18811 verus 22859 38832 NA 43 NA -0.1089490 -0.0190248 0.0051753 0.000011 1e-05 0.999969 1e-05
338 -2.144211 -0.0669376 -1.5453948 -0.3322771 0.9761652 0.1501650 0.4518967 0.2665345 -0.8105410 -3.2601071 -2.0590783 7.3345467 5.5370030 -15.0025373 2.5559130 -6.5941064 -2.0658545 -10.7197849 -0.2344986 -4.7836382 -2.8914650 3.5479971 -3.6397800 0.5452169 0.2185825 0.5475979 0.2768962 -0.2863866 0.4843528 -0.6661467 0.1334733 1.5044987 -0.4851243 -0.0901153 0 0 0 0 Yerkes Maxine 338 338 NA 8_CF_3_L008.bam F 3 8 6 2016-06-07 YG1 1 1 NA 2018-09-01 53 NA NA 7.2 NA 50.52632 19.49295 verus 20821 40179 Yes 53 NA -0.1081500 -0.0179254 0.0048894 0.000010 1e-05 0.999970 1e-05
389 -3.856348 1.0343383 1.7048629 0.8954923 1.4124154 -1.1728185 1.0234824 -1.5591497 0.7169038 0.3727142 -0.6452253 -0.1899591 0.3579922 -0.5025431 -1.3272068 1.4198048 1.3620939 -1.1148167 0.2188360 1.5035396 0.2172473 -0.7683361 0.5768306 1.1989056 -2.0854489 1.5145974 -4.7386290 3.7445017 4.1050593 -9.4246426 -7.3182332 -5.0141238 4.6001930 -2.7149222 0 0 0 0 Yerkes Rogger 389 389 NA NA M 4 NA 23 2018-10-10 YG39 2 2 NA 2018-10-01 45 NA NA 5.7 NA NA NA verus 25204 41656 NA 45 NA -0.1101630 -0.0206061 0.0032451 0.000010 1e-05 0.999970 1e-05
438 -6.885783 -2.4661120 5.0472981 3.5276778 6.8895537 1.2619018 4.0897386 -0.2801704 1.9099370 -2.2141640 2.9491966 -1.5915998 -0.9030430 -3.8399765 0.0239256 3.9599753 -1.4000526 2.3733713 5.4107865 -2.6253465 0.6682401 -1.9667922 -0.4806345 1.7904700 5.7293414 2.6928710 -10.2441866 3.8032137 -4.3911520 5.7353549 1.3669328 -1.4147645 0.6556390 -1.2714230 0 0 0 0 Yerkes Cheeta 438 438 NA 155_CF_3_L004.bam F 2 4 8 2016-06-22 YG22 1 1 NA 2018-09-01 55 NA NA 5.6 NA 55.30614 18.06375 verus 20821 40909 Yes 55 NA -0.1081420 -0.0177823 0.0045724 0.000010 1e-05 0.999970 1e-05
456 2.696852 -0.0790156 0.9954681 -0.3353002 2.2013716 -0.9861758 0.9860697 -1.4269147 0.7068544 -0.9172136 -0.0789697 -1.1998594 -0.2042522 -0.0722823 0.6281202 1.4747030 -0.0245971 0.6281378 1.9987541 1.8467420 0.4453291 0.9543101 0.9905206 0.9298047 -3.7077392 -1.9989876 3.4459438 7.9691675 -8.3976329 -7.3413986 6.3424025 3.0488619 0.4828621 1.5717938 0 0 0 0 Yerkes Mai 456 456 NA 156_CF_3_L001.bam F 2 1 15 2016-06-22 YG23 1 1 NA 2018-09-01 49 NA NA 5.5 NA 54.00665 20.13760 verus 23377 41275 Yes 49 NA -0.1080570 -0.0178108 0.0044597 0.000011 1e-05 0.999969 1e-05
PCs_to_test <- Merged[,2:11]
kable(head(PCs_to_test))
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
-50.430132 -2.3098435 2.4369275 -3.9747155 4.1379063 -15.0889535 7.5684829 -12.5989456 9.1740419 -0.1703849
241.532847 -0.0316741 0.5375320 -0.7206688 0.9010903 -2.1914714 1.0462675 -1.7888688 1.3112178 0.1158945
-2.144211 -0.0669376 -1.5453948 -0.3322771 0.9761652 0.1501650 0.4518967 0.2665345 -0.8105410 -3.2601071
-3.856348 1.0343383 1.7048629 0.8954923 1.4124154 -1.1728185 1.0234824 -1.5591497 0.7169038 0.3727142
-6.885783 -2.4661120 5.0472981 3.5276778 6.8895537 1.2619018 4.0897386 -0.2801704 1.9099370 -2.2141640
2.696852 -0.0790156 0.9954681 -0.3353002 2.2013716 -0.9861758 0.9860697 -1.4269147 0.7068544 -0.9172136
# Grab potential continuous confounders that make sense to test
Continuous_confounders_to_test <- Merged[, c("RIN", "Age", "GenotypePC1", "GenotypePC2", "GenotypePC3", "Admix.Western", "Admix.Eastern", "Admix.Central", "Admix.NigeriaCameroon")]
kable(head(Continuous_confounders_to_test))
RIN Age GenotypePC1 GenotypePC2 GenotypePC3 Admix.Western Admix.Eastern Admix.Central Admix.NigeriaCameroon
7.3 40 -0.0819553 0.0484042 0.0151794 0.815883 1e-05 1e-05 0.184097
7.6 44 -0.1089490 -0.0190248 0.0051753 0.999969 1e-05 1e-05 0.000011
7.2 53 -0.1081500 -0.0179254 0.0048894 0.999970 1e-05 1e-05 0.000010
5.7 45 -0.1101630 -0.0206061 0.0032451 0.999970 1e-05 1e-05 0.000010
5.6 55 -0.1081420 -0.0177823 0.0045724 0.999970 1e-05 1e-05 0.000010
5.5 49 -0.1080570 -0.0178108 0.0044597 0.999969 1e-05 1e-05 0.000011
# Test
Spearman_test_results <- corr.test(Continuous_confounders_to_test, PCs_to_test, adjust="none", method="spearman")

MinP_floor <- floor(log10(min(Spearman_test_results$p)))
# Plot
Spearman_test_results$p %>%
  melt() %>%
  dplyr::rename(Pvalue = value, Principle.Component=Var2, Potential.Confounder=Var1) %>%
  ggplot(aes(x=Potential.Confounder, y=Principle.Component, fill=Pvalue)) + 
    geom_tile() +
    geom_text(aes(label = signif(Pvalue, 2))) +
    scale_fill_gradient(limits=c(10**MinP_floor, 1), breaks=10**seq(MinP_floor,0,1), trans = 'log', high="white", low="red" ) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

# Grab potential categorical confounders that make sense to test
Categorical_confounders_to_test <- Merged[,c("Viral.status", "SX","RNA.Extract_date", "RNA.Library.prep.batch", "Source")]
kable(head(Categorical_confounders_to_test))
Viral.status SX RNA.Extract_date RNA.Library.prep.batch Source
NA M 2018-10-10 5 Yerkes
NA M 2016-06-07 3 Yerkes
NA F 2016-06-07 3 Yerkes
NA M 2018-10-10 4 Yerkes
NA F 2016-06-22 2 Yerkes
NA F 2016-06-22 2 Yerkes
# Viral status will need to be reformatted to make factors that make sense for testing (example: HBV+, HBV- HCV+, HCV- are factors that make sense). Let's assume that NA means negative status.
Categorical_confounders_to_test$HBV_status <- grepl("HBV+", Categorical_confounders_to_test$Viral.status)
Categorical_confounders_to_test$HCV_status <- grepl("HCV+", Categorical_confounders_to_test$Viral.status)
Categorical_confounders_to_test <- Categorical_confounders_to_test[, -1 ]
kable(head(Categorical_confounders_to_test))
SX RNA.Extract_date RNA.Library.prep.batch Source HBV_status HCV_status
M 2018-10-10 5 Yerkes FALSE FALSE
M 2016-06-07 3 Yerkes FALSE FALSE
F 2016-06-07 3 Yerkes FALSE FALSE
M 2018-10-10 4 Yerkes FALSE FALSE
F 2016-06-22 2 Yerkes FALSE FALSE
F 2016-06-22 2 Yerkes FALSE FALSE
# Do one-way anova test as a loop.
# First initialize results matrix
Pvalues <- matrix(ncol = dim(PCs_to_test)[2], nrow = dim(Categorical_confounders_to_test)[2])
colnames(Pvalues) <- colnames(PCs_to_test)
rownames(Pvalues) <- colnames(Categorical_confounders_to_test)
for (confounder in seq_along(Categorical_confounders_to_test)) {
    for (PC in seq_along(PCs_to_test)) {
      res.aov <- aov(PCs_to_test[[PC]] ~ Categorical_confounders_to_test[[confounder]])
      pval <- summary(res.aov)[[1]][["Pr(>F)"]][1]
      Pvalues[confounder, PC] <- pval
    }
}
# Plot
MinP_floor <- floor(log10(min(Pvalues)))
Pvalues %>%
  melt() %>%
  dplyr::rename(Pvalue = value, Principle.Component=Var2, Potential.Confounder=Var1) %>%
  ggplot(aes(x=Potential.Confounder, y=Principle.Component, fill=Pvalue)) + 
    geom_tile() +
    geom_text(aes(label = signif(Pvalue, 2))) +
    scale_fill_gradient(limits=c(10**MinP_floor, 1), breaks=10**seq(MinP_floor,0,1), trans = 'log', high="white", low="red" ) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

Interpretation: The only observed technical factors (or measured population structure statistics) that correlate with any of the PCs on the residuals are Admix.Central and HBV status. Given that HBV status is correlated with such late PCs that explain so little variance (see scree plot above), and there are only 3 HBV+ observations, I think including HBV in the model is not justified. Also note that the correlation matrix of the residuals after regressing out 3PCs generally shows two clusters, neither of which segregate with the 3HBV+ observations. The other significant correlation is between PC9 (which explains little variance) and Admix.Central coefficient. This trait is already included implicitly in the eQTL calling model as a genotype PC covariate.

Lastly, I want to look at the residuals after regressing out those first three PCs.

#Plot residuals for a few genes
MyPlot(ResidualCountTable[1,])

MyPlot(ResidualCountTable[2,])

MyPlot(ResidualCountTable[3,])

MyPlot(ResidualCountTable[4,])

MyPlot(ResidualCountTable[5,])

MyPlot(ResidualCountTable[6,])

MyPlot(ResidualCountTable[7,])

MyPlot(ResidualCountTable[8,])

MyPlot(ResidualCountTable[9,])

MyPlot(ResidualCountTable[10,])

#Plot of first two PCs of residuals
pca_results$x %>%
  as.data.frame() %>%
  rownames_to_column('sample') %>%
  ggplot(aes(x=PC1, y=PC2, label=sample)) +
  geom_text()

Interpretation: After regressing out the PCs and looking at residuals, sample 317 seems to be consistently an outlier. This is also reflected in PC space of the residuals. It was not an outlier in the original phenotypes. Was it an outlier in the original PCs that were regressed out?

# The PCs were read in from the covariates file

t(Covariates) %>%
  as.data.frame() %>%
  rownames_to_column('sample') %>%
  ggplot(aes(x=PC1.RS, y=PC2.RS, label=sample)) +
  geom_text()

t(Covariates) %>%
  as.data.frame() %>%
  rownames_to_column('sample') %>%
  ggplot(aes(x=PC2.RS, y=PC3.RS, label=sample)) +
  geom_text()
No it was not an outlier in the original phenotypes.

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] matrixStats_0.54.0 gplots_3.0.1       reshape2_1.4.3    
 [4] knitr_1.22         ggrepel_0.8.0      psych_1.8.10      
 [7] forcats_0.4.0      stringr_1.4.0      dplyr_0.8.0.1     
[10] purrr_0.3.2        readr_1.3.1        tidyr_0.8.2       
[13] tibble_2.1.1       tidyverse_1.2.1    readxl_1.1.0      
[16] ggfortify_0.4.5    ggplot2_3.1.0      corrplot_0.84     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.1         lubridate_1.7.4    lattice_0.20-38   
 [4] gtools_3.8.1       assertthat_0.2.1   rprojroot_1.3-2   
 [7] digest_0.6.18      R6_2.4.0           cellranger_1.1.0  
[10] plyr_1.8.4         backports_1.1.3    evaluate_0.13     
[13] highr_0.8          httr_1.4.0         pillar_1.3.1      
[16] rlang_0.3.3        lazyeval_0.2.2     rstudioapi_0.10   
[19] gdata_2.18.0       rmarkdown_1.11     labeling_0.3      
[22] foreign_0.8-71     munsell_0.5.0      broom_0.5.1       
[25] compiler_3.5.1     modelr_0.1.4       xfun_0.6          
[28] pkgconfig_2.0.2    mnormt_1.5-5       htmltools_0.3.6   
[31] tidyselect_0.2.5   gridExtra_2.3      workflowr_1.2.0   
[34] crayon_1.3.4       withr_2.1.2        bitops_1.0-6      
[37] grid_3.5.1         nlme_3.1-137       jsonlite_1.6      
[40] gtable_0.3.0       git2r_0.24.0       magrittr_1.5      
[43] scales_1.0.0       KernSmooth_2.23-15 cli_1.1.0         
[46] stringi_1.4.3      fs_1.2.6           xml2_1.2.0        
[49] generics_0.0.2     tools_3.5.1        glue_1.3.1        
[52] hms_0.4.2          parallel_3.5.1     yaml_2.2.0        
[55] colorspace_1.4-1   caTools_1.17.1.1   rvest_0.3.2       
[58] haven_2.1.0