Last updated: 2019-10-20

Checks: 6 0

Knit directory: Porello-heart-snRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190603) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/08-ClustEpicardial.Rmd
    Untracked:  analysis/PBapproachMarker-cardio.Rmd
    Untracked:  analysis/doublet-detection.Rmd
    Untracked:  broad_props.csv
    Untracked:  code/ReadDataObjects.R
    Untracked:  code/getTransformedProps.R
    Untracked:  data/adult-clust.txt
    Untracked:  data/dcm-clust.txt
    Untracked:  data/fetal-clust.txt
    Untracked:  data/gstlist-adult.Rdata
    Untracked:  data/gstlist-dcm-res03.Rdata
    Untracked:  data/gstlist-dcm.Rdata
    Untracked:  data/gstlist-fetal.Rdata
    Untracked:  data/gstlist-young.Rdata
    Untracked:  data/heart-markers-long.txt
    Untracked:  data/immune-markers-long.txt
    Untracked:  data/pseudobulk-pool.Rds
    Untracked:  data/pseudobulk.Rds
    Untracked:  data/targets_pools.txt
    Untracked:  data/young-clust.txt
    Untracked:  output/AllAdult-clustermarkers-v2.csv
    Untracked:  output/AllAdult-clustermarkers.csv
    Untracked:  output/AllFetal-clustermarkers.csv
    Untracked:  output/AllYoung-clustermarkers.csv
    Untracked:  output/Alldcm-clustermarkers.csv
    Untracked:  output/DEAnalysis/
    Untracked:  output/Figures/
    Untracked:  output/MarkerAnalysis/
    Untracked:  output/RDataObjects/
    Untracked:  output/cardio-numcells-clusters.csv
    Untracked:  output/cardio-numcells-clusters.txt
    Untracked:  output/fetal1-clustermarkers.csv
    Untracked:  output/fetal2-clustermarkers.csv
    Untracked:  output/fetal3-clustermarkers.csv
    Untracked:  output/heatmap-top10-adultmarkergenes.pdf
    Untracked:  output/young1-clustermarkers.csv

Unstaged changes:
    Modified:   analysis/01-QualityControl.Rmd
    Modified:   analysis/01a-DEpseudobulk.Rmd
    Modified:   analysis/02-ClusterFetal.Rmd
    Modified:   analysis/02c-ClusterFetal3.Rmd
    Modified:   analysis/03-ClusterYoung.Rmd
    Modified:   analysis/04-ClusterAdult.Rmd
    Modified:   analysis/07b-DECardio.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 0236c5a Belinda Phipson 2019-10-20 added updated composition analysis
html 971fff9 Belinda Phipson 2019-07-26 Build site.
Rmd 5b0d0d5 Belinda Phipson 2019-07-26 added composition analysis on broad cell types

Introduction

I’m interested in having a look at the differences in broad cell type composition between the fetal, young, adult and DCM samples.

Load libraries and functions

library(edgeR)
library(RColorBrewer)
library(org.Hs.eg.db)
library(limma)
library(Seurat)
library(monocle)
library(cowplot)
library(DelayedArray)
library(scran)
library(NMF)
library(workflowr)
library(ggplot2)
library(clustree)
library(dplyr)
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/normCounts.R")
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/findModes.R")
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/ggplotColors.R")
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/getTransformedProps.R")

Read in the data objects

targets <- read.delim("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/data/targets.txt",header=TRUE, stringsAsFactors = FALSE)
targets$FileName2 <- paste(targets$FileName,"/",sep="")
targets$Group_ID2 <- gsub("LV_","",targets$Group_ID)
group <- c("Fetal_1","Fetal_2","Fetal_3",
           "Young_1","Young_2","Young_3",
           "Adult_1","Adult_2","Adult_3", 
           "Diseased_1","Diseased_2",
           "Diseased_3","Diseased_4")
m <- match(group, targets$Group_ID2)
targets <- targets[m,]
fetal.integrated <- readRDS(file="./output/RDataObjects/fetal-int.Rds")
load(file="./output/RDataObjects/fetalObjs.Rdata")

young.integrated <- readRDS(file="./output/RDataObjects/young-int.Rds")
load(file="./output/RDataObjects/youngObjs.Rdata")

adult.integrated <- readRDS(file="./output/RDataObjects/adult-int.Rds")
load(file="./output/RDataObjects/adultObjs.Rdata")


dcm.integrated <- readRDS(file="./output/RDataObjects/dcm-int.Rds")
load(file="./output/RDataObjects/dcmObjs.Rdata")

Set default clustering resolution

# Default 0.3
Idents(fetal.integrated) <- fetal.integrated$integrated_snn_res.0.3
DimPlot(fetal.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
# Default 0.3
DimPlot(young.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
# Default 0.6
DimPlot(adult.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
# Default 0.3
Idents(dcm.integrated) <- dcm.integrated$integrated_snn_res.0.3
DimPlot(dcm.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26

Assign cell types to clusters

f.clust <- read.delim("data/fetal-clust.txt",header=TRUE,nrow=22,stringsAsFactors = FALSE)
y.clust <- read.delim("data/young-clust.txt",header=TRUE,stringsAsFactors = FALSE)
a.clust <- read.delim("data/adult-clust.txt",header=TRUE,nrow=21,stringsAsFactors = FALSE)
d.clust <- read.delim("data/dcm-clust.txt",header=TRUE,nrow=17,stringsAsFactors = FALSE)
d.clust <- d.clust[,1:3]
fetal.annot <- fetal.integrated
new.cluster.ids <- f.clust$Celltype
names(new.cluster.ids) <- levels(fetal.annot)
fetal.annot <- RenameIdents(fetal.annot, new.cluster.ids)
DimPlot(fetal.annot, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
fetal.broad <- fetal.integrated
broad.cluster.ids <- f.clust$Broad_celltype
names(broad.cluster.ids) <- levels(fetal.broad)
fetal.broad <- RenameIdents(fetal.broad, broad.cluster.ids)
DimPlot(fetal.broad, reduction = "tsne", label = TRUE, pt.size = 0.5, label.size = 6) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
fetal.integrated$Celltype <- Idents(fetal.annot)
fetal.integrated$Broad_celltype <- Idents(fetal.broad)
young.annot <- young.integrated
new.cluster.ids <- y.clust$Celltype
names(new.cluster.ids) <- levels(young.annot)
young.annot <- RenameIdents(young.annot, new.cluster.ids)
DimPlot(young.annot, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
young.broad <- young.integrated
broad.cluster.ids <- y.clust$Broad_celltype
names(broad.cluster.ids) <- levels(young.broad)
young.broad <- RenameIdents(young.broad, broad.cluster.ids)
DimPlot(young.broad, reduction = "tsne", label = TRUE, pt.size = 0.5, label.size=6) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
young.integrated$Celltype <- Idents(young.annot)
young.integrated$Broad_celltype <- Idents(young.broad)
adult.annot <- adult.integrated
new.cluster.ids <- a.clust$Celltype
names(new.cluster.ids) <- levels(adult.annot)
adult.annot <- RenameIdents(adult.annot, new.cluster.ids)
DimPlot(adult.annot, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
adult.broad <- adult.integrated
broad.cluster.ids <- a.clust$Broad_celltype
names(broad.cluster.ids) <- levels(adult.broad)
adult.broad <- RenameIdents(adult.broad, broad.cluster.ids)
DimPlot(adult.broad, reduction = "tsne", label = TRUE, pt.size = 0.5, label.size = 6) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
adult.integrated$Celltype <- Idents(adult.annot)
adult.integrated$Broad_celltype <- Idents(adult.broad)
dcm.annot <- dcm.integrated
new.cluster.ids <- d.clust$Celltype
names(new.cluster.ids) <- levels(dcm.annot)
dcm.annot <- RenameIdents(dcm.annot, new.cluster.ids)
DimPlot(dcm.annot, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
dcm.broad <- dcm.integrated
broad.cluster.ids <- d.clust$Broad_celltype
names(broad.cluster.ids) <- levels(dcm.broad)
dcm.broad <- RenameIdents(dcm.broad, broad.cluster.ids)
DimPlot(dcm.broad, reduction = "tsne", label = TRUE, pt.size = 0.5, label.size = 6) + NoLegend()

Version Author Date
971fff9 Belinda Phipson 2019-07-26
dcm.integrated$Celltype <- Idents(dcm.annot)
dcm.integrated$Broad_celltype <- Idents(dcm.broad)
pdf("./output/Figures/fetal-broad-celltypes-TSNE.pdf",width=7,height=7)
DimPlot(fetal.broad, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend() + ggtitle("Fetal samples")
dev.off()
png 
  2 
pdf("./output/Figures/young-broad-celltypes-TSNE.pdf",width=7,height=7)
DimPlot(young.broad, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend() + ggtitle("Young samples")
dev.off()
png 
  2 
pdf("./output/Figures/adult-broad-celltypes-TSNE.pdf",width=7,height=7)
DimPlot(adult.broad, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend() + ggtitle("Adult samples")
dev.off()
png 
  2 
pdf("./output/Figures/dcm-broad-celltypes-TSNE.pdf",width=7,height=7)
DimPlot(dcm.broad, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend() + ggtitle("DCM samples")
dev.off()
png 
  2 

Get data into format for proportions analysis

allcells <- data.frame(Cellname=c(colnames(fetal.integrated),colnames(young.integrated),colnames(adult.integrated),colnames(dcm.integrated)),
                   Celltype = c(as.character(fetal.integrated$Celltype),as.character(young.integrated$Celltype),as.character(adult.integrated$Celltype),as.character(dcm.integrated$Celltype)),
                   Broad_celltype=c(as.character(fetal.integrated$Broad_celltype),as.character(young.integrated$Broad_celltype),as.character(adult.integrated$Broad_celltype),as.character(dcm.integrated$Broad_celltype)),
                   Sample =c(fetal.integrated$biorep,young.integrated$biorep,adult.integrated$biorep,dcm.integrated$biorep),
                   Group=rep(c("fetal","young","adult","dcm"),c(ncol(fetal.integrated),ncol(young.integrated),ncol(adult.integrated),ncol(dcm.integrated)))) 

allcells$Group <- factor(allcells$Group,levels=c("fetal","young","adult","dcm"))

cellfreq <- table(allcells$Broad_celltype,allcells$Sample)
props <-  t(t(cellfreq)/colSums(cellfreq))

group <- rep(c("adult","dcm","fetal","young"),c(3,4,3,3))
group <- factor(group,levels=c("fetal","young","adult","dcm"))
par(mar=c(5,5,2,2))
props.group <- getTransformedProps(allcells$Broad_celltype,allcells$Group)
barplot(props.group$Proportions,col=ggplotColors(8),ylab="Cell type proportions",xlab="Group",cex.axis=1.5,cex.lab=1.5,cex.names = 1.5)

plot.new()
par(mar=c(1,1,1,1))
legend("topleft",legend=levels(allcells$Broad_celltype),fill=ggplotColors(8),cex=2)

Test differences between groups using prop.table

tab <- table(allcells$Broad_celltype,allcells$Group)
N <- colSums(tab)
pval.classic <- rep(NA,nrow(tab))
names(pval.classic) <- rownames(tab)
for(i in 1:nrow(tab)) pval.classic[i] <- prop.test(tab[i,],N)$p.value
fdr.classic <- p.adjust(pval.classic,method="BH")

Test differences between two male samples with prop.table

allcells$Sample <- factor(allcells$Sample,levels=c("f1","f2","f3","y1","y2","y3","a1","a2","a3","d1","d2","d3","d4"))
tabfm <- table(allcells$Broad_celltype,allcells$Sample)
N2 <- colSums(tabfm)
pval.male.classic <- rep(NA,nrow(tabfm))
names(pval.male.classic) <- rownames(tabfm)
for(i in 1:nrow(tabfm)) pval.male.classic[i] <- prop.test(tabfm[i,1:2],N2[1:2])$p.value
fdr.male.classic <- p.adjust(pval.male.classic,method="BH")
prop.rep <- getTransformedProps(allcells$Broad_celltype,allcells$Sample)

par(mfrow=c(1,1))
avg.prop <- rowMeans(prop.rep$Proportions[,1:2])
o <- order(avg.prop,decreasing = TRUE)
barplot(t(prop.rep$Proportions[,1:2])[,o],beside=TRUE,las=2,col=ggplotColors(2),ylab="Proportion",cex.axis = 1.5,cex.lab=1.5,cex.names=1.5)
legend("topright",legend=c("Fetal Rep 1","Fetal Rep 2"),fill=ggplotColors(2),cex=1.5)

Test for differences using propeller

#allcells$Sample <- factor(allcells$Sample,levels=c("f1","f2","f3","y1","y2","y3","a1","a2","a3","d1","d2","d3","d4"))

barplot(prop.rep$Proportions,col=ggplotColors(8),ylab="Cell type proportions",xlab="Group",cex.axis=1.5,cex.lab=1.5,cex.names = 1.5)

targets$Group <- factor(targets$Group,levels=c("Fetal","Child","Adult","DCM"))

par(mar=c(4,5,2,2))
stripchart(prop.rep$Proportions[3,]~targets$Group,method="jitter",vertical=TRUE,pch=16,col=ggplotColors(4),cex=2,
           ylab="Estimated proportions",main=rownames(prop.rep$Proportions)[3], cex.axis=1.5,cex.lab=1.5,cex.main=2)

par(mfrow=c(3,3))
for(i in 1:8){
plot(jitter(as.numeric(targets$Group)),prop.rep$Proportions[i,],xaxt="n",xlab="",xlim=c(0.5,4.5),col=ggplotColors(4)[factor(targets$Group)],pch=c(8,16)[factor(targets$Sex)],cex=2,ylab="Estimated proportions",main=rownames(prop.rep$Proportions)[i],cex.axis=1.5,cex.lab=1.5,cex.main=2)
axis(side=1,at = 1:4, labels = levels(targets$Group),cex.axis=1.5)
#legend("topleft",legend=levels(factor(targets$Sex)),pch=c(8,16),cex=1.5)
}

Test for differences in cell type proportions

design <- model.matrix(~targets$Sex + targets$Group)

fit <- lmFit(prop.rep$TransformedProps,design)
fit <- eBayes(fit[,-c(1:2)],trend=TRUE)

summary(decideTests(fit))
       targets$GroupChild targets$GroupAdult targets$GroupDCM
Down                    1                  2                2
NotSig                  7                  4                3
Up                      0                  2                3
top <- topTable(fit)
options(digits = 3)
top
                    targets.GroupChild targets.GroupAdult targets.GroupDCM
Erythroid                     -0.06646           -0.06646          -0.0655
Immune cells                   0.16736            0.27501           0.1744
Smooth muscle cells            0.00681            0.00990           0.0640
Fibroblast                     0.19001            0.23991           0.2268
Cardiomyocytes                -0.26680           -0.43182          -0.3892
Neurons                        0.04394           -0.00629           0.0117
Epicardial cells               0.04012            0.07697           0.0825
Endothelial cells             -0.01266            0.03912           0.0586
                    AveExpr       F  P.Value adj.P.Val
Erythroid            0.0153 332.087 5.05e-44  4.04e-43
Immune cells         0.3242   4.806 4.02e-03  1.61e-02
Smooth muscle cells  0.1050   4.456 6.11e-03  1.63e-02
Fibroblast           0.5034   4.010 1.04e-02  2.09e-02
Cardiomyocytes       0.6954   3.377 2.25e-02  3.60e-02
Neurons              0.1218   1.464 2.31e-01  3.08e-01
Epicardial cells     0.2757   0.498 6.85e-01  7.01e-01
Endothelial cells    0.3525   0.474 7.01e-01  7.01e-01
sig.ct <- rownames(top)
par(mfrow=c(3,3))
for(i in 1:nrow(prop.rep$Proportions)){
 stripchart(prop.rep$TransformedProps[sig.ct[i],]~targets$Group,method="jitter",vertical=TRUE,pch=16,col=ggplotColors(4),cex=1.5,
           ylab="Asin(sqrt(prop))",main=sig.ct[i])
}

par(mar=c(7,5,3,2))
par(mfrow=c(3,3))
barplot(table(allcells$Broad_celltype)/sum(table(allcells$Broad_celltype)),las=2,main="Background proportions",
        col=c(2,"grey","grey",2,2,2,"grey",2),ylab="Proportion",cex.lab=1.5,cex.axis=1.5,cex.main=2)
legend("topright",fill=c(2,"grey"),legend=c("adj.P<0.05","ns"))
par(mar=c(4,5,3,2))
for(i in 1:nrow(prop.rep$Proportions)){
 stripchart(prop.rep$Proportions[sig.ct[i],]~targets$Group,method="jitter",vertical=TRUE,pch=16,col=ggplotColors(4),cex=2,
           ylab="Estimated proportions",main=sig.ct[i],cex.axis=1.5,cex.lab=1.5,cex.main=2)
}

par(mar=c(8,5,3,2))
par(mfrow=c(3,3))
barplot(sort(table(allcells$Broad_celltype)/sum(table(allcells$Broad_celltype)),decreasing=TRUE),
        las=2,main="Average proportions",ylab="Proportion",cex.lab=1.5,cex.axis=1.5,cex.main=2,
        col=c(2,2,"grey",2,"grey","grey",2,2))
legend("topright",fill=c(2,"grey"),legend=c("adj.P<0.05","ns"),cex=1.5)
par(mar=c(4,5,3,2))
plot(jitter(as.numeric(targets$Group)),prop.rep$Proportions[sig.ct[1],],xaxt="n",xlab="",xlim=c(0.5,4.5),col=ggplotColors(4)[factor(targets$Group)],pch=c(8,16)[factor(targets$Sex)],cex=2,ylab="Estimated proportions",main=sig.ct[1],cex.axis=1.5,cex.lab=1.5,cex.main=2)
axis(side=1,at = 1:4, labels = levels(targets$Group),cex.axis=1.5)
legend("topright",legend=levels(factor(targets$Sex)),pch=c(8,16),cex=1.5)
for(i in 2:8){
plot(jitter(as.numeric(targets$Group)),prop.rep$Proportions[sig.ct[i],],xaxt="n",xlab="",xlim=c(0.5,4.5),col=ggplotColors(4)[factor(targets$Group)],pch=c(8,16)[factor(targets$Sex)],cex=2,ylab="Estimated proportions",main=sig.ct[i],cex.axis=1.5,cex.lab=1.5,cex.main=2)
axis(side=1,at = 1:4, labels = levels(targets$Group),cex.axis=1.5)
#legend("topleft",legend=levels(factor(targets$Sex)),pch=c(8,16),cex=1.5)
}

par(mfrow=c(1,2))
plot(jitter(as.numeric(targets$Group)),prop.rep$Proportions["Erythroid",],xaxt="n",xlab="",xlim=c(0.5,4.5),col=ggplotColors(4)[factor(targets$Group)],pch=c(8,16)[factor(targets$Sex)],cex=2,ylab="Estimated proportions",main="Erythroid",cex.axis=1.5,cex.lab=1.5,cex.main=2)
legend("topright",legend=levels(factor(targets$Sex)),pch=c(8,16),cex=1.5)
axis(side=1,at = 1:4, labels = levels(targets$Group),cex.axis=1.5)

plot(jitter(as.numeric(targets$Group)),prop.rep$Proportions["Immune cells",],xaxt="n",xlab="",xlim=c(0.5,4.5),col=ggplotColors(4)[factor(targets$Group)],pch=c(8,16)[factor(targets$Sex)],cex=2,ylab="Estimated proportions",main="Immune cells",cex.axis=1.5,cex.lab=1.5,cex.main=2)
axis(side=1,at = 1:4, labels = levels(targets$Group),cex.axis=1.5)

Save objects with new cluster annotation

#saveRDS(fetal.integrated, file="./output/RDataObjects/fetal-int.Rds")

#saveRDS(young.integrated, file="./output/RDataObjects/young-int.Rds")

#saveRDS(adult.integrated, file="./output/RDataObjects/adult-int.Rds")

#saveRDS(dcm.integrated, file="./output/RDataObjects/dcm-int.Rds")

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS release 6.7 (Final)

Matrix products: default
BLAS:   /usr/local/installed/R/3.6.0/lib64/R/lib/libRblas.so
LAPACK: /usr/local/installed/R/3.6.0/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] splines   parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] dplyr_0.8.3                 clustree_0.4.0             
 [3] ggraph_1.0.2                workflowr_1.3.0            
 [5] NMF_0.21.0                  bigmemory_4.5.33           
 [7] cluster_2.1.0               rngtools_1.4               
 [9] pkgmaker_0.27               registry_0.5-1             
[11] scran_1.12.0                SingleCellExperiment_1.6.0 
[13] SummarizedExperiment_1.14.1 GenomicRanges_1.36.0       
[15] GenomeInfoDb_1.20.0         DelayedArray_0.10.0        
[17] BiocParallel_1.18.1         matrixStats_0.55.0         
[19] cowplot_1.0.0               monocle_2.12.0             
[21] DDRTree_0.1.5               irlba_2.3.3                
[23] VGAM_1.1-1                  ggplot2_3.2.1              
[25] Matrix_1.2-17               Seurat_3.0.3.9019          
[27] org.Hs.eg.db_3.8.2          AnnotationDbi_1.46.1       
[29] IRanges_2.18.1              S4Vectors_0.22.0           
[31] Biobase_2.44.0              BiocGenerics_0.30.0        
[33] RColorBrewer_1.1-2          edgeR_3.26.3               
[35] limma_3.40.2               

loaded via a namespace (and not attached):
  [1] reticulate_1.13          R.utils_2.9.0           
  [3] tidyselect_0.2.5         RSQLite_2.1.2           
  [5] htmlwidgets_1.5          grid_3.6.0              
  [7] combinat_0.0-8           docopt_0.6.1            
  [9] Rtsne_0.15               munsell_0.5.0           
 [11] codetools_0.2-16         ica_1.0-2               
 [13] statmod_1.4.30           future_1.14.0           
 [15] withr_2.1.2              colorspace_1.4-1        
 [17] fastICA_1.2-2            knitr_1.25              
 [19] ROCR_1.0-7               gbRd_0.4-11             
 [21] listenv_0.7.0            labeling_0.3            
 [23] Rdpack_0.11-0            git2r_0.26.1            
 [25] slam_0.1-45              GenomeInfoDbData_1.2.1  
 [27] polyclip_1.10-0          farver_1.1.0            
 [29] bit64_0.9-7              pheatmap_1.0.12         
 [31] rprojroot_1.3-2          vctrs_0.2.0             
 [33] xfun_0.10                R6_2.4.0                
 [35] doParallel_1.0.15        ggbeeswarm_0.6.0        
 [37] rsvd_1.0.2               locfit_1.5-9.1          
 [39] bitops_1.0-6             assertthat_0.2.1        
 [41] SDMTools_1.1-221.1       scales_1.0.0            
 [43] beeswarm_0.2.3           gtable_0.3.0            
 [45] npsurv_0.4-0             globals_0.12.4          
 [47] rlang_0.4.0              zeallot_0.1.0           
 [49] lazyeval_0.2.2           yaml_2.2.0              
 [51] reshape2_1.4.3           backports_1.1.5         
 [53] tools_3.6.0              gridBase_0.4-7          
 [55] gplots_3.0.1.1           dynamicTreeCut_1.63-1   
 [57] ggridges_0.5.1           Rcpp_1.0.2              
 [59] plyr_1.8.4               zlibbioc_1.30.0         
 [61] purrr_0.3.2              RCurl_1.95-4.12         
 [63] densityClust_0.3         pbapply_1.4-1           
 [65] viridis_0.5.1            zoo_1.8-6               
 [67] ggrepel_0.8.1            fs_1.3.1                
 [69] magrittr_1.5             data.table_1.12.4       
 [71] lmtest_0.9-37            RANN_2.6.1              
 [73] whisker_0.3-2            fitdistrplus_1.0-14     
 [75] lsei_1.2-0               evaluate_0.14           
 [77] xtable_1.8-4             sparsesvd_0.1-4         
 [79] gridExtra_2.3            HSMMSingleCell_1.4.0    
 [81] compiler_3.6.0           scater_1.12.2           
 [83] tibble_2.1.3             KernSmooth_2.23-15      
 [85] crayon_1.3.4             R.oo_1.22.0             
 [87] htmltools_0.4.0          tidyr_0.8.3             
 [89] DBI_1.0.0                tweenr_1.0.1            
 [91] MASS_7.3-51.4            R.methodsS3_1.7.1       
 [93] gdata_2.18.0             metap_1.1               
 [95] igraph_1.2.4.1           pkgconfig_2.0.3         
 [97] bigmemory.sri_0.1.3      plotly_4.9.0            
 [99] foreach_1.4.7            vipor_0.4.5             
[101] dqrng_0.2.1              XVector_0.24.0          
[103] bibtex_0.4.2             stringr_1.4.0           
[105] digest_0.6.21            sctransform_0.2.0       
[107] RcppAnnoy_0.0.12         tsne_0.1-3              
[109] rmarkdown_1.14           DelayedMatrixStats_1.6.0
[111] gtools_3.8.1             nlme_3.1-141            
[113] jsonlite_1.6             BiocNeighbors_1.2.0     
[115] viridisLite_0.3.0        pillar_1.4.2            
[117] lattice_0.20-38          httr_1.4.1              
[119] survival_2.44-1.1        glue_1.3.1              
[121] qlcMatrix_0.9.7          FNN_1.1.3               
[123] png_0.1-7                iterators_1.0.12        
[125] bit_1.1-14               ggforce_0.3.0           
[127] stringi_1.4.3            blob_1.2.0              
[129] BiocSingular_1.0.0       caTools_1.17.1.2        
[131] memoise_1.1.0            future.apply_1.3.0      
[133] ape_5.3