Last updated: 2019-10-31

Checks: 6 0

Knit directory: Porello-heart-snRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190603) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/07b-DECardioFYA.Rmd
    Untracked:  analysis/PBapproachMarker-cardio.Rmd
    Untracked:  analysis/doublet-detection.Rmd
    Untracked:  broad_props.csv
    Untracked:  code/ReadDataObjects.R
    Untracked:  code/getTransformedProps.R
    Untracked:  data/adult-clust.txt
    Untracked:  data/dcm-clust.txt
    Untracked:  data/fetal-clust.txt
    Untracked:  data/gstlist-adult.Rdata
    Untracked:  data/gstlist-dcm-res03.Rdata
    Untracked:  data/gstlist-dcm.Rdata
    Untracked:  data/gstlist-fetal.Rdata
    Untracked:  data/gstlist-young.Rdata
    Untracked:  data/heart-markers-long.txt
    Untracked:  data/immune-markers-long.txt
    Untracked:  data/pseudobulk-pool.Rds
    Untracked:  data/pseudobulk.Rds
    Untracked:  data/targets_pools.txt
    Untracked:  data/young-clust.txt
    Untracked:  output/AllAdult-clustermarkers-v2.csv
    Untracked:  output/AllAdult-clustermarkers.csv
    Untracked:  output/AllFetal-clustermarkers.csv
    Untracked:  output/AllYoung-clustermarkers.csv
    Untracked:  output/Alldcm-clustermarkers.csv
    Untracked:  output/DEAnalysis/
    Untracked:  output/Figures/
    Untracked:  output/MarkerAnalysis/
    Untracked:  output/RDataObjects/
    Untracked:  output/cardio-numcells-clusters.csv
    Untracked:  output/cardio-numcells-clusters.txt
    Untracked:  output/fetal1-clustermarkers.csv
    Untracked:  output/fetal2-clustermarkers.csv
    Untracked:  output/fetal3-clustermarkers.csv
    Untracked:  output/heatmap-top10-adultmarkergenes.pdf
    Untracked:  output/young1-clustermarkers.csv

Unstaged changes:
    Modified:   analysis/01-QualityControl.Rmd
    Modified:   analysis/01a-DEpseudobulk.Rmd
    Modified:   analysis/02-ClusterFetal.Rmd
    Modified:   analysis/02c-ClusterFetal3.Rmd
    Modified:   analysis/03-ClusterYoung.Rmd
    Modified:   analysis/04-ClusterAdult.Rmd
    Modified:   analysis/07a-ClustCardioFYA.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 286b88b Belinda Phipson 2019-10-31 immune, endo, smc reclustering
html 603b51b Belinda Phipson 2019-10-31 Build site.
Rmd 36f15a6 Belinda Phipson 2019-10-30 add endothelial reclustering, fixed smc clustering
html 878c13c Belinda Phipson 2019-10-30 Build site.
html 604f664 Belinda Phipson 2019-10-29 Build site.
Rmd 4352989 Belinda Phipson 2019-10-29 add reclustering of smooth muscle cells

Load libraries and functions

library(edgeR)
library(RColorBrewer)
library(org.Hs.eg.db)
library(limma)
library(Seurat)
library(monocle)
library(cowplot)
library(DelayedArray)
library(scran)
library(NMF)
library(workflowr)
library(ggplot2)
library(clustree)
library(dplyr)
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/normCounts.R")
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/findModes.R")
source("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/code/ggplotColors.R")
targets <- read.delim("/misc/card2-single_cell_nuclei_rnaseq/Porello-heart-snRNAseq/data/targets.txt",header=TRUE, stringsAsFactors = FALSE)
targets$FileName2 <- paste(targets$FileName,"/",sep="")
targets$Group_ID2 <- gsub("LV_","",targets$Group_ID)
group <- c("Fetal_1","Fetal_2","Fetal_3",
           "Young_1","Young_2","Young_3",
           "Adult_1","Adult_2","Adult_3", 
           "Diseased_1","Diseased_2",
           "Diseased_3","Diseased_4")
m <- match(group, targets$Group_ID2)
targets <- targets[m,]
fetal.integrated <- readRDS(file="./output/RDataObjects/fetal-int.Rds")
load(file="./output/RDataObjects/fetalObjs.Rdata")

young.integrated <- readRDS(file="./output/RDataObjects/young-int.Rds")
load(file="./output/RDataObjects/youngObjs.Rdata")

adult.integrated <- readRDS(file="./output/RDataObjects/adult-int.Rds")
load(file="./output/RDataObjects/adultObjs.Rdata")

Set default clustering resolution

# Default 0.3
Idents(fetal.integrated) <- fetal.integrated$integrated_snn_res.0.3
DimPlot(fetal.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
604f664 Belinda Phipson 2019-10-29
# Default 0.3
DimPlot(young.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
604f664 Belinda Phipson 2019-10-29
# Default 0.6
DimPlot(adult.integrated, reduction = "tsne",label=TRUE,label.size = 6)+NoLegend()

Version Author Date
604f664 Belinda Phipson 2019-10-29

Merge all data together

heart <- merge(fetal.integrated, y = c(young.integrated, adult.integrated), project = "heart")
table(heart$orig.ident)

adult fetal young 
 9416 27760 16964 
DefaultAssay(object = heart) <- "RNA"

Get epicardial cells only

smc <- subset(heart,subset = Broad_celltype == "Smooth muscle cells")
dim(smc)
[1] 17926   430

Filter out crappy cells

Check for cells with very low number of uniquely detected genes.

par(mfrow=c(1,2))
plot(density(smc$nFeature_RNA),main="Number of genes detected")
abline(v=500,col=2)
plot(density(smc$nCount_RNA),main="Library size")
abline(v=2500,col=2)

Version Author Date
604f664 Belinda Phipson 2019-10-29
#smc <- subset(smc, subset = nFeature_RNA > 500 & nCount_RNA > 2500)
dim(smc)
[1] 17926   430
table(smc$biorep)

 a1  a2  a3  f1  f2  f3  y1  y2  y3 
 22  49  13  54  20 136  59  28  49 

Run new integration with SCtransform normalisation

There are very few cells for each biological replicate, so I will normalise and integrate the data by group rather than biological replicate.

smc.list <- SplitObject(smc, split.by = "orig.ident")
for (i in 1:length(smc.list)) {
    smc.list[[i]] <- SCTransform(smc.list[[i]], verbose = FALSE)
}
kf <- min(sapply(smc.list, ncol))
smc.anchors <- FindIntegrationAnchors(object.list = smc.list, dims=1:30,anchor.features = 3000,k.filter=kf)
smc.integrated <- IntegrateData(anchorset = smc.anchors,dims=1:30)

Perform clustering

DefaultAssay(object = smc.integrated) <- "integrated"

Perform scaling and PCA

smc.integrated <- ScaleData(smc.integrated, verbose = FALSE)
smc.integrated <- RunPCA(smc.integrated, npcs = 50, verbose = FALSE)
ElbowPlot(smc.integrated,ndims=50)

Version Author Date
604f664 Belinda Phipson 2019-10-29
VizDimLoadings(smc.integrated, dims = 1:4, reduction = "pca")

Version Author Date
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "pca",group.by="orig.ident")

Version Author Date
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "pca",group.by="biorep")

Version Author Date
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "pca",group.by="sex")

Version Author Date
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "pca",group.by="batch")

Version Author Date
604f664 Belinda Phipson 2019-10-29
DimHeatmap(smc.integrated, dims = 1:15, cells = 500, balanced = TRUE)

Version Author Date
604f664 Belinda Phipson 2019-10-29
#DimHeatmap(smc.integrated, dims = 16:30, cells = 500, balanced = TRUE)
#DimHeatmap(smc.integrated, dims = 31:45, cells = 500, balanced = TRUE)

Perform nearest neighbours clustering

smc.integrated <- FindNeighbors(smc.integrated, dims = 1:10)
smc.integrated <- FindClusters(smc.integrated, resolution = 0.1)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9233
Number of communities: 3
Elapsed time: 0 seconds
table(Idents(smc.integrated))

  0   1   2 
232 174  24 
par(mfrow=c(1,1))
par(mar=c(5,4,2,2))
barplot(table(Idents(smc.integrated)),ylab="Number of cells",xlab="Clusters")
title("Number of cells in each cluster")

Version Author Date
604f664 Belinda Phipson 2019-10-29

Visualisation with TSNE

set.seed(10)
smc.integrated <- RunTSNE(smc.integrated, reduction = "pca", dims = 1:10)
DimPlot(smc.integrated, reduction = "tsne",label=TRUE,label.size = 6,pt.size = 0.5)+NoLegend()

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
pdf(file="./output/Figures/tsne-smcALL-res01.pdf",width=10,height=8,onefile = FALSE)
DimPlot(smc.integrated, reduction = "tsne",label=TRUE,label.size = 6,pt.size = 0.5)+NoLegend()
dev.off()
png 
  2 
DimPlot(smc.integrated, reduction = "tsne", group.by = "orig.ident")

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "tsne", split.by = "orig.ident")

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "tsne", group.by = "biorep")

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "tsne", group.by = "sex")

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "tsne", split.by = "sex")

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
DimPlot(smc.integrated, reduction = "tsne", group.by = "batch")

Version Author Date
603b51b Belinda Phipson 2019-10-31
604f664 Belinda Phipson 2019-10-29
par(mfrow=c(1,1))
par(mar=c(4,4,2,2))
tab <- table(Idents(smc.integrated),smc.integrated$biorep)
barplot(t(tab/rowSums(tab)),beside=TRUE,col=ggplotColors(9),legend=TRUE)

Version Author Date
604f664 Belinda Phipson 2019-10-29
par(mfrow=c(1,1))
par(mar=c(4,4,2,2))
tab <- table(Idents(smc.integrated),smc.integrated$orig.ident)
barplot(t(tab/rowSums(tab)),beside=TRUE,col=ggplotColors(3))
legend("topleft",legend=colnames(tab),fill=ggplotColors(3))

Version Author Date
604f664 Belinda Phipson 2019-10-29

Visualisation with clustree

clusres <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2)
for(i in 1:length(clusres)){
  smc.integrated <- FindClusters(smc.integrated, 
                                   resolution = clusres[i])
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9233
Number of communities: 3
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8775
Number of communities: 3
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8400
Number of communities: 4
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8063
Number of communities: 4
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7766
Number of communities: 5
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7518
Number of communities: 5
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7269
Number of communities: 6
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.7072
Number of communities: 7
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.6889
Number of communities: 7
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.6707
Number of communities: 8
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.6536
Number of communities: 8
Elapsed time: 0 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 430
Number of edges: 13189

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.6366
Number of communities: 8
Elapsed time: 0 seconds
pct.male <- function(x) {mean(x=="m")}
pct.female <- function(x) {mean(x=="f")}
pct.fetal <- function(x) {mean(x=="fetal")}
pct.young <- function(x) {mean(x=="young")}
pct.adult <- function(x) {mean(x=="adult")}
clustree(smc.integrated, prefix = "integrated_snn_res.")

Version Author Date
604f664 Belinda Phipson 2019-10-29
clustree(smc.integrated, prefix = "integrated_snn_res.",
         node_colour = "sex", node_colour_aggr = "pct.female",assay="RNA")

Version Author Date
604f664 Belinda Phipson 2019-10-29
clustree(smc.integrated, prefix = "integrated_snn_res.",
         node_colour = "sex", node_colour_aggr = "pct.male",assay="RNA")

Version Author Date
604f664 Belinda Phipson 2019-10-29
clustree(smc.integrated, prefix = "integrated_snn_res.",
         node_colour = "orig.ident", node_colour_aggr = "pct.fetal",assay="RNA")

Version Author Date
604f664 Belinda Phipson 2019-10-29
clustree(smc.integrated, prefix = "integrated_snn_res.",
         node_colour = "orig.ident", node_colour_aggr = "pct.young",assay="RNA")

Version Author Date
604f664 Belinda Phipson 2019-10-29
clustree(smc.integrated, prefix = "integrated_snn_res.",
         node_colour = "orig.ident", node_colour_aggr = "pct.adult",assay="RNA")

Version Author Date
604f664 Belinda Phipson 2019-10-29

Save Seurat object

DefaultAssay(smc.integrated) <- "RNA"
Idents(smc.integrated) <- smc.integrated$integrated_snn_res.0.1
saveRDS(smc.integrated,file="./output/RDataObjects/smc-int-FYA-filtered.Rds")
#smc.integrated <- readRDS(file="./output/RDataObjects/smc-int-FYA.Rds")
# Load unfiltered counts matrix for every sample (object all)
load("./output/RDataObjects/all-counts.Rdata")

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS release 6.7 (Final)

Matrix products: default
BLAS:   /usr/local/installed/R/3.6.0/lib64/R/lib/libRblas.so
LAPACK: /usr/local/installed/R/3.6.0/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] splines   parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] dplyr_0.8.3                 clustree_0.4.0             
 [3] ggraph_1.0.2                workflowr_1.3.0            
 [5] NMF_0.21.0                  bigmemory_4.5.33           
 [7] cluster_2.1.0               rngtools_1.4               
 [9] pkgmaker_0.27               registry_0.5-1             
[11] scran_1.12.0                SingleCellExperiment_1.6.0 
[13] SummarizedExperiment_1.14.1 GenomicRanges_1.36.0       
[15] GenomeInfoDb_1.20.0         DelayedArray_0.10.0        
[17] BiocParallel_1.18.1         matrixStats_0.55.0         
[19] cowplot_1.0.0               monocle_2.12.0             
[21] DDRTree_0.1.5               irlba_2.3.3                
[23] VGAM_1.1-1                  ggplot2_3.2.1              
[25] Matrix_1.2-17               Seurat_3.0.3.9019          
[27] org.Hs.eg.db_3.8.2          AnnotationDbi_1.46.1       
[29] IRanges_2.18.1              S4Vectors_0.22.0           
[31] Biobase_2.44.0              BiocGenerics_0.30.0        
[33] RColorBrewer_1.1-2          edgeR_3.26.3               
[35] limma_3.40.2               

loaded via a namespace (and not attached):
  [1] reticulate_1.13          R.utils_2.9.0           
  [3] tidyselect_0.2.5         RSQLite_2.1.2           
  [5] htmlwidgets_1.5          grid_3.6.0              
  [7] combinat_0.0-8           docopt_0.6.1            
  [9] Rtsne_0.15               munsell_0.5.0           
 [11] codetools_0.2-16         ica_1.0-2               
 [13] statmod_1.4.30           future_1.14.0           
 [15] withr_2.1.2              colorspace_1.4-1        
 [17] fastICA_1.2-2            knitr_1.25              
 [19] ROCR_1.0-7               gbRd_0.4-11             
 [21] listenv_0.7.0            labeling_0.3            
 [23] Rdpack_0.11-0            git2r_0.26.1            
 [25] slam_0.1-45              GenomeInfoDbData_1.2.1  
 [27] polyclip_1.10-0          farver_1.1.0            
 [29] bit64_0.9-7              pheatmap_1.0.12         
 [31] rprojroot_1.3-2          vctrs_0.2.0             
 [33] xfun_0.10                R6_2.4.0                
 [35] doParallel_1.0.15        ggbeeswarm_0.6.0        
 [37] rsvd_1.0.2               locfit_1.5-9.1          
 [39] bitops_1.0-6             assertthat_0.2.1        
 [41] SDMTools_1.1-221.1       scales_1.0.0            
 [43] beeswarm_0.2.3           gtable_0.3.0            
 [45] npsurv_0.4-0             globals_0.12.4          
 [47] tidygraph_1.1.2          rlang_0.4.0             
 [49] zeallot_0.1.0            lazyeval_0.2.2          
 [51] checkmate_1.9.4          yaml_2.2.0              
 [53] reshape2_1.4.3           backports_1.1.5         
 [55] tools_3.6.0              gridBase_0.4-7          
 [57] gplots_3.0.1.1           dynamicTreeCut_1.63-1   
 [59] ggridges_0.5.1           Rcpp_1.0.2              
 [61] plyr_1.8.4               zlibbioc_1.30.0         
 [63] purrr_0.3.2              RCurl_1.95-4.12         
 [65] densityClust_0.3         pbapply_1.4-1           
 [67] viridis_0.5.1            zoo_1.8-6               
 [69] ggrepel_0.8.1            fs_1.3.1                
 [71] magrittr_1.5             data.table_1.12.4       
 [73] lmtest_0.9-37            RANN_2.6.1              
 [75] whisker_0.3-2            fitdistrplus_1.0-14     
 [77] lsei_1.2-0               evaluate_0.14           
 [79] xtable_1.8-4             sparsesvd_0.1-4         
 [81] gridExtra_2.3            HSMMSingleCell_1.4.0    
 [83] compiler_3.6.0           scater_1.12.2           
 [85] tibble_2.1.3             KernSmooth_2.23-15      
 [87] crayon_1.3.4             R.oo_1.22.0             
 [89] htmltools_0.4.0          tidyr_0.8.3             
 [91] DBI_1.0.0                tweenr_1.0.1            
 [93] MASS_7.3-51.4            R.methodsS3_1.7.1       
 [95] gdata_2.18.0             metap_1.1               
 [97] igraph_1.2.4.1           pkgconfig_2.0.3         
 [99] bigmemory.sri_0.1.3      plotly_4.9.0            
[101] foreach_1.4.7            vipor_0.4.5             
[103] dqrng_0.2.1              XVector_0.24.0          
[105] bibtex_0.4.2             stringr_1.4.0           
[107] digest_0.6.21            sctransform_0.2.0       
[109] RcppAnnoy_0.0.12         tsne_0.1-3              
[111] rmarkdown_1.14           DelayedMatrixStats_1.6.0
[113] gtools_3.8.1             nlme_3.1-141            
[115] jsonlite_1.6             BiocNeighbors_1.2.0     
[117] viridisLite_0.3.0        pillar_1.4.2            
[119] lattice_0.20-38          httr_1.4.1              
[121] survival_2.44-1.1        glue_1.3.1              
[123] qlcMatrix_0.9.7          FNN_1.1.3               
[125] png_0.1-7                iterators_1.0.12        
[127] bit_1.1-14               ggforce_0.3.0           
[129] stringi_1.4.3            blob_1.2.0              
[131] BiocSingular_1.0.0       caTools_1.17.1.2        
[133] memoise_1.1.0            future.apply_1.3.0      
[135] ape_5.3